View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-1-1992

A Massively Parallel MIMD Implemented by
SIMD Hardware?

H. G. Dietz
Purdue University School of Electrical Engineering

W E. Cohen
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Dietz, H. G. and Cohen, W E., "A Massively Parallel MIMD Implemented by SIMD Hardware?" (1992). ECE Technical Reports. Paper
280.
http://docs.lib.purdue.edu/ecetr/280

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/4947907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages

N

L

pu
3
'Qaao

A Massively Parallel MIMD
|mplemented by SIMD
Hardware?

etz
ohen

m@
O0

TR-EE92-4
January 1992

T This work was supported by the Office of Naval Research (ONR)
under grant number N00014-91-J-4013 and by the National Science
Foundation (NSF) under award number 9015696-CDA.

Massve MIMD

Tableof Contents
L INEFOQUCTION vttt ettt sttt st et cb et et es s et es st steba st br e sesasasabescrnnas 2
L1 Interpretation OVErNEAOc.ceceiveenreiiineecie ettt sbebe e 2
L2, INAITECHION .evvetiieaeieteeii et sener st s sr e st e sbe e sb et e sassanbeseesasssresesbesnes 3
1.3 ENBDIE MASKING «cvvvieiminiiiicreieiimeiiieenieneneeent sttt sttt enneseenen 3
LA, OUF APPIOBCH ...vuiiicirieicteitrresee e arasrrssas e e ressss e sesesersrssssesesess sesansssarnssscans 4
2. INSITUCLION SEL DESIQGN cevvvevimrniiniimr it sttt ses st ses st sh st enes 5
2.1. Memory ReferenCEMOUTEcovicceiriimiriiirie e st s 6
2.1.1. Local MemMOry MOGEcoeivnirirciriiee e et ereecac e 6
2.1.2. Globa Memory MOElcccereviieeierenirnceneeeee e 6
2.2. Assembly LanguageModelcccveiniinimcrininiine e ieneeneaes 7
2.3. Prototype INSIIUCLION SELc.covivieiiiieicverenieierecireenosenterereeresesis s snnsserenesesrasas 8
3. EMUIGLOr DESIGN ..ceviimriiciciniiineieiericseecnesaess st s ssesesese e et es b etateressssaseanssesenesaeeranns 10
3.1. Shortening The BaSIC CYCI@....v v rirmririereriinineiririraesrersasmeseeresessssnsessnsesenens 10
3.2 Minimizing OPEratioN TIME ...vvveeriieeiiieieeesieriier et s stesss e seis s ennne 10
321 Maximizing INStruction OVErapccevcnvcniiiicecnnniieinninn. 11
3.2.2. Reducing Operation COUNEccevireveerevermrienerniereieseesenesesescnmiesererenenen 11
3.2.2.1. SUBEBMUIGLOISccvivierricciiieenee ittt e 12
3.2.2.2. Frequency BiaSiNgcccvvvecerreeninecneenevneeereesneseceeseecees 15
4. PerformanCe EVAlUALION ... sssssssss s sssssssssssssssses 15
4.1. High-Level LanguagePeak MFLOPSccocoininmmeineccnmnceenneenennesesnenencees 16
4.2 EMUIALion OVETNEAovvvieceeinneeseeinrissnnreecseenmnineesneesstseseesscssessessseesecesseneens 17
4.3. A Many-Thread EXaMPIEcoccreiieereecneinnere sttt vt 18
4.3.1. TREPIOGIAIM ..ovececeiririeinreniiceeresrececemcasraene e esseeseessseeressesessenseasescnences 18
4.3.2. PEIfOIMMENCE ...cccuiviiriniiieeicentciice et e s st esstesenes 21
5. ROOM fOr IMPIOVEMENTcovvieireniirirenniieeteiiineecrrestarieererrere st sses et ses e sresasss e sasaes 23
5.1 COMPIHEr (MIMUC) tuecererarenrerenerrientirrasrseesissessasessessessesenmssesssecssseseesmssesassesiosesene 23
5.2, ASSEMDIEr (MIMAA) woeererrerenenrerirreiaerentriensasseeacscanssesssesessesseseseessessessenssescesasenss 23
5.3 EMUIAOT (MIMA) ceerireeinreieeiese ettt smereaesesee e e sssmees e st esessnsassssssnenss 23

B CONCIUSIONSc.eveirreeeireiiiseeee e tesbese e sersreeessesessostssnsstsaseesseesssassssrsessnsessstssassssssnssonssessrsesnes 24

A Massively Parallel MIMD
|mplemented By SIMD Hardwar e?

H.G Dietz and W. E. Cohen

Parallel Processing L aboratory
School of Electrical Engineering
Purdue University
West Lafayette, IN 47906
hankd@cn. purdue. edu

Absract

Both conventional wisdom and engineering practice hold that a massively paralel MIMD
machine should be constructed using alarge number of independent processorsand an asynchro-
nous interconnection network. In this paper, we suggest that it may be beneficia to implement a
massively paralel MIMD using microcode on a massively parallel SIMD microengine; the syn-
chronous nature of the system allows much higher performance to be obtained with simpler
hardware. The primary disadvantageis simply that the SIMD microengine must serialize execu-
tion of different typesof instructions — but again the static nature of the machine allows various
optimizations that can minimize this detrimental effect.

In addition to presenting the theory behind construction of efficient MIMD machines using
SIMD microengines, this paper discusses how the techniques were applied to create a 16,384-
processor shared memory barrier MIMD using a SIMD MasPar MP-1. Both the MIMD structure
and benchmark results are presented. Even though the MasPar hardware is not ideal for imple-
menting a MIMD and our microinterpreter was written in a high-level language (MPL), peak
MIMD performance was 280 MFLOPS as compared to 1.2 GFLOPSfor the native SIMD instruc-
tion set. Of course, comparing peak speedsis of dubious vaue; hence, we have aso included a
number of more realistic benchmark results.

Keywords MIMD, SIMD, Microcode, Compilers, Common Subexpression Induction.

T This work was supported in part by the Office of Naval Research (ONR) under grant number
NO00014-91-J4013 and by the Nationa Science Foundation (NSF) under award number
9015696-CDA.

Page |

Massive MIMD

1. Introduction

Before discussing how a highly efficient MIMD machine can be built using a SIMD
microengine, it is useful to review the basic issues in interpreting MIMD instructions usng a
SIMD machine. In the simplest terms, the way in which one interprets a MIMD instruction set
using SIMD hardwareis to write a SIMD program that interpretively executes a MIMD instruc-
tion set. Thereis nothing particularly difficult about doing this; in fact, one could take a com-
pletely arbitrary MIMD instruction set and execute it on aSIMD machine.

For example, [WiH91] reported on asmple MIMD interpreter running on a MasPar MP-1
[Bla90]. Wilsey, et. al, implemented an interpreter for the MINTABS instruction set and indi-
cated that work was in progresson a similar interpreter for the MIPS R2000 instruction set. The
MINTABS instruction set is very smal (only 8 instructions) and is far from complete in that
there is no provision for communication between processors, but it does provide basic MIMD
execution. In fairnessto [WiH91], their MIMD interpreter was built specifically for parallel exe-
cution of mutant versionsof serial programs — no communication is needed for that application.

