
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-1999

A Computational Redundancy Reduction
Approach for High performaice and Low Power
DSP Algorithm Implementation
Khurram Muhammad
Purdue University School of Electrical and Computer Engineering

Kaushik Roy
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Muhammad, Khurram and Roy, Kaushik, "A Computational Redundancy Reduction Approach for High performaice and Low Power
DSP Algorithm Implementation" (1999). ECE Technical Reports. Paper 36.
http://docs.lib.purdue.edu/ecetr/36

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4947893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages


A COMPUTATIONAL REDUNDANCY 

REDUCTION APPROACH FOR HIGH 
PERFORMANCE AND LOW POWER 
DSP ALGORITHM IMPLEMENTATION 

TR-ECE 99-3 
MARCH 99 



A Computational Redundancy Reduction 
 roach for High performaice and Low 
Pciwer DSP ~ 1 G r i t l i r n  Iniplernentation] 

Khurram Muhammad and Kaushik Roy 

Email: khurram@ecn .purdue.edu, kaushik@ecn.purdue .edu 

School of Electrical and Computer Engineering, 

Purdue University, West Lafayette, IN 47907 

February 22,  1999. 

Abstract 

In this paper, we present a general approach which specifically targets reduction of redundant computation 

in common d'igital signal processing (DSP) tasks such as filtering and matrix multiplication. The main idea 

presented in this work is t o  show that such tasks can be expressed as multiplication of vectors by scalars 

and fast multiplication can be achieved by sharing computation in such operations. The multiplication 

schemes considerably reduce redundant computation by decomposing the vectors in a manner which results 

in maximal computation sharing, thereby, resulting in a faster and potentially low-power implementation. 

Two decomposition approaches are presented, one based on a greedy decomposition and the other based 

on fixed-size lookup rule which lead to  two multiplication architectures for scaling of vectors. Analysis of 

the proposed implementations shows a speed-up by a factor of up to 3 over a carry save array multiplier. 

Analog simulation of an example 8-bit multiplier shows a speed advantage by a factor of 1.85 and a power 

disadvantage of 1.9 over a conventional carry save array multiplier. Using voltage scaling, the power 

consumption of the example multiplier can be reduced to 56% of the carry save array multiplier. 

'This  work was supported in par t  by DARPA (F33615-95-C-1625), NSF CAREER award (9501869-MIF'), Rockwell, AT&T 

a n d  Lucent foundation. 



The ever increasing demand for services and mobility in communication and computing: places increased 

challenges i r ~  the design of such systems. New techniques and approaches are required a t  all levels of 

design abstritctions as future technologies are expected to provide unprecedented levels of computational 

performance in small hand-held units. Since the evolution in battery technology has not yet caught 

up with the demands in computational requirements, i t  provides us with a motivation to consider new 

approaches t,o reduce computation without cor~~prornisir~g the constraints on system pt:rformance. The 

classical approaches for reducing complexity of high-performance digital signal processing (DSP) comprise 

the use of techniques such as recursion je.g. RLS, F F T  algorithms), multi-rate signal processing and 

low rank approzimation. The last technique is a widely used approach which compromises accuracy by 

rerrloving less significant computations fro111 a given computational algorithm. Low-complexity design not 

only improves the speed a t  which the algorithm can process data ,  but it also leads to low power design 

a t  the highest level of abstraction by reducing energy consuming operations. 

In this paper, we explore complexity reduction from the point of view of reducing the overall number of 

operations in. corllrllon DSP tasks such as filtering and matrix multiplication by using the concept of corn- 

putation sharing multiplication. The main insight provided to  the subject of low-comp1e:tity design is the 

reduction of cor~iputational redundancy [I] which is defined as the excess computation over the minimum 

number of bit operations needed for a given sequence of operations. The basic idea is to  s.peed-up compu- 

tation by identifying common computations in a sequence of operations, and to  investigate and propose 

structures which achieve that objective with minimal computational overhead. The structures proposed 

in this work .which achieve this goal are multipliers which can be viewed as generalized higher-order coded 

multipliers. :Since, computation reduction is achieved through co,mputation sharang, no quantization loss 

in incurred using the proposed multiplication technique. 

Many multiplier structures [2], [3], [4], [5] have been investigated and proposed during the past four 

decades. However, these architectures do not assume existence of any relationship beltween successive 

conlputations and provide gains in execution speed for any given operand without regards to the past 

or future input. The operations in DSP tasks are generally based on data  sequences (or data vectors) 

and gains in speed of operation can be achieved by identifying and exploiting relationships between 

numbers in the given sequence. The primary difficulty in such an approach is that it requires additional 

computational overhead to identify such relationships [.I.] and such an effort can only be justified in systems 

such as non-adaptive filters where this computation can be performed off-line [I]. Secondly, extra rllerllory 

overhead may be required to  store intermediate results since the order of computation mily be altered [I]! 

[6]. In the situation where da ta  values are always changing, simple schemes must be ex:plored such that 

they can identify computation which can be shared amongst a sequence of operations without incurring 

computational overhead for locating such relationships. 



The main idea presented in this paper is to  decompose multiplicat,ion operations in terms of addition 

of shifted values of alphabets. An alphabet can be viewed as a number in a higher radix representa- 

tion scheme The best alphabets for various scenarios of vector scaling operations are investigated and 

proposed. Lrsing these alphabets, we show the relative computational in~provements which are possible 

if efficient implementations of multiplication based on these alphabets are designed. lNe propose such 

implemental~ions and analyze their performance showing that a substantial speed advantage is possible by 

using such a multiplication scheme. The major contribution of this paper are summarized below: 

r We identify the relavence of increasing the speed of vector scaling operation with t.he common DSP 

tasks such as filtering and matrix multiplication. 

r We identify simple number decomposition st,rategies and identify the op t imal  alphabets for general 

input vectors. 

r We show the simple unit comprising a n~ult,iplexor (MUX) and two shifters (SHIFT) is required to 

implement the proposed multiplication which is based on decomposition of inputs to  alphabets. 

r The proposed multiplier structures are analyzed in detail for their speed performance and compared 

with a carry  save array (CSA) multiplier. Further, the trade-offs in their implementation aspects are 

investigsted. 

