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ABSTRACT 

Providing up-to-date input to users' applications is an important data management 

problem for a distributed computing environment, where each data storage location and 

intermediate node may have specific data available, storage limitations, and communi- 

cation links available. Sites in the network request data items and each request has an 

associated deadline and priority. In a military situation, the data staging problem in- 

volves positioning data for facilitating a faster access time when it is needed by programs 

that will aid in decision making. This work concentrates on solving a basic version of the 

data staging problem in which all parameter values for the communication system and 

the data request information represent the best known information collected so far and 

stay fixed throughout the scheduling process. The network is assumed to  be oversub- 

scribed and not all requests for data items can be satisfied. A mathematical model for 

the basic data staging problem is reviewed. Then, three multiple-source shortest-path 

algorithm based procedures for finding a near-optimal schedule of the communication 

steps for staging the data are described. Each procedure can be used with each of seven 

cost criteria developed. A subset of the 21 possible resulting heuristics that are expected 

to  perform well (based on earlier experiments) are evaluated in simulation studies con- 

sidering different priority weightings schemes, different average number of links used to 

satisfy each data request, and different network loadings. Finally, an approach consider- 

ing data items with "more desirable" and "less desirable" available versions is evaluated 

using a variable time, variable accuracy algorithm, and simulation results are present- 

ed. The proposed heuristics are shown to  perform well with respect to upper and lower 

bounds. Furthermore, the heuristics using a complex cost criterion allow more highest 

priority messages to  be received than a simple-cost-based heuristic that schedules all 

highest priority messages first. 
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1. Introduction 

The DARPA Battlefield Awareness and Data Dissemination (BADD) program [Roc961 

includes designing an information system for forwarding (staging) data to  proxy servers 

prior t o  their usage as inputs to  a local application in a distributed computing environ- 

ment, using satellite and other communication links. The network combines terrestrial 

cable and fiber with commercial VSAT (very small aperture terminal) internet and com- 

mercial broadcast. This provides a unique basis for information management. It will 

allow web-based information access and linkage as well as server-to-server information 

linkage. The focus is on providing the ability to  operate in a distributed server-server- 

client environment t o  optimize information currency for many critical classes of informa- 

tion. 

Data staging is an important data management problem that needs to  be addressed 

by the BADD program. A simplified informal description of an example of a data staging 

problem in a military application is as follows. A warfighter is in a remote location with 

a portable computer and needs data as input for a program that plans troop movements. 

The data can include detailed terrain maps, enemy locations, troop movements, and 

current weather predictions. The data will be available from Washington D.C., foreign 

military bases, and other data storage locations. One such environment is illustrated 

in Figure 1.1. Each location may have specific data available, storage limitations, and 

communication links. Also, each data request is associated with a specific deadline and 

priority. Depending on the particular environment, there may be hundreds of warfighters, 

all making multiple requests. It is assumed that not all requests can be satisfied by their 

deadline. In a military situation, the data staging problem involves positioning data for 

facilitating a faster access time when it is needed by programs that  will aid in decision 

making. 

Positioning the data before it is needed can be complicated by: the dynamic nature of 
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Figure 1.1: An illustration of a data staging environment. Rectangles rep- 
resent machines, directed lines represent communication links, filled circles 
represent data items, and open circles represent data requests. 

data requests and network congestion; the limited storage space at certain sites; the lim- 

ited bandwidth of links; the changing availability of links and data; the time constraints 

of the needed data; the priority of the needed data; and the determination of where t o  

stage the data [Sma96]. Also, the associated garbage collection problem (i-e., determining 

which data will be deleted or reverse deployed to  rear-sites from the forward-deployed 

units) arises when existing storage limitations become critical [R,oc96, Sma961. The stor- 

age situation becomes even more difficult when copies of data items are allowed to reside 

on different machines in the network so that there are more available sources from which 

the requesting applications can obtain certain data (e.g., [TaS97, TaS981). The multiple 

copies provide an increased level of fault tolerance, in cases of links or storage locations 

going off-line, and allow the scheduler to select from among different sources to  satisfy a 

data request. 

The simplified data staging problem addressed here requires a schedule for trans- 

mitting data between pairs of nodes in the corresponding communication system for 

satisfying as many of the data requests as possible. Each node in the system can be: 

(a) a source machine of initial data items; (b) an intermediate machine for storing data  

temporarily; and/or (c) a final destination machine that requests a specific data item. 



It is also assumed in this simplified model of the data staging problem that all param- 

eter values for the communication system and the data request information (e.g., network 

configuration and requesting machines) represent the best known information collected 

so far and stay fixed throughout the scheduling process. It is assumed that not all of the 

requests can be satisfied due to  storage capacity and communication constraints. The 

model is designed to create a schedule for movement of data from the source of the data 

to a "staged" location for the data. It is assumed that a user's application can easily 

retrieve the data from this location. 

Three multiple-source shortest-path algorithm based procedures for finding a near- 

optimal schedule of the communication steps for staging the data are described [ThT99]. 

Each procedure can be used with each of seven cost criteria developed. A subset of 

fourteen of the possible 21 resulting heuristics that are expected to perform well (based on 

experiments in [ThT99]) are examined in simulation studies considering different priority 

weighting schemes, different average number of links used to satisfy each data request, 

and different network loadings. The rationale for considering each of these procedures and 

costs is provided. he proposed heuristics are shown to  perform well with respect to upper 

and lower bounds. Furthermore, the heuristics using a complex cost criterion are shown 

to allow more highest priority messages to be received than a simple-cost-based heuristic 

that schedules all highest priority messages first. Finally, an approach considering data 

items with "more desirable" and "less desirable7' available versions is evaluated using a 

variable time, variable accuracy algorithm, and simulation results are presented. This 

research serves as a necessary step toward solving the more realistic and complicated 

version of the data staging problem involving fault tolerance, dynamic changes to the 

network configuration, ad hoc data requests, sensor-triggered data transfers, etc. 

The material in this report extends the earlier work presented in [ThT99] by in t rc~  

ducing three new cost criteria and two new bounds. This work also varies additional 

simulation parameters, including eight network loadings, three average numbers of links 

used to  get from a source machine to  a destination machine, and five priority weighting 

schemes. This report also introduces a variable time, variable accuracy approach for 

using data items with "more desirable" and "less desirable" versions. 



Section 2 provides an overview of work that is related to the data staging problem. In 

Section 3, a mathematical model for a basic data staging problem is reviewed. Section 4 

provides a detailed description of Dijkstra7s algorithm used to find paths of links for trans- 

ferring data items within the presented network model. Section 5 presents seven cost cri- 

teria for use in conjunction with different resource allocation procedures. Three multiple- 

source shortest-path algorithm based procedures for finding a near-optimal schedule of 

the communication steps for data staging are described in Section 6. These heuristics 

adopt the simplified view of the data staging problem described by the mathematical 

model. Three upper bounds and three lower bounds used to evaluate the performance 

of these heuristics are presented in Section 7. The set of simulation studies given in Sec- 

tion 8 were created after studying the results of [ThT99]. These new simulation studies 

examine the effects of (1) having six priority levels with five different weighting schemes, 

(2) varying the average number of links required for a data item to reach a destination 

from its source, and (3) varying the total number of requests that must be scheduled in 

a given network. In Section 9, an approach considering data items with "more desirable" 

and "less desirable" available versions is evaluated using a variable time, variable accuracy 

algorithm, and simulation results are presented. 

Material in Section 2, parts of Sections 3, 4, 5, 6, and 7 are based on [ThT99]. 

This material is needed background for the results presented in Sections 8 and 9, and is 

included here so that this report is self-contained. 

A glossary at  the end of this report summarizes the terminology used. The source 

code developed for all of the simulation studies presented here is contained in [Bec99]. 



2. Related Work* 

To the best of the author's knowledge, there is currently no other work presented in 

the open literature that addresses this version of data staging problem, designs a math- 

ematical model to  quantify it, and presents a heuristic for solving it. A problem that is, 

at a high level, remotely similar t o  data staging is the facility location problem in man- 

agement science and operations research [HuM89]. Under the context of the construction 

of several new production facilities, a manufacturing firm needs to  arrange the locations 

of the facilities and plants effectively, such that the total cost of transporting individual 

components from the inventory facilities to  the manufacturing plants for assembly is min- 

imized. It is required that the firm makes several interrelated decisions: how large and 

where should the plants be, what production method should be used, and where should 

the facilities be located. If an analogy is made between: (1) the plants and the desti- 

nation nodes that make the data requests; (2) the individual manufacturing components 

and the requested data elements to  be transferred; and (3) the production facilities and 

the source locations of requested data, then at a high level the facility location problem 

has features similar t o  those of the data staging problem (e.g., the use of a graph-based 

method to  reduce the facility location problem to  a shortest path or minimum spanning 

tree problem). 

However, when examining the relationship between the facility location problem and 

the data staging problem carefully, there are significant differences. First, each compo- 

nent that a plant requests is usually not associated with a prioritizing scheme, while in 

the data staging problem each data request has an individual priority. Also, each compo- 

nent requested from a plant commonly does not have a corresponding individual deadline 

related factor, while in the data  staging problem each data request has a deadline. For 

the data staging problem, the individual priority and individual deadline associated with 

'This section is from [ThT99], and is included here so that this report is self-contained. 



each data request are the two most important parameters for formulating the optimiza- 

tion criterion. For example, the minimization of the sum of the weighted priorities of 

satisfiable data requests (based on their individual deadlines) is used as the optimiza- 

tion criterion in the mathematical model of the basic data staging problem presented 

in Section 3. But for the facility location problem, in general, researchers adopt opti- 

mization criteria that are related to  the physical distances between plants and facilities 

in either a continuous or discrete domain without any prioritizing schemes or individual 

deadline related factors (e.g., [ChD81, CoN80, JoL95, MoC84, Shi771). Furthermore, in 

the facility location problem all constraints must be satisfied for the production to occur 

(e.g., all parts of a car must arrive). In this research, it is known that not all requests 

can be satisfied (e.g., some low priority data requests may be dropped). Thus, although 

lessons can be drawn from the design of algorithms for different versions of the facility 

location problem, there are significant differences between the facility location and the 

da ta  staging problems in terms of their formulations and potential solutions. 

Data management problems similar to  data staging for the BADD program are s- 

tudied for other communication systems. With the increasing popularity of the World 

Wide Web (WWW), the National Science Foundation (NSF) recently projected that new 

techniques for organizing cache memories and other buffering schemes are necessary to 

alleviate memory and network latency and to increase effective bandwidth [Bes97]. More 

advanced approaches of directory services, data replication, application-level naming, 

and multicasting are being studied to improve the speed and robustness of the WWW 

[BaB97]. Evidence has been shown that several file caches could reduce file transfer traf- 

fic, and hence the volume of traffic on the internet backbone [DaH93]. In addition, ways 

to  increase distributed system performance with intelligent data  placement have been 

studied [AcZ93]. The study of data staging can potentially draw lessons from and gen- 

erate positive input for the active research in these related, but not directly comparable, 

areas. 

Work has been done to  provide extensions to wormhole routing protocols that handle 

real-time messages. An off-line approach that schedules usage of the virtual channels 

by allowing higher priority messages to preempt lower priority messages is presented in 



[Ba098]. Their research shows that they improve wormhole routing by employing such a 

protocol. The goal of the work in [Ba098] is similar to the goal of the work presented here 

in that both give preference to messages that have higher priority. However, in [Ba098] 

the focus is on wormhole routing protocols, while the work presented here (1) is for a 

general communication system; (2) attempts to find minimum paths over multiple links; 

and (3) uses a cost criterion that also considers how close a message is to its deadline. 

There has been research done in the area of mapping tasks onto a suite of distributed 

heterogeneous machines (e-g., [BrS98, BrS99, HeK99, MaA99, WaS971). This task map- 

ping research focuses on deciding what machine should execute each task, rather than 

assuming the task execution locations are known (as in the data staging situation). Thus, 

the basic problem being addressed by these task mapping studies is different than that 

of data staging. 

Other research exploring heuristics for use in the BADD environment has been per- 

formed [LeB97]. This work examines methods for scheduling efficiently the ATM-like 

channels of a possible BADD-like environment. It shows that "greedy" heuristics are 

effective tools for use in that BADD-like environment and uses a network simulator to 

corroborate this statement; however, those heuristics do not consider several parameters 

considered here, such as deadlines and data availability times. The work here differs from 

[LeB97] in that: (1) here a detailed mathematical model is developed, and (2) the collec- 

tion of heuristics and cost criteria studied here are based on a different set of assumptions 

about system structure and data request characterizations. 





3. Mathematical Data Staging Model* 

3.1 Model Definition 

Consider a network topology graph Grit composed of a set of vertices that represent the 

set of machines M in the network and a set of communication links C that represent the 

directed edges. There are rn machines in M,  identified as {M[O], M[:l.], . . . , M[m-l]), and 

each can be a source, destination, and intermediate location for data items in the network. 

Source machines for data items are the machines where data items are initially located 

within the network; these data items may eventually be transferred by the network to  

destination machines, possibly stored a t  intermediate machines along the way. Each 

machine M[i] (where 0 5 i < m) also has an associated constant unused storage capacity 

during the time interval [tj, tj+l)7 Cap[i] (tj). Note that the times t j  and tj+l may not 

differ by exactly one time unit. 