Such an interpreter has a data structure, replicated in each SIMD PE, that correspondsto the
internal registersof each MIMD processor. Hence, the interpreter structure can be assimpleas:

Basc MIMD Interpreter Algorithm

1. Each PE fetches an ""instruction™ into its "*instruction register™* (IR) and updatesits
"*program counter"* (PC).

2. Each PE decodesthe "ingtruction™ from itsIR.

3. Repeat steps 3a-3c for each " instruction'* type:
a Disabledl PEs wherethelR holdsan ™ instruction™ of adifferent type.
b) Simulate executionof the instruction™ on the enabled PEs,
c) Enableall PEs.

4. Gotostepl

The only difficulty in implementing an interpreter with the above structure is that the smulated
machinewill be very inefficient. There are several reasonsfor thisinefficiency.

1.1 Interpretation Overhead

The most obvious problem is simply that interpretationimplies some overhead for the inter-
preter, even MIMD hardware smulating a MIMD with a different instruction set would suffer
thisoverhead. In addition, SIMD hardware can only simulate execution of one instruction type at
atime, hence, the time to execute a smulated instruction is proportional to the sum of the execu-
tion times for each instructiontype.

Page 2

Massive MIMD

1.2. Indirection

Still moreinsidiousis thefact that even step 1 of the above agorithm cannot be executed in
parallel across all PEs in many SIMD computers. The next instruction for each PE could be at
any location in the PE’s local memory, and many SIMD machinesdo not allow multiple PEs to
accessdifferent memory locations simultaneously. Hence, on such aSIMD machine, any paralée
memory access made will take time proportiona to the number of different PE addresses being
fetched from?. For example, thisis the case on the TMC CM-1 [Hil87] and TMC CM-2 [Thi90].
Note that step 3b suffersthe same difficulty if load or store operations must be performed.

Since many operations are limited by (local) memory access speed, inefficient handling of
these memory operations can easily make MIMD interpretation on aSIMD machineinfeasible.
This overhead can be averted only if the SIMD hardware can indirectly access memory

using an addressin a PE register. Examples of STMD machines with such hardware include the
PASM Prototype [SiN90] and the MasPar MP-1 [B1a90].

13. EnableMasking

It is also important to note that the above algorithm assumes that it is possible for PEs to
enable and disable themselves (set their own masks). Although most SIMD computers have
some ability to disable PEs, in many machinesit is either difficult to have the PEs disable them-
selves (as opposed to having the control unit disable PEs, asin the PASM prototype [SiN90]) or
some arithmetic instructions cannot be disabled because they occur in a coprocessor, as in the
TMC CM-2 [Thi90]. In such cases, masking can be circumvented by the use of bitwise logical
operations, e.g. aC-likeSIMD wde segment:

where (ir == CMP) {
/* executed only by PEs in which
ir has the value CMP; «cc i s
not accessed by other PEs
*/
cc = alu - mbr;

might be implemented by all PEs simultaneously executing the C code:

/* use C's bitwise logical operations so
that cc = alu - mbr in those PEs where

. ir == CMP, and cc = cc in the others
/

mask = -(ir == CMP);

cc = ((cec & “mask) | ((alu - mbr) & mask);

1 worse still, for some S MD machines the technique used takes time proportional to the size of the
address space which could be accessed.

Page 3

Massive MIMD

which is relatively expensive. Noticethat in addition to the bitwise operations, the above imple-
mentation requires a memory access (i.e., loading the value of cc) that would not be necessary
for amachine that supports enable masking in hardware. Because masking isdone for each simu-
lated instruction, the masking cost effectively increasesthe basic interpretation overhead.

Examples of SIMD machines whose hardware can implement the appropriate masking
includethe TMC CM-1 and the MasPar MP-1.

14. Our Approach

Now consider building a true MIMD machine using a specialy designed SIMD microen-
gineinstead of simply implementing an interpreter on top of an existing SIMD machine.

Just as building an efficient interpreter would be infeasible unless the SIMD machine has
hardware supporting both indirection and masking, the SIMD microengine must incorporate
hardware for these functions. However, if we are designinga SIMD microengine, it is inexpen-
sive to make it support both indirection and masking. How do we know this? Because the
MasPar MP-1’s SIMD ingtruction set is actually implemented by microcode on a SSMD
microengine that supports both indirection and masking. We are not claiming that the
MasPar MP-1 hardware is our ideal SIMD microengine, but it is close enough to alow us to
implement a proof-of-concept MIMD emulation — as presented in this paper.

Hcode store
shared memory
| inter connectionnetwork
(global router)
peode decoder/control unit —
processor pr ocessor processor processor
0 1 2 e wi dt h-1
local local local local

memory memory memory memory

Figure 1: Block Diagram of MIMD using SIMD pengine

MassveMIMD

In our system, as shown in figure 1, the MasPar’s ACU (Array Control Unit) becomes our
microcode decoder and control unit, synchronously managing the parallel system. The ACU
memory is thus the microcode store (with virtual memory paging support). Each SIMD PEs
becomes an essentially complete MIMD processor — except in that these processorsdo not have
any local microcode control. The local memory for each PE functions identically in the MIMD
organization, except in that the union of the local memories, with the help of the global router
network, forms a global shared memory. Note that even though global memory references must
passthrough processors, thisis done transparently under microcode control.

Given an appropriate SIMD microengine, the only remaining difficulty is the emulator
(interpreter) overhead associated with decoding and performingoperationswithin each SIMD PE.
By careful construction of the MIMD instruction set and optimization of the emulation algorithm,
the effective interpreter overhead and number of instruction types can be reduced greatly.

The result is aMIMD emulation that typicaly achieves alarge fraction of the pesk speed
that a pure SIMD instruction set would obtain using the same SIMD microengine. As a true
microcoded implementation, it is possiblethat the MIMD machine would have peak performance
virtually identical to the equivalent SIMD machine.

Unfortunately, there are a number of compromisesin the implementation of our proof-of-
concept prototype MIMD emulator as presented in this paper. By far the most important
compromise is that rather than directly using the SIMD microengine, our current version of the
emulator is written in MPL [Mas91], a C language dialect that is compiled into the MasPar’s
SIMD macroinstructions. This results in between about 115th and 1140th the peak SIMD perfor-
mance when executing pure MIMD code.

While these numbersrank our prototype 16,384-processor shared memory barrier MIMD as
a'"margina"" supercomputer peaking inthe low 100's of MIPS, and the MasPar MP-| is cheap
enough to even yield a reasonable MIPS/dollar rating using our current emulator, that is not our
point. Our point is that, designing a SIMD microengine from scratch, the performance of this
new type of MIMD implementation could be superior to that obtained by more conventional
MIMD architectures.

The remainder of this paper explains the design, optimization, and prototype performance
of aMIMD machine constructed using aSIMD microengine.

2. Instruction Set Design

Although there are many factors influencing the design of an instruction set, here we are
concerned only with making the instruction set execute efficiently and be powerful enough to
encode reasonable programs.

Page 5

MassveMIMD

2.1. Memory ReferenceMode

In many computers, execution speed is more often limited by memory referencetime than
by the speed of arithmetic operations within a processor. The choiceof memory reference mode
iseven moreimportant in thedesign of a massively parallel machine:

1. Although each processor generally haslocal memory nearby, the bandwidth is usually
limited by VLS| pinout constraints and the need to minimize the number of memory
chips per processor. For example, on the MasPar MP-1 each group of 16 PEs sharesa
single, time multiplexed, port tolocal memory.

2. Processorsinevitably must communicate with each other, hence, some mechanism for
accessing data from another PE is needed. Massively paralel machines can have
massive amounts of memory distributed across al PEs; thereis even a strong incen-
tive to spread local data across the machine smply because it might not fit in local
memory, which istypically small.

The following two sections addressthese issues.