The rest of the paper is organized in seven sections. Section I1 provides a review of basic DSP tasks 

and shows their relationship with vector scaling operation. Section 111 describes t,he representation of 

computat,ions in vector scaling operation in terms of a graph. Section IV describes the basic approach 

employed in reducing computational redundancy using the graph and presents the decomposition rules. 

Section V describes the resulting constrained optimization problem which is solved to  obtain optimal 

alphabets using an exhaustive search. The optimal alphabets obtained and the computational advantage 

due to  propcsed technique are shown in section V-B. In section VI, we describe various ways t o  implement 

the proposecl multiplication scheme and analyze the performance of the proposed architectures. Finally, 

section VII concludes this paper. 

This section provides a review of the most common operations in general DSP tasks. Consider the 

fundamental operation of multiplication of a given vector by a scalar quantity. This can be expressed as 

y = c . x ,  where both y and c are column vectors of size hf and x is a scalar quantity. The main reason 

for considering this operation as a fundamental operation in DSP applications is the realization that the 

operand x is shared by all the elements of c and therefore, computation can be shared as explained in 

later section:;. This operation requires N multiplication operations. We next show that this operation is 

fundamental to most DSP tasks such as filtering and matrix multiplication. 



A. Digital E'iltering 

Consider a linear time-invariant (LTI) FIR filter of length M described by an input-output relationship 

of the form y(n) = x:i1 ci z ( n  - i) .  In this context, cj represents the ith coefficient and z (n  - i) 

denotes the data sample at time instant n - i. Figure l (a )  shows a parallel implement.stion of an 8-tap 

( M  = 8) FSR filter with symmetric coefficients. A single, shared multiplier based implementation is 

shown in figure l ( b ) .  Since the goal is to compute y(n) as fast as possible, a shared multiplier based 

imp1ementat;ion holds coefficients and data in separate memories and applies these to the input of a 

multzply anc! accumulate (MAC) unit. The output y(n) is computed after M multiplication operations. 

We notice that such an implementation computes an inner product in which all elements are distinct and 

no opportunity of computation sharing arises. Hence, the only approach to speed up this computation is 

to employ pi.pelining or faster multipliers. If we allow block processing in which the out,put is computed 

Fig. 1. Implementation of an  8-tap filter. (a) Parallel implementation, and (b) Shared multiplier based implementation. 

as blocks of size N ,  we can represent the output by a column vector y of size N.  The modified equations 

for FIR filtering can be expressed as 

where y (n )  == [y(n), y(n - I ) ,  . . . , y(n - N + 1)IT and X(n)  is a Toeplitz data matrix of dimension N x M 

such that the ith column of X contains the elements x(n  - i)  = [x(n - i ) ,  x(n - i - I ) ,  . . . , z (n  - i - M + 1)IT 

for i = 0,1 ,  . . . , N - 1. The coefficients appear as a column vector c = [co, c l ,  . . . , ~ ~ - 1 1 ~ .  The coefficient 

matrix C in equation 2 is of dimension N x (N + M + 1) such that the ith row consists of i zeros 

followed by the elements of vector c followed by ( N  + 1 - i )  zeros for i = 0 , 1 ,  . . . , A' - 1. The vector 

%(n) = [z(n) ,  x(n - 1) ,  . . . , x(n - N - M + I)].  Then, equation 2 can be written as y = c.ox(n) + clx(n - 

1) + . . . + cMVlx(n - M + 1) Since ci's are scalar quantities, the above equation recasts tlhe block filtering 

problem using the fundamental operation of vector scaling. One can similarly show that equation 2 can 

also be exprc:ssed in terms of vector scaling operations. Similarly, it can also be verified that the output 

equation of a block LTI infinzte impulse response IIR can also be expressed in terms of vector scaling 

operations. Hence, vector scaling operation can be considered as a fundamental operation in digital 



filtering. 

B. Matrix hfultiplication 

The most common DSP tasks constitute multiplication of a matrix with a scalar, a vec:tor, and another 

matrix. The first can be trivially expressed in terms of vector scaling operation. The second type of 

operation was considered in the previous section. Consider the multiplication of two matrices A and B 

of dinlensions AT x M and M x P ,  respectively. Let A = [ao, a l ,  . . . , a,t,-l] = [a:, a?, . . . , aT,-,IT where 

ai and a j  represent the ith column and j th  row of A ,  respectively. The column vectors of B and D are 

similarly defi.ned. Then the columns and rows of the product D = A B  can be expressed, respectively, as 

d i  = z"-l m=O arnbm,i and d j  = ~,Mii aj,,b,, for i = 0, I , .  . . , P and j = 0 , 1 ,  . . . , N .  Clearly, rnultiplication 

of two nlatrices can be expressed in terms of vector scaling operations. The above two interpretations 

yield identical end result, however, the number of elenlents in the vectors which need to be scaled depends 

on the ratio N I P .  Since, larger vectors irnply a larger potential for sharing of computation and our goal 

is to maximize sharing to reduce redundant computation, we consider the interpretation which results in 

larger vector sizes. Hence, the first interpretation is favored for N  > P ,  whereas the second one is favored 

when -AT < P. Any of the two may be used for the case N = P.  