Communication links in this system are represented as one or more virtual links. A 

virtual link corresponds to  a period of constant, continuous, available bandwidth from 

one machine to  one other machine. Bidirectional communication links are therefore 

represented as two virtual l inks-one for each direction. A communication link that is 

only available during certain time intervals is represented by a separate virtual link for 

each period of availability. Nl[i, j] is the number of virtual links from machine M[i] to  

M[j]  (where i # j and 0 5 i, j < m). The kth virtual link from machine M[i] to M[j] 

is identified as Lri, j][k] (where 0 5 k < Nl[i, j]). The virtual link L[i, j][k] also has an 

associated link starting time Lst[i, j][k], denoting the time when it becomes available, as 

well as a link ending time Let[i, j][k], which specifies the time when the link is no longer 

available. 

'This model is based on the one in [ThT99], which builds on [TaT98]. It has been modified to include 
multiple versions of a given data item. This material is needed background for the results presented in 
Sections 8 and 9, and is included here so that this report is self-contained. 



Data items are blocks of information that can be transmitted from one machine to  

another. The set of data items with unique names or identifiers that are available on the 

machines in M is called a. Names or identifiers assigned t o  data items must be different 

if the contents of the data items are different in any way, including details such as differing 

timestamps on weather maps of the same region. The number of distinctive data items 

in A is 22, and individual unique data items are identified as {6[0], 6[1], . . . ,6[n - I]). For 

a data item - 6[1] (where 0 I: 1 < n), the size of the data item is represented as 16[1]1. The - 
time duration required t o  transfer data item 6[1] from machine M[i] to  machine M[j] 

(where i # j and 0 5 i, j < m) via the virtual link L[i, jl[k] (where 0 5 k < Nl[i, j]) 

during the time interval [Lst[i, j][k], Let[i, j] [k]] is D[i, j][k](16[1] 1 ) .  Machine M[i] may be 

a source of 6[1], or an intermediate storage location or destination that already holds a 

copy of 6[1]. Machine M[j]  may be an intermediate storage location or a destination. 

Let N6[1] (where 0 5 1 < n) represent the number of source machines holding a copy 

of 6[1], and M[Smrce[l, j]] represent the j t h  source machine for data item 6[1] (where 

0 5 j < N6[1] and 0 5 Smrce[l, j] < m). The starting time 6st[l, j] refers to  the time 

data item 6[1] becomes available a t  its j th  source machine. The removal time 6rt[l, i] 

(where 0 i < m) refers to  the time data item 6[1] can be removed from machine M[i], 

if a copy of 6[1] is being stored at M[i]. This allows the value of Cap[i](brt[l, i]) to  be 

increased by Ib[l] I. Intermediate machines, for example, could set 6rt[l, i] to  be some 

small time period - y after the last deadline at  any machine for data item 6[1]. This would 

allow the storage space t o  be reclaimed at  intermediate machines after the usefulness of 

the data item has expired. The scheduling heuristics do not remove a data item from any 

of its sources or destinations because this is considered outside the scope of responsibility 

of the scheduler. 

Consider now a data item such as an image showing a map of a planned battle area. 

I t  may be possible to  have available a higher quality version of the image that shows a 

higher level of detail, as well as a lower quality version showing less detail. A person 

requesting this data item would prefer to  receive the higher quality image, but it may 

be that there are not enough resources (e.g., network bandwidth) available t o  fulfill this 

data request. In this event, however, there may be enough resources available to  send 



the lower quality image, which would be better than sending nothing at  all. 

The set - Rq (where Rq E A) contains unique data items requested by destination 

machines in M. The number of unique data items in Rq is 2p; - the higher quality data 

items are identified as {Rq[O], Rq[l], . . . , Rq[p - I]) ,  and the lower quality data items 

are identified as {Rq[p], Rq[p + 11,. . . , Rq[2p - 11). Here, each requested higher quality 

data item Rq[i] (where 0 < i < p) has a corresponding lower quality data item Rq[i + p] 

that may be sent in place of Rq[i] if system resources become limited. Note that for 

every i there must exist exactly one j and exactly one k such that Rq[i] = S[j] and 

Rq[i + = S[k]. These data items S[j] and S[k] are assumed for simplicity to  be present 

a t  the same source machines, and to  have the same associated starting times and removal 

times. This model also assumes for simplicity that IRq[i + p:l) = f IRq[i] I. 

The number of destination machines that request Rq[i] (where 0 < i < p) is denoted 

with Nrq[i]. If 0 5 k < Nrq[i], then M[Request[i, k]] refers to the kth machine that 

requested Rq[i] (where 0 5 Request[i, k] < m). Each of these machines also implicitly 

requests Rq[i + p] in the event that Rq[i] cannot be sent, so that Nrq[i + P] = Nrq[i], 

and Request[i + p, k] = Request[i, k] for all values of k. The finishing time R f t[i, k] 

(and equivalent Rf t [ i  + p, k]) refers t o  a deadline time, after which data item Rq[i] 

(and Rq[i + p]) is no longer useful t o  machine M[Request[i, k]]. The requesting machine 

M [Request [i, k]] also associates the data item Rq [i] (and corresponding Rq [i + p]) with a 

numbered priority class Priority[i, k] (equal to  Priority[i + p, k]). The highest, or most 

important priority class is P, and the lowest, or least important priority class is 0, so 

that 0 5 Priority[i, k] < P .  

Define a schedule as a series of communication steps, among the machines of M using 

the communication links in L, that transfer some or all of the data items in the set 

Rq from their respective source machines t o  some or all of their respective destination 

machines, possibly being stored a t  intermediate machines along the way. Suppose that 

there are e possible distinct schedules, enumerated {So, S1,. . . , S,-l). The kth (where 

0 5 k < Nrq[j]) request for a data item Rq[j] (where 0 5 j < 2p) is considered satisfiable 

with respect to a specific schedule - Sh (where 0 5 h < a) if and only if the data item 

Rq[j] is available at machine M[Request[j, k]] at or before the deadline time Rft[j,  k]. 



The set Srq[Sh] then denotes the set of two-tuples (j, k) such that the kth request for 

the data item Rq[j] is satisfiable with respect to  the schedule Sh. 

There must be a way to  represent the relative importance of a priority class a: (where 

0 5 a 5 P )  compared to another priority class P (where 0 5 P < P and a: # P). The 

relative weight of any priority class a: is denoted by W[a]. This means that if priority 

class a: is ten times as important as priority class P, the value of W[a] will be ten times 

the value of W [PI. 
Let Worth[j, k] (where 0 5 j < 2p and 0 5 k < Nrq[j]) denote a percentage of value 

to a user of data item Rq[j] sent to satisfy a request at machine M[Request[j, k]]. For 

simplicity, this model assumes that if Rq[i] for 0 5 i < p is sent to  M[Request[i, k]] by 

its deadline, then Worth[i, k] = 1 (meaning 100% for the preferred data version), and 

Worth[i+p, k] = 0 (meaning no additional worth for the second data version). If Rq[i] is 

not sent to M[Request[i, k]] by its deadline, and Rq[i +p] is sent to  M[Request[i + p, k]] 

by its deadline, then Worth[i + p, k] = 0.25 (meaning 25% for the lower quality version), 

and Worth[& k] = 0. Now, the effect of the schedule Sh (where 0 5 h < a )  can be defined 

W[Priority [j, k]] * Worth[j, k] 
Cj,k)ESrq[Shl 

(where 0 5 j < 2p and 0 5 k < Nrq[j]). The global optimization criterion, and hence, 

the objective of all of the heuristics presented later, is to  find the schedule with the 

minimum effect, defined as 

min E[Sh]. 
05 h< u 

Another way to  view this minimization is to  think of it as trying to  find the schedule of 

data transfers that produces the maximum sum of satisfied requests' priority weights. 

3.2 Heuristic Solution Approach 

The heuristic approach used in this report to create the schedule Sh with minimum 

effect E[Sh] utilizes Dijkstra's shortest path algorithm. This algorithm, presented in 

Section 4, calculates arrival times for data items and establishes paths of virtual links 

to  get data items from source machines to destination machines. The paths calculated 

by this algorithm give the earliest arrival time for a given data item, provided that 



there are no other da ta  items competing for resources in the network. After Dijkstra's 

algorithm has been run for each requested data item (i.e., all data items in Rq), a single 

da ta  item and one or more destination machines are selected through the use of a cost 

criterion presented in Section 5. This data item choice reflects a combination of its 

contribution t o  the effect of the schedule, and the amount of time between its arrival at a 

destination and its deadline a t  that  destination. Network resources and machine storage 

are then allocated according t o  one of the procedures presented in Section 6, updating link 

availability times and available machine storage. This updating of network information 

will cause the arrival times and virtual link paths for some other data items t o  become 

invalid, so the heuristic process (using a cost and an allocation procedure) is repeated 

again (beginning with Dijkstra's algorithm) using the modified network information. This 

continues until there are no more satisfiable data items in the network, thus producing 

the communication schedule. Results from simulation studies using this approach, which 

only considers one version of each data item (i.e., considers only Rq[i] where 0 5 i < p, 

not Rq[j] where p 5 j < 2p), are found in [ThT99] and Section 8. -4 modified approach 

considering both versions of a data item is contained in Section 9. 





4. Dijkstra's Shortest Path Algorithm* 

The heuristics presented here utilize Dijkstra's algorithm [CoLSO] for finding the short- 

est path from one or more source nodes to  all other nodes in a directed graph. The 

version used calculates the earliest possible available time for a data item Rq[i] (where 

0 < i < 2p) a t  each machine in M,  given a subset of machines in M that already holds 

a copy of Rq[i]. 

Define the available time AT[i, j] (where 0 5 i < 2p, 0 5 j < m) as the earliest 

possible time found so far when data item Rq[i] could be present and available at machine 

M[j].  Define also the value of the predecessor ~ [ i ,  j] to  be the two-tuple (s, k) (where 

-1 5 s < m, -1 5 k < Nl[s, j]) identifying the machine M[s] as the machine that 

sends data item Rq[i] to  machine M[j]  via virtual link L[s, j:l[k]. If the value of ~ [ i ,  j] 

is (-1, -I) ,  this means that no machine sends data item Rq[i] to machine M[j]  via any 

virtual link. This may happen if machine M[j]  is a source machine for data item Rq[i], 

or it may happen if it is not possible for machine M[j] to receive a copy of data item 

Rq[i] (possibly due t o  the unavailability of network resources). 

The pseudocode for Dijkstra's algorithm is shown in Figure 4.1. This algorithm is 

invoked once for each data item in Rq to  establish an available time and predecessor 

on each machine for each data item. The pseudocode applies the algorithm for Rq[im], 

which corresponds to  b[i6]. 

As an example, consider the machines and virtual links shown in Figure 4.2. In this 

figure, Dijkstra's algorithm will be applied for data item Rq[O], which in A corresponds to  

b[O] (i.e., iRp = 0 and i6 = 0 for this example). Machine M[O] is the only source machine 

for this data item (Nb[O] = 1 and Source[O, 0] = O), and the data item becomes present 

at M[O] at time 6st[0,0] = 0. Step 1 of the algorithm finds the index - id of data item Rq[O] 

in the A set (i6 = 0) and can be implemented as a simple table lookup operation. Then, 

'This section is based on [ThT99]. This material is needed background for the results presented in 
Sections 8 and 9, and is included here so that this report is self-contained. 



D I J K S T R A ( M ,  Sst ,  N S ,  im, N z ,  L s t ,  Le t ,  D l  AT7 T )  

1. assign id such that 6[ia] = Rq[iRq] 

2. for all j E (0, 1, . . . , m - 1 )  

3. r[iRq7 j ]  t (-1,  - 1) 

4. A T [ i R q , j ] t m  

5. for all j E (0, 1, . . . , NS[i6]  - 1 )  

6. AT [iRq, Source[i6,  j ] ]  t Sst [id, j ]  
7. MU t M 

8. while MU # {) 
9. assign jmin such that AT[iRq, jmin] = min (A&&, j ] ,  M [ j ]  E M U )  

lo. MU t MU - M[jmin] 
11. for all j such that M [ j ]  E MU 

12. for all k E ( 0 ,  1,  ..., Nl[jmin, j]  - 1 )  

13. if A T [ ~ R ~ ,  &in] < Lst[jminl j ]  [ k ]  
14. if Lst[jmin, j l[k] + D[jmin, j:l [ k ] ( l&[ i~p]  1 )  5 Let[jmin, j ]  [ k ]  
15. if Lst[jmin, j ]  [k]  + D[jmin7 j]  [k] (l&[iml 1 )  < AT [im7 j ]  
16. if min ( C a p [ j ]  ( t ) ,  Lst[jmin, j]  [ k ]  5 t 5 Srt[ia, j ] )  2 I&[im] 1 
17. A T [ ~ R ~ ,  j ]  + L~t l jm in ,  jjl [kl + D[jmin, jIl [kl ( lR~[ i~q l  I )  
18. ~ [ i m ,  j ]  + (jmin , k )  

19. else if AT [ i ~ ~ ,  jminl + D[jmin , jl [k l  ( lRq[ i~ql  I )  < Let[jmin , jl [kl 

20. if A ~ [ i ~ ~ , j m i n ]  + D[jmin7 j l [ k l ( lR~[ i~q10  < A ~ [ i ~ q , j ]  
21. if min(Cap[j](t),A~[i~,jmin] I t L br t[ id , j ] )  2 l & [ i ~ p l l  
22. A T [ ~ R ~ , ~ ]  + A ~ [ ~ R q , j m i n ]  + D[jminljl[kl~lR~[i~qIII) 
23. r [ i m 7 j ]  + (jmin7 k )  

24. return(r, AT) 

Figure 4.1: Dijkstra's algorithm for finding the earliest available times and 
links for getting data item Rq[i&] from source machines to  destination ma- 
chines. 