21.1. Local Memory Modée

The standard solution to the first problem is to use either registers or cache. Fortunately,
machineslike the MasPar MP-1 have many registers... unfortunately, the same register must be
accessed by all enabled PEs. Without the ability for each PE to accessa register of itschosing, it
is impossible for the PE to efficiently implement a register oriented model; each "'register™
would have to be stored in loca memory. Although the modification of the MasPar MP-1
hardware to support indirect register references (smilar to those on the AMD 29K [Adv89])
would be relatively smple, as a practicad matter, such a modification is beyond the scope of
academic research.

Hence, weare forced to reduce the number of memory referencesby using an instruction set
in which every instruction accesses the same register for an operand. Either an accumulator-
based or stack cache-based schemeis viable; we used a stack cache in which the top element on
the stack is cached in a particular register. Larger stack cache sizes are impractical due to the
overhead in manipulating registers to appear as a stack cache. The single element stack cache
avertsone operand fetch on all unary and binary operations.

2.1.2. Global Memory Modd

Although many small MIMD computers alow all processors to share access to a common
memory [ThG871[Cra91], it is very difficult to construct hardware that scales this feature up to
thousands of processors. Hence, the primary question becomes whether one should try to make
distributed memory hardware appear to software as dow shared memory or as distributed
memory accessed by explicitly sending a message to the processor for whom that memory is
local.

Page 6

Massive MIMD

There are two reasonsthat we use a shared memory model:

1 The shared memory model impliesthat all packetssent through the network at agiven
time operate on the same sizedata— one memory word. Thisimpliesthat SIMD net-
work control can be used without loss of efficiency [BeS91] — and at a great savings
in network switch hardware complexity.

2. If an explicit, asynchronous, message-passing scheme were used, it would be neces-
sary to both buffer messages and to interrupt the receiving processor to process them.
These overheads would both complicate (i.e., dow) the emulator and result in longer
instruction sequences that could not be executed in parallel on the SIMD microengine.

For these reasons, supporting a shared memory memory modd is actudly likely to be more
efficient than using explicit message passing. Of course, one still should program so that most
references will be to objectsin local memory, because globd referenceswill be dower. On the
16,384 PE MasPar MP-1 using the global router network, the ratio between global and local
referencesis approximately 10:12.

Thereis, however, one other difficulty that arisesin the above treatment of shared memory:
if every processor wants to access the same shared memory location, this may cause network
contention that would serialize the operations. Effectively, this was the problem that inspired
"' Repetition Filter Memory™ [Kla80] and ** Fetch-and-Op** [Sto84] for shared memory MIMD
computers.

Surprisingly, this problem is much easier to solve when the network control is SIMD
[BeS91]. In effect, races can be resolved by the SIMD microengine's control unit — and the
resulting value can smply be broadcast. For example, the current MIMD emulator allows a
second type of shared memory which is implemented using a copy in each processor; loads are
local memory references, storeshave races resolved by the control unit and the result broadcast to
dl copies of the variable. The SIMD network control also makes ** Fetch-and-Op** efficiently
implementable without additional hardware.

2.2. Assembly Language Model

In implementing a M MD machine using a SIMD microengine, it seems that the ultimate

[imit on performance must be the fact that the SIMD microengine must serialize execution of dif-

ferent types of MIMD instructions. Hence, one would expect that the slowdown for an emulated

MIMD would be roughly proportional to the sum of the executiontimes of al instructionsin the
instruction set. Fortunately, this need not be the case, because:

1. Here we are talking about a SIMD microengine, and many of the microinstructions

implementing different MIMD instructions are of the same type. Hence, it isn't a

matter of not being able to overlap the MIMD Mul and Di v instructions, but a

2 Thi s remarkably low ratio is due to the fact that the MasPar MP-1 router is fas and local memory
accesses are slow dueto 16-way sharing of local memory ports.

Pege 7

MassveMIMD

matter of overlapping al their congtituent microinstructions except for the ALU
operation. The problem is not lack of overlap, but rather the complexity of making
the best choice among the many possible microinstruction overlaps. By designing the
instruction set so that many microingtructions will form common subsequences, only
asmall amount of overhead is associated with having alarger instruction set.

2. Evenif there are many ingtructions in the MIMD instruction set and there are few
microinstructions in common, the emulation speed can be very good if only a few dif-
ferent instructions are to be executed in any given emulation cycle. For example, the
MIMD instruction set supported by our prototype emulator contains 38 different
instructions, many of which have little microinstruction overlap; however, even in the
very asynchronousMIMD program given in section 4.3, there wereonly an average of
6.28 differenttypesof MIMD instructions executed in each emulator cycle. In section
3.2.2.2, we aso describe how the number of different MIMD instruction types whose
executionis attempted in each emulator cycle can be artificially reduced.

In fact, the techniquesused are so effective that the instruction set size and instruction execution
time have only indirect impact on emulation speed.

The single most severe congtraint on instruction set size for the current MIMD emulator is
the desire to minimize the time taken for instruction fetch from local memory — idedlly, the
instruction set would have no more than 256 instructions so that all opcodes will fit in 8 bits.
Because of memory address aignment constraints3, the use of 8-bit opcodes makesiit difficult to
fetch more than an 8-bit immediate operand. Hence, our instruction set incorporates a constant
pool that holds up to 256 32-hit values.

23. Prototypelnstruction Set

In the prototype MIMD emulator, we have implemented an instruction set that is as rich as
we felt was useful. Even as this paper is being written, we are considering a number of changes
including the addition of several new instructions.

A brief summary of the MIMD ingtruction set used in the current emulator appearsin table
1. Mnemonicsfollowed by i are operations using 8-bit immediate values, and those followed by
C use 32-bit vauestaken from the constant pool. The processor number, thi s, and the number
of processors, width, are actualy specid entries in the constant pool that areinitialized a pro-
gram load time; hence, they are accessed via Const ingdructions. The class membership
columnof thistableisdiscussedin section 3.2.2.1.

3 The MasPar MP 1 microengine has no alignment constraints, but the SIMD macroinstruction set
unfortunately does.

Page 8

MassveMIMD

Mnemonic | Functional Description Class Membership

Add int addition Op_NOS

And bitwise and Op_NOS Op Rare

Const ¢ | push 32-bit constant Op_Immed Op_ CPool

Div int divide Op_NOS Op_Slow Op_Rare
Eq compare for == Op_NOs

FAdd float addition Op_NOs

FDiv float divide Op_NOS Op_Slow Op_Rare
FMul float multiply Op_NOs

FNeg float negate Op_Rare

FPrint float print Op_NOS Op_Slow Op_Rare
FToI convert float to int Op_Rare

GE compare for >= Op_NOS Op_Rare

GT compare for > Op_NOS Op_Rare

Halt stop this processor

IToF convert int to float Op_Rare

Jump ¢ | unconditional jump Op_Immed Op CPool
JumpF ¢ | jump if false (zero) Op_NOS Op_Immed Op_CPool
Ld load

LdD load from distributed memory Op_NOS Op_Slow Op_ Rare
LdL load local from stack

Lds load from shared memory (same as Ld)

Mod int modulus Op_NOS Op_Slow Op_Rare
Mul int multiply Op_NOS Op_Rare

NE compare for ! = Op_NOS Op_Rare

Neg int negate

Not bitwise not Op_Rare

Or bitwise or Op_NOS Op_Rare

Pop i | remove items from stack Op _Immed Op_Rare

Print int print Op_NOS Op_Slow Op Rare
Push i | push 8-bit constant Op_Immed

Ret i | return and pop items Op_Immed

SPrint ¢ | string print Op_Immed Op CPool Op_ Slow Op Rare
ShL i nt shiftleft Op_NOs

ShR i nt shiftright Op_NOS Op_Rare

St dore Op_NOS

StD goreinto digributed nenory Op_NOS Op_Slow Op_Rare
stL gorelocal intostack Op_NOS

Sts goreinto shared memory Op_NOS Op_Slow (p- Rare
Wi t wait for barrier synchronization Op_Slow Op_Rare

Table : MIMD Ingruction Set.