We now turn our attention to the vector scaling operation. Since this operation requires two operands, 

there are only two possible scenarios of interest. First, both are variable, and second, one is fixed and 

the other variable. The trivial situation of both operands being fixed is not interesting because one can 

pre-compute the result and eliminate such operations. If only one operand is fixed, either the vector 

has variable entries and the scalar multiplier is fixed, or the vector has fixed elements and the scalar is 

variable. We will refer to the prior situation as V V F S  (Variable Vector, Fixed Scalar) situation and the 

latter one as FVVS (Fixed Vector, Variable Scalar) situation. We note that in many situations it may be 

possible to specify the problem as either VVFS or FVVS. This can be seen for the non-adaptive filtering 

example in equations 1 (VVFS) and 2 (FVVS) by choosing the vector to be composed of elements of input 

data  or the filter coefficients, respectively. In case of adaptive filtering, both the vector arid the scalar are 

variable and this condition is referred to as ITVL*S (Variable Vector. Variable Scalar) condition. 

In order to reduce computational redundancy, the first step is to express the desired operation in terms 

of vector scaling operations. We will refer to this step as computation reordering. The main goal of 

this step is to transform computation in the given DSP task in a frame-work where efficient computation 

sharing techniques are known. In this paper, we do not specifically address techniques for such computation 

reordering in general DSP tasks, however, examples of this step have already been presented in sections II- 

-4 and 11-B. 'The main emphasis of this paper is to address the second step, in which efficient computation 

sharing approaches are investigated for the fundamental operation of vector scaling. As shown in earlier 



sections, the: most common DSP tasks can be expressed in terms of this fundamental operation, and 

hence, the cssmputation in a given DSP algorithm can be represented in terms of the ~aepresentation of 

computation in the the vector scaling operation. 

One approach in representing the computation in vector scaling operation is to conslhruct a complete 

graph G = (V, E), where V and E represent the sets of vertices and edges, respectively. The elementas in 

V are the M elements of the given vector, and the edge ei,j between vertex vi and vj ex1,resses the effort 

of computinl: the product v j s  in relation to vis ,  where s represents the scalar operand. ei,j will always 

have a positive value. There may be more than one edges between v, and vj depending on how many ways 

vj may be computed given vi has already been computed [I]. Figure 2 shows the graph for M = 4. The 

interpretation of e;,j depends on how a computation is viewed for a particular "style" of implementation. 

The word style has a broad meaning and includes architectural style and t,echnological coiisiderations. For 

example, in a fully parallel implementation, shifts of values can be implemented using wires and hence, if vj 

can be obtained from .u; by a simple shift operation, the ~omput~a t ion  .ujs can be simply olbtained "free" of 

computational cost from the prior computed vis  for some scalar s .  Hence, the particular edge ei,j for such 

implement,atior~ is 0. In contrast, if this computation was performed without consideration to its previous 

occurance it would be a redundant comput,ation. In summary, by proper definition of vertices and edge 

Problem Compute vs 

V : Given Vector 
s : Given Scalar Value 

ei , j : Cost of computing vjs given 

Fig. 2.  Graph representation. 

 weight,^, the graph representation can adequately express relationships between different computations. By 

proper identification of these inter-relationships, a strategy for reordering and sharing computation may 

be formulat,e'rl thereby obtaining implementations with low computationally redundancy, lower execution 

time and lower power dissipation. 

A. Decompo:jition of Computation in  Vector Scaling 

Consider the vector scaling operation V s  in which V = { v o ,  v l , .  . . , V M - ~ }  and s is a given scalar. Now, 

our goal is to identify operations that can be shared between the products vi . s ,  i = 0 , 1 ,  . . . , M - 1 

maximally. 'The first step is to decompose each vertex into alphabet sets. An alphabet set is a set of 



alphabets which can represent the given vertex using add and shift operations. An a1,phabet is a value 

which can b82 used to write the decomposition of the given vertex. Figure 3 elaborates this idea. Given a 

vertex, vi, it is possible to construct all possible alphabets sets G o ,  G l ,  . . . , &R such that each set contains 

alphabets which can completely represent vi. That is, for j = 0 , 1 , .  . . , R,  

L j  

where m k  ace the appropriate shift values required to correctly obtain vi. In the above equation, a k , j  

for k = 0, 1, . . . , L j  are alphabets belonging to the alphabet set j .  This decomposition requires L j  - 1 

add and shijt operations. To understand this decomposition, consider the example in figure 3 in which 

all four (R = 3) possible alphabet sets for vi = 10011 are listed. The alphabets in these sets are 

a o , ~  = a0,l = a1,z = 1, a0,z = 1001, a1,l = 11 and ao,3 = 10011. For the set, Go = (ao ,o)  = {I) ,  we 

can write vi = 24a0,0 + 2laOt0 + 2Oc20,o. This decomposition requires two add and shift operations. Note 

that Lo = 1, mo = 4,ml = 1 and mz = 0. For the remaining three sets, we have vi = 24c20,1 + 20al ,1 ,  

vi = 2 l c 2 0 , ~  .t 20a1,2 and vi = 2°a0,3 for the second, third and fourth sets, respectively. The size of the 

alphabet sets are L1 = L z  = 2 and L3 = 1. In the sequel, we will refer to the computation of the form 

2mkc2k,j . s ;is a sub-computation. Hence, each alphabet set gives rise to a different scheme of adding 

sub-computations to obtain v, . s and maximal computation sharing results when we use an alphabet set 

which minimizes the overall number of distinct subcomputations required to compute Vs.  

Fig. 3. Alphabet Sets and Their Relationship to  the Graph. 

