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algorithm. The data set had an oversubscription rate of 12.5, an average
link traversal count of 25, and anw valueof 8. . .. ... ... ... ..

Weighted sum of satisfied requests priorities normalized to the perfor-
mance o full—one—C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 25.0, an average
link traversal count of 25, and anw valueof 8. . . . ... .. ... ...

Weighted sum of satisfied requests priorities normalized to the perfor-
mance of full—one—C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.2, an average
link traversal count of 25, and anw valueof 16. . . . . ... .. .. ..

Weighted sum of satisfied requests priorities normalized to the perfor-
mance of full—one—C4 in iteration 1. Shown here is the performance o
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.4, an average
link traversal count of 2.5, and anw valueof 16. . . . . .. . .. .. ..

Weighted sum of satisfied requests priorities normalized to the perfor-
mance of full—one—C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.8, an average
link traversal count of 2.5, and anw valueof 16. . . . . .. . .. .. ..
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9.39

9.40

Weighted sum of satisfied requests priorities normalized to the perfor-
mance of full—one—C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 1.6, an average
link traversal count of 25, and anw valueof 16. . ... ... ... ...

Weighted sum of satisfied requests’ priorities normalized to the perfor-
mance of full—one—C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 3.1, an average
link traversal count of 2.5, and anw valueof 16. . . . . .. ... .. ..

Weighted sum of satisfied requests' priorities normalized to the perfor-
mance of full—one—C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 6.2, an average
link traversal count of 25, and anw valued 16. ... . ... ... ...

Weighted sum of satisfied requests’ priorities normalized to the perfor-
mance of full—one—C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 12.5, an average
link traversal count of 25, and anw valueof 16. . . .. .. ... .. ..

Weighted sum of satisfied requests’ priorities normalized to the perfor-
mance of full—one—_C4 in iteration 1. Shown here is the performance of
each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 25.0, an average
link traversal count of 25, and anw valueaof 16. . . . . . ... ... ..
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ABSTRACT

Providing up-to-date input to users applications is an important data management
problem for a distributed computing environment, where each data storage location and
intermediate node may have specific data available, storage limitations, and communi-
cation links available. Sites in the network request data items and each request has an
associated deadline and priority. In a military situation, the data staging problem in-
volves positioning data for facilitating a faster access time when it is needed by programs
that will aid in decision making. Thiswork concentrates on solving a basic version of the
data staging problem in which all parameter values for the communication system and
the data request information represent the best known information collected so far and
stay fixed throughout the scheduling process. The network is assumed to be oversub-
scribed and not all requests for data items can be satisfied. A mathematical model for
the basic data staging problem is reviewed. Then, three multiple-source shortest-path
algorithm based procedures for finding a near-optimal schedule of the communication
steps for staging the data are described. Each procedure can be used with each of seven
cost criteria developed. A subset of the 21 possible resulting heuristics that are expected
to perform wel (based on earlier experiments) are evaluated in simulation studies con-
sidering different priority weightings schemes, different average number of links used to
satisfy each data request, and different network loadings. Finally, an approach consider-
ing data items with "more desirable” and "'less desirable” available versions is evaluated
using a variable time, variable accuracy algorithm, and simulation results are present-
ed. The proposed heuristics are shown to perform well with respect to upper and lower
bounds. Furthermore, the heuristics using a complex cost criterion alow more highest
priority messages to be recelved than a simple-cost-based heuristic that schedules all
highest priority messagesfirst.
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1. Introduction

The DARPA Battlefield Awarenessand Data Dissemination (BADD) program [Roc96]
includes designing an information system for forwarding (staging) data to proxy servers
prior to their usage as inputs to a local application in a distributed computing environ-
ment, using satellite and other communication links. The network combines terrestrial
cable and fiber with commercial VSAT (very small aperture terminal) internet and com-
mercial broadcast. This provides a unique basis for information management. It will
allow web-based information access and linkage as wel as server-to-server information
linkage. The focus is on providing the ability to operate in a distributed server-server-
client environment to optimize information currency for many critical classes of informa-
tion.

Data staging is an important data management problem that needs to be addressed
by the BADD program. A simplified informal description of an example of a datastaging
problem in a military application is as follows. A warfighter isin a remote location with
a portable computer and needs data asinput for a program that plans troop movements.
The data can include detailed terrain maps, enemy locations, troop movements, and
current weather predictions. The data will be available from Washington D.C., foreign
military bases, and other data storage locations. One such environment is illustrated
in Figure 1.1. Each location may have specific data available, storage limitations, and
communication links. Also, each data request is associated with a specific deadline and
priority. Depending on the particular environment, there may be hundreds of warfighters,
all making multiple requests. It isassumed that not all requests can be satisfied by their
deadline. In amilitary situation, the data staging problem involves positioning data for
facilitating a faster access time when it is needed by programs that will aid in decision
making.

Positioning the data before it is needed can be complicated by: the dynamic nature of
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Figure 1.1: An illustration of a data staging environment. Rectangles rep-
resent machines, directed lines represent communication links, filled circles
represent data items, and open circles represent data requests.

data requests and network congestion; the limited storage space at certain sites; the lim-
ited bandwidth of links; the changing availability of links and data; the time constraints
of the needed data; the priority of the needed data; and the determination of where to
stage the data [Sma96]. Also, the associated garbage collection problem (i.e., determining
which data will be deleted or reverse deployed to rear-sites from the forward-deployed
units) arises when existing storage limitations become critical [Roc96, Sma96]. The stor-
age situation becomes even more difficult when copies of dataitemsare alowed to reside
on different machines in the network so that there are more available sources from which
the requesting applications can obtain certain data (e.g., [TaS97, TaS98]). The multiple
copies provide an increased level of fault tolerance, in cases of links or storage locations
going off-line, and alow the scheduler to select from among different sources to satisfy a
data request.

The simplified data staging problem addressed here requires a schedule for trans-
mitting data between pairs of nodes in the corresponding communication system for
satisfying as many of the data requests as possible. Each node in the system can be:
(a) a source machine of initial data items; (b) an intermediate machine for storing data

temporarily; and/or (c) afinal destination machine that requests a specific data item.



It isalso assumed in thissimplified model of the data staging problem that all param-
eter valuesfor the communication system and the datarequest information (e.g., network
configuration and requesting machines) represent the best known information collected
so far and stay fixed throughout the scheduling process. It is assumed that not al of the
requests can be satisfied due to storage capacity and communication constraints. The
model is designed to create a schedule for movement o data from the source of the data
to a "staged" location for the data. It isassumed that a user's application can easily

retrieve the data from this location.

Three multiple-source shortest-path algorithm based procedures for finding a near-
optimal schedule of the communication steps for staging the data are described [ThT99].
Each procedure can be used with each of seven cost criteria developed. A subset o
fourteen of the possible 21 resulting heuristicsthat are expected to perform well (based on
experiments in [ThT99]) are examined in simulation studies considering different priority
weighting schemes, different average number of links used to satisfy each data request,
and different network loadings. The rationalefor considering each of these procedures and
costsis provided. he proposed heuristics are shown to perform wel with respect to upper
and lower bounds. Furthermore, the heuristics using a complex cost criterion are shown
to alow more highest priority messagesto be received than a simple-cost-based heuristic
that schedules all highest priority messages first. Finally, an approach considering data
items with "more desirable” and "less desirable" available versions is evaluated using a
variable time, variable accuracy algorithm, and simulation results are presented. This
research serves as a necessary step toward solving the more realistic and complicated
verson o the data staging problem involving fault tolerance, dynamic changes to the

network configuration, ad hoc data requests, sensor-triggered data transfers, etc.

The material in this report extends the earlier work presented in [ThT99] by intro-
ducing three new cost criteria and two new bounds. This work also varies additional
simulation parameters, including eight network loadings, three average numbers of links
used to get from a source machine to a destination machine, and five priority weighting
schemes. This report aso introduces a variable time, variable accuracy approach for

using data items with "more desirable” and "less desirable” versions.



Section 2 provides an overview of work that is related to the data staging problem. In
Section 3, a mathematical model for a basic data staging problem is reviewed. Section 4
provides a detailed description of Dijkstra’s algorithm used tofind pathsdf linksfor trans-
ferring data items within the presented network model. Section 5 presents seven cost cri-
teriafor use in conjunction with different resource allocation procedures. Three multiple-
source shortest-path algorithm based procedures for finding a near-optimal schedule of
the communication steps for data staging are described in Section 6. These heuristics
adopt the smplified view of the data staging problem described by the mathematical
model. Three upper bounds and three lower bounds used to evaluate the performance
of these heuristics are presented in Section 7. The set of simulation studies given in Sec-
tion 8 were created after studying the results of [ThT99]. These new simulation studies
examine the effectsof (1) having six priority levels with five different weighting schemes,
(2) varying the average number of links required for a data item to reach a destination
from its source, and (3) varying the total number of requests that must be scheduled in
a given network. In Section 9, an approach considering data items with "more desirable”
and"lessdesirable” available versionsisevaluated using a variable time, variable accuracy
algorithm, and simulation results are presented.

Material in Section 2, parts of Sections 3, 4, 5, 6, and 7 are based on [ThT99].
This material is needed background for the results presented in Sections 8 and 9, and is
included here so that this report is self-contained.

A glossary at the end of this report summarizes the terminology used. The source

code developed for all of the simulation studies presented here is contained in [Bec99].




2. Reated Work*

To the best of the author's knowledge, there is currently no other work presented in
the open literature that addresses this version of data staging problem, designs a math-
ematical model to quantify it, and presents a heuristic for solving it. A problem that is,
at a high level, remotely similar to data staging is the facility location problem in man-
agement science and operations research [HuM89]. Under the context of the construction
of several new production facilities, a manufacturing firm needs to arrange the locations
of the facilities and plants effectively, such that the total cost of transporting individual
componentsfrom the inventory facilitiesto the manufacturing plantsfor assembly is min-
imized. It is required that the firm makes severa interrelated decisions: how large and
where should the plants be, what production method should be used, and where should
the facilities be located. If an analogy is made between: (1) the plants and the desti-
nation nodes that make the data requests; (2) the individual manufacturing components
and the requested data elements to be transferred; and (3) the production facilities and
the source locations of requested data, then at a high level the facility location problem
has features similar to those of the data staging problem (e.g., the use of a graph-based
method to reduce the facility location problem to a shortest path or minimum spanning
tree problem).

However, when examining the relationship between the facility location problem and
the data staging problem carefully, there are significant differences. First, each compo-
nent that a plant requestsis usually not associated with a prioritizing scheme, whilein
the data staging problem each datarequest hasan individual priority. Also, each compo-
nent requested from a plant commonly does not have a corresponding individual deadline
related factor, while in the data staging problem each data request has a deadline. For
the datastaging problem, the individual priority and individual deadline associated with

"This section isfrom [ThT99], and isincluded here 0 that this report is self-contained.



each data request are the two most important parameters for formulating the optimiza-
tion criterion. For example, the minimization of the sum of the weighted priorities of
satisfiable data requests (based on their individual deadlines) is used as the optimiza-
tion criterion in the mathematical model of the basic data staging problem presented
in Section 3. But for the facility location problem, in general, researchers adopt opti-
mization criteriathat are related to the physical distances between plants and facilities
in either a continuous or discrete domain without any prioritizing schemes or individual
deadline related factors (e.g., [ChD81, CoN80, JoL95, MoC84, Shi77]). Furthermore, in
the facility location problem all constraints must be satisfied for the production to occur
(e.g., al partsof a car must arrive). In this research, it is known that not all requests
can be satisfied (e.g., some low priority data requests may be dropped). Thus, although
lessons can be drawn from the design of algorithms for different versions of the facility
location problem, there are significant differences between the facility location and the
data staging problemsin terms of their formulations and potential solutions.

Data management problems similar to data staging for the BADD program are s-
tudied for other communication systems. With the increasing popularity of the World

Wide Web (WWW), the National Science Foundation (NSF) recently projected that new

techniques for organizing cache memories and other buffering schemes are necessary to

alleviate memory and network latency and to increase effective bandwidth [Bes97]. More
advanced approaches of directory services, data replication, application-level naming,
and multicasting are being studied to improve the speed and robustness of the WWW
[BaB97]. Evidence has been shown that several file caches could reduce file transfer traf-
fic, and hence the volume of traffic on the internet backbone [DaH93]. In addition, ways
to increase distributed system performance with intelligent data placement have been
studied [AcZ93]. The study of data staging can potentially draw lessons from and gen-
erate positive input for the active research in these related, but not directly comparable,

areas.