A T = m  (a) AT=m 

A,=O 

A T = 4  (4 A T = $  A,=4 (d) A T = 7  

Figure 4.2: An example of Dijkstra's algorithm being applied to  a simple 
network. 

the predecessor (T )  and available time (AT) arrays are initialized for data item Rq[O] on 

each machine in steps 2 through 4. The initial values for AT indicate that no available 

time has been found so far for each machine, and the initial values for n indicate that 

no machine is receiving data item Rq[(l] from any other machine. Steps 5 and 6 set the 

available time (AT) array elements for machines that are sources for data item Rq[O]. 

This will have the effect of setting ATIO, 0] = 0, resulting in the network shown in Figure 

4.2(a). The set MU represents the set of machines for which the earliest possible available 

time for data item Rq[iR,] is currently unknown. Step 7 initializes this set t o  contain 

all machines in M ;  machines that are members of MU are denoted in Figure 4.2 with a 

diagonal line fill in the machine node. 



Steps 8 through 23 of Figure 4.1 constitute the main loop that performs the machine 

selection and relaxation phases of Dijkstra7s algorithm. It continues until all machines 

have been selected and removed from the set MU, which implies that the earliest possible 

available times a t  all machines are known. The machine selected from MU in step 9 is 

the one that has the earliest available time for data item Rq[O], which in this case is the 

source machine M[O] (meaning jmi, is set t o  0). This machine is then removed from MU 

in step 10 before its outgoing links are relaxed beginning in step 11. This relaxation of 

links in steps 11 through 23 consists of updating the available times at  machines that 

can be improved by using those links. 

Steps 11 and 12 iterate through all virtual links that originate from the selected 

machine and connect t o  all other machines remaining in MU. For simplicity, Figure 4.2 

shows only virtual links that will enable the relaxation of an available time. Suppose link 

A represents virtual link L[07 21[4] with a start time of Lst[O, 2][4] = 2, a finishing time of 

Let[O, 21[4] = 8, and where the data transfer duration D[O, 2][4](IRq[O] I) = 5. Similarly, 

suppose link B represents virtual link L[O, 11[3] with associated values Lst[07 11 [3] = 3, 

Let[O, 1:1[3] = 8, and D[O, 11[3]1:IRq[0]1) = 1. For both of these links in step 13, the link 

starting time (Lst) is after the available time (AT) a t  machine M[O], meaning that the 

earliest that the data item can begin to be transferred is a t  the link starting time. Both 

links are available for long enough in step 14 to  transfer the entire contents of data item 

Rq[OI. 

The new available times in step 15 that would be generated by using these links are 

less than the current available times of oo at  machines M[1] and M[2]. Step 16 then 

checks t o  see if there is enough storage space at the receiving machines to  store the data 

item until the time it will be deleted. For the purpose of simplifying this example, it is 

assumed that enough storage space is available t o  store Rq[O] indefinitely at  all machines 

in the network. Steps 17 and 18 then perform the actual relaxation-using L[O, 21 [4] (link 

A in Figure 4.2(b)) relaxes ATIO, 21 from oo to  7 and sets r[O, 21 = (0,4), while using 

L[O, 1][3] (link B in Figure 4.2(b)) relaxes ATIO, 11 from oo t o  4 and sets r[O, I] = (0,3). 

These actions for M[1] and M[2] occur during separate iterations of the loop beginning 

at step 11. Steps 19 through 23 perform the same functions as steps 14 through 18, 



except that they are called for the case where the available time a t  the machine selected 

from Mu is after the link starting time for a given link. 

The next machine selected in step 9  as M[jmin] is M [ 1 ] .  In Figure 4.2(c) ,  it is assumed 

that ( 1 )  using link C ( L [ 1 , 2 ] [ 4 ] )  allows ATIO, 21 to be relaxed from 7  to 6 and changes the 

predecessor r[O, 21 to  ( 1 , 4 ) ,  and ( 2 )  link E (L [1 ,  31 [2 ] )  allows AT[O, 31 to  be relaxed from 

ca to 8,  setting r[O, 31 = ( 1 , 2 ) .  The next machine selected in step 9  as M[jmin] is M [ 2 ] .  

In Figure 4.2(d) ,  it is assumed that link D ( L [ 2 , 3 ] [ 1 ] )  can then be used to relax ATIO, 31 

from 8  to  7 ,  and change r[O, 31 to ( 2 , l ) .  Finally, machine M[3]  is selected in step 9 ,  but 

there are no machines remaining in MU, so the algorithm returns with all of the earliest 

possible available times in AT, and predecessor machines in r for each machine that can 

receive Rq[O]. 





5. Data Item Selection Cost Criteria* 

5.1 Introduction 

Network resources must be allocated to  data requests in some order; this order in- 

tuitively should include "more important" requests and requests that are "close" t o  their 

deadlines before "less important" requests and requests that are "not close7' t o  their dead- 

lines. Some quantitative cost must therefore be applied so that an algorithm can evaluate 

the relative merit of any given request compared t o  any other request. Seven different cost 

criteria are detailed below; each attempts to  take into consideration both the importance 

of a data request, and how close the data request is to  its deadline. 

Suppose M[r] (where 0 5 r < m) is the next machine t o  receive data item Rq[i] 

(where 0 5 i < 2p) on a path from M[s] (where (s, 1 )  = r [ i , r ] ) ,  which can be any 

machine already holding a copy of Rq[i], to  one or more requesting destination machines. 

That  is, machine M[s] holds a copy of data item Rq[i], and M[r] must be the next 

machine to  receive Rq[i] so that M[Request[i, k]] (for one or more values of k, where 

0 5 k < Nrq[i]) can ultimately receive Rq[i]. Let the set of values of k that satisfy this 

condition (i.e., destination machines that request Rq[i] through M[r]) be called Drq[i, r]. 

Assume that Rq[i] is the next data item to be allocated network resources. Let the 

value Sat[i, k] (where 0 <_ i < 2p and 0 5 k < Nrqlli]) be 1 if Request[& k] would be 

satisfiable, and 0 if it would not be satisfiable. For the simulations of [ThT99] and Section 

8, Sat[i, k] is 0 for values of i such that p 5 i < 2p, thus ignoring the less desirable data 

item versions. Now, the effective priority E fp[i, k] of data item Rq[i] at the kth requesting 

location can be defined as Sat  [i, k] * W[Priority[i, k]] * Worth[i, k]. An urgency term, 

indicating how close a data item's available time is to  its deadline time (in seconds) at a 

destination is defined as Urgency[i, k] = -Sat[i, k] * (R f t[i, k] - AT[i, Request[i, k]] + 1). 

'Cost criteria C1, C2, C3, and C4 were defined in [ThT99]. These criteria are needed background for 
the results presented in Sections 8 and 9, and are included here so that this report is self-contained. 



A smaller urgency here indicates that it is less urgent to  get RQ[i] to M[Request[i, k]]. 

The "+I" in the urgency term is so that the urgency never becomes a small number close 

to  zero. 

The next value that must be defined before detailing the cost criteria is the number 

of virtual links used t o  get from a machine M[s] (where (s, I) = ~ [ i ,  r] and M[r] is the 

next intermediate machine described above) holding a copy of data item Rq[i] (where 

0 5 i < 2p) to destination machine M[Request[i, k]] (where 0 5 k < Nrq[i]). Let this 

value be called Nlinks[i, k], and note that it reflects the number of links used in the path 

(generated by the most recent run of Dijkstra7s algorithm) from a machine holding the 

data item to  a machine requesting the data item. 

All of the following cost functions take into account the priority and urgency of a data 

item. Six of the costs allow the weight assigned to the priority term to  be varied relative 

t o  the weight assigned to  the urgency term. These weighting terms are - WE for the weight 

of the effective priority term, and & for the weight of the urgency term. The relative 

weight of these two terms compared t o  each other (WE/WU) is called the E-U ratio. 

For all cost criteria, a smaller value indicates a more desirable use of communication 

resources; therefore, resource allocation is performed by the procedures in Section 6 for 

the data item and destination machine(s) with minimum cost. 

5.2 Cost C1 

The first cost, initially described in [TaT98], is referred to as a. It gives an individual 

value based on each data item at  each requesting destination and does not take into 

account other destinations requesting the same data item. I t  quantifies the cost for 

sending data  item Rq[i] (where 0 5 i < 2p) to  M[r]  (where 0 5 r < rn) from M[s] via 

link L[s, r] [k] (where (s, k) = T [i, r]), in order t o  ultimately try to  satisfy the j th  (where 

0 5 j < Nrq[i]) requesting destination machine: 

This cost is calculated for all values of i and corresponding values of j ,  and for values 

of s,  r ,  and k corresponding to  the shortest paths found to each satisfiable destination. 

The first term in the equation attempts to give preference to  a data  request with a 



priority higher than the other requests. Furthermore, t o  satisfy as many data requests 

as possible, intuitively it is necessary to  transfer a specific data item to  the requesting 

locations whose deadlines are sooner. This intuition is captured by the inclusion of 

the urgency term. Thus, with the collective consideration of the priority of satisfiable 

data requests and the urgency of those data requests in this local optimization step, a 

near-optimal communication schedule that reasonably achieves the global optimization 

criterion should be generated. 

5.3 Cost C2 

This cost criterion collectively considers all requesting destination machines that 

would benefit from sending a data item to  a common intermediate storage machine. 

It quantifies the cost for sending data item Rq[i] (where 0 5 i < 2p) to  M[r] (where 

0 5 r < m) from M[s] via link L[s,r][k] (where (s, k) = n[i, r]),  in order to  ultimately 

try to  satisfy the j th  (where j E Drq[i, r]) requesting destination machine(s): 

C2[i:l[s7 r:l[k] = -WE * x Efp [ i , j ]  max Urgenq[ i , j ]  
j€  Drq[i,rl 

j€Drq[i,r] 

Rather than summing all of the urgency terms for the destinations, the most urgent 

satisfiable request is added in C2. This method of capturing the urgency is used as a 

heuristic t o  maximize the sum of the weighted priorities of satisfied requests because if 

the most urgent request for an item passing through M[r] is satisfied, it is more likely 

that all requests for this data item passing through M[r]  will be satisfied. 

5.4 Cost C 3  

The cost criterion also collectively considers all requesting destination machines 

that would benefit from sending a data item to  a common intermediate storage machine. 

It quantifies the cost for sending data item Rq[i] (where 0 5 i < 2p) to  M[r] (where 

0 5 r < m) from M[s] via link L[s, r][k] (where (s, k) = n[i, r]), in order to  ultimately 

try to  satisfy the j t h  (where j E Drq[i, r]) requesting destination machine(s): 

This criterion is a sum of the weighted priorities of satisfiable requests for data item &[i] 

on a path through machine M[r] normalized by the urgency of each request. Note that 



this cost does not use WE or WU. This is because the effective priority is divided by 

the urgency and so WE divided by WU acts as a scaling factor that would not affect the 

relative cost of the requests. That is, for two data items &[ill and Rq[i2] competing for 
C3i l  s r  k the use of L[s, rJ[k], the relative value of C 3 ~ i , ~ ~ s : ~ [ ~  will be unchanged by including any 

given WE to weight the Efp[i,  j] factors and any given WU to weight the Urgency[i, j] 

factors. 

5.5 Cost C4 

The cost for transferring data item Rq[i] (where 0 < i < 2p) to M[r] (where 

0 5 r < m) from M[s] via link L[s, r][k] (where (s, k) = ~ [ i ,  r]), in order to ultimately 

try to  satisfy the j th  (where j E Drq[i, r] ) requesting destination machine(s): 

This cost sums the weighted priorities of all satisfiable requests for data item Rq[i] on a 

path through machine M [r] and combines that with the sum of the urgency for those same 

satisfiable requests. Comparing C2  and C4, it should be noted that the urgency term 

for each destination whose shortest path shares an intermediate node M[r] is summed in 

C4, whereas C2 simply takes the maximum of the urgency terms over this same set of 

destinations. The benefit of C 4  is demonstrated by the following example. The first data 

item, Rq[il], is requested by four machines that all have identical priorities, and have an 

AT that is very close to their deadlines. The second data item, Rq[i2], is also requested 

by four destinations that have the same identical priorities, but only one destination has 

an AT that is close to its deadline. C2 will be unable to differentiate between these two 

data requests, but C4 will choose to schedule &[ill before Rq[i2]. 

5.6 Cost C4links 

Based on C4 because of its high performance in simulation tests, cost C4links is also 

defined for transferring data item &[i] (where 0 5 i < 2p) to M[r] (where 0 5 r < m) 

from M [s] via link L[s, r] [k] (where (s, k) = ~ [ i ,  r]), in order to ultimately try to satisfy 

the j th  (where j E Drq[i, r]) requesting destination machine(s): 



Because a data request that can be satisfied by using three virtual links is using three 

times as much network resources as a data request that can be satisfied by using only one 

virtual link, this cost divides the effective priority term for each requesting destination 

by the number of links used to get to  that destination. If the effective priority associated 

with a data request is considered as a measure of worth or importance to the user, then 

this first term would be considered a measure of worth per link. This should allow the 

cost criterion to better select data items to satisfy that will make the most effective use 

of the network resources available. 