Massive MIMD

3. Emulator Design

Although the detailed design of the emulator is intertwined with the design of the instruc-
tion set and the SIMD microengine, for this paper we will make the simplifying assumption that
the SIMD microengineis the machine on which we have implemented our prototype: the MasPar
MR 1. Further, we will restrict the examples to the instruction set as given in table 1 and used in
the prototype emulator.

The most important optimizations of the emulator can be grouped into two categories:
reduction of the emulation overhead by shortening the basic emulator cycle or by maximizing
overlap (paralelism) in emulated execution of different types of instructions.

3.1. Shortening The Basic Cycle
There are many ways to reduce the basic emulator cycletime:

1. Keep processor state in microengineregisters. In the case of our interpreter, the pro-
gram counter (pc), instruction register (op), program rel ocation base address (addr),
constant pool base address (cp), top-of-stack cache (tos), and various other internal
variablesare all kept in registers.

2 Don't usealinear sequenceof enable-maskingconditional tests to isolate an operation
type. For our emulator, a helper program was written in C to automatically generate
anoptimal binary sear ch tree for isolating operation types.

3. Either don't use a high-level language or use it, but take steps to ensure good code
will be generated. Our emulator is written in MPL and MasPar’s MPL compiler usu-
aly generatesfairly efficient code, but not aways. In particular, the MPL compileris
obsessed with performing needless conversion of quantities from 8 to 32 hits — a
painful error when the processors are based on 4-bit slices. We repair this code gen-
eration blunder by using an AWK script to recognize and remove the needlessconver-
sionsfrom the assembly code for the main emulation loop.

In addition to the above, there are anumber of minor coding tricks employed.

3.2. Minimizing Operation Time

With a small instruction set consisting of relatively cheap operations, the basic emulator
cycletime is moreimportant than the seriaization of execution of different operations. However,
a truly useful machine needs more operation types and must support at least a few expensive
operations (e.g., shared memory references). Hence, it is very important that there be some tech-
niques used to reducethe operation time.

There are two basic way in which the operationtime can be reduced:

1. Increasethe overlap, at the microcode level, between the various instructions that are
to beexecuted.

Page D

Massive MIMD

2. Reduce the number of different operationsthat must be executed in an emulator cycle
— ideally to just one operation,i.e., to SIMD code.

The following sectionsdetail the methods used in the current emulator.

3.2.1. MaximizingInstruction Overlap

The concept of maximizing the microcode overlap for a seriesof operationsis not new. In
fact, it is probably the single most common hand optimization used in writing microcodeor code
for a SIMD machine. Unfortunately, the process had not been formalized and automated until
very recently.

The new compiler optimization, caled ""Common Subexpression Induction™ (CSl)
[Die91], accepts multiple independent threads of code and outputs a reorganized version of the
code that shares instructions across threads 0 that the minimum execution time is obtained.
Although the algorithm is far too complex to describe in this paper, the general flavor is that
operations from various threads are classified based on how they could be merged into single
instructions executed by multiple threads and then a heavily pruned search is executed to find the
minimum execution time code schedule using these merges. In fact, the development of the CSI
algorithm was the enabling technology that inspired our first MIMD interpreter.

Without the CSl algorithm, it is possible to find and factor-out common microinstruction
subsequences by hand only for very small, smple, instruction sets. For the MIMD emulator
presented here, hand tuning was inconvenient, but coding the emulator in MPL made it impossi-
bleto directly use our CSl tool (sincethe CSl tool generates unstructured control flow and mask-
ing). Hence, we used the CSl tool to locate the most advantageous subsequences and then hand
coded them in MPL.

These sequencesincluded the basic instruction fetch and program counter increment, fetch-
ing the value for the next-on-stack (NOS), fetching the value for an 8-bit immediate (Immed),
and looking-up a 32-bit value in the constant pool (CPool). Without this factoring, the emulator
would be several timesdower.

3.2.2. Reducing Operation Count

The second **trick™ in speeding up execution of multiple different operations involves the
observation that the emulator need only be able to decode the instructions which might be exe-
cuted in this cycle, rather than the entire instruction set. But how can we know which instruc-
tions might be executed in thiscycle without actually decoding them first?

There are two answers, both of which are used heavily in the current emulator: subemula-
tors and frequency biasing.

Page 11

Massve MIMD

3.2.2.1. Subemulators

Because the microengine is completely synchronous, it is relatively easy to construct
hardware that will alow the control unit to check to seeif thereexistsa processor in which a par-
ticular value meets some condition. In the MasPar, this isimplemented by an operation called
gl obal or, whichin just 10 clock ticks (less than 1ps) orstogether valuesfrom all the PEs. By
carefully encoding the instructionset, we can usea globalor of the opcode valuesto index a
control unit jump table to sdect the emulator that under standsonly thoseinstructionsthat
could appear within theor mask value.

Within the current emulator, there are 32 such ** subemulators.”* Obvioudly, the 32 subemu-
lators could not reasonably be generated by hand, o a C program was written to perform this
task.

In addition, the choice of how instructions are grouped together into subemulators should
not be made at random. Ingtructions that share CSls should be grouped together because
factoring-out the CSls will make those interpreters execute faster. Hence, the NOS. Immed, and
CPool CSls (described above) correspond to hit positionsin both the opcode and the globalor
mask. Itisalso useful to makesimilar divisionsbased on the expected cost (Slow) and frequency
of execution (Rare), and these sets al so correspond to opcode bits. The class membership of each
instruction in our MIMD instruction set isgivenin table 1.

To illustrate the subinterpreter structure, we present a complete subemulator set. However,
to keep the size reasonable, we have restricted the subemulator set to cover only the instructions
used in theexample inlisting 1.

Peage 12

/* fact.mc

Recursive int factorial
*y/

int
fact (int n)
{
if (n) |
return(n * fact(n-1)):
}
return (1)

_fact:
Const
LdL
JumpF
Const
LdL
Const
Const
LdL
Const
Add
Jump

retlabO:
Mul
Ret

LO:
Const
Ret

MassveMIMD

0 it (n)
LO
0 n

2 ;return

1 ;return (1)

Listing 1: MIMD Factorial — C and Assembly Code

The complete subemulator set is givenin listing 2. The Op_ referencesare opcode values
or bit masks; the M_ references are macros that actually perform the correspondingoperation. If
we assumethat dl processorsin the MIMD machinecall _f act at the sametime, al processors
would simultaneously executethe Const instruction using the subinterpreter for classes Immed
and CPool (case 0x14). Suppose that some processors wish to execute Mul (classes NOS
and Rare) a the same time that others execute JunpF (Immed, NOS, and CPool); then the
subemulator for Immed, NOS, CPool, and Rare would be executed (case 0x1d). Notice that
the C program that builds the subemulators factors-out identical subemulators (e.g., case
0x19and case 0x1b) tosave ACU memory space.