Work has been done to provide extensions to wormhole routing protocolsthat handle
real-time messages. An off-line approach that schedules usage of the virtual channels
by allowing higher priority messages to preempt lower priority messages is presented in

N ———



[BaO98]. Their research showsthat they improve wormhole routing by employing such a
protocol. The goal of thework in [BaO98] issimilar to the goal of thework presented here
in that both give preference to messages that have higher priority. However, in [BaO98]
the focus is on wormhole routing protocols, while the work presented here (1) is for a
general communication system; (2) attempts to find minimum paths over multiple links;
and (3) uses a cost criterion that also considers how close a messageis to its deadline.

There has been research done in the area of mapping tasks onto a suite of distributed
heterogeneous machines (e.g., [BrS98, BrS99, HeK99, MaA99, WaS97]). This task map-
ping research focuses on deciding what machine should execute each task, rather than
assuming the task execution locationsare known (asin the datastaging situation). Thus,
the basic problem being addressed by these task mapping studies is different than that
of data staging.

Other research exploring heuristics for use in the BADD environment has been per-
formed [LeB97]. This work examines methods for scheduling efficiently the ATM-like
channels of a possible BADD-like environment. It shows that "greedy"” heuristics are
effective tools for use in that BADD-like environment and uses a network simulator to
corroborate this statement; however, those heuristics do not consider severa parameters
considered here, such asdeadlinesand data availability times. The work here differsfrom
[LeB97] in that: (1) here a detailed mathematical model is developed, and (2) the collec-
tion of heuristics and cost criteriastudied here are based on a differentset of assumptions

about system structure and data request characterizations.






3. Mathematical Data Staging M odel*

3.1 Modd Definition

Consider anetwork topology graph G,,; composed of aset of verticesthat represent the
set of machines M in the network and aset of communication links L that represent the
directed edges. Therearem machinesin M, identified as { M[0], M[1],..., M[m~-1]}, and
each can beasource, destination, and intermediate location for dataitemsin the network.
Source machines for data items are the machines where data items are initially located
within the network; these data items may eventually be transferred by the network to
destination machines, possibly stored at intermediate machines along the way. Each
machine M[i] (where0 < i < m) also hasan associated constant unused storage capacity
during the time interval [t;,t;+1), Cap[i](¢;). Note that the timest; and ;4 may not
differ by exactly one time unit.

Communication links in this system are represented as one or more virtual links. A
virtual link corresponds to a period of constant, continuous, available bandwidth from
one machine to one other machine. Bidirectional communication links are therefore
represented as two virtual links-onefor each direction. A communication link that is
only available during certain time intervals is represented by a separate virtual link for
each period of availability. Ni[s, j] is the number of virtual links from machine M([i] to
M[j] (wherei # j and 0 < i, j < m). The kth virtual link from machine M[:] to M|[j]
isidentified as Lz, j|[k] (where 0 < k < Nlfi,j]). The virtual link L[z, j][k] also has an
associated link starting time Lst[z, j][k], denoting the time when it becomes available, as
well as alink ending time Let[i, j][k], which specifies the time when the link is no longer

available.

'This model is based on the one in [ThT99], which builds on [TaT98]. It hasbeen modified toinclude
multiple versionsaof a given dataitem. This material is needed background for the resultspresented in
Sections8 and 9, and is included here 0 that thisreport is self-contained.



Data items are blocks of information that can be transmitted from one machine to
another. Theset of dataitemswith unique names or identifiersthat are available on the
machinesin M iscaled A. Names or identifiers assigned to data items must be different
If thecontents of thedataitemsaredifferent in any way, including detail ssuch as differing
timestamps on weather maps of the same region. The number of distinctive data items
in A isn, and individual unique dataitems areidentified as {4[0], 8[1],...,é[n — 1]}. For
a dataitem 4] (where 0 <1< n), thesize of the data item is represented as |4[{]|. The
time duration required to transfer data item 4[{] from machine M[i] to machine M{j]
(wherei # j and 0 < 4, j < m) viathe virtual link L[s, j][k] (where 0 < k < NIi[s, j1)
during the time interval [Lst[:, j][k], Let[z, j1{k]] is D[z, 51[k](|6{!]]). Machine M[i] may be

a source of 4{l], or an intermediate storage location or destination that already holds a

copy of d[!]. Machine M[j] may be an intermediate storage location or a destination.

Let N4[l] (where0 <1< n) represent the number of source machines holding a copy
of 4[l], and M[Source[l, j]]represent the jth source machine for data item §[l] (where
0 < J < Né[l] and 0 < Sourcell, j]< m). The starting time dst[l, j] refers to the time
data item 4[l] becomes available at its jth source machine. The removal time drt[l,i]
(where 0 < 7 < m) refers to the time data item §[I] can be removed from machine M[i],
if a copy of 4[] is being stored at M[i]. This alows the value of Capl[é](ért[l,i])to be
increased by |6{]|. Intermediate machines, for example, could set ér¢[l,i] to be some
small time period x after the last deadline at any machine for dataitem 4[{]. Thiswould
allow the storage space to be reclaimed at intermediate machines after the usefulness of
the dataitem hasexpired. Thescheduling heuristicsdo not remove adataitem from any
of itssources or destinations because thisis considered outside the scope of responsibility
of the scheduler.

Consider now a data item such as an image showing a map of a planned battle area.
It may be possible to have available a higher quality version of the image that shows a
higher level of detail, as well as a lower quality version showing less detail. A person
requesting this data item would prefer to receive the higher quality image, but it may
bethat there are not enough resources (e.g., network bandwidth) available to fulfill this

data request. In this event, however, there may be enough resources available to send



the lower quality image, which would be better than sending nothing at all.

The set Rgq (where Rg € A) contains unique data items requested by destination
machines in M. The number of unique data items in Rq is 2g; the higher quality data
items are identified as {Rgq[0], Rq(1],..., Rg[p — 1]}, and the lower quality data items
are identified as {Rq[p], Rg[p T 1],..., Rg[2p — 1]}. Here, each requested higher quality
dataitem Rg[i] (where0 < i < p) has a corresponding lower quality data item Rqli + pl
that may be sent in place of Rgli] if system resources become limited. Note that for
every i there must exist exactly one j and exactly one k such that Rgq[i] = 4[j] and
Rgq[i t p| = 8]k]. These dataitems 4[j] and &[k] are assumed for simplicity to be present
at the same source machines, and to have the same associated starting times and removal
times. This model also assumes for simplicity that |Rg[i ¥ p| = 1 |Rqli]|.

The number of destination machines that request Rq[:] (where0 < i < p) is denoted
with Nrqfd]. If 0 < k < Nrg[i], then M[Request|i, K]] refers to the kth machine that
requested Rgq[:] (where0 < Request[i, k] < m). Each of these machines also implicitly
requests Rg[i T p] in the event that Rg[i] cannot be sent, so that Nrq[i + g] = Nrq[i],
and Request[i T p,k] = Request[i,k] for all values of k. The finishing time Rft[i, K]
(and equivalent Rft[i T p,k]) refers to a deadline time, after which data item Rg[i]
(and Rq[i t p]) is no longer useful to machine M[Request[i, K]]. The requesting machine
M [Request[i, k]] al so associates the dataitem Rq[i] (and corresponding Rq[it p]) with a
numbered priority class Priority[i, k] (equal to Priority[i T p,k]). The highest, or most
important priority class is P, and the lowest, or least important priority class is 0, so
that 0 < Priority[i, k] < P.

Define aschedule as a series of communication steps, among the machines of M using
the communication links in L, that transfer some or all of the data items in the set
Rq from their respective source machines to some or all of their respective destination
machines, possibly being stored at intermediate machines along the way. Suppose that
there are g possible distinct schedules, enumerated {Sp, S, ..., Se-1}. The kth (where
0 < k < Nrgq[j]) request for adataitem Rg[j] (where0 < j < 2p) isconsidered satisfiahle
with respect to a specific schedule S, (where0 < h < @) if and only if the data item
Rq[j] is available at machine M[Request[j, K]] at or before the deadline time Rft[j, K].



The set Srq[Sx] then denotes the set of two-tuples (j k) such that the kth request for
the data item Rgq[j] is satisfiable with respect to the schedule S,.

There must be a way to represent the relative importance of a priority classa (where
0 < a < P) compared to another priority class 3 (where0 < 8 < Pand a # ). The
relative weight of any priority class a is denoted by m. This means that if priority
class a isten times as important as priority class 3, the value of W{a] will be ten times
the value of W[3)].

Let Worth[j, k] (where0 < j < 2p and 0 < k < Nrg[j]) denote a percentage of vaue
to a user of data item Rg[j] sent to satisfy a request at machine M[Request(j, k]]. For
simplicity, this model assumes that if Rg[s] for 0 <i < p issent to M[Request[i, K]] by
its deadline, then Worth[i,k] = 1 (meaning 100% for the preferred data version), and
Worth[i+ p, k] = 0 (meaning no additional worth for the second data version). If Rg[i] is
not sent to M[Request[i, K]] by its deadline, and Rg[i + p] is sent to M|Request[i T p, k]]
by its deadline, then Worth[i t p, k] = 0.25 (meaning 25% for the lower quality version),
and Worth[i, k] = 0. Now, the effect of the schedule Sy, (where0 < h < a) can be defined

E[Sy]) = — W |Prioritylj, k]] * Worth[3, k])

(U,k)ESrq[Sh]
(where 0 < j < 2p and 0 < k < Nrg[j]). The global optimization criterion, and hence,

the objective o all of the heuristics presented later, is to find the schedule with the
minimum effect, defined as

Og}llga E[Sh]
Another way to view this minimization isto think of it as trying to find the schedule of

data transfers that produces the maximum sum of satisfied requests’ priority weights.

3.2 Heuristic Solution Approach

The heuristic approach used in this report to create the schedule S, with minimum
effect E[Ss] utilizes Dijkstra's shortest path algorithm. This algorithm, presented in
Section 4, calculates arrival times for data items and establishes paths of virtual links
to get data items from source machines to destination machines. The paths calculated

by this algorithm give the earliest arrival time for a given data item, provided that



there are no other data items competing for resources in the network. After Dijkstra's
algorithm has been run for each requested data item (i.e., all dataitemsin Rq), a single
data item and one or more destination machines are selected through the use of a cost
criterion presented in Section 5. This data item choice reflects a combination of its
contribution tothe effect of the schedule, and the amount of time between itsarrival at a
destination and its deadline at that destination. Network resources and machine storage
arethen allocated according tooneof the procedures presented in Section 6, updating link
availability times and available machine storage. This updating of network information
will cause the arrival times and virtual link paths for some other data items to become
invalid, so the heuristic process (using a cost and an allocation procedure) is repeated
again (beginning with Dijkstra's algorithm) using the modified network information. This
continues until there are no more satisfiable data items in the network, thus producing
the communication schedule. Results from simulation studies using this approach, which
only considers one version of each data item (i.e., considers only Rq[:] where 0 <i < p,
not Rg[j] where p < j < 2p), are found in [ThT99] and Section 8. A modified approach

considering both versions of a dataitem is contained in Section 9.
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4. Dijkstra's Shortest Path Algorithm*

The heuristics presented here utilize Dijkstra's algorithm [CoL90]| for finding the short-
est path from one or more source nodes to all other nodes in a directed graph. The
version used calculates the earliest possible available time for a data item Rg[z] (where
0 <i < 2p) at each machinein M, given a subset of machinesin M that already holds
acopy of Rq[].

Define the available time Ar[i, j] (where 0 < i < 2p, 0 < j < m) as the earliest
possible timefound so far when dataitem Rg[:] could be present and available at machine
M[j]. Define also the value of the predecessor [z, j] to be the two-tuple (s,k) (where
-1 <s<m, -1 < k < Nl[s,j]) identifying the machine M|[s] as the machine that
sends data item Rg[i] to machine M([j] via virtual link L[s, j][k]. If the value of =[i, j]
is (=1, —1), this means that no machine sends data item Rg[z] to machine M[j] via any
virtual link. This may happen if machine M{[j] is a source machine for data item Rgf],
or it may happen if it is not possible for machine M[j] to receive a copy of data item
Rq([i] (possibly dueto the unavailability of network resources).

The pseudocode for Dijkstra's algorithm is shown in Figure 4.1. This algorithm is
invoked once for each data item in Rq to establish an available time and predecessor
on each machine for each data item. The pseudocode applies the algorithm for Rg[ig,],
which corresponds to §[z4].