Now each vertex vi E G for i = 0, 1, . . . !  M - 1 can be similarly decomposed into Ri alphabet sets. For a 

given vertex oi, each alphabet set is one way to cover the vertex and in order to obtain the product vi . s ,  we 

need all the alphabets in at least one alphabet set for the vertex. This is evident if both sides of equation 



3 are multiplied by s .  Hence, alphabets in an alphabet sets can be viewed as nodes connected in series 

and an alphabet sets can be viewed as parallel paths through which vi . s can be obtained. Each vertex 

in G can be viewed as a super-node containing series-parallel paths of connected nodes .and the vertex is 

said to be covered if all the series nodes in at least one alphabet set are visited. There are R, possible 

ways to cover the vertex vi .  In terms of graph representation, on selecting an alphabet set which covers 

a vertex vi, an edge e;,j expresses two metrics. 1) The nuinber of add operations required to compute vi 

through the alphabets in the selected alphabet set using equation 3, and, 2) The number of new alphabets 

introduced i.1 the solution alphabet set due to the choice of the selected alphabet set. Hence, edge weights 

are dynamic and reflect both these quantities independently. Since, there are Ri  choice,^ of alphabet set 

selection at  node vi ,  there are exactly Ri possible edge weights that may be assigned to an edge e i , j  that 

emanates from vi. Our next objective is to minimize the the cost of a tour in G such that the number 

of alphabets in the solution alphabet set is minimum. We next describe the multiplication strategy which 

arises as a rt:sult of the considerations outlined in this section. 

IV. REMOVING COMPUTATIONAL REDUNDANCY - T H E  BASIC APPROACH 

In order to obtain maxrrnal sharzng in the computation of V s ,  we need to identify a solution alphabet 

set of alphabets which satisfies the following properties. 

1. It covers all the vertices in G. 

2. I t  minimizes the number of alphabets in the set, and, 

3. The total number of add operations in the decompositions of all vertices, vi ,  i = 0 , 1 , .  . . , M - 1 ,  is 

minimized. 

This can be inapped to the classical NP-complete problem known as the weighted rnz,wmurn set cover 

(WMSC) [TI. We assume that a "good" solution set can be computed using any of the known heuristic 

based techniques which gives the solution set 6 ,  = {cro, cull . .  . , (YQ-1) comprising of Q alphabets. How- 

ever, we mu:jt first consider the implementation aspects of the resulting multiplier structure in order to 

define a multiplication strategy which is practical and simple to implement. 

il. Cornputation Sharing Multiplication - General Structure 

The multiplier must provide an ability to  decompose an applied input v, into alphabets in the solution 

alphabet set, be able to perform the sub-computation a k  . s  where a k  E a , ,  and must also possess the ability 

to provide the shift necessary to correctly re-compose the final product 2jis from the sub-computations. 

That is, it rr~ust compute 

where mk's are appropriate shifts. Note that 6, may contain more alphabets than are necessary to cover 

a given vi as its elements must be able to cover all the elements in V 



- 
.......... a1s ...... ' 
...... .?!$.. ..... ' 

i MULTIPLEXOR - SHIFT - - . . .  . . .  ap - 
1s T I 

[iVI'L.71 
Frorn Another 

SELECT 

Fig. 4. Basic Structure of the R.lultiplier. 

Figure 4 shows the basic structure of the resulting multiplication strategy. The rn~lt~iplier consists of 

a bank of Q + 1 parallel multipliers which compute the products a k  . s for k = O,1, . . . ,  Q. We will show 

in the later section that these multipliers can be replaced by simple adders. We will refer to these units 

as PRECOlZlPliTERS as their function is to  pre-compute the sub-computations which are to  be shared. 

Note that the computation performed by the bank of PRECOMPUTERS is required only once during 

the M product generations in the vector scaling operation. A CONTROL unit decomposes the applied 

value of ui ir.to the form of equation 3 and sends the appropriate index signal t o  a MUX which selects the 

correct a k  . :; sub-computation. Since the CONTROL unit is used to  decompose u,, it already knows the 

shift value ( i n k )  in the decomposition, hence it can send the shzft value to  the SHIFT unit. The shifted 

value of the selected product is then added with the next sub-computation in equation 4. 

The number of alphabets in the solution set determine the number of PRECOMPUTERS in the bank. 

It also dictates the complexity of the MUX unit which must select the appropriate pre-computed product. 

The complexity of the SHIFT unit is determined by the word-length, W,  of elements in V and the length 

of the longest alphabet in the solution set. For example, if W = 8 and the longest alphabet in solution set 

is 1111, then the SHIFT unit must be able to shift 8+4  = 12 outputs of the selected PRECOMPUTER by 

a maximum ~f W - 1 bits. The function of the CONTROL unit is to  decompose an applil3d input into the 

form expressed in equation 3.  The complexity of this unit is primarily determined by the decomposition 

strategy used to  obtain the form expressed in equation 3.  We first observe that there is no unique way to  

express a given number in the form in equation 3. The optzmal decomposztion strategy for a given number 

ui may be defined as the scheme which minimizes L j  in equation 3. Hence, optimal decomposition of vi 

decomposes it into the smallest possible number of alphabets from a given solution set, thereby resulting 

in the minimum number of sub-computations in equation 4. Furthermore, optimal decomposition rule 

requires partitioning of the set of elements in V into the minimum number of total partitions which begin 

and end with 1's (also called alphabets). This is not only difficult t o  implement, but it may also prove 

to  be computationally expensive thereby nullifying the savings in computation due to  sharing. This is 



because the optimal decomposition rule is the solution to WMSC problem and the so1ut;ion set obtained 

by solving tl-is problem may require searching for "difficult'' patterns in the inputs. Hence, the con~plexity 

of the multiplication problem simply shifts to pattern recognition problem. Therefore, we next consider 

the rules of number decomposition for a simple and effective decomposition scheme as this governs the 

complexity c~f the CONTROL unit. 

A. 1 Decom~~osition Rules 

To decoml?ose the applied input in a way which selects minimal number of add opera.tions, we need a 

strategy which is simple to implement. A practical alternative is to resort to a simpler greedy strategy 

in which the: input is scanned in a given direction starting at  a given point and the l'ongest matching 

alphabet in (5, is identified. Suppose, the scan is performed from the least significant bit (LSB) towards 

the most significant bit (MSB). Then the greedy selection rule consists of two steps. 1) To minimize the 

total number of partitions (alphabets), we select the longest matchirzg alphabet from the solution set (local 

minima), and, 2) Any sequence of consecutive zeros separating two alphabets is discarded. This is later 

corrected by the SHIFT unit. This decomposition rule will be referred to as the greedy decomposition 

(GD) rule. Since two scan directions are possible, we will refer the MSB to LSB scan rule as G D M + ~ ,  

and the LSB to MSB scan rule as G D L + ~ .  