Page 13

switch ((globalor op) & opmask} {
case 0xD: /* Opcodes in every class */
case 0x1: /* Op- Rare */

case 0x2: /* Op_Slow */

case 0x3: /% Op_Slow Op_Rare */

case 0x4: /* Op_CPool *7

case 0x5: f* Op_CPool Op _Rare */

case 0x6: op_cPool Op_Slow */

case 0x7: |* op_cPool Op=Slow Op- Rare */
M_LdL
break;

case 0x8: /* Op NOS */
case xa: /* Op_NOS Op_slow =/
case Oxc: (; Op_NOS Op_CPool */
case Oxe: 0p NOS Op CPool Op_Slow */
if (op & Op_NOS) (-
M _NOS M Add
) else {
M _LdL

br eak:

case 0x9: /* Op Nos (p- Rare */

case Oxb: 7+ Op_NOS Op- Slow Op_Rare */

case Oxd: /* Op_NOS Op_CPool Op_Rare */

case xf: /* Op NOS Op CPool Op_sSlow (p- Rare */
if (OPNESOP NOS) (—

iT {op <= Op- Add) {
M Add

} els€ {
M Mul
¥
} else {
M _LdL
}
break;

case 0x10: /<« Op_lnmmed */
case 0xll: /¢ Op_Immed (Op- Rare */
case 0x12: /+* Op_Immed Op_S|low */
case 0x13: /* op_Immed Op_Slow (p- Rare */
if (op & Op_Immed) {
¥ _Immed M Ret
} elsé {
| M_LdL

br eak:

case Ox14: /+* op_|nmed Op_CPool */

case 0x15: /* Op_Immed Op_CPool Op_Rare */

case 0x16: /% Op_ Immed Op_CPool Op_Slow */

case 0x17: /* Op_|med Op_CPool Op_Slow Op_| Rare|
if {op & Op Tmmed) {

M_| mred
if (op L Op_cpool) {
M _CPool

}
if {op <= Op_Ret) {
ir (op <= Op_Const) ¢
M Const
} else {
M Ret
]
} else {
if (op <= Op_Jump) {
M_Jump
} else {
M_LdL
}

}
br eak:

case 0x18: /+* Op_lnmmed Op_NOS +/
case Oxla: /* Op_Immed Op_NOS (p- Slow </
if (op s op_NOS) {
M_NOS W_Add
} el s€ {
if {op @ Op_Immed) %
M Immed

}
if {op <= Op_Ret) {

Massve MIMD

case 0x19: /% Op_lmed Op_NOS Op_Rare */
case Oxlb: /* op_Immed Op_NOS Op_Slow (p- Rare */
if {op & Op NOS) {
M _NOS

1T top <= (p- Add) |
M Add

} els€ {
M Mul

} else {
if top & Op_Immed) (
#_Immed M Ret
} else {
M 1dL

br eak;

case Oxlc: |* Op_Immed op_wos Op_CPool #/
case Oxle: /* Op_Immed Op_NOS Op_CPool Op- Slow */
if (op & Op_NOS) {
NCS

if top & Op_Immed) {
M Immed M CPool M_JumpF
)} else
M_Add
3
} else {
if (op & Op_Immed) {
M_| med
1T (op & Op_CPool) {
M CPool
¥

if (QP <= Op_Ret) {
it (op <= Op_Const) {
M Const
} else (
M _Ret
)
} else {
if {(op <= Op Jump) {
M Junp
| else {
M_LdL
]

br eak:

case xld: /* Op_lmmed Op_NOS Op_CPool Op- Rare */
case Of: /* Op_Immed Op_NOS Op_CPool (p- Slow Op- Rare */
it (op & Op_NOS) (
M NOS
if (op & Op_Immed) {
M Immed M_CPool

!
if (OP Op_JumpF) {
(op <-

Op- Add)
t el se (
M_JumpF
}
} else {
M Mul
. -
} else {
if {op & Op Immed) |
M | me
iT {op & op_CPool) |
M_CPool

}
if {op <= Op_Ret) (
if {op <= Op_Const)
M Const
} else {
M_Ret

¥
y else {
if {op <= Op_Jump) ¢

br eak;

Listing 2 Example Subemulator Set

A vaguely similar type of improvement is suggested in [NiT90]. Nilsson and Tanaka envi-
sion a st of subinterpreterssuch that each subinterpreter emulatesonly a single type of ingtruc-
tion and all subinterpretersare executed once per interpreter cycle. Using statistics, they change

Page 14

MassveMIMD

the order of the subinterpretersto maximize the expected number of instructions executed per
processor per interpreter cycle. E.g., if the subinterpreters are in the order A, B, C then the
instruction sequence B, A takes 2 cycles — but B, A would take only one cycleif the subinter-
preters were ordered B, C, A. The problem is that this improvement is small and is essentially
incompatiblewith factoring-out portionsof the emulated operationsi.e., instructionfetch).

3.22.2. Frequency Biasing

The second way to reduce operation count is what we call frequency biasing. Suppose that
a particular operation takes ¢, ticks to execute and another operationtakes ¢,=5*¢,. If thesetwo
instructions were alowed to execute in each emulator cycle, the apparent execution time of both
would be about 6*¢,. Suppose that instead, we would allow up to fiveemulator cyclesof the first
instruction before attempting to execute the second instruction; the fast instruction will average
one execution every 2 emulator cycles, and the dow instruction will average one execution every
10 cycles. This is essentially an instruction-level variation on the concept of shortest job first
(SIF) scheduling, and yieldsthe same benefits.

However, the benefitswould be small wereit not for an interesting property of most expen-
siveoperations:. if several expensiveoperations would have been executed just one or two emula-
tor cycles off from each other, delaying the operationswill cause them to group together in
the same emulator cycle. For most operations, having more processors execute the operation
simultaneously does not significantly change the speed with which that operation is executed.
Hence, this " alignment™* effect dramatically improves performance.

Notice that if we consider not two instructions, but two groups of instructions, the same
property holds.

In the current version of the emulator, only a small amount of frequency biasing is used.
Instructionsthat arein either the Sow or CPool classesare only alowed to execute, every other
cycle. Of course, we need not be able to decode these instructionsin the subemulator set that
excludes these operations. Hence, there are actually two different subemulator sets, or a total of
64 subemulators, within the current emulator. Despite this, the complete emulator uses less than
80K bytes of ACU memory.

4. PerformanceEvaluation

Our firgt proof of concept MIMD system was implemented on the Purdue University Paral-
lel Processing Laboratory's 16,384-PE MasPar MP-1 in July 1991, shortly after developing the
CSl algorithm and prototypeimplementation. The current version (January 1992) of the MIMD
system includes:

mimdc
A compiler, written in C using PCCTS [PaD92]. Thelanguageis aparalle diaect of

Page 15

Massive MIMD

C caled MIMDC. It supports most of the basic C constructs. Data values can be
either int or float, ad variables can be declared as mono (shared) or poly
(private) [Phi89].

There are actually two kindsof shared memory reference supported. The mono vari-
ables are replicated in each processor's local memory so that oads execute quickly,
but stores involve a broadcast to update al copies. It is also possible to directly
access poly valuesfrom other processorsusing ** paralle subscripting™*:

x[I1} = yUl31 + z;

would usethe valuesof i, j,and z on thisprocessor to fetch the valueof y from
processor j, add z, and storethe result intothe x on processor i . In addition to
using shared memory for synchronization, MIMDC supports barrier synchronization
[DiS89] usinga w ai t statement.
mimda
An assembler, written in C. The stack-based MIMD assembly code output by
mimdc IS assembled to generate both a listing file and an Intel-format hex load
module.
mimd
The MIMD interpreter, written in MPL (MasPar’s SIMD C dialect) with the aid of
severa speciadized interpreter construction programs written in C and AWK. The
structureof mimd wasdescribed in detail in section 3.
Benchmark programs were written in MIMDC and their performance was evaluated. A high
level language was used for the benchmarks because we fedl that it both ** keeps us honest” and
providesafriendlier, more redlistic, interface for program development.