As an example, consider the machines and virtual links shown in Figure 4.2. In this
figure, Dijkstra's algorithm will be applied for dataitem Rg[0], which in A correspondsto
4[0] (i.e., irg = 0 and i = O for this example). Machine M|[0] isthe only source machine
for this dataitem (N§[0] = 1 and Source[0,0] = 0), and the data item becomes present
at M|0] at timeést[0,0] = 0. Step 1 of thealgorithm findsthe index i5 of dataitem Rg[0]

in the A set (i = 0) and can be implemented as a simple tablelookup operation. Then,

'This section is based on [ThT99]. This material is needed background for the results presented in
Sections8 and 9, and isincluded here so that thisreport is self-contained.




DUKSTRA(M, dst, N6, igq, NI, Lst, Let, D, Ar, )

1 assgn s such that 5[15] = Rq[qu]
2. foral je{0,1,..., m-1)
lirg, j] ¢ (-1,-1)

w

4. Arligg, J] ¢ o0
5 foral je{0,1,..., Nd[is] — 1)
6. Ar[igg, Sourcelis, j] 1< dstis, ]
7 My +— M
. while My # {}
9. assigN jmin SUCh that Ar[irg, jmin] = Min (Az[irg, 5], M[j] E My)
10. My «+ Mu ~ M[jmin]
11.  for al j such that M[j] € My
12. forall k € {0, 1, ..., Nl[jmin,j] — 1)

00

13. if Ar(irg, jmin] < L5tjmin, J][K]

14. if L$t[jmin, 3] (k] + Dljmin, 71[K1(| Ralirg]|) < Let[jmin, ][k]
15. if Lst[jmin, J1[k] + D[jmin, J][k](| Ra[irg]|) < Ar[irg, J]

16. if min (Cap[j](t), Lst[jmin, j][k] < t < 6rtis, 7]) = [Rglirg]|
17. Arlirg, j] ¢ Lst[jmin, J][k] + D|jmin, 5] [k](|Ralirg]|)
18. T[irg: ] ¢ (Jmin, k)

19. else if Ar(irg, jmin] + D[jmin, J|[k](|Rqlirg]|) < Let[jmin, j][k]
20. if Ar(irg, jmin] + Dljmin j][k](|Rqlirg]|) < Arlirg, J]

21. if min (Cap[j](t), Ar[irg, jmin] < t < Ort[is, j]) > |Rglirg|
22. AT[qu’ -7] — AT[qu,jmin] + D[jmin, ]][k] ':lRQ[qu] |)

23, [trg, J] ¢ (Jmin, k)

24. return(m, Ar)

Figure 4.1. Dijkstra's algorithm for finding the earliest available times and
links for getting data item Rg[igq] from source machines to destination ma-
chines.



Figure 4.2. An example of Dijkstra's algorithm being applied to a simple
network.

the predecessor (7) and available time (Ar) arrays are initialized for data item Rg[0] on
each machine in steps 2 through 4. The initial values for Ay indicate that no available
time has been found so far for each machine, and the initial values for = indicate that
no machine is receiving data item Rg[0] from any other machine. Steps 5and 6 set the
available time (Ar) array elements for machines that are sources for data item Rgq|0].
This will have the effect of setting Ar[0,0] = 0, resulting in the network shown in Figure
4.2(a). Theset My represents the set of machinesfor which the earliest possible available
time for data item Rglig,] is currently unknown. Step 7 initializes this set to contain
all machinesin M ; machines that are members of My are denoted in Figure 4.2 with a

diagonal linefill in the machine node.



Steps 8 through 23 of Figure 4.1 constitute the main loop that performs the machine
selection and relaxation phases of Dijkstra's algorithm. It continues until all machines
have been selected and removed from the set My, which impliesthat the earliest possible
available times at all machines are known. The machine selected from My in step 9 is
the one that has the earliest available time for data item Rg[0], which in this case is the
source machine M[0] (meaning jm:n isset to0). This machine isthen removed from My
in step 10 before its outgoing links are relaxed beginning in step 1. This relaxation of
links in steps 11 through 23 consists of updating the available times at machines that

can be improved by using those links.

Steps 11 and 12 iterate through all virtual links that originate from the selected
machine and connect to all other machines remaining in My. For simplicity, Figure 4.2
shows only virtual linksthat will enable the relaxation of an availabletime. Suppose link
A represents virtual link L[0, 2][4] with astart time of Lst[0, 2][4] = 2, afinishing time of
Let[0, 2][4] = 8, and where the data transfer duration D[0, 2][4](|Rq[0]|) = 5. Similarly,
suppose link B represents virtual link L[0, 1][3] with associated values Lst[0, 1][3] = 3,
Let[0,1][3] = 8, and D[0,1][3](|Rg[0]|) = 1. For both of these links in step 13, the link
starting time (L st) is after the available time (A7) at machine M[0], meaning that the
earliest that the data item can begin to be transferred is at the link starting time. Both
links are available for long enough in step 14 to transfer the entire contents of data item
Rql0].

The new available times in step 15 that would be generated by using these links are
less than the current available times of oo at machines M[1] and M|[2]. Step 16 then
checks to see if there is enough storage space at the receiving machines to store the data
item until the time it will be deleted. For the purpose of simplifying this example, it is
assumed that enough storage space is available to store Rq[0] indefinitely at all machines
in the network. Steps 17 and 18 then perform the actual relaxation— using L{0, 2][4] (link
A in Figure 4.2(b)) relaxes Ar[0,2] from oo to 7 and sets #[0,2] = (0,4), while using
L[0,1][3] (link B in Figure 4.2(b)) relaxes Ar[0, 1] from co to 4 and sets #[0,1] = (0, 3).
These actions for M[1] and M([2] occur during separate iterations of the loop beginning

at step 11. Steps 19 through 23 perform the same functions as steps 14 through 18,




except that they are called for the case where the available time at the machine selected
from My is after the link starting time for a given link.

The next machine selected in step 9 as M [jmir) is M[1]. In Figure 4.2(c), it isassumed
that (1) using link C (L[1, 2]{4]) allows Ar[0, 2] to be relaxed from 7 to 6 and changes the
predecessor [0, 2] to (1,4), and (2)link E (L[1, 3|[2]) allows Ar[0, 3] to be relaxed from
oc to 8, setting 7[0, 3] = (1,2). The next machine selected in step 9 as M{jmin] is M[2].
In Figure 4.2(d), it is assumed that link D (L[2, 3][1]) can then be used to relax Ar[0, 3]
from 8 to 7, and change [0, 3] to (2,1). Finaly, machine M[3] is selected in step 9, but
there are no machines remaining in My, so the algorithm returns with all of the earliest
possible availabletimesin A, and predecessor machinesin 7 for each machine that can

receive Rql0].
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5. Data Item Selection Cost Criteria*

5.1 Introduction

Network resources must be allocated to data requests in some order; this order in-
tuitively should include "more important” requests and requests that are "close" to their
deadlines before"lessimportant” requests and requests that are' not close” to their dead-
lines. Some quantitative cost must therefore be applied so that an algorithm can evaluate
the relativemerit of any given request compared to any other request. Seven different cost
criteriaare detailed below; each attemptsto take into consideration both the importance
of adata request, and how close the data request isto its deadline.

Suppose M[r] (where 0 < r < m) is the next machine to receive data item Rg(i]
(where 0 < i < 2p) on a path from M[s] (where (s,!) = =i, r]), which can be any
machine already holding a copy of Rgli], to one or more requesting destination machines.
That is, machine M[s] holds a copy o data item Rg[i], and M[r] must be the next
machine to receive Rg[i] so that M[Regquest[s,K]] (for one or more values of k, where
0 < k < Nrgli]) can ultimately receive Rg[i]. Let the set of values of k that satisfy this
condition (i.e., destination machines that request Rg[i] through M|r]) be called Drg[i, r].

Assume that Rgli] is the next data item to be allocated network resources. Let the
value Sat[i, k] (where 0 < i < 2p and 0 < k < Nrq[i]) be 1 if Request|i, k] would be
satisfiable, and 0 if it would not be satisfiable. For the simulations of [ThT99] and Section
8, Sat[i, k] is0 for values of i such that p < i < 2p, thusignoring the less desirable data
item versions. Now, theeffective priority Efp[i, k] of dataitem Rq[é] at the kth requesting
location can be defined as Sat[i,K] * W[Priority[i, k]] * Worth[i,k]. An urgency term,
indicating how close adata item's available time isto its deadline time (in seconds) at a
destination is defined as Urgency[i, K] = —Sat[i, k] * (Rf t[¢, k] — Ar[i, Request[i, K]] T 1).

'Cost criteriaC1, C2, C3, and C4 were defined in [ThT99]. These criteriaare needed background for
the results presented in Sections 8 and 9, and are included here so that thisreport is self-contained.




A smaller urgency here indicates that it isless urgent to get Rg[i] to M[Request(i, K]].
The“+1” in the urgency term isso that the urgency never becomes a small number close
to zero.

The next value that must be defined before detailing the cost criteria is the number
of virtual links used to get from a machine M[s] (where (s,1) = =[¢,r] and M][r] is the
next intermediate machine described above) holding a copy of data item Rg[i] (where
0 < i < 2p) to destination machine M[Request[i, k]] (where 0 < k < Nrq[i]). Let this
value be called Nlinks[i, K], and note that it reflects the number of links used in the path
(generated by the most recent run of Dijkstra’s algorithm) from a machine holding the
data item to a machine requesting the data item.

All of thefollowing cost functions take into account the priority and urgency of a data
item. Six of the costs allow the weight assigned to the priority term to be varied relative
to the weight assigned to the urgency term. These weightingterms are Wg for the weight
of the effective priority term, and Wy for the weight of the urgency term. The relative
weight of these two terms compared to each other (Wg/Wy) is called the E-U ratio.
For all cost criteria, a smaller value indicates a more desirable use of communication
resources; therefore, resource allocation is performed by the procedures in Section 6 for

the data item and destination machine(s) with minimum cost.

52 Cost C1

Thefirst cost, initially described in [TaT98], isreferred toasC1. It givesan individual
value based on each data item at each requesting destination and does not take into
account other destinations requesting the same data item. It quantifies the cost for
sending dataitem Rg[i] (where 0 < i < 2p) to M[r] (where 0 < r < m) from M[s] via
link L[s, r][k] (where (s, k) == [i,r]), in order to ultimately try to satisfy the jth (where
0 < j < Nrq[i]) requesting destination machine:

C][Z’ j][s: T][k] = —WE * Efp[l, .7] - WU * Urgency[i, .7]

This cost is calculated for all values of 7 and corresponding values of j, and for values
of s, r, and k corresponding to the shortest paths found to each satisfiable destination.

The first term in the equation attempts to give preference to a data request with a



priority higher than the other requests. Furthermore, to satisfy as many data requests
as possible, intuitively it is necessary to transfer a specific data item to the requesting
locations whose deadlines are sooner. This intuition is captured by the inclusion o
the urgency term. Thus, with the collective consideration of the priority of satisfiable
data requests and the urgency of those data requests in this local optimization step, a
near-optimal communication schedule that reasonably achieves the global optimization

criterion should be generated.

53 Cost C2

This cost criterion C2 collectively considers all requesting destination machines that
would benefit from sending a data item to a common intermediate storage machine.
It quantifies the cost for sending data item Rg[i{] (where 0 < i < 2p) to M[r] (where
0 < r <m)from M[s] vialink L[s,r][k] (where (s,k) = =[é,r]), in order to ultimately
try to satisfy the jth (where j € Drqli, r]) requesting destination machine(s):

C2fills, ik = ~We * (DZH Efp[tj]) Wy s (jergra;[gﬂ Urgency[z',jl) .
Rather than summing all of the urgency terms for the destinations, the most urgent
satisfiable request is added in C2. This method of capturing the urgency is used as a
heuristic to maximize the sum of the weighted priorities of satisfied requests because if
the most urgent request for an item passing through M][r| is satisfied, it is more likely
that all requests for this data item passing through M|r] will be satisfied.