5.7 Cost C4size 

Based again on C4 because of positive simulation results, the criterion C4size is also 

defined for transferring data item Rq[i] (where 0 5 i < 2p) to M[r] (where 0 5 r < m) 

from M[s] via link L[s, r][k] (where (s, k) = ~ [ i ,  r]), in order to  ultimately try to satisfy 

the j th  (where j E Drq[i, r]) requesting destination machine(s): 

C4size[i] [s, r'l [k] = -WE * - Wu * [ x Urgency[i, j] 
'€Drq[i,r] 

A data request with an effective priority p representing its worth to the recipient, and 

a size in bytes of q, then has an effective worth per byte of :. Because the goal of a 

cost criterion is to identify data requests that will make the most effective use of network 

resources, the first term in C4size uses this effective priority divided by data request size 

to  find data items that will transmit the maximum amount of worth per link bandwidth 

byte. 

5.8 Cost C4sizlnk 

Cost C4sizlnk is a combination of the ideas in C4size and C41inks7 and gives a cost 

for transferring data item Rq[i] (where 0 5 i < 2p) to M[r] (where 0 < r < rn) from 

M [s] via link L[s, r] [k] (where (s, k) = ~ [ i ,  r]), in order to ultimately try to  satisfy the 

j th  (where j E Drq[i, r]) requesting destination machine(s): 



By combining the size and number of virtual links used, this cost gives a more accurate 

calculation of the resources used by a data request. For instance, consider two data items 

Rq[il] and &[i2] of equal priority. Consider also that Rq[i2] is twice as large as &[ill, 

and that it requires the use of three virtual links versus &[ill's single virtual link. In 

this case, Rq[i2] is requiring six times the total network resources required by Rq[il] in 

order t o  satisfy the same priority level of request. 



6. Resource Allocation Procedures* 

6.1 Introduction 

The three procedures below allocate varying amounts of network resources for a single 

data item after each run of Dijkstra7s algorithm, based on a cost function from Section 

5. The performance of these procedures is shown in [ThT99] and Section 8. 

The resource allocations performed by these procedures update the following informa- 

tion in the system after scheduling &[i] t o  move, and before running Dijkstra7s algorithm 

again: (1) the list of virtual links and their start and stop times, (2) the available memory 

capacity on any machines that data item &[i] has been placed, (3) the list of machines 

on which Rq[i] is available, and (4) the time a t  which Rq[i] can be removed from any 

intermediate machines. 

6.2 Partial Path Procedure 

Each iteration of this procedure involves: (1) performing Dijkstra7s algorithm for each 

data request individually; (2) for the valid next communication steps, determining the 

"cost" to  transfer a data item to  its successor in the shortest path; (3) picking the lowest 

cost data request and transferring that data item to  the successor machine (making this 

machine an additional source of that data item); (4) updating system parameters to  

reflect resources used in (3); and (5) repeating (1) through (4) until there are no more 

satisfiable requests in the system. In some cases, Dijkstra's algorithm would not need 

t o  be executed each iteration for a particular data transfer, i.e., if the data transfer did 

not use resources needed for any future transfers. In this study, only one data item is 

scheduled before rerunning Dij kstra7s algorithm (this applies for all three procedures). 

This simplified the implementation of the procedures without changing the performance 

of the resulting schedules. The execution time of the procedures is affected; however, 

minimizing this is not the main goal of the work. 

'This section is based on [ThT99]. This material is needed background for the results presented in 
Sections 8 and 9, and is included here so that this report is self-contained. 



This procedure will schedule the transfer for the single "most important" request that 

must be transferred next, based on a cost criterion. The procedure'(first described in 

[TaT98]) is called the partial ~ a t h  procedure because only one successor machine in the 

path is scheduled a t  each iteration. If a data item is partially scheduled through the 

system and because of other scheduled transfers the requesting destination's deadline is 

no longer satisfied, the scheduled transfers remain in the system (the initial transfers 

were scheduled because the deadline could have been satisfied). Reasons the schedule 

for this now unsatisfiable request is not removed include: (1) in a dynamic situation, 

a change in the network could allow the request to be satisfied; and (2) removing the 

already scheduled transfers would require restarting the scheduling for all data requests 

because of conflicts that might have occurred. 

6.3 N l  Path/One Destination Procedure 

The full ~ a t h / o n e  destination ~rocedure uses a cost criterion to select a data request 

a t  an individual destination machine for resource allocation. The data item is then sent 

from its current location (machine M[s] in each of the cost criteria) over as many virtual 

links as required to reach its destination machine (machine M b ]  for one value of j ) .  For 

cost C1, the choice of j (i.e., which requesting destination should be satisfied) is trivial; 

C1  only takes into account a single requesting destination. All other cost criteria identify 

a set Drq[i, r] of destinations, and one destination M[j] must be selected from that set 

to  satisfy. For cost C2, the value of j chosen is the one satisfying the condition 

from the equation describing C2. For cost C3, the value of j chosen is the one satisfying 

the condition 

min Ef p[i7 jl 
j ~ D r q [ i , r ]  Urgency[i, j ]  

from the equation describing C3. For costs C4, C41inks7 C4size, and C4sizlnk7 the 

data item with minimum cost Rq[i] is sent first to machine M[r], and if no request was 

satisfied, the cost is applied a second time for the same data item Rq[i], but setting the 

new M[s] (data source machine) to  the old M[r] (the machine to  which the data was just 

scheduled). The minimum cost is then taken over all values of r (possible next storage 



Request[O, 01 Requat[O, 11 Request[O, 21 Request [0,3] Request[l, 01 Request[l, 1 1  

Figure 6.1: An example communication system that requests (a) Rq[O] (corre- 
sponding t o  6[0]) and (b) Rq[l] (corresponding t o  411). Source[k, j] denotes 
the j th  initial source location of the kth data item 6[k]. Request[i, j] denotes 
the machine from which the j th  request for data item Rq[i] originates (in this 
example, i = k). Solid lines show shortest paths for a given data  item t o  all 
nodes (even non-requesters), and dashed lines show unused links for a given 
data  item. Asterisks denote next valid communication steps. 

locations). The value of r with minimum cost determines the machine M[r] that  the data 

is sent t o  next. This process continues until the data item has reached one requesting 

destination M [j]. 

This produces a communication schedule using fewer executions of Dijkstra's algorith- 

m than the  partial path procedure. The behavior of the partial path procedure showed 

that  if a data item Rq[i] was selected for scheduling a transfer t o  its next intermedi- 

a t e  location (a "hop"), in the following iteration, the same requested data item, Rq[i], 

would typically be selected again to  schedule its next hop. The full pathlone destina- 

tion procedure attempts to  exploit this trend by selecting a requested data item with a 

cost criterion and scheduling all hops required for the data item t o  reach its lowest cost 

destination before executing Dijkstra's algorithm again. 

Considering the  example communication system in Figure 6.l(a), data item Rq[O] 

would only be scheduled from M[O] to  M[3] before executing Dijkstra's algorithm again 

in the partial path procedure. In the full pathlone destination procedure, data item 



Rq[O] would be scheduled from M[CI] to  M[9] (a destination) before executing Dijkstra's 

algorithm again. This results in reducing the number of executions of Dijkstra's algorithm 

by three for this example. A savings proportional to the average length of a data item's 

path from a source to a destination is expected from this procedure. Considering again the 

communication system in Figure 6.l(a), if this procedure initially schedules the transfer 

of data item Rq[O] from M[O] to M[9], M[3] and M[5] would become sources for Rq[O]. 

In the next iteration, M[7] could receive Rq[l:l] from [M[5], and M[8] could receive 6[0] 

from M[3], without having to schedule a transfer from the original source, M[O]. 

The partial path procedure may construct a partial path (of many links) that it later 

cannot complete (due to network or memory resources being consumed by other requested 

data items). However, until this is determined, the part of the path constructed may block 

the paths of the other requested data items, causing them to take less optimal paths or 

causing them to  be deemed unsatisfiable. The full path/one destination procedure avoids 

this problem. An advantage the partial path approach does have over the full pathlone 

destination approach is that it allows the link-by-link assignment of each virtual link 

and each machine's memory capacity to  be made based on the relative values of the cost 

criteria for the data items that may want the resource. 

6.4 N l  Path/All Destinations Procedure 

The h l l  ~ a t h j a l l  destinations Brocedure resembles on the full pathlone destination 

procedure but allocates more network resources after each run of Dijkstra's algorithm. 

This procedure satisfies all requests that would benefit from sending data item Rq[i] 

from machine M[s] to  M[r] as defined by one of the costs of Section 5. For all cost 

criteria except C1, this means that all of the destination machines in the set Drq[i, r] are 

satisfied by the resource allocation of this procedure. Cost C1 used in conjunction with 

this procedure only considers a single destination machine in its calculation, and as such 

would always satisfy only one requesting destination. Because this behavior is the same 

as using C1 with the full path/one destination procedure, criterion C1 is not used with 

the full pathla11 destination procedure. 

For the example communication system in Figure 6.l(a), Rq[O] is requested by ma- 

chines M[7], M[8], and M[9], and the shortest path for these three destinations all orig- 



inate at  machine M[O] and pass through machine M[3].  The full pathla11 destinations 

procedure will schedule all paths for a single data item that share the next machine in the 

path as an intermediate machine. In Figure 6.1, the data item Rq[O] would be scheduled 

for all three destinations (machines M[7] ,  M[8] ,  and M [ 9 ] )  a t  the same time. By schedul- 

ing the path to multiple destinations, two fewer executions of Dijkstra's algorithm are 

required as compared to the full pathlone destination procedure. A savings proportional 

to  the average number of destinations for a data item whose shortest path intermedi- 

ate machine set share a common machine is expected. This approach was considered 

because it was expected to generate results comparable to the full pathlone destination 

procedure, but with a smaller procedure execution time. 





7. Upper and Lower Bounds* 

7.1 Introduction 

Finding optimal solutions to  data staging tasks with realistic parameter values are in- 

tractable problems. Therefore, it is currently impractical to  directly compare the quality 

of the solutions found by the proposed heuristics with those found by exhaustive searches 

in which optimal answers can be obtained by enumerating all the possible schedules of 

communication steps. Also, to  the best of the author's knowledge, there is no other work 

presented in the open literature that addresses the data staging problem and presents a 

heuristic for solving it (based on a similar underlying model). Thus, there is no other 

heuristic for solving the same problem with which to  make a direct comparison of the 

heuristics presented in this document. To aid in the evaluation of these heuristics, two 

lower bounds and three upper bounds on the performance of the heuristics are provided. 

7.2 Single Dijkstra Random 

This lower bound shows the effect of running Dijkstra's algorithm only once for each 

requested data item, assuming it is the only requested item in the network. Then the 

paths through the network are scheduled for each data item, finishing Rq[i] before Rq[i+l] 

(where the ordering of the data items is arbitrary). Resources are allocated to  data items 

one link at a t  time, and if a conflict arises, e.g., the link a transfer is attempting to  

schedule is no longer available, the data item stops progressing through the network and 

is not satisfied (but retains previously allocated resources). This approach is referred to  

as single Diikstra random because Dijkstra7s algorithm is only executed once for each 

data item. This method is used t o  illustrate that executing Dijkstra7s algorithm more 

than once, with updated communication system information, is advantageous. 

'Subsections 7.2, 7.4, and 7.5 are based on [ThT99]. This material is needed background for the results 
presented in Sections 8 and 9, and is included here so that this report is self-contained. 



7.3 N l  Path Random Dijkstra 

The lower bound called the full ~ a t h  random Dijkstra method does take into account 

which data requests are satisfiable when it allocates resources, allowing it to  improve 

over the random Dijkstra method used in [ThT99]. It  allocates enough resources in one 

scheduling step to  take a data item from its current location all the way to  one random 

satisfiable requesting destination before running Dijkstra's algorithm again. This method, 

based on the full pathlone destination procedure, differs from the single Dijkstra random 

method of Subsection 7.2 in that (1) this method checks that a requesting destination is 

satisfiable before allocating any resources toward fulfilling it, and (2) Dijkstra's algorithm 

is run with updated communication system information after each scheduling step. If 

there is a much larger number of data requests in the system than could be satisfied, this 

method will execute much faster than the random Dijkstra method because it will not 

waste time running Dijkstra's algorithm to  select and schedule requests that cannot be 

satisfied. 

7.4 Upper Bound 

This bound assumes that all requests in the system are satisfiable, and therefore 

represents the total weighted sum of the priorities of all requests in the system. This is 

an unrealistic (loose) bound because it does not take into account any network limitations 

that  might prevent requests from being satisfied. It does, however, give an indication of 

the total value of the data being requested by the users of the system. 

7.5 Possible Satisfy 

If Dijkstra's algorithm was run to  establish the satisfiability of each request as if it 

were the only request in the system, and the weighted priorities of each of the satisfiable 

requests were added together, the result would be the bound called possible satisfv. The 

reason that this is not equal to  upper bound described above is that some requests cannot 

be satisfied due to  lack of link bandwidth and/or machine storage, even when it is the 

only request in the system. 



POSSIBLESATISFYBANDWIDTH(R~, Nrq, Request, Priority, Worth, 

Net Bandwidt h) 

1. invoke Dijkstra's algorithm for each request in Rq giving AT 

2. UsedBandwidth t 0 
3. PriSum t 0 
4. mas  t 1 
5. while UsedBandwidth < NetBandwidth AND max > 0 
6. mas t O  
7. for i = 0 upto 2p - 1 

8. for j = 0 upto Nrq[i] - 1 

9. if AT[i, Request[i, j]] > Rf t[i, j] 

10. if (W[Priurity[i, j]] * Worth[i, j]/ IRq[i]I) > max 

11. imw t i 
12. jmaz + j 

13. max t (W[Priority[i,,, j,,,]] * Worth[imw7 jmm]) 1 IRq[i] I 
14. if mas > 0 
15. UsedBandwidth t UsedBandw idt h + I Rq[i,,,] ( 

16. Pr iSum t PriSum + (W [Priority[i,,, j,,,]] * Worth[i,,, j,,,]) 

17. remove destination j,,, requesting Rq[i,,] from the system 

18. return Pr iSum 

Figure 7.1: The method used for the calculation of the possible satisfy band- 
width bound. 