41 High-Level LanguagePeak MFLOPS

Although we have measured the peak floating point performanceof hand-coded MIMD pro-
grams at from 280 MFLOPS to over 350 MFLOPS, we felt that the fairest comparison would be
to take essentially SIMD codes, written in MIMDC and MPL, and compare the MFLOPS
obtained. Listing 3 showsthese two equivalent programs.

Page 16

Massve MIMD

/* gflop.mc
/* gflop.m
Do 1 GFLOP worth of float adds.
*/ Do 1 GFLOP worth of float adds....
~/

#include <mpl.h>

extern double dpuTimerElapsed():

int
mai n () int
mai n0
int count = 10000000/16384: [
float sum = 0.0 int count T 10000000/16384;

plural float sum = 0.0;

dpuTimerStart ():
while (count) |
/* do 100 float adds per loop,.. */ whil e (count) {

sum T sum + sum + sum + sum + sum + /* do 100 float adds per loop... */
SUm + sum + sum + Sum + sSum + sum T sum + sum + sum + SUM + Sum +
sum + sum + sum + sum + sum + SUmM + sum + sum + sum + sum +
SUM + sSum + sum + sum + sum + Sum + SUM + sSum + sum + sum +
sum + sum + sum + sum * sum + sum + sum + sum + sum + sum +
sum + sum+ sum + sum + sum + sum + sum + sum + sum + sum +
sum + sum + sum + sum + sum + sum + sum + sum + sum + sum +
sum + sum + sum + sum + sum + sum + sum + sum + sum + sum +
sum + Sum + Sum + sum + sum + sum + sum + SUmM + Sum + sum +
sum + sum + sum + sSum + sum + Sum + SUM + sum + sum + sum +
sum + sum + sum + sum + sum + sum + SUm + sum + sum + sum +
sum + sum + sum + sum + sum + sum + sum + sum + sum + sum +
sum + sum + sum + sum + sum + sum + sum + sum + sum + sum +
sum + sum+ sum + sum + sum + SUM + SUM + SumM + sum + sum +
Sum + sum + sum + sum + sum + sum + sum + sum + sum + sum +
sum + sum + SUM + SUM + sum + sum + sum + sum + sum + sum +
SUM + SuUmM + sum + sum + sum + sum + sum + Sum + sum + sum +
SUM + SUM + SUM + Sum + sum + sum + sum + sum + sum + sum +
sum + sum+ sum + sum + sum + SUm + sum + sum + sum + sum +
sum + sum + sum + sum + sum+ sum sum + sum+ sum + sum+ sum +
count = count = 1; sum + sum + sum + sum + sum+ sum
} count = count = 1

t

/* mimd enul ator automatically prints time =/
} printf("Done: %gs DPU usage\n", dpuTimerElapsed(}):

t

Listing 3: Pesk FLOPS benchmarkin MIMDC and MPL.

In the MIMD program, all processorsexecute the same code sequence, only oneinstruction
isexecuted in the emulator for each MIMD cycle and processorsare rarely idle. The other code,
written in MPL, executeswith al processorsenabled and is completely SIMD. Neither program
does any useful calculations, but the performanceprovidesa good estimate of peak floating point
speed®. The emulator achieved 97.2 MFLOPS, or about 10% of the MPL program's 986
MFLOPS. Note that the MasPar’s theoretical peak speed is 1,200 MFLOPS.

4.2. Emulation Overhead

The above numbersaso dlow us to compute something much more meaningful: the emu-
lation overhead. Since our emulator records the number of emulation cycles executed, and we
know that the actual operations must have taken the time that the MPL program ran for, we were
able to determine that each emulator cycle had an overhead of about 48ps. This number was aso
confirmed by other benchmarks.

Asde from the fact that 48us is surprisingly fast, it is important to note that most of this
overhead could be diminated by recoding theemulation in adifferent language. An obviousway

4 Note that the MasPar floating point operation time is not dependent on operand value, hence adding 0
valuesyiddsavalid time without the potential for overflow.

Page 17

MassiveMIMD

to reduce the overhead is to write the emulator in the MasPar’s SIMD assembly language instead
of in MPL; however, unless the emulator algorithm also is changed, the improvement would be
quite small. Thisis partly because MPL islow-level enough (e.g., regi st er declarations) to
usually generate good code, and partly because we aready use an AWK script to patch the few
obvious blunders made by MPL.

The insight that could removemost of the 48ps overhead isthat the MasPar’s 32-bit RISC
SIMD ingtruction set isimplemented by microecode executed on 4-bit PEs. By implementing
the MIMD emulator as a single new microcoded instruction, emulateMIMD, the emulation
overhead per emulator cycle would almost certainly dropto lessthan 10ps.

Small additional improvements, at either the assembly or microcode level, could result by
dightly altering the emulation agorithm. Essentially, MPL only allows structured mixing of
control flow and enable masking; there are afew portionsof the emulation that could profit from
directly manipulating enable masks.

43. A Many-Thread Example

While the above numbers are impressive, they should be impressive because for each emu-
lator cycle, all MIMD threads were executing the same instruction taken from the same relative
location in PE memory. Such code sequences are actualy common in massively parallel MIMD
code, but it ismuch more important that most cases typically encountered perform reasonably. In
fact, the emulator structure isnot designed to maximize best-case execution speed.

Recall that different instruction types execute serialy in the SIMD microengine. Hence, a
MIMD program that tends to have awide range of different instructionsbeing encountered within
each emulator cycle should provide much poorer performance. These are also the casesthat most
of the emulator's optimizations attempt to improve. A MIMD program with this property makes
amuch tougher test case.

43.1. TheProgram

Unfortunately, most parallel benchmarksare more SIMD in nature, and would yield better
performance. Lacking a good *standard™ example MIMD program, we selected a recursive
algorithm in which processorstake radically different paths through the code based on their pro-
cessor numbers. The problem selected, and implementedin MIMDC, was a graph fault-tolerance
problem in which each of the 16,384 processors analyzed a unique graph derived from a master
graph. The master graph is shown in figure 2; each line representstwo arcs, one in each direc-
tion.

Page 18

Massive MIMD

Figure 2 Initial Graph for graph.mc.

The program in listing 4 uses an exhaustive recursive search to determine, for al possible
combinations of faulty arcs in the master graph, the total number of faulty states for which it is
still possible to travel from node 0 to node 4. We do not claim that this is a good agorithm for
this problem, but it isa good exampleof **true MIMD"* code.

Al 16,384 processorsbegin by executing main () . Each processor reads the master graph
and modifiesit to produce a unique faulty graph by removing arcs correspondingto 0 bitsin the
processor number (caled thisin MIMDC). Since 16,384 is2M, weusea graph with 14 arcs
so that each processor will have a unique task. The function foundpath () determines
whether a path exists by a depth first search. It returns as soon as it has found a node that it has
already visited, has reached the destination, or has explored all arcsleaving the node. If it finds
an arc that goes to a node it has not visited, it recursively calls itself with the unexplored node.
Whend| faulty graphs have been explored, the reduceAdd () function usesbarrier synchroni-
zation and distributed memory accessesto total the number of successful path traversals.