54 Cost C3

The cost criterion C3 also collectively considers all requesting destination machines
that would benefit from sending a data item to a common intermediate storage machine.
It quantifies the cost for sending data item Rg[i] (where 0 < i < 2p) to M[r] (where
0 < r < m)from M([s] vialink L[s,r][k] (where (s, k) = =[¢,7]), in order to ultimately

try to satisfy the jth (where j € Drq(i, r]) requesting destination machine(s):

o Efpli, j]
C3[i][s, r][k] = Urgencyli, 5]
el = 2. Troencyfi,d

Thiscriterion isasum of the weighted prioritiesof satisfiable requests for dataitem Rg(i]
on a path through machine M[r] normalized by the urgency of each request. Note that
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this cost does not use Wg or Wy. This is because the effective priority is divided by
the urgency and so Wg divided by Wy acts as a scaling factor that would not affect the
relative cost of the requests. That is, for two data items Rq[i;] and Rglé2] competing for
the use of Ls, ][k], the relative value of Z3llT will be unchanged by including any
given Wg to weight the E fp[z, j] factors and any given Wy to weight the Urgency(, j]

factors.

55 Cost C4
The cost C4 for transferring data item Rg[i] (where 0 < i < 2p) to M[r] (where
0 < r < m) from M([s] vialink L[s,r][k] (where (s,k) = =[i,r]),in order to ultimately
try to satisfy the jth (where j € Drq[i, r]) requesting destination machine(s):
04[2]['3? T][k] = _WE * Z Efp[l,]]) - WU * Z Urgency[i, .7]) ‘

j€ Drqli,r] j€Drqi,r]
This cost sums the weighted priorities of all satisfiable requests for data item Rg[i] on a

path through machine M [r]and combinesthat with the sum of the urgency for those same
satisfiable requests. Comparing C2 and C4, it should be noted that the urgency term
for each destination whose shortest path shares an intermediate node M|[r] issummed in
C4, whereas C2 simply takes the maximum of the urgency terms over this same set of
destinations. The benefit of C4 isdemonstrated by thefollowingexample. Thefirst data
item, Rq[#1], is requested by four machines that all have identical priorities, and have an
Ar that is very closeto their deadlines. The second data item, Rq[i,|, is also requested
by four destinationsthat have the same identical priorities, but only one destination has
an Ar that is closeto its deadline. C2 will be unable to differentiate between these two

data requests, but C4 will choose to schedule Rgli1] before Rq[io].

56 Cost C4links

Based on C'4 because of its high performance in simulation tests, cost C4links is also
defined for transferring data item Rg[:] (where 0 < i < 2p) to M[r] (where0 < r < m)
from M [s]vialink L[s, 7][k] (where (s,k) = =[¢,r]),in order to ultimately try to satisfy
the jth (where j € Drgli, r]) requesting destination machine(s):

s Efpli, j] >
Cdlinks[i][s,T|[k] = ~Wgx | Y ——=|-Wyx| > Urgencylij]|.
j€Drqliyr] Nlmks[z, -7] i€ Drqli,r]




Because a data request that can be satisfied by using three virtual links is using three
times as much network resourcesas a data request that can be satisfied by using only one
virtual link, this cost divides the effective priority term for each requesting destination
by the number o links used to get to that destination. If the effective priority associated
with a data request is considered as a measure of worth or importance to the user, then
this first term would be considered a measure of worth per link. This should alow the
cost criterion to better select data items to satisfy that will make the most effective use

of the network resources available.

5.7 Cost C4size

Based again on C4 because of positive simulation results, the criterion C4size isalso
defined for transferring data item Rg[i] (where 0 < i < 2p) to M[r] (where0 < r < m)
from M[s] vialink L[s, r][k] (where (s,k) = =i, r]),in order to ultimately try to satisfy
the jth (where j € Drg(i, r]) requesting destination machine(s):

Cisizeli|[s,r][K]= -Wg x| 3 ﬁfgé’]f]) Wy | 2 Urgency[i,j])-

j€ Drli,r i€Drgli,r]
A data request with an effective priority p representing its worth to the recipient, and
a size in bytes of g, then has an effective worth per byte of g. Because the goal of a
cost criterion isto identify data requests that will make the most effective use of network
resources, thefirst term in C4size usesthis effective priority divided by data request size
tofind data items that will transmit the maximum amount of worth per link bandwidth

byte.

5.8 Cost C4sizlnk

Cost C4sizlnk isa combination of the ideasin C4size and C4links, and gives a cost
for transferring data item Rg[:] (where 0 < ¢ < 2p) to M[r] (where 0 < r < m) from
M [s]via link L[s, r][K] (where (s, k) = =[¢,r]), in order to ultimately try to satisfy the
jth (where j € Drq[i,r]) requesting destination machine(s):

. Efpli j]
Cdsizinkli|[s,r|[k] = —Wg % - . — | —
[ells, rllE] E 'el%[i,r] |Rq[i]| * Nlinks[i, j]

Wy * > Urgency[i,j]) .
jE€Drqli.r]
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By combining the size and number of virtual links used, this cost gives a more accurate
calculation of the resources used by adatarequest. For instance, consider two data items
Rq[i;] and Rgq[i,] of equal priority. Consider also that Rg[is] is twice as large as Rgqliy],
and that it requires the use of three virtual links versus Rqli;]’s single virtual link. In
this case, Rgqliz] is requiring six times the total network resources required by Rg[#] in

order to satisfy the same priority level of request.




6. Resource Allocation Procedur es*

6.1 Introduction

The three procedures below all ocate varying amounts of network resources for asingle
data item after each run of Dijkstra’s algorithm, based on a cost function from Section
5. The performance of these procedures is shown in [ThT99] and Section 8.

The resource allocations performed by these procedures update the following informa-
tion in the system after scheduling Rq(:] to move, and before running Dijkstra’s algorithm
again: (1) thelist of virtual linksand their start and stop times, (2) the available memory
capacity on any machines that data item Rg[i] has been placed, (3) the list of machines
on which Rgli] is available, and (4) the time at which Rg[i] can be removed from any

intermediate machines.

6.2 Partial Path Procedure

Each iteration of this procedureinvolves: (1) performing Dijkstra's algorithm for each
data request individually; (2) for the valid next communication steps, determining the
"codt” to transfer adataitem toits successor in the shortest path; (3) picking the lowest
cost data request and transferring that data item to the successor machine (making this
machine an additional source of that data item); (4) updating system parameters to
reflect resources used in (3); and (5) repeating (1) through (4) until there are no more
satisfiable requests in the system. In some cases, Dijkstra’'s algorithm would not need
to be executed each iteration for a particular data transfer, i.e., if the data transfer did
not use resources needed for any future transfers. In this study, only one data item is
scheduled before rerunning Dijkstra’'s algorithm (this applies for all three procedures).
This simplified the implementation of the procedures without changing the performance
of the resulting schedules. The execution time of the procedures is affected; however,

minimizing thisis not the main goal of the work.

'This section is based on [ThT99]. This material is needed background for the results presented in
Sections8 and 9, and is included here s that this report is sdf-contained.
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This procedure will schedule the transfer for the single”most important” request that
must be transferred next, based on a cost criterion. The procedure'(ﬁrst described in

[TaT98]) is called the partial path procedure because only one successor machine in the

path is scheduled at each iteration. If a data item is partially scheduled through the
system and because of other scheduled transfers the requesting destination's deadline is
no longer satisfied, the scheduled transfers remain in the system (the initial transfers
were scheduled because the deadline could have been satisfied). Reasons the schedule
for this now unsatisfiable request is not removed include: (1) in a dynamic situation,
a change in the network could allow the request to be satisfied; and (2) removing the
already scheduled transfers would require restarting the scheduling for all data requests

because of conflicts that might have occurred.

6.3 N | Path/One Destination Procedure
The full path/one destination procedure uses a cost criterion to select a data request

at an individual destination machine for resource allocation. The data item is then sent
from its current location (machine M([s] in each o the cost criteria) over as many virtual
links as required to reach its destination machine (machine M{j] for one value o j). For
cost C1, the choice d j (i.e., which requesting destination should be satisfied) is trivial;
C1 only takes into account a single requesting destination. All other cost criteriaidentify
a set Drg[i,r] o destinations, and one destination M([j] must be selected from that set
to satisfy. For cost C2, the value of j chosen is the one satisfying the condition

max Urgencyli,j
j€Drgq[i,r] g cy[ ]]

from the equation describing C2. For cost C3, the value d j chosen is the one satisfying

the condition
Bl
jeDrqlir] Urgency(t, j]

from the equation describing C3. For costs C4, C4links, C4size, and C4sizlnk, the
data item with minimum cost Rg[i] is sent first to machine M[r], and if no request was
satisfied, the cost is applied a second time for the same data item Rgfi], but setting the
new M|[s] (datasource machine) to the old M([r] (the machineto which the datawas just

scheduled). The minimum cost is then taken over al values of r (possible next storage
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Figure6.1: An example communication system that requests (a) Rgq[0] (corre-
sponding to é[0]) and (b) Rq[1] (correspondingto 4[1]). Source[k, j] denotes
the jth initial source location of the kth dataitem 4[k]. Reguest[i, j] denotes
the machine from which the jth request for dataitem Rgq([i] originates (in this
example, ¢ = k). Solid lines show shortest paths for a given dataitem to all
nodes (even non-requesters), and dashed lines show unused links for a given
dataitem. Asterisks denote next valid communication steps.

locations). Thevalueof r with minimum cost determines the machine M[r] that thedata
is sent to next. This process continues until the data item has reached one requesting
destination M[j].

This produces acommunication schedule using fewer executions of Dijkstra's algorith-
m than the partial path procedure. The behavior of the partial path procedure showed
that if a data item Rg[i] was selected for scheduling a transfer to its next intermedi-
ate location (a"hop"), in the following iteration, the same requested data item, Rgq([z],
would typically be selected again to schedule its next hop. The full path/one destina-
tion procedure attempts to exploit this trend by selecting a requested data item with a
cost criterion and scheduling all hops required for the dataitem to reach its lowest cost

destination before executing Dijkstra's algorithm again.

Considering the example communication system in Figure 6.1(a), data item Rgq[0]
would only be scheduled from M[0] to M[3] before executing Dijkstra's algorithm again
in the partial path procedure. In the full path/one destination procedure, data item
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Rq[0] would be scheduled from M[0] to M[9] (adestination) before executing Dijkstra's
algorithm again. Thisresults in reducing the number of executionsof Dijkstra’s algorithm
by threefor thisexample. A savings proportional to the average length of a data item's
path from asourceto a destination isexpected from this procedure. Considering again the
communication system in Figure 6.1(a), if this procedure initially schedulesthe transfer
of dataitem Rgq[0] from M([0] to M[9], M[3] and M[5] would become sources for Rg[0].
In the next iteration, M[7] could receive Rq[0] from [M[5], and M[8] could receive §[0]
from M[3], without having to schedule a transfer from the original source, M|[0].

The partial path procedure may construct a partial path (of many links) that it later
cannot complete (dueto network or memory resources being consumed by other requested
dataitems). However, until thisisdetermined, the part of the path constructed may block
the paths of the other requested data items, causing them to take less optimal paths or
causing them to be deemed unsatisfiable. Thefull path/one destination procedure avoids
this problem. An advantage the partial path approach does have over the full path/one
destination approach is that it allows the link-by-link assignment of each virtual link
and each machine's memory capacity to be made based on the relative values of the cost

criteriafor the dataitems that may want the resource.

6.4 N | Path/All Destinations Procedure
The full path/all destinations procedure resembles on the full path/one destination

procedure but allocates more network resources after each run of Dijkstra's algorithm.
This procedure satisfies all reguests that would benefit from sending data item Rgq(i]
from machine M(s|] to M([r] as defined by one of the costs of Section 5. For all cost
criteria except C1, this meansthat all of the destination machinesin the set Drqli, r] are
satisfied by the resource allocation of this procedure. Cost C1 used in conjunction with
this procedure only considers a single destination machinein its calculation, and as such
would always satisfy only one requesting destination. Because this behavior is the same
as using C1 with the full path/one destination procedure, criterion C1 is not used with
the full path/all destination procedure.

For the example communication system in Figure 6.1(a), Rgq[0] is requested by ma-
chines M[7], M[8], and M[9], and the shortest path for these three destinations all orig-



inate at machine M[0] and pass through machine M[3]. The full path/all destinations
procedure will schedule all pathsfor asingledataitem that share the next machine in the
path as an intermediate machine. In Figure 6.1, the data item Rgq[0] would be scheduled
for all three destinations (machines M (7], M[8], and M[9]) at the sametime. By schedul-
ing the path to multiple destinations, two fewer executions of Dijkstra's algorithm are
required as compared to the full path/one destination procedure. A savings proportional
to the average number of destinations for a data item whose shortest path intermedi-
ate machine set share a common machine is expected. This approach was considered
because it was expected to generate results comparable to the full path/one destination

procedure, but with a smaller procedure execution time.
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7. Upper and Lower Bounds*

7.1 Introduction

Finding optimal solutionsto data staging tasks with realistic parameter values are in-
tractable problems. Therefore, it iscurrently impractical to directly compare the quality
of the solutionsfound by the proposed heuristics with those found by exhaustive searches
in which optimal answers can be obtained by enumerating all the possible schedules of
communication steps. Also, to the best of the author's knowledge, there is no other work
presented in the open literature that addresses the data staging problem and presents a
heuristic for solving it (based on a similar underlying model). Thus, there is no other
heuristic for solving the same problem with which to make a direct comparison o the
heuristics presented in this document. To aid in the evaluation of these heuristics, two

lower bounds and three upper bounds on the performance of the heuristics are provided.