Consider the G D L + M  rule. Each element in V is applied at  the input of the multipl~er. The input is 

scanned froni LSB towards the MSB discarding all zeros it encounters before the first "1". At that point, 

it determines the longest alphabet in the solution set which matches the bits in the input. Again sequence 

of consecutive zeros is discarded before encountering the next "1" after the identified alphabet. Once 

again, the unit determines the longest alphabet in the solution set which matches the input at  this point. 

The process is repeated until the entire input number is decomposed into alphabets frorn the solution 

set. The G D M + ~  rule is implemented similarly with the scan direction reversed. The reader is cautioned 

that although this scheme seems to  dictate a complex search procedure, in reality, the structure of the 

CONTROL for the optimal alphabets for the GD strategy turns out to  be a simple shifter. Figure 5 

shows the basic approach used in the decomposition. The shaded parts of the inputs represent sequence 

of zeros separating alphabets which are discarded during the scan. The number of zeros in these are used 

to form the shift signal to the SHIFT unit to ensure that the sub-computations are formed using the 

correct amount of shifts (mk ' s  in equation 4 ) .  Note that the alphabets are labeled identically in both 

G D L + ~  as well as G D M + ~ ,  even though G D h f + ~  encounters the bits comprising the alphabet in the 

reverse sequence. 

Let us elaborate the structure of the multiplier and rules of decomposition using an example. Let us 

suppose that the best alphabet consists of the set n, = {1,11, 101,111). Then the products 1 . s = s ,  

11 . s ,  101 . s and 111 . s = (1000 - 1) . s can all be formed using three parallel add operations. Hence, 

the bank of IPRECOMPUTERS is simply a bank of three parallel adders. These sub-coinputations with 



Scan direction in GDw, 

MSB LSB 

Scan direction in G4,+ 

I Sequence of zeros 

Fig. 5 .  Decomposition of Input Values into Alphabets. 

the alphabets are computed only once for the next M products. Nest, suppose that we apply an input 

vi = 11101001. In order to uniquely decompose the input, we scan vi in a fixed direction. Let us consider 

using the GIIL+M rule. Then vi is uniquely decomposed in to 11 . 26 + 101 . 23 + 1.2', i.e. the scanner will 

match 1,  followed by 101 which is again followed by 11. The sequence of zeros separating the alphabets 

is simply ignored, however, the number of zeros in the sequence is counted to properly compute the shift 

values of 6,:; and 0 for 11, 101 and 1, respectively. The three sub-computations which inust be selected 

by the MUX are 11 . s ,  101 . s and 1 . s, with the corresponding shift values of 5 , 3  and 0,  respectively. 

The corresponding alphabet set for GDMjL rule are the alphabets {1,11, 101,111]. scanned in the 

opposite dirt:ction, i.e. the set {100,110,101,111). This rule will decompose the input as 11 1 . 25 + 100 . 

2 l +  100.2-'. The main advantage of G D M + ~  appears when we observe that 111 .25+ l00.2'+ l00.2-' = 

((111 . 23+1 -t 1) , 23+0 + 1) . 2-'. We note that the decomposition can be expressed in terms of relative 

shifts of alphabets with respect to each other, while scanning from MSB towards LSB. The computation 

can proceed in the order indicated by the nesting of parenthesis, with each subsequent sub-computation 

providing a :?xed alignment of 3 (i.e. length of the alphabets) plus the number of zeros separating the 

alphabets. I n  contrast, G D L + ~  computes the sub-computations in the reverse direction, and hence, it 

cannot take advantage of this observation. The final shift of -2 is a conceptual aid to clearly see the 

symmetry w ~ t h  the GDL +M rule which assumes zeros leading the MSB. As explained further in section 

VI-A, GDM.+~ rule simplifies the structure of the SHIFT unit. Note that GD multiplication scheme can 

be viewed as: 

r A generalized higher order coded multiplication scheme. Both normal and Booth multiplications can 

be viewed as a special cases of this scheme. 

r A hybrid look-up table based multiplication in which both look-up and computation are performed 

to reduce computation in multiplication. The look-up table is compressed with elements which result 

in minimum number of add operations required to compute the product. Computation is performed 

in adding the sub-computations. 



As shown i r ~  figure 4, the CONTROL-MUX-SHIFT unit can be lumped into a SELECT unit, which 

performs the decomposition, selects appropriate product and yields correct sub-c~mputai~ion by providing 

appropriate amount of shift to  the selected value. The complexity of this unit depends on the selection 

of alphabets in the solution set and the size of the solution set. The delay through the SELECT unit 

appears in series with the ADDER and increases the length of the critical path. Hence, a simpler SELECT 

unit facilitates design of a faster multiplier as well as reduces the power consumption in the overhead. In 

section VI ure discuss in detail the specifics of various multiplier structures for vector scaling operation 

and analyze their performance. We first consider the computation reduction potential using the proposed 

approach. 

We summarize all the implementation constraints discussed in the previous sections to  formulate a 

constrained nlinimization problem. Our objective is to  find a solution alphabet set such that:  

1. The alphabets in the solution set cover all the vertices in G. 

2. The solution set is of minimal size or cardinality. 

3. The total number of add operations in the decompositions of all vertices, .I+, i = 0 , 1 ,  . . . , M - 1,  is 

minimie ed. 