Page 19

/* graph.mc

A simple |ittle programto conpute some basic
fault tol erance properties....
*/

#define LINKS 14

nono int master from[LINKS] ~ |

6,1, 9, 2,0, 3,0, 4,1, 2,2, 4, 3,4
}:
nono int master_to{LINKS] ~ {

1, 0, 2,0, 3, 0,4, 0, 2,1, 4, 2, 4, 3
¥:
nono int master-arcs " 14;

poly int from[LINKS]:

poly int to[LINKS}:

poly int been_there[LINKS]:
poly int arcs — Q

int
maini)
{
/* Initialize poly copies of the master graph
with all arcs renoved corresponding to the
I 0 bits in the processor number
.
int £ T Q
int mybits ~ thin
int gotpath = 0

while (L ¢ master-arcs) ¢
if (mybits s 1) {
from[arcs] " master_from[i];
tolarcs] ~ master-tori];
arcs T arcs + 1;
t
mybits " mybits >> 1
1 =41+ 1;
I

/* Try to find the paths fromnode 0 to 1 */
if (this < (1<<master_ ares))(
gotpath ~ foundpath(o,4):

lelse(
gotpath ~ 0;
I
gotpath ~ reduceAdd(gotpath):
/* Let processor 0 speak for all... */
if (this =7 o)
print "There were ', (l1<<master_arcs),
» networ ks checked. \n";
print " these, ", gotpath,

« could reach 4 fromo.\n";

int

MassveM M D

foundpath(int here, int there)

{

)

int 1 = 0;:
int k=0

/* Are we there yet? */

if (here =7 there) return(l);
I* W are here. */
been_there[here] ~ 1

/* Try each arc outta here... */
while (1 < arcs) {

|* Found an arc out... */

if (from[(i] =~ here) {
/* Have we been where it goes? */
if (been-there[toli}] = 0) {

/* Nope. Co there now. ... */

if (foundpath(to(i]l, there)) ¢
return{i);

I

}
}

/* No luck yet, try any other arcs... %/
i =1+1;
I

/* Gn't get there fromhere.. .. %/
return{(90);

poly int reduce-tnp;
poly int rk:
poly int rj:
poly int ri:

int

reduceAdd (int val)

{

/* Recursive doubling summation */
ri - 1:

reduce-tnp ~ val:

while (ri < width) 1
wait;
rk = (this + i) % (width):
rj T reduce_tmpl[| rk]:
wait;
reduce-tnp ~ reduce-tnp + r3:
ri 7ol << 1

t

return(reduce-tnp) ;

Listing 4 Codefor graph.mc.

Under theM M D emulator, mimd, each processor executesits own path through the code.
Hence, the execution of this program differs greatly from a path search program for a SIMD

machine.

On average, there were 16.3 unique program counter (PC) values active for each emulation
cycle, whichis roughly equivalent to 16 completely different programs executing. This average
was obtained in a program that only has a total of 234 instructions. The number of PCs is also
limited by the wide range in processor work |oads, which causes many processors to wait at the
first barrier in reduceAdd (). Averagesof over 50 different PC values have been seen on a
version of graph.mc that builds many different permutations of the graph for each processor
before summing the number of networks with paths between 0 and 4 — but that program was

Page 20

Massve MIMD

more complicated and the statisticswere very smilar. By any standard, the examplecodeis very
dynamic.

43.2. Performance

Complete emulation statisticsfor the code of listing 4 aregiven in tables2 and 3. For table
2, the interpret count givesthe number of emulator cyclesin which that instruction was executed;
the execute count is the total number of times that instruction was executed. Table 3 shows the
number of times each particular subemulator mask occurred.

The execution speed was determined in two steps. First, the code was timed using the
hardwaretimer available on the MasPar (80ns per tick). Then, the code was run using an instru-
mented version of the emulator to get the total number of emulator cycles needed to complete the
program, number of cyclesthat had a particular instruction, number of each instruction executed,
and the total number of instructionsrun. The instrumented MLMD emulator takes|longer to run
the program. but preserves the relative time between processors, number of instructions exe-
cuted, and the number of emulator cyclesin the MIMD program — this repeatability in itsalf is
an important advantage of our MIMD implementation technique. The total number of instruc-
tions found by the instrumented emulator, divided by the run time of the uninstrumented emula-
tor, yields the average number of instructionsexecuted per second for the uninstrumented emula-
tor.

For graph.mec, the average speed was 54.6 MIPS (excluding output from the print
instructions at the end of the program). On average each processor was executing 3,300 MIMD
instructionsper second. This seemsto be a very low number, but the processorson the MP-1 are
implemented by 4-bit slices and each cluster of 16 sharesa single interface to its local memory.
Assuming that all of the processors are totally asynchronous, the maximum rate a which they
would be able to fetch an 8-bit instruction, execute asimple 32-bit operation, and update the pro-
gram counter is 123,000 instructions per second. Thus, the MLMD emulator had a dowdown of
less than 37 times the maximum performance that would be obtained if each processor had its
own instruction decoder and control — which would imply many times more hardware to imple-
ment each processor. We suspect, but cannot yet prove, that the additional hardware would actu-
ally increase processor hardware complexity by more than a factor of 37 (primarily due to the
complexity of floating point and network control). Also keep in mind that we are still talking
about the MPL-coded emul ator speed versus pure MLMD hardware....

It should also be noted that, although gr aph. mc does not use floating point, this makes
little differencein performance. Actually, the 32-bit floating point instructionsfor multiplication
and division take significantly less time than the 32-bit integer versions; thisis due to the lower
precision— just 24 bitsof mantissa. Much of the run time of the emulator isdue to decoding the
instruction and fetching operands(as wasshowninthe gf | op benchmark; see section 4.2).

Page21

Massve MIMD

Operation Interpret Count Execute Count

Add 1805 1899520
And 105 229376
Const 1333 5257088
Eq 992 344320
GT 816 761472
Junp 889 773632
JumpF 1028 1373440
Ld 1945 2882560
1dD 14 229376
1dL 1980 2411904
Mod 14 229376
Pop 1 16384
Push 2244 5637376
Ret 705 87424
ShL 1141 1131392
ShR 210 229376
S 1156 1336832
StL 1044 702592
Wi t 1018 10197504
totals 18440 35730944

Table 2 Instruction Statisticsfor graph . nt.

Subemulator Mask Interpret Count
0 99
Op_Slow (p- Rare 30
Op_NOS 118
Op_NOS Op_Rare 20
Op_NOS Op_Slow (p- Rare 35
Op_Immed 104
Op_Immed p- Rare 1
Op_Immed Op_Slow (p- Rare 5
Op_Immed Op_CPool 225
Op_Immed Op CPool Op_Slow Op_Rare 26
Op_Immed Op_NOS 980
Op_Immed Op_NOS Op Rare 121
Op_Immed Op NOS Op_Slow (p- Rare 3
Op_Immed Op_NOS Op_CPool 56
Op_Immed Op NOS Op_CPool Op_Rare 165
Op_Immed Op_NOS Op_CPool Op_Slow Op_Rare 47
total 2935

Table 3 Subemulator Statisticsfor graph. nt.

MassiveMIMD

5. Room for Improvement

Although the current MIMD emulation system works quite well, there are quite a few
improvementsthat should be made. Thefollowingisasummary of afew of the more significant
possible enhancements.

51. Compiler (mimdc)

Asidefrom being a rather stupid compiler (i.e., the only optimization performed is constant
folding), the compiler makes no attempt to perform code scheduling of any kind.