7.2 Single Dijkstra Random

This lower bound shows the effect of running Dijkstra's algorithm only once for each
requested data item, assuming it is the only requested item in the network. Then the
pathsthrough the network are scheduled for each dataitem, finishing Rgq(:) before Rg[i+1]
(wherethe ordering of thedataitemsisarbitrary). Resourcesareallocated to dataitems
one link at at time, and if a conflict arises, e.g., the link a transfer is attempting to
schedule is no longer available, the data item stops progressing through the network and
is not satisfied (but retains previously allocated resources). This approach is referred to
as single Diikstra random because Dijkstra’s algorithm is only executed once for each
data item. This method is used to illustrate that executing Dijkstra's algorithm more

than once, with updated communication system information, is advantageous.

'Subsections 7.2, 7.4, and 7.5 are based on [ThT99). Thismaterial is needed background for the results
presented in Sections8 and 9, and isincluded here so that thisreport is self-contained.
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7.3 N | Path Random Dijkstra

The lower bound called the full path random Dijkstra method does take into account
which data requests are satisfiable when it allocates resources, allowing it to improve
over the random Dijkstra method used in [ThT99]. It alocates enough resources in one
scheduling step to take a data item from its current location all the way to one random
satisfiablerequesting destination before running Dijkstra's algorithmagain. This method,
based on the full path/one destination procedure, differs from thesingle Dijkstra random
method of Subsection 7.2 in that (1)this method checksthat a requesting destination is
satisfiable before allocating any resources toward fulfillingit, and (2) Dijkstra's algorithm
is run with updated communication system information after each scheduling step. If
thereisamuch larger number of data requests in the system than could be satisfied, this
method will execute much faster than the random Dijkstra method because it will not
waste time running Dijkstra's algorithm to select and schedule requests that cannot be
satisfied.

7.4 Upper Bound

This bound assumes that all requests in the system are satisfiable, and therefore
represents the total weighted sum of the priorities of all requests in the system. Thisis
an unrealistic (loose) bound because it does not takeinto account any network limitations
that might prevent requests from being satisfied. It does, however, givean indication o
the total value of the data being requested by the users of the system.

7.5 Possible Satisfy

If Dijkstra's algorithm was run to establish the satisfiability of each request as if it
were the only request in the system, and the weighted priorities of each of the satisfiable
requests were added together, the result would be the bound called possible safisfv. The
reason that thisis not equal to upper bound described above isthat some requests cannot
be satisfied due to lack of link bandwidth and/or machine storage, even when it is the

only request in the system.



POSSIBLESATISFYBANDWIDTH(Rg, Nrq, Request, Priority, Worth,
NetBandwidth)

1. invoke Dijkstra's algorithm for each request in Rq giving Ar
2. UsedBandwidth « 0

3. PriSum « 0

4. maz + 1

5. while UsedBandwidth < NetBandwidth AND max >0

6. mazr«0

7. fort=0upto2p-1

8. for j = 0 upto Nrq[s] - 1

9 if Ap[i, Request[i, j]| > Rf t[i, j]

10. if (W[Priority[i,jl] * Worthli, j]/ | Rqli]|) > maz

11. tmar — 1

12 jma.z — ]

13. max « (W[Priority[imas, jmaz]] ¥ Worth[imaz, jmaz)) / | Rali]|
14. fmazx >0

15. Used Bandwidth < UsedBandwidth ¥ |Rglipmaz]|

16. PriSum « PriSumt (W[Priority[imaes, jmaz]] * Worth[imaz, jmaz))
17. remove destination jmes requesting Rg[imq.] from the system

18. return PriSum

Figure 7.1: The method used for the calculation of the possible satisfy band-
width bound.

7.6 Possible Satisfy Bandwidth

The possible satisfy bandwidth bound is a tighter bound than the possible satisfy
bound above. It considers satisfiable requests, and also the total amount of bandwidth
availablein the system, NetBandwidth. This value is calculated by adding together the
number of bytes that could be transmitted over each virtual link in the system. The
algorithm in Figure 7.1 shows how this bound is calculated. The loop of steps 7 through
13 select the request that is satisfiable and has the largest ratio of priority weight to
data item size. Selecting the request that satisfies this condition guarantees that if a
single link is used to satisfy this request, it will give the highest possible priority weight
value per byte of network bandwidth used as compared to all requests remaining in the
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system. Each time a request is found, steps 14 through 16 add its size in bytes to the
bandwidth used in the system (thisassumesthat only one virtual link is needed to satisfy
this request) and add its weighted priority to the weights of the other data items that
have been selected. That particular request is then removed in step 17 so that a new
request can be found. This upper bound is still unrealistic, however, because it does
not take into account that more than one link may have to be used to satisfy a request,
nor does it consider the timeintervalsthat links are available, nor does it consider what

machines have network bandwidth available between them.




8. Extended Simulation Study

8.1 Introduction

After the simulation study of [ThT99] was completed, a new study was designed to
examine the effects of varying some other parameters within the system. In particular,
this new study introduces three new cost criteria and two new bounds, and it varies ad-
ditional simulation parameters, including eight network loadings, three average numbers
of links used to get from a source machine to a destination machine, and five priority
weighting schemes.

The results of [ThT99] indicated that C4 was the best-performing cost criterion.
Thisled tothe development of cost criteria C4size, C4links, and C4sizlnk, described in
Section 5, for the new study. Because of the previous performance of the full path/one
destination procedure, it was implemented for the new study with all seven cost criteria
described in Section 5. For comparison, the other two procedures in Section 6 (partial
path and full path/all destinations) were also implemented for the new study with cost
C4, for atotal of nine heuristics. Eight E-U ratios were tried for the two pairings using
costs C'4size and C4sizink, and nine E-U ratios were tried for the other seven pairings
using costs C1, C2, C3, C4, and C4links. Nine were needed in the latter case in order
to determine the best E-U ratio.

In the previous study, all requests averaged traversing approximately 1.5 communi-
cation links (a communication link traversal count) from an initial source machineto a

requesting destination machine. It was decided that the requests would be generated in
a manner allowing this parameter to be controlled and varied with three different values
in the new study. Another parameter concerning the data requests was the number of
requests being made versus the number of requests that the network could possibly fulfill.
Eight different "network loads™ were decided upon for the new simulation study, in com-

bination with the three communication link traversal counts, for a total of 24 different
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Table8.1
Network parameters used for the generation of test cases.
parameter minimum value | maximum value
number machines 14 16
number sources per dataitem 1 3
number destinations per data item 1 5
source available time 1 sec 3600 sec
destination deadline delay 900 sec 3600 sec
dataitem size 10 kBytes 100 MBytes
machine storage 10 MBytes 20 GBytes
machine outbound link degree 1 4
link bandwidth 10 kBits/sec 1.5 MBits/sec

data request scenarios.

For this study, it was decided that a six-level priority scheme would be used in place
of the three-level method used in the previous study. This was intended to better reflect
the priority classes present in amilitary environment. In addition, the weighting of these
priority levels was changed to asystem where the weight of each priority level was a fixed
multiple of the weight of the priority level immediately below it. Five different values
for this multiple were used for this study, and each was evaluated with each of the 24
data request scenarios above, resulting in 120 testing scenarios for evaluation by the 79
heuristic/E-U ratio combinations.

As in the previous study, 40 individual test cases (each with a unique network con-
figuration and set of data requests) were generated for each testing scenario, because a
single case cannot reflect the range of possible data requests and network configurations.

This resulted in the 379,200 simulation runs described in this section.

8.2 Geneationof Test Cases

The network parameters used to create data sets for this simulation study are sum-

marized in Table 8.1. Actual values are generated randomly with uniform probability



between (and including) the minimum and the maximum values shown in the table.
These parameter values are intended to be representative o a subset of a BADD-like

environment.

The"number machines" parameter refers to the number m of machinesin the network.
"Number sources per dataitem™ isthe number of source machines N4§[i] (where0 < ¢ < n)
that initially hold data item é[¢], and is generated independently for each value of i.
"Number destinations per dataitem" isthe number d destination machines Nrg[j] (where
0 < j < p) that have requested a copy of data item Rg[j] (only the higher quality data
items are considered in this study). This value is also generated independently for each
value of j. Each requesting destination for each data item also has a priority class «
(where 0 < o < 5), where class 0 is generated with a 50% probability, class 1 with
25%, class 2 with 12%, class 3 with 7%, class 4 with 4%, and class 5 is generated with a
2% probability. These percentages were selected to reflect the fact that in a BADD-like
environment, there would likely only be a small number of data requests in the highest
priority class, and alarge number of data requests at the lowest priority class.

The" sourceavailabletime" in Table8.1 correspondsto ést[z, k] (where0 < k < N{[t]),
the time at which dataitem §[:] isavailable at its kth source machine. The timeis given
as an offset in seconds from the beginning of the time interval being simulated. For
these simulations all available times for a given data item are equal (i.e., dst[¢,0] =
dst[i, 1] = ... = ést[i, k — 1]). The"destination deadline delay" refers to the number of
seconds between the time that the dataitem is available at its source machine(s) and the
timethat it is needed at a destination machine (the deadline). This delay is generated
independently for each destination machine of a given data item. Because data items
may become available up to one hour after the beginning of a simulation interval, and a
data item may have up to one additional hour before its deadline a a destination, the
total simulation interval is two hours.

The time duration parameter for garbage collection at intermediate machines v, was
set tosix minutes. Thismeansthat the removal timeért for adataitem at amachinethat
isnot an original source machine nor a requesting destination machineissix minutes after

the latest deadline Rft for that same data item at any requesting destination. Source



machines and final destination machines for data items hold those data items for the

remainder of the simulation period (87t is o0).

The"dataitem size" |4[i]| (where 0 <i < n) mentioned in Table 8.1 is generated for
each data item and affects the amount of storage required to hold a dataitem as well as
the amount of time required to transmit a data item on a virtual link. "Machine storage"
Cap(j](to) (where 0 < j < m and ¢, is the beginning of the simulation interval) is the
amount of unused storage space on a machine in the network. The "machine outbound
link degree” refersto the number of unidirectional outbound communication links that a
machinein the network has. Link generation isdonefor each machinein the network, and
additionally ensures that alink must terminate at a different machine than it originated
from, and no more than two links originating from one machine can terminate at the
same destination machine. The bandwidth of each link is in the interval defined by the
"link bandwidth" of Table 8.1.

Unidirectional communication links are intended to represent links that may only
be available during certain periods of the day, such as satellite links. Communication
link availability is calculated for a 24 hour period in the following manner. For each
communication link, the percentage of the day that thelink isto be available is randomly
chosen from the set {50%, 60%, 70%, 80%, 90%, 100%). If thelink is available for 100%
of the day, a single virtual link is initially used to represent the communication link for
the entire 24 hour period. However, if the link is chosen to be available for less than
100% of the day, an availability duration is randomly chosen from the set {30 minutes,
one hour, two hours, four hours}. This duration represents the length of time that the
communication link will initially be continuously available each time it becomes active.
Each period of availability will then be represented by a single virtual link with astarting
and ending time.

The number of virtual links used is determined by the ceiling of dividing the amount
of timethelink isavailable (percentage available x 24 hours) by the availability duration
chosen. Thestarting time of the earliest virtual link(as an offset from the beginning of
the day) is randomly chosen between 0 and one tenth of the total unavailable time of

the communication link. Unavailable times are generated in a similar manner between



each of the remaining virtual links until the appropriate number of virtual links has been
allocated. If al of the unavailable timeis allocated before thelast virtual link, then there

is no unavailable time allocated between remaining virtual links.

The machines and unidirectional communication links of a network are generated
with the preceding parameters, and then tested to make sure that there is a path from
each machine to all other machines via some set of communication links. An adjacency
matrix Apunks is calculated where each entry corresponds to the minimum number of
communication links traversed (communication link traversal count) in a path from one
machine to another machine. For this calculation, all links are assumed to have infinite
bandwidth and be available for the entire simulation duration. This means that each
entry in the adjacency matrix is a lower bound on the number of communication links
that would be used to send a data item from one machine to another. After this matrix
iscreated, each dataitem is created, along with a set of source machines to hold the item

initially, and a set of destination machines to request the data item.