7.6 Possible Satisfy Bandwidth 

The possible satisfy bandwidth bound is a tighter bound than the possible satisfy 

bound above. It considers satisfiable requests, and also the total amount of bandwidth 

available in the system, NetBandwidth. This value is calculated by adding together the 

number of bytes that could be transmitted over each virtual link in the system. The 

algorithm in Figure 7.1 shows how this bound is calculated. The loop of steps 7 through 

13 select the request that is satisfiable and has the largest ratio of priority weight to 

data item size. Selecting the request that satisfies this condition guarantees that if a 

single link is used to  satisfy this request, it will give the highest possible priority weight 

value per byte of network bandwidth used as compared to all requests remaining in the 



system. Each time a request is found, steps 14 through 16 add its size in bytes t o  the 

bandwidth used in the system (this assumes that only one virtual link is needed to  satisfy 

this request) and add its weighted priority t o  the weights of the other data items that 

have been selected. That particular request is then removed in step 17 so that a new 

request can be found. This upper bound is still unrealistic, however, because it does 

not take into account that  more than one link may have to  be used t o  satisfy a request, 

nor does it consider the time intervals that  links are available, nor does it consider what 

machines have network bandwidth available between them. 



8. Extended Simulation Study 

8.1 Introduction 

After the simulation study of [ThT99] was completed, a new study was designed t o  

examine the effects of varying some other parameters within the system. In particular, 

this new study introduces three new cost criteria and two new bounds, and it varies ad- 

ditional simulation parameters, including eight network loadings, three average numbers 

of links used t o  get from a source machine to  a destination machine, and five priority 

weighting schemes. 

The results of [ThT99] indicated that  C 4  was the best-performing cost criterion. 

This led t o  the development of cost criteria C4size, C4links, and C4sizlnk, described in 

Section 5, for the new study. Because of the previous performance of the full pathlone 

destination procedure, it was implemented for the new study with all seven cost criteria 

described in Section 5. For comparison, the other two procedures in Section 6 (partial 

path and full pathla11 destinations) were also implemented for the  new study with cost 

C4,  for a total of nine heuristics. Eight E-U ratios were tried for the two pairings using 

costs C4size and C4sizlnk7 and nine E-U ratios were tried for the other seven pairings 

using costs C1, C2, C3, C4, and C4links. Nine were needed in the latter case in order 

t o  determine the best E-U ratio. 

In the previous study, all requests averaged traversing approximately 1.5 communi- 

cation links (a communication link traversal count) from an initial source machine t o  a 

requesting destination machine. It  was decided that  the requests would be generated in 

a manner allowing this parameter t o  be controlled and varied with three different values 

in the new study. Another parameter concerning the data requests was the number of 

requests being made versus the number of requests that  the network could possibly fulfill. 

Eight different "network loads" were decided upon for the new simulation study, in com- 

bination with the three communication link traversal counts, for a total of 24 different 



Table 8.1 
Network parameters used for the generation of test cases. 

data  request scenarios. 

For this study, it was decided that a six-level priority scheme would be used in place 

of the three-level method used in the previous study. This was intended to  better reflect 

the priority classes present in a military environment. In addition, the weighting of these 

priority levels was changed to  a system where the weight of each priority level was a fixed 

multiple of the weight of the priority level immediately below it. Five different values 

for this multiple were used for this study, and each was evaluated with each of the 24 

data  request scenarios above, resulting in 120 testing scenarios for evaluation by the 79 

heuristic/EU ratio combinations. 

As in the previous study, 40 individual test cases (each with a unique network con- 

figuration and set of data requests) were generated for each testing scenario, because a 

single case cannot reflect the range of possible data requests and network configurations. 

This resulted in the 379,200 simulation runs described in this section. 

parameter 

number machines 

number sources per data item 

number destinations per data item 

source available time 

destination deadline delay 

data item size 

machine storage 

machine outbound link degree 

link bandwidth 

8.2 Generation of Test Cases 

The network parameters used t o  create data sets for this simulation study are sum- 

marized in Table 8.1. Actual values are generated randomly with uniform probability 

minimum value 

14 

1 

1 

1 sec 

900 sec 

10 kBytes 

10 MBytes 

1 

10 kBits/sec 

maximum value 

16 

3 

5 

3600 sec 

3600 sec 

100 MBytes 

20 GBytes 

4 

1.5 MBits/sec 



between (and including) the minimum and the maximum values shown in the table. 

These parameter values are intended to  be representative of a subset of a BADD-like 

environment. 

The "number machines" parameter refers to the number m of machines in the network. 

"Number sources per data item" is the number of source machines N6[i] (where 0 5 i < n) 

that initially hold data item 6[i], and is generated independently for each value of i. 

"Number destinations per data item" is the number of destination machines Nrq[j] (where 

0 5 j < p) that have requested a copy of data item Rq[j] (only the higher quality data 

items are considered in this study). This value is also generated independently for each 

value of j .  Each requesting destination for each data item also has a priority class a: 

(where 0 5 cr 5 5), where class 0 is generated with a 50% probability, class 1 with 

25%, class 2 with 12%, class 3 with 796, class 4 with 4%, and class 5 is generated with a 

2% probability. These percentages were selected to reflect the fact that in a BADD-like 

environment, there would likely only be a small number of data requests in the highest 

priority class, and a large number of data requests at the lowest priority class. 

The "source available time" in Table 8.1 corresponds to  6st[i, k] (where 0 5 k < N6[i]), 

the time at which data item S[i] is available at its kth source machine. The time is given 

as an offset in seconds from the beginning of the time interval being simulated. For 

these simulations all available times for a given data item are equal (i-e., 6st[i, 0] = 

6st[i, I] = . . . = Gst[i, k - 11). The "destination deadline delay" refers to  the number of 

seconds between the time that the data item is available at its source machine(s) and the 

time that it is needed a t  a destination machine (the deadline). This delay is generated 

independently for each destination machine of a given data item. Because data items 

may become available up t o  one hour after the beginning of a simulation interval, and a 

data item may have up t o  one additional hour before its deadline at a destination, the 

total simulation interval is two hours. 

The time duration parameter for garbage collection at intermediate machines y, was 

set to  six minutes. This means that the removal time 6rt for a data item at a machine that 

is not an original source machine nor a requesting destination machine is six minutes after 

the latest deadline R f t  for that same data item a t  any requesting destination. Source 



machines and final destination machines for data items hold those data items for the 

remainder of the simulation period (6rt is m). 

The "data item size" 16[i] ( (where 0 5 i < n) mentioned in Table 8.1 is generated for 

each data item and affects the amount of storage required to  hold a data item as well as 

the amount of time required to  transmit a data item on a virtual link. "Machine storage" 

Cap[ j] ( to )  (where 0 5 j < m and to is the beginning of the simulation interval) is the 

amount of unused storage space on a machine in the network. The "machine outbound 

link degree" refers t o  the number of unidirectional outbound communication links that a 

machine in the network has. Link generation is done for each machine in the network, and 

additionally ensures that a link must terminate a t  a different machine than it originated 

from, and no more than two links originating from one machine can terminate at  the 

same destination machine. The bandwidth of each link is in the interval defined by the 

"link bandwidth" of Table 8.1. 

Unidirectional communication links are intended to represent links that may only 

be available during certain periods of the day, such as satellite links. Communication 

link availability is calculated for a 24 hour period in the following manner. For each 

communication link, the percentage of the day that the link is t o  be available is randomly 

chosen from the set {50%, 60%, 70%, 80%, 90%, 100%). If the link is available for 100% 

of the day, a single virtual link is initially used t o  represent the communication link for 

the entire 24 hour period. However, if the link is chosen t o  be available for less than 

100% of the day, an availability duration is randomly chosen from the set (30 minutes, 

one hour, two hours, four hours}. This duration represents the length of time that the 

communication link will initially be continuously available each time it becomes active. 

Each period of availability will then be represented by a single virtual link with a starting 

and ending time. 

The number of virtual links used is determined by the ceiling of dividing the amount 

of time the link is available (percentage available * 24 hours) by the availability duration 

chosen. The starting time of the earliest virtual link (as an offset from the beginning of 

the day) is randomly chosen between 0 and one tenth of the total unavailable time of 

the communication link. Unavailable times are generated in a similar manner between 



each of the remaining virtual links until the appropriate number of virtual links has been 

allocated. If all of the unavailable time is allocated before the last virtual link, then there 

is no unavailable time allocated between remaining virtual links. 

The machines and unidirectional communication links of a network are generated 

with the preceding parameters, and then tested to  make sure that there is a path from 

each machine to  all other machines via some set of communication links. An adjacency 

matrix Alinks is calculated where each entry corresponds to the minimum number of 

communication links traversed (communication link traversal count) in a path from one 

machine to  another machine. For this calculation, all links are assumed to  have infinite 

bandwidth and be available for the entire simulation duration. This means that each 

entry in the adjacency matrix is a lower bound on the number of communication links 

that would be used to send a data item from one machine to  another. After this matrix 

is created, each data item is created, along with a set of source machines to  hold the item 

initially, and a set of destination machines to  request the data item. 

The behavior of all three procedures depends on the communication link traversal 

count. The expected behavior is that for a larger average count, the full path procedures 

should execute faster than the partial path procedure because they allocate all resources 

required to satisfy a request at once, whereas the partial path procedure only allocates 

one virtual link a t  a time. As the count increases, it also becomes more possible for 

the partial path procedure to  "strand" a data item at  an intermediate storage location 

resulting in a poorer overall schedule (i.e., the procedure would allocate enough resources 

for a particular data request to move it toward its requesting destination, but would not 

allocate enough resources to cause the data request to  be satisfied). 

For these reasons, the average communication link traversal count was varied with 

three arbitrary values: 1.5, 2.5, and 3.5. These values are shown in Table 8.2, each with 

four experimentally determined probabilities. As an example of what these percentages 

mean, consider the bottom line of the table with a resulting average count of 3.5. In order 

to  generate a network with satisfiable requests that have an average communication link 

traversal count of 3.5, there must be a 1% chance of generating a data request that is 

one communication link away from a source machine, a 3% chance of generating a data 



Table 8.2 
Experimentally determined probabilities of communication link traversal 
counts from a source machine to a requesting destination machine and their 
resulting average link counts. 

probability of communication 

link traversal count communication link traversal 

15% 3.5 

request with a communication link traversal count of two, an 81% chance of making a 

request with a count of three, and a 15% chance of creating a request with a count of 

four. 

The process of generating a single data item and its associated source machine(s) and 

requesting destination machine(s) is now described. First, the number of source machines 

m, and the number of destination machines md are chosen with uniform distribution (see - - 

Table 8.1 again for ranges). For each destination machine, a desired communication link 

traversal count Lmt(i) (where 0 <_ i < md) is generated according to the probabilities 

listed in Table 8.2, depending on the resulting average communication link count wanted. 

For example, if the desired average count wanted was 3.5, LCnt(i) for all values of i would 

be 3 with probability 81%. These probabilities were determined experimentally. 

Then, all possible sets of source machine combinations of size m, are enumerated in 

a list where an element (a set of source machines of size m,) is identified as msets(j) 

(where 0 j j < ( )  Using the adjacency matrix Asnks, for each element mset,(j), 

a list of communication link traversal counts L h i n ( j )  is calculated. The kth (where 

0 5 k < m - m,) element in the list Lhi,( j)  is the minimum communication link 

traversal count from any of the source machines in the set mSets(j) to  the kth destination 

machine. 

Now, for each value of i such that 0 5 i < md, consider the count in Lmt(i). Then, for 



every list L k i n ( j ) ,  try to remove an element in that list which is equal to the link count 

Lmt(i). This removal corresponds t o  reserving a potential destination that is a minimum 

of Lmt(i) communication links away from all of the m, source machines in msets(j). If 

there is a list L k i n  ( j )  that does not contain a value equal to  the link count Lmt(i), delete 

that list Lk i , ( j )  and the corresponding set of source machines mSets(j) 

Remaining in mset, is now the source machine combinations that have appropriate 

communication link traversal counts to  potential destination machines in the network. If 

all source machine combinations have been removed from mSets, the data item is regener- 

ated from the beginning. Otherwise, one of the remaining source machine combinations 

is randomly selected to be the set of source machines for the current data item. Des- 

tination machines can then be selected 'that fit each of the desired communication link 

traversal counts in L,, ( 2 ) .  

For this simulation study, the number of data items generated for a network was 700 

times the number of machines in the network. After all items were generated, Dijkstra's 

algorithm was run once for each item, establishing the individual satisfiability of each 

data item at each requesting destination along with a path of communication links used 

t o  reach each destination. The average number of communication links traversed from a 

source machine t o  a destination machine for all of the satisfiable requests is the "result- 

ing average communication link traversal count" shown in Table 8.2. As indicated above, 

three different average link counts were generated, and for each count, 40 different net- 

works and associated data requests were created with the method given above, resulting 

in a total of 120 networks with associated data requests. 