4. The number of alphabets in the solution set is a given power of two. 

5. The applied input vi is scanned for decomposition using GD rule. 

The simplest way to  impose the first condition is to  replace it by the condition that the alphabet "1" 

is always included in the solution set. Clearly, "1" covers all binary numbers and a solution set which 

includes this alphabet is guaranteed to  cover any vector. The second condition imposes a constraint on 

the size of sc~lution set. It is noted that a more accurate constraint would consider the cost of computing 

the alphabets in the solution set rather than its cardinality. However, this cost is annortized over M 

operations and is much less significant than the contribution of the additions of sub-computations. The 

third condition implies that all sub-computations a k  . s are assumed to  be of equal complesity and hence, 

it is enough i,,o consider the cardinality of the solution set. Note that if the size of alphabets in the solution 

set is not constrained, the solution set trivially consists of all the elements in V (i.e. M PRECOMPUTERS 

leading to fastest multiplier). If the total number of add operations are not constrained then the solution 

is trivially the set (1) (i.e. no PRECOMPUTER leading to  the slowest multiplier). The remaining two 

constraints zre imposed to  simplify the implementation of the SELECT unit. The solution alphabet set 

obtained for the constrained minimization problem outlined above will be referred to a:; the constrained 

opt imal  solution alphabet (COSA) set. 



A.  Searchin,g the Solution .Alphabet Set 

We first consider the VVVS and VVFS cases. In both of these cases, the elements in the vector are 

not known tr priori. Hence, a reasonable approach is to perform the minimization over the ensemble of 

all possible data values for a given word-length, W. We use an exhaustive search to -find the solution 

alphabet set. For a given alphabet set size, Q ,  and a given maximum alphabet length, L, each possible 

combination of alphabets is generated and the corresponding average number of add opeirations per input 

value is computed by considering greedy decomposition for each value in the range [0, 2W-1]. Note that 

the results are identical for both G D L + ~  and G D M + ~  rules since we are considering decomposition of 

all possible values for a given word-length. Finally, we select the set which results in minimum number of 

average add operations per input value. 

Selection of Q dictates the size (and complexity) of the MUX. If 1 is a preselected alphabet, there are 

(:I:) possible combinations of remaining Q - 1 alphabets from all possible sets of length L - 1 (note 

that includiiig the alphabet 1, the length becomes L). L determines the complexity of the CONTROL 

in the SELECT unit as it determines the maximum number of bits which must be matched in alphabet 

identification. As this method uses exhaustive search, it gives the optimal solution to the problem of 

minimizatioil of the number of average add operations per input value for an alphabet set of size Q with 

maximum alphabet length L such that 1 is also in t,he solution set. The minimum number of average 

add operations per input value is the optinla1 solution in a statistical sense for a given adaptive filtering 

scenario in which all possible values in the range [O, 2"-'1 are assunled equally probable. That is, the 

solution is optimal if the filter coefficients are assumed to be from a uniform probability ,density function. 

The solution for the FVVS case is simpler. In this case we only consider decompositiorl of the values in 

the given input vector and find the best alphabet set for the known vector. Similar results were obtained for 

both G D L + , ~  and G D L + ~  rules. One may notice that a more elaborate computation shi3ring approaches 

can be devised for this particular case by to further exploit commonality between computations since the 

given vector is fixed. 

3. ,lrumerictal Results on Solution Alphabet Sets 

We now turn our attention to  numerical results. 111 section V-C, we present the solution sets and 

resulting coniputational gains for VVVS and VVFS situations. Section V-D presents resillts these results 

for a numbel- of FIR filters representing the given fixed vectors. 

C. V V V S  and V V F S  Situations 

The optimal solution sets obtained for Q = 2 , 3  and 4 are {1,3),  {1 ,3 ,5 ,7)  and {1,3, E i ,  7,9,11,13, 151, 

respectively. Same solution alphabet set was obtained for all values of L 2 loga(&) + 1 for a given Q.  

We note tha,t the solution alphabet set consists of the set of all odd alphabets in the range [O,2Q-'1 

independent of the value of L. Since even numbers have LSB equal to zero, the zero discarding rule 



ensures that no even number can ever be in the solution alphabet set. Note that the objective function to 

be minimized is the number of average add operations (sub-computations) per input value given a fixed 

number of alphabets in the solution set. If an odd number comprising a few bits is chosen in the solution 

set, the number of sub-computations into which a given random input value is broken iinto, is larger. If 

the input value is of word-length W, the minimum add operations possible with a solution set having 

L = 2 is W/2  sub-computations. Whereas L = 4 can reduce the sub-computations to as small as W/4. 

Hence, this decrease in sub-computations is a linear function of L. By selecting a smal1t:r L ,  we increase 

the maximuim sub-computation linearly. 

On the other hand, if L is small for an alphabet, the probability that a match occurs in the input 

value is larger. The probability of exactly matching a number of length L is equal to  0 . 5 ~ .  Note that 

this function decays exponentially as L increases. Hence, fewer matches occur as L is increased. As L 

is increased, the exponentially decaying probability of a match to  occur is far stronger than the linear 

increase in compression (i.e, the decrease in sub-computation), and hence, it makes intuitive sense that 

the odd numbers with smaller length are selected, irrespective of the maximum allowed length for the 

alphabets. This clearly explains the elements in the solution set. One may verify that the solution set for 

Q = 16 is {1. ,3,5, .  . . , 31) .  This result is extremely useful as it shows the regularity of the structure of 

alphabet set. Hence, the structure of the CONTROL part of the SELECT unit is greatly simplified due 

to  the regula.rity of the solution. 

Figure 6 shows the average number of add operations per input value for various values of Q and W .  