The behavior of al three procedures depends on the communication link traversal
count. The expected behavior isthat for a larger average count, the full path procedures
should execute faster than the partial path procedure because they allocate all resources
required to satisfy arequest at once, whereas the partial path procedure only allocates
one virtual link at atime. As the count increases, it also becomes more possible for
the partial path procedure to "strand" a data item at an intermediate storage location
resulting in a poorer overall schedule (i.e., the procedure would allocate enough resources
for a particular data request to moveit toward its requesting destination, but would not

allocate enough resources to cause the data request to be satisfied).

For these reasons, the average communication link traversal count was varied with
three arbitrary values: 1.5, 2.5, and 3.5. These values are shown in Table 8.2, each with
four experimentally determined probabilities. As an example of what these percentages
mean, consider the bottom line of the table with a resulting average count of 3.5. In order
to generate a network with satisfiable requests that have an average communication link
traversal count of 3.5, there must be a 1% chance of generating a data request that is

one communication link away from a source machine, a 3% chance of generating a data
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Table 8.2
Experimentally determined probabilities of communication link traversal
counts from a source machine to a requesting destination machine and their
resulting average link counts.

probability of communication resulting average
link traversal count communication link traversal
1 2 3 4 count for satisfiable requests
80% | 19% | 1% 0% 1.5
17% | 38% | 45% 0% 2.5
1% | 3% | 81% 15% 35

request with a communication link traversal count of two, an 81% chance o making a
request with a count of three, and a 15% chance o creating a request with a count of
four.

The process o generating asingle dataitem and its associated source machine(s) and
requesting destination machine(s) isnow described. First, the number of source machines
m, and the number of destination machinesmy are chosen with uniform distribution (see
Table 8.1 again for ranges). For each destination machine, a desired communication link
traversal count Le(Z) (where 0 < i < my) is generated according to the probabilities
listed in Table8.2, depending on the resulting average communication link count wanted.
For example, if the desired average count wanted was 3.5, L.,;(¢) for all valuesdf i would
be 3 with probability 81%. These probabilities were determined experimentally.

Then, all possible sets of source machine combinations of size m, are enumerated in
a list where an element (a set d source machines of size m,) is identified as mge:s(j)

(where 0 < j < (7). Using the adjacency matrix Agunks, for each element mes(j),
a list of communication link traversal counts Lep,;,(j) is calculated. The kth (where
0 < k< m-m,) element in the list Leyn(j) is the minimum communication link
traversal count from any of the source machinesin the set m,e;(j) to the kth destination
machine.

Now, for each valued i such that 0 <i < mq4, consider the count in Lep:(2). Then, for



every list Leqin(4), try to remove an element in that list which isequal to the link count
L.:(). Thisremoval correspondsto reserving a potential destination that isa minimum
of Len:(i) communication links away from all of the m, source machines in me(7). If
thereisalist Lenin (j) that does not contain a value equal to the link count L,(¢), delete

that list Lemin(j) and the corresponding set of source machines mgees(7)

Remaining in mges is Now the source machine combinations that have appropriate
communication link traversal countsto potential destination machinesin the network. If
all source machine combinations have been removed from m,,, the dataitem is regener-
ated from the beginning. Otherwise, one of the remaining source machine combinations
is randomly selected to be the set of source machines for the current data item. Des-
tination machines can then be selected 'that fit each of the desired communication link

traversal counts in Lep().

For this simulation study, the number of dataitems generated for a network was 700
times the number of machines in the network. After all items were generated, Dijkstra's
algorithm was run once for each item, establishing the individual satisfiability of each
dataitem at each requesting destination along with a path of communication links used
to reach each destination. The average number of communication links traversed from a
source machine to a destination machine for all of the satisfiable requests is the "result-
ing average communication link traversal count” shown in Table 8.2. Asindicated above,
three different average link counts were generated, and for each count, 40 different net-
works and associated data requests were created with the method given above, resulting

in atotal of 120 networks with associated data requests.

Now consider in the network all data requests that are determined to be satisfiable
individually according the first execution of Dijkstra’'s algorithm. When considering
each of these requests as if it were the only data request in the system, the resulting
virtual link path from Dijkstra's algorithm and other known information can be used to
calculate the bytes of bandwidth needed for each request. Then these bandwidths can
be summed to give a value representing the total number of bytes of data bandwidth
being requested in the system. Call this vaue RegBandwidth. Recall now the value

NetBandwidth calculated by summing together the total number of bytes that could be
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transmitted on each of the virtual links within the network during the simulation period.

An oversubscription rate can then be defined as ReqBandwidth/Net Bandwidth. If this

term is larger than 1, the network can clearly not satisfy all requests due to bandwidth
limitations. If the term is less than 1, bandwidth may not exist between the correct

machines or may not be available during the required time to satisfy all requests.

In order to examine system performance under various request loads, it was decided
to consider networks with the following oversubscription rates: 25.0, 12.5, 6.2, 3.1, 1.6,
0.8, 0.4, and 0.2. These desired data sets were created by starting with one of the
networks and its associated set of data requests, and removing random data requests
until the desired oversubscription rate was achieved. Thisdid not significantly affect the
average communication link traversal counts. It resulted in data sets consisting of the

same network with eight different oversubscription rates, for each of the 120 networks.

When applying the heuristicsto these test cases, avariety of E-U ratios were used. For
simulationsrun using thefull path/one destination procedure with C4size and C4sizink,
the E-U ratios used were 10™f, 10°, 108, 107, 10°, 10%, 104, and 10~ ™. The values of
10™f and 10~ represent considering only the priority term (the term weighted by Wg),
and only the urgency term (the term weighted by W), respectively. For simulations run
using the partial path procedure with C4, the full path/all destinations procedure with
C4, and thefull path/one destination procedure with C1, C2, C4, and C4links, theE U
ratios used were 10™f, 10°, 10°, 10¢, 102, 102, 10%, 10°, and 10~ f. Recall that C3, which
was implemented in this study with the full path/one destination procedure, does not

have a Wg or Wy term.

The last parameter that was varied in this simulation study was the relative weight
of one level of priority request compared to another. With the six priority levels of data
requests, the approach simulated was to make the weight of a priority level a (where
0 < a < 5) datarequest be w?* (i.e., W[a| = w®) for some fixed value of w. The values
of w simulated were 1, 2, 4, 8, and 16, and this was done for each of the networks and
loadings mentioned above. The resultsof the simulations using these parameters are now

presented.

e e e - e ol
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Table 8.3
Labels for heuristics and bounds used in the graphs of Subsection 8.3.
implementation combination label used
partial path procedure with C4 partial —C4
full path/one destination procedure with C1 full—one—Cl1
full path/one destination procedure with C2 full —one—C2
full path/one destination procedure with C3 full —one—C3
full path/one destination procedure with C4 full—one—C4
full path/one destination procedure with C4links full _one_ C4links
full path/one destination procedure with C4size full _one_ C4size
full path/one destination procedure with C4sizink full —one—C4sizink
full path/all destinations procedure with C4 full—all-C4
upper bound upper—bound
possible satisfy possible—satisfy
possible satisfy bandwidth possible— satisfy —bandwidth
full path random Dijkstra full —rand—Dijkstra
single Dijkstra random single—Dijkstra—random

8.3 Evaluation of Smulations

Heuristic and bound labels used in the graphs at the end of this subsection are sum-
marized in Table 8.3. In [ThT99], graphs were shown with the performance of most of
these heuristics versus E U ratio. The three new costs taking into account data item
size and the number of communication links traversed from asource to adestination are
shown in Figure 8.1 (all Section 8 figures are a the end of the section). The peak perfor-
mance of the costs taking data item size into account are further to the right (signifying
higher E U ratios) in the graph because those costs divide the effective priority term by
thedataitemsize. The pointsinf and — inf are the two extremes, where inf only consid-
ers the effective priority term, and — inf only considers the urgency term. The same set

of E U ratios was not used for all three cost criteria (asdetailed in Subsection 8.2); for



this graph, the 10~ E-U ratio data points for full —one—C4sizeand full—one_ C4sizlnk
were duplicated for their 10°, 10?, 102, and 10° E-U ratio data points, and the 10'"f E-U
ratio data point for full _one_ C4links was duplicated for its 107, 108, and 10° E-U ratio

data points.

Thegraphs o Figures 8.2 through 8.31 show the effects of varying the oversubscription
rate, average link traversal count, and the priority weighting parameter, w. The graphs
of Figures 8.2 through 8.16 show all of the upper bounds from Section 7, as wel as the
full path random Dijkstra (Subsection 7.3) and single Dijkstra random (Subsection 7.2)
lower bounds. The random Dijkstra (used in [ThT99]) lower bound is not included in
these simulation results because of the large execution time required for it to run in the
heavily loaded test cases. In addition, Figures 8.2 through 8.16 show data points labeled
best—hc and worst__hc, corresponding to the best data points generated by any o the

heuristics (procedure/cost criterion pairs), and the worst data points generated by any
of the heuristics, respectively. The data points for the heuristics used correspond to the
best E-U ratio for each testing scenario. The best E U ratio was only likely to be 10™f
or 10~ in tests where w = 1; the best performance in other tests was almost aways
a combination of both the priority and urgency terms. The values for the normalized
vertical axis in all of these graphs is computed as follows. For each test case, the sum of
the satisfied requests’ weighted priorities for a given heuristic or bound is divided by the
sum o satisfied requests weighted priorities given by the best E-U ratiofor full —one—C4.
This normalized sum is then averaged over the 40 network test cases to give the final

value for each data point.

Figures 8.2 through 8.4 show the relative performance o the bounds and best and
worst heuristics in a system where all data items have the same priority (W = 1). Notice
in these figures that possible—satisfy—bandwidth levels off soon after the request over-
subscription rate exceeds 1. Thisindicates the point at which the network can no longer
satisfy more requests, although its gradual increase shows that as more smaller data
items (which have a larger ratio of value per byte) are added to the system, they could
be satisfied in place of larger data items. The difference between possible—satisfy and
upper—bound is all of the data requests that are made that cannot be satisfied because



no virtual link exists between the appropriate source and destination machines.

As can be seen as the communication link traversal count increases from 1.5 to 3.5
in Figures 8.2 through 8.4, the difference between upper—bound and possible—satisfy
increases. This is because a longer average communication link traversal count will
generally require dataitemsto use morevirtual linksto get from a source to a destination,
thus makingit harder to meet deadline times. It should also be noted that in thesefigures,
the performance of the heuristics decreases with respect to the upper bounds as the link
traversal count increases. This is explained by the fact that the upper bounds do not
have requests competing for bandwidth (i.e., each request is treated as if it is alone in
the system), while the heuristics run out of bandwidth faster if the requests that they
allocate resources for have higher link traversal counts. Thistrend is seen across all of
Figures 8.2 through 8.16 as well.

Figures 8.2 through 8.4 also show that the performance of the worst heuristic is
sometimes worse than the performance of the full path random Dijkstra lower bound.
It should be noted that these test cases set w = 1, and hence the effective priority
of al requests in the system is identical. There are two reasons for this poor relative
performance of worst—hc. First, the effective priority term is unable to be utilized well
by the cost criteria because all effective priorities are set to one. Second, the fact that
full _rand_Dijkstra pays no attention to the effective priority of requested dataitemsis

not a hindrance in this case where all data items have equal priority.

Also shown in Figures 8.2 through 8.16 is the trend that as w increases, the perfor-
mance of the heuristics as well asthe possible—satisfy—bandwidth bound become closer
to the possible—satisfy and upper—bound bounds. This is because as w increases, the
sum of the weights of the highest priority class requests represent a larger percentage of
the total sum of priority weights of requests. In other words, just satisfying the requests
of priority class5 results in satisfying a significant percentage of the sum of all requests
priority weights.