Now consider in the network all data requests that are determined to be satisfiable 

individually according the first execution of Dijkstra's algorithm. When considering 

each of these requests as if it were the only data request in the system, the resulting 

virtual link path from Dijkstra's algorithm and other known information can be used to  

calculate the bytes of bandwidth needed for each request. Then these bandwidths can 

be summed to  give a value representing the total number of bytes of data bandwidth 

being requested in the system. Call this value ReqBandwidth. Recall now the value 

NetBandwidth calculated by summing together the total number of bytes that could be 



transmitted on each of the virtual links within the network during the simulation period. 

An oversubscription rate can then be defined as  ReqBandwidthlNetBandwidth. If this 

term is larger than 1, the network can clearly not satisfy all requests due t o  bandwidth 

limitations. If the term is less than 1, bandwidth may not exist between the correct 

machines or may not be available during the required time t o  satisfy all requests. 

In order t o  examine system performance under various request loads, it was decided 

t o  consider networks with the following oversubscription rates: 25.0, 12.5, 6.2, 3.1, 1.6, 

0.8, 0.4, and 0.2. These desired data sets were created by starting with one of the 

networks and its associated set of data requests, and removing random data requests 

until the desired oversubscription rate was achieved. This did not significantly affect the 

average communication link traversal counts. It  resulted in data sets consisting of the 

same network with eight different oversubscription rates, for each of the 120 networks. 

When applying the heuristics t o  these test cases, a variety of E-U ratios were used. For 

simulations run using the full pathlone destination procedure with C4size and C4sizlnk, 

the E-U ratios used were loinf, lo9, lo8, lo7, lo6, lo5, lo4, and The values of 

loinf and represent considering only the priority term (the term weighted by WE), 

and only the urgency term (the term weighted by WU), respectively. For simulations run 

using the partial path procedure with C4, the full pathla11 destinations procedure with 

C4, and the full pathlone destination procedure with C1, C2, C4, and C4links, the E U  

ratios used were loid, lo6, lo5, lo4, lo3, lo2, lo1, lo0, and Recall that  C3, which 

was implemented in this study with the full pathlone destination procedure, does not 

have a WE or WU term. 

The last parameter tha t  was varied in this simulation study was the relative weight 

of one level of priority request compared to  another. With the six priority levels of data 

requests, the approach simulated was t o  make the weight of a priority level a (where 

0 5 a 5 5) da ta  request be & (i.e., W[a] = wQ) for some fixed value of w.  The values 

of w simulated were 1, 2, 4, 8, and 16, and this was done for each of the networks and 

loadings mentioned above. The results of the simulations using these parameters are now 

presented. 



Table 8.3 
Labels for heuristics and bounds used in the graphs of Subsection 8.3. 

8.3 Evaluation of Simulations 

implementat ion combination 

partial path procedure with C 4  

full pathlone destination procedure with C1 

full pathlone destination procedure with C 2  

full pathlone destination procedure with C 3  

full pathlone destination procedure with C 4  

full pathlone destination procedure with C4links 

full pathlone destination procedure with C4size 

full pathlone destination procedure with C4sizlnk 

full pathla11 destinations procedure with C 4  

upper bound 

possible satisfy 

possible satisfy bandwidth 

full path random Dijkstra 

single Dijkstra random 

Heuristic and bound labels used in the graphs at the end of this subsection are sum- 

marized in Table 8.3. In [ThT99], graphs were shown with the performance of most of 

these heuristics versus E U  ratio. The three new costs taking into account da ta  item 

size and the number of communication links traversed from a source t o  a destination are 

shown in Figure 8.1 (all Section 8 figures are at the end of the section). The peak perfor- 

mance of the costs taking data item size into account are further t o  the right (signifying 

higher E U  ratios) in the graph because those costs divide the effective priority term by 

the  data  item size. The points inf and - inf are the two extremes, where inf only consid- 

ers the effective priority term, and - inf only considers the urgency term. The same set 

of E U  ratios was not used for all three cost criteria (as detailed in Subsection 8.2); for 

label used 

partial- C4 

full-one-C1 

full-one-C2 

full-one-C3 

full-one-C4 

full - one-C4links 

full -one-C4size 

full-one-C4sizlnk 

full-all-C4 

upper- bound 

possible-sat isfy 

possible-satisfy- bandwidth 

full-rand-Dijkstra 

single-Dijkstra-random 



this graph, the lo-'"' E-U ratio data points for full-one-C4size and full-one - ~4sizlnk 

were duplicated for their lo0, lo1, lo2, and lo3 E-U ratio data points, and the 10'"' E-U 

ratio data point for full - one-C4links was duplicated for its lo7, lo8, and lo9 E-U ratio 

data points. 

The graphs of Figures 8.2 through 8.31 show the effects of varying the oversubscription 

rate, average link traversal count, and the priority weighting parameter, w. The graphs 

of Figures 8.2 through 8.16 show all of the upper bounds from Section 7, as well as the 

full path random Dijkstra (Subsection 7.3) and single Dijkstra random (Subsection 7.2) 

lower bounds. The random Dijkstra (used in [ThT99]) lower bound is not included in 

these simulation results because of the large execution time required for it to run in the 

heavily loaded test cases. In addition, Figures 8.2 through 8.16 show data points labeled 

best-hc and worst - hc, corresponding to the best data points generated by any of the 

heuristics (procedure/cost criterion pairs), and the worst data points generated by any 

of the heuristics, respectively. The data points for the heuristics used correspond to the 

best E-U ratio for each testing scenario. The best E U  ratio was only likely to be 10'"' 

or lo-'* in tests where w = 1; the best performance in other tests was almost always 

a combination of both the priority and urgency terms. The values for the normalized 

vertical axis in all of these graphs is computed as follows. For each test case, the sum of 

the satisfied requests7 weighted priorities for a given heuristic or bound is divided by the 

sum of satisfied requests7 weighted priorities given by the best E-U ratio for full-one-C4. 

This normalized sum is then averaged over the 40 network test cases to give the final 

value for each data point. 

Figures 8.2 through 8.4 show the relative performance of the bounds and best and 

worst heuristics in a system where all data items have the same priority (w = 1). Notice 

in these figures that possible-satisfy-bandwidth levels off soon after the request over- 

subscription rate exceeds 1. This indicates the point at  which the network can no longer 

satisfy more requests, although its gradual increase shows that as more smaller data 

items (which have a larger ratio of value per byte) are added to  the system, they could 

be satisfied in place of larger data items. The difference between possible-satisfy and 

upper-bound is all of the data requests that are made that cannot be satisfied because 



no virtual link exists between the appropriate source and destination machines. 

As can be seen as the communication link traversal count increases from 1.5 to  3.5 

in Figures 8.2 through 8.4, the difference between upper-bound and possible-satisfy 

increases. This is because a longer average communication link traversal count will 

generally require data items t o  use more virtual links t o  get from a source t o  a destination, 

thus making it  harder t o  meet deadline times. It should also be noted tha t  in these figures, 

the performance of the heuristics decreases with respect t o  the upper bounds as the link 

traversal count increases. This is explained by the fact that  the upper bounds do not 

have requests competing for bandwidth (i.e., each request is treated as if it is alone in 

the system), while the heuristics run out of bandwidth faster if the requests that  they 

allocate resources for have higher link traversal counts. This trend is seen across all of 

Figures 8.2 through 8.16 as well. 

Figures 8.2 through 8.4 also show that the performance of the worst heuristic is 

sometimes worse than the performance of the full path random Dijkstra lower bound. 

I t  should be noted that  these test cases set w = 1, and hence the effective priority 

of all requests in the system is identical. There are two reasons for this poor relative 

performance of worst-hc. First, the effective priority term is unable t o  be utilized well 

by the cost criteria because all effective priorities are set t o  one. Second, the fact that 

full - rand - Dijkstra pays no attention t o  the effective priority of requested data items is 

not a hindrance in this case where all data items have equal priority. 

Also shown in Figures 8.2 through 8.16 is the trend that  as w increases, the perfor- 

mance of the heuristics as well as the possible-satisfy-bandwidth bound become closer 

t o  the  possible-satisfy and upper-bound bounds. This is because as u increases, the 

sum of the weights of the highest priority class requests represent a larger percentage of 

the total sum of priority weights of requests. In other words, just satisfying the requests 

of priority class 5 results in satisfying a significant percentage of the sum of all requests' 

priority weights. 

The relative performance of the heuristics are shown in Figures 8.17 through 8.31. The 

first three graphs, Figures 8.17 through 8.19, again show performance in a system where 

all data requests have the same priority (w = 1). In these three figures, the heuristics 



divide themselves roughly into three groups of similar performance. The group with the 

best performance, consisting of full-one-C4size and full-one-C4sizlnk, contains the 

two methods that consider data item size. Because all effective priorities are the same in 

this system, data item size becomes an important way to distinguish between a good and 

a poor data item choice for resource allocation for the more heavily loaded test cases. 

The reason that data item size does not help for the more lightly loaded test cases is 

because of a fragmentation problem. The costs considering data item size will tend to 

allocate resources for all of the smaller data items first, resulting in many small time 

intervals of link bandwidth being allocated initially. In these lightly loaded cases, the 

remainder of the link bandwidth must be used by larger data items, but no continuously 

available links exist for a long enough period of time for these larger data items to use. In 

the more heavily loaded network cases, there are enough smaller data items available to 

make use of all of the network bandwidth without sending any of the larger data items. 

The resulting trend, shown in varying degrees in all of Figures 8.17 through 8.31, is that 

the costs incorporating data item size have a relative decrease in performance for lightly 

oversubscribed networks, followed by a relative increase in performance for the heavily 

oversubscribed networks. 

The group with the worst performance in Figures 8.17 through 8.19 consists of ful- 

l-one-C1 and full-one-C3. The full-one-C1 method is disadvantaged by the fact 

that  it only considers the benefit of one data request at  a time, whereas the heuristics of 

the group in the middle all consider multiple data requests that would collectively benefit 

from a resource allocation. Finally, the full-one - C3 method has a strong tendency to  

select very urgent requests. The urgency of a request is related to  its size in that a larger 

data  item will tend t o  arrive later at its destination because of the amount of bandwidth 

needed to  transfer it. Therefore, this method will end up selecting the largest data items 

first, resulting in a lower ratio of weighted priority per byte for its satisfied requests. Note 

that w = 1 is a special case for full-one-C1, because for the graphs of 8.20 through 8.31, 

its performance remains close to  that of the best heuristic. 

In the remaining graphs (Figures 8.20 through 8-31), a number of trends can be seen. 

There is a general overall trend that as w increases (and other factors are fixed), the 



performance of all heuristics is closer to each other. This, as in Figures 8.2 through 

8.16, is because more of the total sum of priority weights of requests in the system is 

contributed by a few highest priority requests. 

The full-one-C3 method performs consistently poorly for heavily oversubscribed 

networks. Its performance in the simulation studies of [ThT99] indicated that it would 

not likely perform well, so this was expected. It is interesting to note, however that as w 

was increased, the relative performance of full-one-C3 increased as well. This suggests 

that  the problem with cost C 3  is indeed due to allowing the urgency factor to  dominate 

the cost equation, because as the priority weight is increased, it begins to  perform well. 

This is especially true for the lower oversubscription rates, as seen in Figures 8.26, 8.27, 

8.29, and 8.30. 

The two methods that take into account data item size, full-one-C4size and ful- 

l-one-C4sizlnk7 are shown to  perform well with high link traversal counts and very high 

oversubscription rates, as seen in Figures 8.25, 8.28, and 8.31. This indicates that data 

item size, for the values and distribution tested here, is not an important cost factor 

unless the system is very heavily oversubscribed. As mentioned previously,a reason that 

size may be a hindrance in more lightly oversubscribed systems is network fragmentation. 

If small data items are selected for resource allocation first, they will reserve small time 

intervals of virtual link bandwidth. Later, when larger data items are considered, there 

will not be enough continuous bandwidth available on any virtual links for transferring 

these data items. Only if the oversubscription rate is very high are there enough small 

data items available t o  utilize the remaining link bandwidth. For w = 1, in general, 

full-one-C4size and full-one-C4sizlnk do not perform as well as full-one-C4 because 

of this fragmentation problem. 

In Figures 8.20 through 8.31, full-one-C1 performs well except for the highest over- 

subscription rate test cases. Because cost C1 only considers the benefit of moving data 

t o  satisfy a single request, this suggests that in very highly oversubscribed networks, it 

helps t o  consider multiple requesting destinations that would collectively benefit from a 

data transfer. 

The full-one-C2 method appears t o  suffer from its choice of destination machines; 



specifically, it chooses the most urgent request from a set of requesting destinations 

that  would benefit from a common data transfer. As system oversubscription rates 

increase, its relative performance decreases in all of Figures 8.20 through 8.31. The 

method full-one-C4links, however, performed very comparably to full - one - C4 in all 

tests. There was no situation indicated by these simulations where full - 0ne~C4links 

should be chosen over full - one - C4, or vice versa. The partial-C4 method was also 

shown to perform comparably to the full-one-C4 method in all cases. 

The full-all-C4 method is shown to perform well for small average link traversal 

counts, but as the link traversal count increases, Figures 8.20 through 8.31 show a clear 

decrease in performance. This is due to the full pathla11 destinations procedure allo- 

cating resources for more than one destination simultaneously, where some requesting 

destinations may have very low priority. 