Within an individual processor, code scheduling can be used to improve performance by
matching generated code sequencesto the order in which different operations are encountered in
theemulator. First, the compiler should attempt to be consistent in generating the same instruc-
tion pattern wherever possible. Second, because not dl instructions are executed in every cycle,
some permutations of an instruction sequencewill have lower expected execution times than oth-
ers.

Even greater performance improvementscan be made by code scheduling acrossall proces-
sors. Thisinvolves complex timing analysisand static scheduling as abamer MIMD architecture
[DiO90][BrN90][Di092], but aMIMD implemented with a SIMD microengine provides exactly
the features needed for these optimizationsto be applied.

The compiler isalso guilty of afew obvious coding blunders. For example, while loops
should be coded to only have one JumpF rather thana JumpF anda Jump per iteration.

52 Assembler (mimda)

Although the assembler was constructed using a parameterized assembler (alocal invention
caled ASA) that is capable of minimizing length of span-dependent instructions, we do not
currently use this feature. Hence, the compiler often conservatively generates Const instruc-
tions for which the assembler blindly generates Const instructions. Instead, the assembler
should recognize Const as the long form of the Push instruction, and should substitute
Push wherever possible.

53. Emulator (mimd)

Throughout this paper we have noted a number of things about the emulator that mark it
clearly as a proof-of-concept prototype rather than a *'redl” machine. Obvious improvements
include rewriting the emulator in the MasPar microcode, or at least in MasPar assembly language,
instead of MPL. There are aso some optimizations that result in unstructured manipulation of
control flow and masking, and these could not be donein MPL, so the emulation algorithm will
changein futureversions.

Variouschanges and additionsto theinstructionset are also likely. In particular, the bamer
mechanism will be made more general (currently it is an SBM, but will be upgraded to a DBM
[Di09%0]) and some provision for explicitly switching to pure SIMD execution will be added.

Page 23

Massve MIMD

This would allow the machine to more efficiently execute parts of algorithms that are inherently
SIMD, such as communication or reduction operations. The MIMD/SIMD switching will
vaguely resemblethefacility provided in the PASM prototype[BeS91].

In the immediate future, the emulator will be modified to provide a rudimentary operating
system so that multiple users will be able to submit MIMD jobs asynchronoudly. In the current
version,the complete MIMD environment is set up when the emulator beginsexecuting.

6. Conclusons

In this paper, we have presented the theory behind construction of efficient MIMD
machines using SIMD microengines. Further, we have detailled how we created a 16,384-
processor shared memory barrier MIMD using a SIMD MasPar MP-1, and we have given meas-
ured performance figuresthat validate the approach.

The MIMD emulation software discussed in this paper, mimde, mimda, and mimd, are
being set up as a public domain Beta test release, and will be available via an email server. The
email addresswill appearin thefinal versionof this paper.

Massive MIMD

References

[Adv89] Advanced Micro Devices, 29K Family 1990 Data Book, Sunnyvae, Califomia,
1989.

[B1a90] T. Blank, *"The MasPar MP-1 Architecture,"” 35th IEEE Computer Society Interna-
tional Conference (COMPCON), February 1990, pp. 20-24.

[BIN90] CJ Brownhill and A. Nicolau, Percolation Schedulingfor Non-VLIW Machines,
Technical Report $0-02, University of Califomia at Irvine, Irvine, Califomia, Janu-
ary 1990.

[BeS91] T.B. Bergad H.J Siegel, " Instruction Execution Trade-offs for SIMD vs. MIMD
vs. Mixed Mode Paraldlism,” 5th International Parallel Processing Symposium,
April 1991, pp. 301-308.

[Cra91] Cray Research Incorporated, The CRAY Y-MP C90 Supercomputer System, Eagan,
Minnesota, 1991.

[Die91] H.G. Dietz, "*Common Subexpression Induction,” Midwest Society for Program-
ming Languages and Systems (MWSPLS) Spring Meeting, Digita Computer
Laboratory (DCL), University of lllinois & Urbana-Champaign, Urbana, lllinois,
April 20,1991.

[DiO90] H.G. Dietz, M.T. OKeefe, and A. Zaafrani, ** An Introduction to Static Scheduling
for MIMD Architectures,"" Advances in Languages and Compilers for Parallel Pro-
cessing, edited by A. Nicolau, D. Gelertner, T. Gross, and D. Padua, The MIT Press,
Cambridge, Massachusetts, 1991, pp. 425-444.

[Di092] H.G. Dietz, M.T. O'Keefe, and A. Zaafrani, ** Static Scheduling for Barrier MIMD
Architectures,” The Journal of Supercomputing, accepted to appear.

[DiS89] H.G. Dietz, T. Schwederski, M. T. O'Keefe, and A. Zaafrani, ** Static Synchroniza-
tion Beyond VLIW,”’ Supercomputing 1989, November 1989, pp. 416-425.

[Hil87] W.D. Hiliis, "*The Connection Machine,"* Scientific American, June 1987, pp. 108-
115.

[K1a80] A.D. Klappholz, ""An Improved Design for a Stochasticaly Conflict-Free
Memory/Interconnection System,"” 14th Asilomar Conferenceon Circuits, Systems,
and Computers, November 1980.

[Mas91] MasPar Computer Corporation, MasPar Programming Language (ANS! C compati-
ble MPL) Reference Manual, Software Verson 2.2, Document Number 9302-0001,
Sunnyvale, Califomia, November 1991.

[NiT90] M. Nilsson and H. Tanaka, "*MIMD Execution by SIMD Computers,”* Journa of
Information Processing, Information Processing Society of Japan, vol. 13, no. 1,
1990, pp. 58-61.

[PaD92] T.J. Parr, HG. Dietz, and W.E. Cohen, "' PCCTS Reference Manual (version 1.00),””
ACM SIGPLAN Notices, accepted to appear, February 1992.

Page 25

[Phi89]

[SiIN90]

[Sto84]

[ThG87]

[ThiS0]

[WiH91]

MassveMIMD

M.J. Phillip, "*Unification of Synchronous and Asynchronous Models for Parallel
Programming Languages’* Master's Thesis, School of Electrical Engineering, Pur-
due University, West L afayette, Indiana, June 1989.

H.J Siegel, W.G. Nation, and M.D. Allemang, "' The Organization of the PASM
Reconfigurable Parallel Processng System,”” Ohio State Parald Computing
Workshop, Computer and Information Science Department, Ohio State University,
Ohio, March 1990, pp. 1-12.

H.S. Stone, ** Database Applicationsof the Fetch-And-Add Instruction,”* IEEE Tran-
sactionson Computers, July 1984, pp. 604-612.

S. Thakkar, P. Gifford, and G. Fielland, *"Bdance: A Shared Memory Multiproces-
sor System,”" International Conferenceon Supercomputing, May 1987, pp. 93-101.
Thinking Machines Corporation, Connection Machine Modd CM-2 Technica Sum
mary,”" verson6.0, Cambridge, M assachusetts, November 1990.

P.A. Wilsey, D.A. Henggen, C.E. Slusher, N.B. Abu-Ghazaleh,and D.Y. Hollinden,
" Exploiting SIMD Computers for Mutant Program Execution,” Technical Report
No. TR 133-11-91, Department of Electrica and Computer Engineering, University
of Cincinnati, Cincinnati, Ohio, November 1991.

Pege 26

	Purdue University
	Purdue e-Pubs
	1-1-1992

	A Massively Parallel MIMD Implemented by SIMD Hardware?
	H. G. Dietz
	W E. Cohen