The curves are noted to be linear in the region W > 2(log2Q + 1). Note that log2& + 1 represents the 

maximum number of bits in an alphabet in the solution set. For W < 2(log2Q + I ) ,  the decrease in 

average coml3utation is not proportional due to  the fact that there are not enough numbers in the range 

[ O ,  2" - 11 for the reduction t o  be proportionate. In this region, the lines curve upwards indicating that 

the longer alphabets find less than their share of matches due to a smaller number of available numbers 

in the range of input values. The relative reduction in the number of average add operations per input 

value compa:ied to  usual CSA multiplication is shown in figure 7. In the usual CSA multiplication, W - 1 

add operations are required in a multiplication involving words to  size W .  Therefore, figure 7 shows the 

ratio of the values of figure 6 with corresponding values of W - 1. Consequently, we note that the curves 

are smooth in the region W > 2(log2Q + 1) and show smaller gains in the region W < 2(log2Q + I )  for 

the reason outlined above. 

It is observed from figure 7 that there is a diminishing return in the relative reduction of' average number 

of add opera1;ions as Q is increased. Most gain is obtained when Q is increased from 1 to  2. It is evident 

from the figure that  lesser gains are obtained as Q is further increased. We also note that as Q increases, 

the complexity of the MUX in the select unit also increases and so does the delay through the SELECT 

unit. Hence, an optimum value of Q exists for a given implementation scheme. Further, ;also note that as 

Q increases s,ufficiently for a small W ,  the average number of add operations drops to  zero as all product 



0 4 8 12 16 20 24 
Word-length (W) 

0 4 8 12 16 20 24 
Word-length (W) 

Fig. 6. Average add operations per input value for GD Fig. 7. Relative comparison of the average add opera- 

multiplier .:or various Q and W obtained for COSA tions per input value for the GI) multiplier with a 

sets. CSA multiplier. 

values can be obtained by look-up and shift operations only. Hence, in this region the multiplier can be 

constructed using a single SELECT unit. 

D. F V V S  Sztuat ion 

We now consider the FVVS situation. In this case, one may use the COSA sets described in section 

V-C (i.e. the set of odd integers < Q).  However, since the vector is fixed and known, one can do better 

than the COSA set, which optimizes the average number of add operations in a statistica.1 sense for input 

values assumed to be drawn from a uniform distribution. By average nuinber of add operations, we mean 

the average number of sub-computations per vi required to compute the scaled vector Vs. Since, the most 

interesting application of FVVS situation is non-adaptive filtering, we consider several example FIR filters 

to obtain the relative gains in operation reduction when the best alphabet sets for the given filters are used 

instead of the alphabets in COSA set. These filters include elliptic, Butterworth, Parks-McClellan and 

least squares filters, both band-pass as well as low-pass. Hence, the examples considered span a variety 

of filter lengths and types. The coefficients obtained for these filters were maximal ly  scaled. By maximal 

scaling, we mean that each coefficient, vi, is expressed as v: x 2 - P ,  such that p > 0 and v,! > 2W-2.  Hence, 

the coefficient applied to the input of the inultiplier is L): instead of vi, and scaling ensures that most of the 

MSBs are utj.lized in multiplication. Such scaling operations are routinely used in filter implementations in 

order to reduce the effects of quantizations on the filter performance [8]. Maximal scaling ensures minimal 

quantization error in filtering computations using fixed size integer multiplier units and coarsely mimics 

a floating point type of operation without incurring the complexity of implementing a floating point unit. 

The best alphabet sets for the example filters and the effect of M,  Q ,  L and W on the average reduction 



0 
6 8 10 13 20 28 41 71 119 150 189 250301 

No 01 Input Values (Filter S~ze). M 

Average 

O l - i  3 5 6 

Maximum Alphabet Slze (L) 

Fig. 8. Average add operation per FVVS input nor- Fig. 9. Average add operation per FVVS input nor- 

malized b:y the corresponding value obtained for malized by the corresponding value obtained for 

the COSA set for various example filters. W,  Q the COSA set for various exanlple filters. M, W 

and L lumped, M shown on abscissa. and Q lumped, L shown on abscissa. 

in computation is shown in figures 8 - 11. These results compare the optimal alphabet :Sets for the given 

filter with the COSA sets for various Q (recall that  COSA set depends on Q only.). Since the number of 

parameters varied is large, the results are most effectively summarized by showing the minimum, average 

and maximum relative values of the average add operations per input value with respect to COSA set 

averages. In figure 8 ,  the filter taps are on the abscissa, and the relative gain in average computation over 

COSA set i:. shown on the ordinate. Clearly, the gains decrease as M increases. For :;mall filter sizes, 

relatively large gains are obtained because appropriate choice of alphabets can reduce the cornputation 

to zero! In this case, the multiplier can be constructed by using a single SELECT unit. As M increases, 

the t ap  values start  to mimic numbers drawn from a uniform distribution of random numbers and the 

relative gains over COSA sets diminishes. This is clearly exhibited by the curve displaying the average 

value of the relative gain. We also found t,hat for most examples, COSA sets were the optimal choice 

even for non-adaptive filters. The results indicate that on an average, for small filter sizes, the average 

computation per multiplication improves by a factor of 0.8 over the COSA set averages 

Figure 9 s.nows the results with L on the abscissa. As L is increased, smaller filters can be implemented 

by a single SELECT unit. However, for most filter examples, the relative gains over COSA set averages 

are just nominal as a function of increasing L. Figure 10 shows the effect. of varying MJ on the relative 

reduction in average computation over the COSA set averages. Most gains are obtained for smaller W. 

This figure shows that zero computation filters are filters implemented wit,h 1.t' = 8 only. In these filters, 

M = 6 and 8, as evident from figure 8, and L = 5 , 6  and 7, as shown by figure 9. Further, by table 11, 

these filters have Q = 4 and 8. Hence, it is quite clear that most gain in computation reduction over the 

COSA set average computatioll are obtained for small filters and small word-lengths. As the filter size 



Average m- 
0. I 

8 16 24 0'- 8 
Word-length Size of Solution Alphabet Set 

Fig. 10. Average add operation per FVVS input nor- Fig. 11.  Average add operation per FVVS input nor- 

malized by the corresponding value obtained for malized by the corresponding value obtained for 

the COSP. set for various example filters. M ,  L. the COSA set for various example filters. M, L 

and Q lumped, W shown on abscissa. and W lumped, Q shown on abscissa. 

increases, and/or W increases, the gains become smaller and COSA set yields close to optimum sharing 

even for non-adaptive filters. 