Execution times for all bounds and heuristics are shown in Figure 8.32, and the four 

heuristics that tended to perform the best for w > 1 (full - one - C4links, full - one-C1, 

full-one-C4, and partial-C4) are shown by themselves in Figure 8.33. The full-one-C4 

method does have an advantage in execution time over partial - C4, as shown in Figure 

8.33. Figure 8.32 shows an example of the trends of execution times for each algorithm; 

execution times for other oversubscription rates do vary (larger execution times for larger 

oversubscription rates), but the trends remain the same. The general downward trend of 

all algorithms as link traversal count increases is due to the fact that requests that are 

deemed to  be unsatisfiable by a given run of Dijkstra's algorithm do not have Dijkstra's 

algorithm applied to them again. With higher link traversal counts, network resources are 

used up more quickly, resulting in fewer remaining satisfiable requests, thus shortening 

execution time. 

Figures 8.34, 8.35, and 8.36 show 95% confidence intervals (i.e., given the calculated 

sample mean over the 40 test cases, the probability that the true mean is in the interval 

shown is 0.95; see [Cas93]) corresponding to the graphs of Figures 8.23, 8.24, and 8.25. 

For a given path length and a given heuristic, the confidence interval is similar for any 

value of w or for any oversubscription rate. These sample graphs show the overall trend 

that as the path length increases, the confidence interval increases. The largest confidence 



intervals calculated for any data points were always less than f 3%. The approximate 

worst case intervals were f 3% for link traversal counts of 3.5, f 2% for link traversal 

counts of 2.5, and f 1% for link traversal counts of 1.5. A majority of the intervals 

calculated were less than f 1%. Note that full-one-C4 is not shown in these graphs 

because it is being normalized to itself and hence always has a normalized performance 

value of 1. 

Tables 8.4 and 8.5 show the average number of requests satisfied a t  each priority 

level by full-one-C4 as compared to a simple algorithm that schedules all requests of 

a higher priority level before any requests of a lower priority level. In particular, this 

algorithm was full-one-C1 with an E U  ratio of 10'"'. For w > 1 in these tables, more 

requests in the top three priority levels are being satisfied by full-one-C4 (which obeys 

the relative importances assigned to  each of the priority levels set by the policy maker) 

than the level by level method (which ignores these policy requirements). The number 

of satisfied requests a t  the top priority level remains comparable for full-one-C4 and 

w > 1 because there are so few requests a t  that level that all are able to be satisfied. 

This is indicated by the fact that the level by level method cannot satisfy any more of the 

top priority requests. For example, even though the level by level method schedules all 

priority level 5 requests as if they were the only requests in the system, the total number 

scheduled does not exceed the results of full-one-C4 (for w > 1). This shows that 

full-one-C4 using urgency in addition to  effective priority, is better than full-one-C1 

without urgency. Furthermore, full-one-C4 results in a higher sum of weighted priorities 

of satisfied requests than the level by level method in almost all cases considered in Tables 

8.4 and 8.5. 

In summary, a class of heuristics that compare well to  upper and lower bounds has 

been developed and analyzed. Many heuristics perform within a few percentage points of 

each other, and this is why we consider the execution times of the different approaches. 

Furthermore, while in general several heuristics perform comparably, if a system is known 

to  have a particular operating environment (e.g., w value, oversubscription rate), there 

may be a preference for one pair over another. Future work will investigate confidence 

intervals for some of the data points generated by test cases in this section. 
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Figure 8.1: Sample graph of the effect of varying the E U  ratio with the three 
new cost criteria. The data sets used had an average link traversal count of 
2.5, a request oversubscription rate of 3.1, and an w value of 4. The E-U 
ratio data points for full-one C4size and full-one-C4sizlnk were duplicated 
for their lo0, lo1, lo2,  and ~ O ~ E - U  ratio data points, and the loi* E-U ratio 
data point for full-one-C4links was duplicated for its lo7,  lo8, and 10' E-U 
ratio data points. 
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Figure 8.2: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 1. 
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Figure 8.3: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 1. 



upper-bound - 
possible-satis ---K---. X possible-satisfy-bandwidt - - - +- - -  

full-rand-Dijkstra ...--e-..- 
single-Dijkstra-rand 

best-hc 
worst-hc -- --e - -  - 

0.2 0.4 0.8 1.6 3.1 6.2 12.5 25.0 
request oversubscription rate 

Figure 8.4: Weighted sum of satisfied requests' priorities normalized at  each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 1. 
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Figure 8.5: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to  the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 2. 
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Figure 8.6: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 2. 
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Figure 8.7: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 2. 



Figure 8.8: Weighted sum of satisfied requests' priorities normalized a t  each 
oversubscription rate to the performance of full - one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 4. 
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Figure 8.9: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 4. 
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Figure 8.10: Weighted sum of satisfied requests' priorities normalized at  each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 4. 
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Figure 8.11: Weighted sum of satisfied requests' priorities normalized at  each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 8. 
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Figure 8.12: Weighted sum of satisfied requests' priorities normalized a t  each 
oversubscription rate to the performance of full-one C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 8. 
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Figure 8.13: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 8. 
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Figure 8.14: Weighted sum of satisfied requests' priorities normalized a t  each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 16. 
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Figure 8.15: Weighted sum of satisfied requests' priorities normalized a t  each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 16. 
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Figure 8.16: Weighted sum of satisfied requests7 priorities normalized a t  each 
oversubscription rate to the performance of full-one-C4. Shown are the 
upper bounds, lower bounds, and the performance of the best and worst 
heuristic for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 16. 
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Figure 8.17: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 1. 
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Figure 8.18: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 1. 
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Figure 8.19: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 1. 



Figure 8.20: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are dl 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 2. 
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Figure 8.21: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 2. 
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Figure 8.22: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 2. 
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Figure 8.23: Weighted sum of satisfied requests' priorities normalized at  each 
oversubscription rate to  the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 4. 
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Figure 8.24: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 4. 
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Figure 8.25: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 4. 
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Figure 8.26: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 8. 
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Figure 8.27: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 8. 



Figure 8.28: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 8. 
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Figure 8.29: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 1.5 and an w value of 16. 
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Figure 8.30: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 2.5 and an w value of 16. 



Figure 8.31: Weighted sum of satisfied requests' priorities normalized at each 
oversubscription rate to the performance of full-one-C4. Shown are all 
heuristics for each oversubscription rate. The data sets had an average link 
traversal count of 3.5 and an w value of 16. 
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Figure 8.32: Average execution times of the heuristics and bounds for a data 
set with an oversubscription rate of 3.1 and w = 4. Times are in seconds on 
a four-processor 200 MHz Pentium Pro with 256 MB RAM. 
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Figure 8.33: Average execution times of the four best-performing heuristics 
for a data set with an oversubscription rate of 3.1 and w = 4. Times are in 
seconds on a four-processor 200 MHz Pentium Pro with 256 MB RAM. 
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Figure 8.34: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4. Shown are 95% confidence intervals for all 
heuristics (except full-one-C4) in a data set with an average link traversal 
count of 1.5 and an w value of 4. 
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Figure 8.35: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4. Shown are 95% confidence intervals for all 
heuristics (except full-one-C4) in a data set with an average link traversal 
count of 2.5 and an w value of 4. 
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Figure 8.36: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4. Shown are 95% confidence intervals for all 
heuristics (except full-one-C4) in a data set with an average link traversal 
count of 3.5 and an w value of 4. 



Table 8.4 
Number requests satisfied a t  each priority level by full - one - C4 with an  aver- 
age link traversal count of 2.5 and an oversubscription rate of 1.6. The "level 
by level" column shows the effect of allocating resources for all priority class 
a requests before all priority class ,f3 requests where cr > P. 

Table 8.5 
Number requests satisfied a t  each priority level by full-one-C4 with an aver- 
age link traversal count of 2.5 and an oversubscription rate of 6.2. The "level 
by level" column shows the effect of allocating resources for all priority class 
cr requests before all priority class ,8 requests where cr > ,8. 



9. Data Items With Multiple Versions 

9.1 Approach 

In this section, a variable time, variable accuracy algorithm will be presented t o  deal 

with data items with a higher quality and lower quality version, as mentioned in Section 

3. The higher quality data item is assumed for simplicity t o  be twice the size of the 

lower quality data item. The higher quality data item, however, has four times as  much 

"worth" to  the end user as the lower quality data item. This worth was chosen t o  indicate 

that  the system should be penalized for selecting the lower quality data item over the 

higher one. The lower quality data item thus has half of the worth per byte of the higher 

quality data item. 

The approach used t o  incorporate these lower quality data item versions into the 

developed heuristics was to  create an iterative algorithm that attempts t o  create a new 

schedule Sh with each iteration that has a smaller effect E[Sh]. In the first iteration, 

only the higher quality versions of the data items are considered satisfiable by the value 

Sat[i, k] (where 0 5 i < 2p and 0 < k 5 Nrq[i]). That is, Sat[& k] (from the cost 

criteria of Section 5) can only be 1 if 0 5 i < p. A heuristic is then used with Dijkstra7s 

algorithm to  create a complete schedule of data transfers, which corresponds to  the 

research described in Section 8. 

After the first iteration schedule has been determined, the value of Sat[j, k] (where 

0 5 j < p) for the second iteration is only allowed to  be 1 if Request[j, k] was satisfied 

in the previous iteration. The value of S a t [ j  + p, k] is then only allowed to be 1 if 

Requestlj, k] was not satisfied in the previous iteration. A complete new schedule is 

created using a heuristic with Dijkstra7s algorithm. That is, if during iteration one a 

requesting destination does not receive its higher quality requested data item, then in 

the second iteration, it will request the lower quality version of that data item instead. 

The schedule produced by the second iteration will then likely satisfy at least a few 



lower quality data item requests (of higher priority) in place of higher quality data item 

requests (of lower priority). The higher quality data item requests that are not satisfied 

in the second iteration then request their respective lower quality versions for the third 

iteration. This iterative process can be repeated as many times as allotted execution time 

permits, and can stop at  any time after the first iteration and output the best schedule 

that it has generated thus far. (This assumes that the best schedule is kept separately 

after each iteration and that the last iteration performance may not result in the best 

schedule.) 

9.2 Evaluation of Simulations 

The data sets used for these experiments were a subset of the data sets created for 

the simulation study of Section 8. Only the data sets with average link traversal counts 

of 2.5 were used. Five iterations of the variable accuracy algorithm were run. Results 

from those runs are shown in Figures 9.1 through 9.40. It should be noted that each 

graph is normalized to the performance of full-one-C4 at the end of its first iteration, 

which is the same as the performance of full-one-C4 in the study of Section 8. Figures 

9.1 through 9.8 are included for comparison, but keep in mind that w = 1 is a degenerate 

case. 

For less oversubscribed networks, the heuristics are almost all able to increase their 

own respective performance with additional iterations (for example, Figures 9.17, 9.18, 

9.19, and 9.20). For more oversubscribed networks, this is not generally the case (for 

example, Figures 9.24, 9.32, and 9.40). All of the cost criteria used here except C1 

consider more than one destination as part of the cost of sending a data item to its 

next machine. The implementation of the multiple versions approach works against this, 

particularly at  higher oversubscription rates. This is because a data item that contributes 

to the cost of a request that is satisfied in iteration one may not be satisfied itself. Later, 

in iteration two, the unsatisfied data request is considered separately (because it is a 

different version). When considered separately, the original data item no longer has an 

associated cost that enables it to  be satisfied in iteration two. Even if the original data 

item does have a cost that enables it to be satisfied, it may be satisfied later, using 

different time intervals on virtual links, or using different virtual links. This usage of 



different network resources can then cause other data requests to be unsatisfiable using 

their primary version. For this reason, full-one - C1 (which does not collectively consider 

multiple requesting destinations) is less inclined to  decrease in performance in successive 

iterations. 

An additional reason for a lack of improvement after each iteration for data sets with 

high oversubscription rates is related to the large number of requests of high priority 

in the system. There are already very many data items in these tests with a desirable 

priority to select from, and the secondary versions of data items are not any better of a 

choice than any of the primary versions of data items that are available. 

In summary, the use of multiple versions will help some heuristics improve the sum of 

priorities satisfied in all but the most oversubscribed cases. The improvement obtained 

in some operator environments exceeds 10%. In almost all cases, the best improvement 

is given by the second iteration of the variable time, variable accuracy algorithm. 
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Figure 9.1: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.2, an average link 
traversal count of 2.5, and an w value of 1. 
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Figure 9.2: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.4, an average link 
traversal count of 2.5, and an w value of 1. 



Figure 9.3: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.8, an average link 
traversal count of 2.5, and an w value of 1. 
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Figure 9.4: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 1.6, an average link 
traversal count of 2.5, and an w value of 1. 
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Figure 9.5: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 3.1, an average link 
traversal count of 2.5, and an w value of 1. 
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Figure 9.6: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 6.2, an average link 
traversal count of 2.5, and an w value of 1. 



t--.-----.-.-.-.-.-. 
a-- -- -- -- -. -. -- -- -- 

a--- --- .-- --- --- .-- --- 
A --- --- --. .-. --- --- -- 

-D--.-- ---..-.,.. 

1 2 3 4 5 
iteration number 

Figure 9.7: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 12.5, an average link 
traversal count of 2.5, and an w value of 1. 
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Figure 9.8: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 25.0, an average link 
traversal count of 2.5, and an w value of 1. 