The relative performanceof the heuristicsare shown in Figures8.17 through 8.31. The
first three graphs, Figures 8.17 through 8.19, again show performance in a system where

all data requests have the same priority (w = 1). In these three figures, the heuristics



divide themselves roughly into three groups of similar performance. The group with the
best performance, consisting of full—one—C4size and full _one_C4sizlnk, contains the
two methods that consider data item size. Because all effective prioritiesare the same in
this system, data item size becomes an important way to distinguish between agood and
a poor data item choice for resource allocation for the more heavily loaded test cases.
The reason that data item size does not help for the more lightly loaded test cases is
because of a fragmentation problem. The costs considering data item size will tend to
allocate resources for all of the smaller data items first, resulting in many small time
intervals of link bandwidth being allocated initially. In these lightly loaded cases, the
remainder of the link bandwidth must be used by larger data items, but no continuously
availablelinks exist for along enough period of timefor these larger dataitemsto use. In
the more heavily loaded network cases, there are enough smaller data items available to
make use of all of the network bandwidth without sending any o the larger data items.
The resulting trend, shown in varying degrees in all of Figures 8.17 through 8.31, isthat
the costs incorporating data item size have a relative decrease in performance for lightly
oversubscribed networks, followed by a relative increase in performance for the heavily

oversubscribed networks.

The group with the worst performance in Figures 8.17 through 8.19 consists of ful-
1_one_C1 and full—one—C3. The full—one—C1 method is disadvantaged by the fact
that it only considers the benefit of one data request at atime, whereas the heuristics of
thegroup in the middle all consider multipledata requests that would collectively benefit
from a resource allocation. Finally, the full —one_C3 method has a strong tendency to
select very urgent requests. The urgency of arequest isrelated to itssizein that alarger
dataitem will tend to arrive later at itsdestination because of the amount of bandwidth
needed to transfer it. Therefore, this method will end up selecting the largest data items
first, resulting in alower ratio of weighted priority per bytefor itssatisfied requests. Note
that w =1 isaspecial casefor full _one C1, because for the graphs of 8.20 through 8.31,

its performance remains close to that of the best heuristic.

In the remaining graphs (Figures 8.20 through 8-31), a number of trends can be seen.

There is a general overall trend that as w increases (and other factors are fixed), the



performance of all heuristics is closer to each other. This, as in Figures 8.2 through
8.16, is because more of the total sum of priority weights of requests in the system is
contributed by a few highest priority requests.

The full —one—C3 method performs consistently poorly for heavily oversubscribed
networks. Its performance in the simulation studies of [ThT99] indicated that it would
not likely perform well, so this was expected. It isinteresting to note, however that asw
was increased, the relative performance of full —one—C3increased as well. This suggests
that the problem with cost C3 is indeed due to allowing the urgency factor to dominate
the cost equation, because as the priority weight isincreased, it begins to perform well.
This is especidly true for the lower oversubscription rates, as seen in Figures 8.26, 8.27,
8.29, and 8.30.

The two methods that take into account data item size, full —one—C4size and ful-
1_one__C4sizlnk, are shown to perform well with high link traversal counts and very high
oversubscription rates, as seen in Figures 8.25, 8.28, and 8.31. This indicates that data
item size, for the values and distribution tested here, is not an important cost factor
unless the system is very heavily oversubscribed. As mentioned previously,a reason that
size may bea hindrance in more lightly oversubscribed systemsis network fragmentation.
If small dataitems are selected for resource allocation first, they will reserve small time
intervals of virtual link bandwidth. Later, when larger data items are considered, there
will not be enough continuous bandwidth available on any virtual links for transferring
these dataitems. Only if the oversubscription rate is very high are there enough small
data items available to utilize the remaining link bandwidth. For w = 1, in generd,
full—one—C4sizeand full_one_ C4sizlnk do not perform as wel as full —one—C4 because
of this fragmentation problem.

In Figures8.20 through 8.31, full one_ C1 performs wel except for the highest over-
subscription rate test cases. Because cost C'1 only considers the benefit of moving data
to satisfy a single request, this suggests that in very highly oversubscribed networks, it
helps to consider multiple requesting destinations that would collectively benefit from a
datatransfer.

The full —one—C2 method appears to suffer from its choice of destination machines;
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specifically, it chooses the most urgent request from a set of requesting destinations
that would benefit from a common data transfer. As system oversubscription rates
increase, its relative performance decreases in all of Figures 8.20 through 8.31. The
method full _one_ C4links, however, performed very comparably to full _one_C4 in al
tests. There was no situation indicated by these simulations where full _one C4links
should be chosen over full _one_C4, or vice versa. The partial—C4 method was aso

shown to perform comparably to the full—one—C4 method in all cases.

The full —all-C4 method is shown to perform wel for small average link traversal
counts, but asthe link traversal count increases, Figures 8.20 through 8.31 show a clear
decrease in performance. This is due to the full path/all destinations procedure allo-
cating resources for more than one destination simultaneously, where some requesting
destinations may have very low priority.

Execution timesfor all bounds and heuristics are shown in Figure 8.32, and the four
heuristics that tended to perform the best for w > 1 (full _one_Cdlinks, full _one_ _C1,
full —one—C4, and partial — C4) are shown by themselves in Figure 8.33. Thefull —one—C4
method does have an advantage in execution time over partial _C4, as shown in Figure
8.33. Figure 8.32 shows an example of the trends of execution timesfor each algorithm;
execution timesfor other oversubscription rates do vary (larger execution timesfor larger
oversubscription rates), but the trends remain the same. The general downward trend of
all algorithms as link traversal count increases is due to the fact that requests that are
deemed to be unsatisfiable by a given run o Dijkstra’'s algorithm do not have Dijkstra's
algorithm applied to them again. With higher link traversal counts, network resourcesare
used up more quickly, resulting in fewer remaining satisfiable requests, thus shortening

execution time.

Figures 8.34, 8.35, and 8.36 show 95% confidence intervals (i.e., given the calculated
sample mean over the 40 test cases, the probability that the true mean isin the interval
shown is 0.95; see [Cas93]) corresponding to the graphs of Figures 8.23, 8.24, and 8.25.
For a given path length and a given heuristic, the confidence interval is similar for any
value of w or for any oversubscription rate. These sample graphs show the overal trend

that asthe path length increases, the confidence interval increases. Thelargest confidence



intervals calculated for any data points were always less than £3%. The approximate
worst case intervals were £3% for link traversal counts o 3.5, £2% for link traversal
counts of 2.5, and £1% for link traversal counts of 1.5. A majority o the intervals
calculated were less than +1%. Note that full—one—C4 is not shown in these graphs
because it is being normalized to itself and hence always has a normalized performance
value of 1.

Tables 8.4 and 8.5 show the average number of requests satisfied at each priority
level by full—one—C4 as compared to a simple algorithm that schedules al requests of
a higher priority level before any requests of a lower priority level. In particular, this
algorithm was full_one_C1 with an E U ratio of 10"™. For w > 1 in these tables, more
requests in the top three priority levelsare being satisfied by full —one—C4 (which obeys
the relative importances assigned to each o the priority levels set by the policy maker)
than the level by level method (which ignores these policy requirements). The number
of satisfied requests at the top priority level remains comparable for full —one—C4 and
w > 1 because there are so few requests at that level that all are able to be satisfied.
Thisisindicated by thefact that the level by level method cannot satisfy any more of the
top priority requests. For example, even though the level by level method schedules all
priority level 5 requests as if they werethe only requests in the system, the total number
scheduled does not exceed the results of full—one—C4 (for w > 1). This shows that
full—one—C4 using urgency in addition to effectivepriority, is better than full one_Cl1
without urgency. Furthermore, full—one—C4 resultsin a higher sum of weighted priorities
of satisfied requeststhan thelevel by level method in almost all cases considered in Tables
8.4 and 8.5.

In summary, a class of heuristics that compare wel to upper and lower bounds has
been developed and analyzed. Many heuristics perform within afew percentage points of
each other, and thisis why we consider the execution times of the different approaches.
Furthermore, whilein general several heuristics perform comparably, if a system isknown
to have a particular operating environment (e.g., w value, oversubscription rate), there
may be a preference for one pair over another. Future work will investigate confidence

intervals for some of the data points generated by test cases in this section.
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Figure 8.2: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full-one-C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 1.5 and an w value of 1.
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Figure 8.3: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 25 and an w value of 1L
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Figure 84: Weighted sum of satisfied requests’ priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 3.5 and an w vaue of 1.



normalized sum of weighted priorities of satisfied requests

w
o

g
(2]

2

pury
[3,]

Q2 04 08 16 31 62 125 A0
request oversubscriptionrate

Figure 8.5. Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 1.5 and an w value of 2.
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Figure 8.6: Weighted sum of satisfied requests’ priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 2.5 and an w valueof 2.
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Figure 8.7: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 3.5 and an w value of 2.
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Figure 8.8. Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full _one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count o 1.5 and anw value of 4.
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Figure 8.9: Weighted sum of satisfied requests’ prioritiesnormalized at each
oversubscription rate to the performance o full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count o 2.5 and an w value d 4.
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Figure 8.10: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 3.5 and an w value o 4.
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Figure 811: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count o 1.5 and an w value d 8.
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Figure 8.12: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one_C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 2.5 and an w value of 8.
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Figure8.13: Weighted sum o satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count o 3.5 and anw value of 8.
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Figure8.14: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 1.5 and an w value of 16.
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Figure8.15: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 25 and anw value o 16.
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Figure 8.16: Weighted sum of satisfied requests’ priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are the
upper bounds, lower bounds, and the performance of the best and worst
heuristic for each oversubscription rate. The data sets had an average link
traversal count of 3.5 and anw value of 16.
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Figure8.17: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one—C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link
traversal count of 1.5 and an w value of 1.
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Figure8.18: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one—C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link
traversal count of 2.5and an w value of 1.
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Figure 8.19: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one-C4. Shown are all
heuristicsfor each oversubscription rate. The data sets had an average link
traversal count of 3.5and an w value of 1.
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Figure 8.20: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full-one—C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link

traversal count of 1.5 and an w value of 2.
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Figure8.21: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one-C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link
traversal count of 2.5and an w value of 2.
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Figure8.22: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one-C4. Shown are all
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traversal count of 3.5 and an w value of 2.
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Figure 8.23: Weighted sum of satisfied requests priorities normalized at each
oversubscription rate to the performance of full—one—C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link
traversal count of 1.5 and an w value of 4.
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Figure 8.24: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one-C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link
traversal count of 2.5 and an w value of 4.
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Figure 8.25: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one—C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link
traversal count of 3.5and anw value of 4.
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Figure 8.26: Weighted sum of satisfied requests prioritiesnormalized at each
oversubscription rate to the performance of full-one-C4. Shown are all
heuristics for each oversubscription rate. The data sets had an average link
traversal count of 1.5 and an w value of 8.
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Table 84
Number requests satisfied at each priority level by full —one_C4 with an aver-
age link traversal count of 2.5and an oversubscription rate of 1.6. The"leve
by level" column shows the effect of allocating resources for dl priority class
a requests before all priority class g requests where o > .

number requests satisfied
priority | w level by
level 1 2 4 8 16 level
5 42 | 83 (84 | 84 | 84 8.2
4 98 116.0[161]16.1 {161} 16.0
3 16.4 | 234 | 23.4|23.1| 235 22.8
2 28.8 |33.8{31.2127.0(325( 325
1 57.6 | 50.5|44.8 | 43.1 | 43.0 | 50.1
0 118.8 | 81.6 | 82.0 | 85.9| 8.9 78.6

Table85
Number requestssatisfied at each priority level by full—one—C4 with an aver-
age link traversal count of 25 and an oversubscription rate of 6.2. The"leve
by level™ column shows the effect of allocating resources for all priority class
a requests before all priority class 3 requests where a > 3.

number requests satisfied
priority w level by

level 1 2 4 8 16 level

5 9.7 | 304 | 31.3 | 31.2 | 31.2 30.4

4 19.3 | 444 | 45.3 | 45.2 | 45.0 43.6

3 34.1 | 534 | 51.3 | 51.2 | 50.8 52.0

2 58.4 | 63.0 | 54.8 | 48.1 | 41.4 60.6
1 1174 942 | 744 | 702 | 691 | 873
0 241.5 11349 | 126.3 | 133.5 | 139.3 | 122.7




9. Data Items With Multiple Versons

91 Approach

In this section, a variable time, variable accuracy algorithm will be presented to deal
with data items with a higher quality and lower quality version, as mentioned in Section
3. The higher quality data item is assumed for simplicity to be twice the size of the
lower quality data item. The higher quality dataitem, however, has four times as much
"worth" to theend user asthe lower quality dataitem. Thisworth was chosen toindicate
that the system should be penalized for selecting the lower quality data item over the
higher one. The lower quality data item thus has half of the worth per byte o the higher
quality dataitem.