Figure 9.9: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.2, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.10: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.4, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.11: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.8, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.12: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 1.6, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.13: Weighted sum of satisfied requests7 priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 3.1, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.14: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 6.2, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.15: Weighted sum of satisfied requests7 priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 12.5, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.16: Weighted sum of satisfied requests' priorities normalized t o  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 25.0, an average link 
traversal count of 2.5, and an w value of 2. 
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Figure 9.17: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.2, an average link 
traversal count of 2.5, and an w value of 4. 
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Figure 9.18: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.4, an average link 
traversal count of 2.5, and an w value of 4. 
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Figure 9.19: Weighted sum of satisfied requests7 priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.8, an average link 
traversal count of 2.5, and an w value of 4. 
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Figure 9.20: Weighted sum of satisfied requests' priorities normalized t o  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 1.6, an average link 
traversal count of 2.5, and an w value of 4. 
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Figure 9.21: Weighted sum of satisfied requests7 priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 3.1, an average link 
traversal count of 2.5, and an w value of 4. 
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Figure 9.22: Weighted sum of satisfied requests' priorities normalized t o  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an  oversubscription rate of 6.2, an average link 
traversal count of 2.5, and an w value of 4. 



Figure 9.23: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 12.5, an average link 
traversal count of 2.5, and an w value of 4. 
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Figure 9.24: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 25.0, an average link 
traversal count of 2.5, and an w value of 4. 
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Figure 9.25: Weighted sum of satisfied requests' priorities normalized t o  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.2, an average link 
traversal count of 2.5, and an  w value of 8. 
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Figure 9.26: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.4, an average link 
traversal count of 2.5, and an w value of 8. 
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Figure 9.27: Weighted sum of satisfied requests' priorities normalized to the 
performance of full one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.8, an average link 
traversal count of 2.5, and an w value of 8. 



Figure 9.28: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 1.6, an average link 
traversal count of 2.5, and an w value of 8. 
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Figure 9.29: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 3.1, an average link 
traversal count of 2.5, and an w value of 8. 
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Figure 9.30: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 6.2, an average link 
traversal count of 2.5, and an w value of 8. 
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Figure 9.31: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 12.5, an average link 
traversal count of 2.5, and an w value of 8. 
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Figure 9.32: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 25.0, an average link 
traversal count of 2.5, and an w value of 8. 
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Figure 9.33: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.2, an average link 
traversal count of 2.5, and an w value of 16. 
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Figure 9.34: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.4, an average link 
traversal count of 2.5, and an w value of 16. 



Figure 9.35: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 0.8, an average link 
traversal count of 2.5, and an w value of 16. 
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Figure 9.36: Weighted sum of satisfied requests' priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 1.6, an average link 
traversal count of 2.5, and an w value of 16. 



Figure 9.37: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 3.1, an average link 
traversal count of 2.5, and an w value of 16. 



Figure 9.38: Weighted sum of satisfied requests7 priorities normalized to  the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 6.2, an average link 
traversal count of 2.5, and an w value of 16. 
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Figure 9.39: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 12.5, an average link 
traversal count of 2.5, and an w value of 16. 
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Figure 9.40: Weighted sum of satisfied requests' priorities normalized to the 
performance of full-one-C4 in iteration 1. Shown here is the performance 
of each heuristic after each iteration of the variable time, variable accuracy 
algorithm. The data set had an oversubscription rate of 25.0, an average link 
traversal count of 2.5, and an w value of 16. 





10. Summary and Conclusions 

Data staging is an important data management issue for distributed computer sys- 

tems. It addresses the issues of distributing and storing over numerous geographically 

dispersed locations both repository data and continually generated data through an over- 

subscribed network, where not all data requests can be satisfied. When certain data with 

their corresponding priorities need to be collected together a t  a site with limited stor- 

age capacities in a timely fashion, a heuristic must be devised to schedule the necessary 

communication steps efficiently. 

The performance of fourteen heuristics were shown, and compared to three upper 

bounds and three lower bounds. Many different weighting schemes for the relative im- 

portance of different priority levels of requested data items were considered. Each pro- 

cedure and cost criterion was designed with particular advantages in mind. The results 

presented showed that, for the system parameters considered (e.g., priority weighting, 

oversubscription rate), the combination of cost C4 or C1 with the full path/one desti- 

nation procedure consistently performed the best, when using the measure of weighted 

sum of priorities satisfied. 

Because each heuristic has advantages, the pair that performs best may differ depend- 

ing on the system parameters (i-e., the actual environment where the scheduler heuristic 

will be deployed). Extensive work was done exploring the performance of the heuristics 

when varying the congestion of the network, the number of virtual links used to satisfy 

data items, and the priority weighting scheme. In summary, a class of heuristics and 

cost criteria that compare well to upper and lower bounds were developed and analyzed. 

While in general several heuristics perform comparably, if a system is known to have a 

particular operating environment (e-g., w value, oversubscription rate), there may be a 

preference for one pair over another. 

An additional novel approach using a variable time, variable accuracy method that 



considered multiple data item versions with different resource requirements was evaluated. 

The use of multiple versions was shown to help some heuristics in all but the most 

oversubscribed cases; in many cases, the improvement was over 10%. 

Studies such as the one presented in this report are necessary to design schedules for 

distributed communication systems. Numerous heuristics were shown to perform very 

effectively. The exact heuristic to use in a given situation will depend on the system 

operator environment. 

Acknowledgments: The authors thank Joe Rockmore, Bob Beaton, Jose Fortes, 

and Edwin Chong for their valuable comments and suggestions. 



GLOSSARY 

 AT[^, j] the earliest possible time found so far when Rq[i] is available on 
M[j]  (where 0 5 i < 2p and 0 5 j < m) 

c l [ i ,  j] [s, r] [k] the cost for sending data item &[i] to from M[s] via link 
L[s, r] [Ic] , in order to ultimately try to the j th  requesting 
destination machine: 

(where 0 5 i < 2p and 0 5 r < m and (s, Ic) = ~ [ i ,  r] and 0 5 j < 
Nrq[il) 

c2[il [s, r] [k] the cost for sending data item &[i] to M[r] from M[s] via link 
L[s,r][Ic], in order to ultimately try to satisfy the j th requesting 
destination machine (s) : 

max Urgency[i, j] 
j€ Drq[i,rl 

C3[iI [s, rl [k] the cost for sending data item &[i] to M[r] from M[s] via link 
L[s, r] [Ic], in order to ultimately try to satisfy the j th  requesting 
destination machine(s) : 

(where05  i <  2 p a n d O s r  < m a n d  (s,Ic) = ~ [ i , r ] )  

c4[i:I [s, rl [k] the cost for sending data item &[i] to M[r from M[s] via link 
L[s,r][Ic], in order to ultimately try to satis y the j th requesting 
destination machine(s) : 

1 

(where 0 5 i < 2p and 0 5 r < m and (s, k) = ~ [ i ,  r]) 

C4links[i][s, r] [Ic] the cost for sending data item &[i] to from M[s] via link 
L[s, r][Ic], in order to ultimately try to the j th  requesting 
destination machine(s) : 

(where 0 5 i < 2p and 0 5 r < m and (s, Ic) = ~ [ i ,  r]) 



C4size[i][s7 r:l [k] the cost for sending data item &[i] to M[ r  from M[s] via link 
L[s,r:l[k], in order to ultimately try to satis y the j th  requesting 
destination machine(s): 

1 

(where 0 5 i < 2p and 0 5 r < m and (s, k) = .;rr[i,r]) 

C4sizlnk[i][s7 r][k] the cost for sending data item &[i] to from M[s] via link 
L[s, r][k], in order to ultimately try to the j th  requesting 
destination machine(s): 

(where 0 5 i < 2pand 0 5 r < m and (s,k) =.;rr[i,r]) 

Cap [i] (t j ) constant unused storage capacity of machine M[i] during the time 
interval [tj, (where 0 5 i < m) 

set of n data items with unique names that are available on the 
machines in M 

6 [il an individual data item in A (where 0 <_ i < n) 

IS[il 1 the size of data item 6[i] (where 0 5 i < n) 

Srt [l, i] the removal time that data item 6[1] can be removed from machine 
M[i] (where 0 <_ 1 < n a n d  0 5 i < m )  

6st[17 jl the start time that data item 6[1] becomes available a t  its j th  source 
machine (where 0 5 1 < n and 0 <_ j < N6[1]) 

D[i, j][k] ((61:1] 1) time duration required to transfer data item 6[1] from machine M[i] 
to M[j]  via the virtual link L[i, j][k] (where i # j and 0 5 i, j < m 
a n d 0 5 k < N l [ i 7 j ] a n d 0 5 1 < n )  

Drq[i7 r] set of indices of machines that request Rq[i] along a path through 
M[r], where M[r] is the next machine to receive Rq[i] (where 0 5 
i < 2 p a n d O < r < m )  

[Shl the effect of the schedule Sh; minimizing this over all values of h is 
the global optimization criterion: 

C W[Priority[j, k]] * Worthb, k] 
(j,k)€Srq[Sh] 

(where 0 5 h < a and 0 I j < 2p and 0 5 k < Nrq[jl) 



E f p [ i 7  k]  effective priority of data item Rq[i] at the kth requesting location: 

Sat[i ,  k] * W[Priori ty[ i ,  k ] ]  * Worth[i ,  k ]  

(where 0 5 i < 2p and 0 5 k < Nrq[i])  

time period for intermediate storage machines to hold a data item 
after the last deadline for that data item has expired 

Gnt network topology graph composed of a set of vertices representing 
machines M and edges representing links L 

L the set of virtual links in Gnt 

L[i7 jl [k] the kth virtual link from machine M[i]  to M [ j ]  (where i # j and 
0 5 i , j  < m and 0 5 k < N l [ i , j ] )  

Lst[i ,  j] [k] link start time that the kth virtual link from machine M[i]  to  M [ j ]  
becomes available (where i # j and 0 5 i ,  j < m and 0 5 k < 
Ni[i ,  jl) 

Let[i, j ] [k]  link end time that the kth virtual link from machine M[i]  to Mlj] 
becomes unavailable (where i # j and 0 5 i, j < m and 0 < k < 
Nl[i7 jl) 

m number of machines in the set M 

M the set of machines in Gnt 

M[il an individual machine in M (where 0 5 i < m) 

n number of distinctive data items in A 

N w ]  number of source machines holding a copy of & [ I ]  (where 0 5 I < n )  

NetBandwidth sum of the total number of bytes that could be transmitted over 
each virtual link in the system 

Nl[i7  jl number of virtual links from machine M[i]  to M [ j ]  (where i # j and 
O < i , j < m )  

Nlinks[i ,  k] number of virtual links used to get from any M [ s  , which holds a copy 
of Rq[i], to destination M[Request[i, k ]]  using t L e most recent path 
generated by Dijkstra's algorithm (where 0 < s < m and 0 < i < 2p 
and 0 5 k < Nrq[i])  

Nrq[ j ]  number of destination machines that request Rq[j] (where 0 < j < 
2 ~ )  

x[ i7  j] the two-tuple ( s ,  k )  identifyin the machine M[s]  that sends Rq[i] 
to M [ j ]  via virtual link L[s ,  jl&k1 (where 0 < i < 2p and 0 5 j < m 
and -1 5 s < m a n d  -1 5 k < N l [ s , j ] )  

P the most important priority class 

Priority [ j ,  k ]  priority class of Rq[j] at requestin destination M[Request[j, 
(where 0 5 j < 2p and 0 < k < ~ r ~ b ]  and 0 5 Priority[j,  k] 5 



ReqBandw idt h 

Request [ j ,  k] 

R f  t [ j ,  kl 

Rq 

RdjI  

Sat  [i, k]  

Urgency [i, k]  

number of unique higher quality data items in Rq, also the number 
of unique lower quality data items in Rq, for a total of 2p data items 
in Rq 

sum over all data requests of the number of bytes of bandwidth 
needed to  satisfy each request when considered individually 

index of the kth machine that requested Rqb] (where 0 5 j < 2p 
and 0 5 k < Nrq[j]  and 0 5 Request[j, k ]  < m) 

deadline time after which data item &[j]  is no longer useful to  
machine M[Request[j,  k ] ]  (where 0 5 j < 2p and 0 5 k < Nrq[ j ] )  

the set of requested data items; two versions of each data item are 
present 

a requested data item (where 0 <_ j < 2p); higher quality data items 
have j in the range 0 5 j < p, lower quality data items have j in 
the range p 5 j < 2p 

set of schedules for the communication steps within the network 

a schedule consisting of a series of communication steps among the 
machines of M using the communication links in L (where 0 5 h < 
a> 

1 if Request[i, k would be satisfiable using current network infor- 

0 5 k < Nrq[i])  
2 mation, and 0 i it would not be satisfiable (where 0 5 i < 2p and 

index of the j th  source machine for data item S [ i ]  (where 0 5 i < n 
and 0 5 j < NS[i] and 0 5 Smrce[i ,  j] < m) 

set of two-tuples ( j ,  k )  such that the kth request for the data item 
Rq[j]  is satisfiable with respect to the schedule Sh (where 0 5 j < 2p 
and 0 5 k < Nrq[j]  and 0 5 h < a)  

measure of closeness of a data item's available time to its deadline 
time (in seconds) a t  a requesting destination: 

(where 0 5 i < 2p and 0 5 k < Nrq[i])  

the relative weight of a priority class rr (where 0 5 rr 5 P) 

the weight of the effective priority term in the scheduling cost func- 
tions 

the weight of the urgency term in the scheduling cost functions 

a percentage of value to a user of data item Rq[j]  sent to  satisfy a re- 
quest at M[Request[j,  k ]] ;  assumes value 1 if j < p and Rq[j] is used 
t o  satisfy M[Request j, k ] ] ,  assumes value 0.25 if j > p and Rqlj] 
is used to  satisfy M [  ke quest[j, k ] ] ,  and assumes value 0 otherwise 
(where 0 5 j < 2p and 0 5 k < Nrq[ j ] )  
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