The approach used to incorporate these lower quality data item versions into the
developed heuristics was to create an iterative algorithm that attempts to create a new
schedule S, with each iteration that has a smaller effect E[S,]. In the first iteration,
only the higher quality versions of the data items are considered satisfiable by the value
Sat[i, k] (where 0 < i < 2pand 0 < k £ Nrg[f]). That is, Sat[i,k] (from the cost
criteria of Section 5) can only be1if 0 < ¢ < p. A heuristic is then used with Dijkstra’s
algorithm to create a complete schedule of data transfers, which corresponds to the
research described in Section 8.

After the first iteration schedule has been determined, the value of Sat[j,k] (where
0 < j < p) for the second iteration is only allowed to be 1 if Request[j, k] was satisfied
in the previous iteration. The value of Sat[j T p, k] is then only alowed to be 1 if
Regquest[j, k] was not satisfied in the previous iteration. A complete new schedule is
created using a heuristic with Dijkstra’s algorithm. That is, if during iteration one a
requesting destination does not receive its higher quality requested data item, then in
the second iteration, it will request the lower quality version of that data item instead.

The schedule produced by the second iteration will then likely satisfy at least a few
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lower quality data item requests (of higher priority) in place of higher quality data item
requests (of lower priority). The higher quality dataitem requests that are not satisfied
in the second iteration then request their respective lower quality versions for the third
iteration. Thisiterative processcan berepeated as many times as all otted execution time
permits, and can stop at any time after the first iteration and output the best schedule
that it has generated thus far. (This assumes that the best schedule is kept separately
after each iteration and that the last iteration performance may not result in the best
schedule.)

9.2 Evaluation of Simulations

The data sets used for these experiments were a subset of the data sets created for
the simulation study of Section 8. Only the data sets with average link traversal counts
of 25 were used. Five iterations o the variable accuracy algorithm were run. Results
from those runs are shown in Figures 9.1 through 9.40. It should be noted that each
graph is normalized to the performance of full—one—C4 at the end of its first iteration,
which isthe same as the performance of full—one—C4 in the study of Section 8. Figures
9.1 through 9.8 are included for comparison, but keep in mind that w = 1 isa degenerate
case.

For less oversubscribed networks, the heuristics are ailmost all able to increase their
own respective performance with additional iterations (for example, Figures 9.17, 9.18,
9.19, and 9.20). For more oversubscribed networks, this is not generaly the case (for
example, Figures 9.24, 9.32, and 9.40). All of the cost criteria used here except C1
consider more than one destination as part of the cost of sending a data item to its
next machine. The implementation of the multiple versions approach works against this,
particularly at higher oversubscription rates. Thisisbecausea dataitem that contributes
to the cost of a request that is satisfied in iteration one may not be satisfied itself. Later,
in iteration two, the unsatisfied data request is considered separately (because it is a
different version). When considered separately, the original data item no longer has an
associated cost that enables it to be satisfied in iteration two. Even if the original data
item does have a cost that enables it to be satisfied, it may be satisfied later, using
different time intervals on virtual links, or using different virtual links. This usage of



different network resources can then cause other data requests to be unsatisfiable using
their primary version. For this reason, full—one_C1 (which does not collectively consider
multiple requesting destinations) islessinclined to decrease in performance in successive
iterations.

An additional reason for a lack of improvement after each iteration for data sets with
high oversubscription rates is related to the large number of requests o high priority
in the system. There are already very many data items in these tests with a desirable
priority to select from, and the secondary versions of data items are not any better of a
choice than any o the primary versions of data itemsthat are available.

In summary, the use of multiple versions will help some heuristics improve the sum of
priorities satisfied in all but the most oversubscribed cases. The improvement obtained
in some operator environments exceeds 10%. In almost all cases, the best improvement

is given by the second iteration of the variable time, variable accuracy algorithm.
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Figure 9.1: Weighted sum o satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration d the variable time, variable accuracy
algorithm. The dataset had an oversubscription rate of 0.2, an average link
traversal count o 2.5, and anw valueof 1.
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Figure 9.2: Weighted sum of satisfied requests' priorities normalized to the
performance of full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.4, an average link
traversal count of 2.5, and anw valued 1.
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traversal count of 2.5, and an w value of 1
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performance of full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
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Figure 95: Weighted sum of satisfied requests priorities normalized to the
performance o full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration o the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 3.1, an average link
traversal count of 2.5, and an w value of 1.
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traversal count of 2.5, and an w value of 1.



normalized sum of weighted priorities of satisfied requests

1.3

0.5

0.4

L,/ ..... I ———
. e = S S = S
T
AY
I~ "~ i
‘.
S
\-
‘.
\>
\.
\‘
L
\.
N
N W
~~~~~ Q= men Rl R IE ST TR .
1 ! —l
1 2 3 >

iteration number

full_one_C4links ——
full_one_C4size ---x--
full_one_Cd4sizink ---»---

full_one_C1 8-
full_one_C2 ---#---
full_one_C3 ---e---
full_one_C4 --e--
partiai_C4 ----a----
full_all_C4 ---&----
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Figure 9.10: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration o the variable time, variable accuracy
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Figure 9.12: Weighted sum o satisfied requests priorities normalized to the
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of each heuristic after each iteration d the variable time, variable accuracy
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traversal count d 2.5, and an w value of 2.
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Figure 9.13: Weighted sum of satisfied requests’ priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 3.1, an average link
traversal count of 2.5, and an w value of 2.
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Figure 9.14: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The dataset had an oversubscription rate of 6.2, an average link
traversal count of 2.5, and an w value of 2



- 106 -

full_one_C4links —+—
full_one_C4size ---»---
full_one_C4sizink ---%---

full_one_C1 -—8--
full_one_C2 --@--
full_one_C3 ---o--
full_one_C4 ---e-
partial C4 ----a---
full_all C4 ---a--
w 09
I
(]
=]
(=2
e
v
L2 085} 1
«
©
(72
S
3
= 0.8 | 1
k=3
=
°
o
S ors| |
[
=
S
£
@
2 o7 .
(]
N
©
E
o
< 0.65¢ |
06 [ |
o
_______ e""""""“"-o'-'----—--.-.-._,4F
0.55 | L . ,
1 2 4 c

3
iteration number

Figure 9.15. Weighted sum of satisfied requests’ priorities normalized to the
performance of full—one—C4in iteration 1. Shown here is the performance
o each heuristic after each iteration of the variable time, variable accuracy
algorithm. The dataset had an oversubscription rate of 12.5, an average link
traversal count of 2.5, and an w value dof 2.
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Figure 9.16: Weighted sum of satisfied requests’ priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration o the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 25.0, an average link
traversal count of 2.5, and an w value of 2.
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Figure 9.17: Weighted sum of satisfied requests' priorities normalized to the
performance of full one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.2, an average link
traversal count of 2.5, and an w value of 4.
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Figure 9.18: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.4, an average link
traversal count of 2.5, and an w value of 4.
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Figure 9.19: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.8, an average link
traversal count o 2.5, and anw value of 4.
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Figure 9.20: Weighted sum of satisfied requests' priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 1.6, an average link
traversal count of 2.5, and an w value of 4.
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Figure 9.21: Weighted sum of satisfied requests’ priorities normalized to the
performance o full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 3.1, an average link
traversal count of 2.5, and an w valuedf 4.
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Figure 9.22: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 6.2, an average link
traversal count of 2.5, and an w value of 4.
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Figure 9.23: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate o 12.5, an average link
traversal count of 2.5, and an w value of 4.
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Figure 9.24: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration o the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 25.0, an average link

traversal count of 2.5, and an w value of 4.
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Figure 9.25: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown hereis the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.2, an average link

traversal count of 2.5, and anw value of 8.
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Figure 9.26. Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.4, an average link
traversal count of 2.5, and an w value of 8.
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Figure 9.27. Weighted sum of satisfied requests' priorities normalized to the
performance o full one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.8, an average link
traversal count of 2.5, and an w value of 8.
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Figure 9.28: Weighted sum of satisfied requests' priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 1.6, an average link
traversal count of 2.5, and an w value of 8.




normalized sum of weighted priorities of satisfied requests

1.08 [} | ¥
S - 2S) i
1.06 | i
S s oar - SRR {
A O~ i.. ................ -@
1.04 .
------------------- L
) i p— et
1.02 § e A e -
___________________ !-m*
! I
0.98 .
0.96 -
0.94T L 1 —1
1 2 3 4 5

iteration number

full_one_Ca4links ~—+—
full_one_C4size ---»---
ST

full_one_C4sizink ---

full_one_C1 -
full_one_C2 --
full_one_C3 ---
full_one_C4 ----

partial C4 -

full_all_C4 ---

rbecm

1]
]
i

Figure 9.29: Weighted sum of satisfied requests' priorities normalized to the
performance of full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 3.1, an average link

traversal count of 2.5, and anw vaue of 8.
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Figure 9.30: Weighted sum o satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 6.2, an average link

traversal count of 2.5, and an w value of 8.
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Figure 9.31: Weighted sum of satisfied requests’ priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
o each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 12.5, an average link
traversal count of 2.5, and anw value df 8.
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Figure 9.32: Weighted sum of satisfied requests priorities normalized to the
performance o full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The dataset had an oversubscription rate of 25.0, an average link
traversal count of 2.5, and an w value of 8.
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Figure 9.33: Weighted sum of satisfied requests’ priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration o the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 0.2, an average link
traversal count of 2.5, and an w value of 16.
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Figure 9.34: Weighted sum o satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration o the variable time, variable accuracy
algorithm. The data set had an oversubscription rate o 0.4, an average link
traversal count of 2.5, and an w value of 16.
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Figure 9.35: Weighted sum of satisfied requests’ priorities normalized to the
performance o full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The dataset had an oversubscription rate of 0.8, an average link
traversal count o 2.5, and an w value of 16.
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Figure 9.36: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 1.6, an average link
traversal count of 2.5, and an w value of 16.
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Figure 9.37: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
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Figure 9.38: Weighted sum of satisfied requests’ priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The data set had an oversubscription rate of 6.2, an average link
traversal count of 2.5, and an w value of 16.
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Figure 9.39: Weighted sum o satisfied requests priorities normalized to the
performance of full—one—C4in iteration 1. Shown here is the performance
of each heuristic after each iteration o the variable time, variable accuracy
algorithm. The data set had an oversubscription rate o 12.5, an average link
traversal count of 2.5, and an w value of 16.
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Figure 9.40: Weighted sum of satisfied requests priorities normalized to the
performance of full—one—C4 in iteration 1. Shown here is the performance
of each heuristic after each iteration of the variable time, variable accuracy
algorithm. The dataset had an oversubscription rate of 25.0, an average link
traversal count of 2.5, and an w value of 16.
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10. Summary and Conclusions

Data staging is an important data management issue for distributed computer sys-
tems. It addresses the issues of distributing and storing over numerous geographically
dispersed locations both repository dataand continually generated data through an over-
subscribed network, where not all data requests can be satisfied. When certain datawith
their corresponding priorities need to be collected together at a site with limited stor-
age capacities in a timely fashion, a heuristic must be devised to schedule the necessary
communication steps efficiently.

The performance o fourteen heuristics were shown, and compared to three upper
bounds and three lower bounds. Many different weighting schemes for the relative im-
portance of different priority levels of requested data items were considered. Each pro-
cedure and cost criterion was designed with particular advantages in mind. The results
presented showed that, for the system parameters considered (e.g., priority weighting,
oversubscription rate), the combination of cost C4 or C1 with the full path/one desti-
nation procedure consistently performed the best, when using the measure of weighted
sum of priorities satisfied.

Because each heuristic has advantages, the pair that performsbest may differ depend-
ing on the system parameters (i.e., the actual environment where the scheduler heuristic
will be deployed). Extensive work was done exploring the performance of the heuristics
when varying the congestion of the network, the number of virtual links used to satisfy
data items, and the priority weighting scheme. In summary, a class of heuristics and
cost criteriathat compare wdl to upper and lower bounds were developed and analyzed.
While in general several heuristics perform comparably, if a system is known to have a
particular operating environment (e.g., w value, oversubscription rate), there may be a
preference for one pair over another.

An additional novel approach using a variable time, variable accuracy method that



considered multiple dataitem versionswith different resource requirements was eval uated.
The use of multiple versions was shown to help some heuristics in al but the most
oversubscribed cases; in many cases, the improvement was over 10%.

Studies such as the one presented in this report are necessary to design schedulesfor
distributed communication systems. Numerous heuristics were shown to perform very
effectively. The exact heuristic to use in a given situation will depend on the system
operator environment.
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