The reader is reminded that the results presented in this sectmion consider maximally scaled filters which 

is the worst case situation. If the coefficients were unsealed, most of the bits in their IMSB part would 

be zeros and significantly lesser computation would be required even for longer filters. This is because 

most non-adaptive filters try to implement a "brick-wall" transfer function, and their values lie along 

a s inx/x function. Hence, the MSB bits rapidly become zeros if they are expressed in sign-magnitude 

form. The niaximally scaled coefficients provide the worst case scenario for the presented computation 

sharing technique, since the entire range of M/ bits is used once the coefficient is scaled. For any scaling 

less than maximal, the gains over usual CSA multiplication would be considerably larger for both COSA 

set, as well ets the optimal solution set for FVVS case. Hence, significantly less sub-~omputat~ions would 

be required (over conventional rrlultiplication scheme, thereby resulting in faster and more efficient filter 

implementation. 

VI .  COMPUTATION SHARING MULTIPLICATION STRUCTURES 

A. GD Multzplzcatzon 

Figure 12 shows the structure of a multiplier using the COSA set. This example shows ail 8-bit multiplier 

and the numbers in parenthesis along the lines indicate the width of the buses. The (;D rule requires 

discarding ally number of leading zeros preceding an alphabet. We will refer to the alphabet separating 

sequence of zeros as trnzllng zeros for G D L , , ~ ~  and leading zeros in the case of GDM,L. Each alphabet 

is identified and extracted, and the corresponding sub-computation added to the p r o d ~ ~ c t .  Since we do 



not know where the boundary of the next alphabet begins, alphabet extraction can only be done in a 

sequential manner and this approach leads to a sequential multiplier. This follows from the fact that with 

the GD rule, parallel identification of alphabets is not easy to implement due to the variable nature of 

the alphabet, boundaries, 

Fig. 12.  Sequential (SAA)  multiplication scheme for Q = 8. 

, . , ' , 
, , 

I 8 

I I 

, , , I I 

, 8 ' , 

, I , &fm I.! j l I., : 
ISHliT - ; : j [8:1) . " 

, , 
, , , , 
, , , , _ '  , 

I I I 

I / , , 
, I 

I ,  

, , I ,  

1 I ,  
8 8 , I I ,  I ,  

I h 
I '  8 4  ' , 
, 8 shft  ' , 
8 ,  

' , 

Consider a G D L + ~  multiplier first. The goal of the CONTROL unit is to discard the trailing zeros 

8 8 , I 

a t  the end of every alphabet in the input value and to identify the longest matching odd number in the 

' , 

range [0, Q ] .  The zeros are discarded by a SHIFT unit which continues to shift the input value as long 

as the leading bit is not a 1. The final output of the shifter is an odd number such that the logzQ + 1 

product 

LSBs represent the desired alphabet. This alphabet can be then used to provide the select signal to the 

8 * 8 I 

MUX. Note that the alphabet is always odd, whereas the MUX select lines take all values in the range 

index 

[ O ,  log2Q]. A simple scheme is to use discard the LSB and use the next logzQ lines as direct inputs to the 

MUX select lines. This is equivalent to divide-by-2 operation which converts the alphabet to the index 

8 I 
8 I , I 

Coefficient : , 8 

1 Bank Of , t 

I PRECOWLTER? SELECT 

of the appropriate look-up entry (i.e, pre-computed sub-computation). Hence, the CONTROL unit is 

no more corr~plex than a simple arithmetic shifter. The amount by which the input value is right shifted 

, ................ ..1 : ................................... < - - ~  .............................. 

SHIFT 

is co~npensat~ed for by the ISHIFT (Inverse SHIFT) unit which uses the same control signals to provide 

' , 
j 

l ADDER 

an identical shift in the opposite direction. After extracting the first alphabet, the SHIFT unit removes 

10gaQ + 1 bi ts from the input value. The remaining value with these bits removed can either be fed-back 

to the input of the same SHIFT unit, or, to another SHIFT unit. The correct value of total number of bits 

removed is provided to the ISHIFT unit so as to ensure the correctness of the operation. This requires 

keeping a track of the total number of bits processed so far before processing the next alphabet. 

The GDM+L multiplier simplifies keeping track of the count of the bits processed and offers a better 

alternative. 'The input value is scanned from MSB to LSB and leading zeros before the f~rs t  alphabet are 

removed. The next log2Q + 1 bits are used to select the correct pre-computed sub-computation. Recall 

that in our convention, the COSA alphabets are identical in G D L + ~  and G D M + ~  since bit reversals are 

assumed implicit. Hence, COSA alphabets { 1 , 3 , 5 , 7 )  in G D n i + ~  mean the alphabets . (4 ,6 ,5 ,7 )  as the 



scan directic'n is reversed. Consequently, 1 and 3 in G D M + ~  for the Q = 4 alphabet set are implemented 

by 4 and 6 ,  respectively. The output of the MUX unit are connected to the rnost significant bits of the 

a d d  unit. The ISHIFT unit reverses the shift operation done by SHIFT unit by performing a right shift 

of the partial accumulated result by the number of zeros discarded. The partial resul~; always fills the 

MSB side of' the product bits, and, subsequent operations move bits towards right, aligning the partial 

result with the next sub-computation. In this configuration, the ISHIFT unit appears at the output of 

the ACCUMULATE unit and subsequent sub-computations are aligned by right-shift operations. As the 

product bits are computed, each subsequent sub-coinputation shifts the product bits ir-1 the ACCUMU- 

LATE unit by log2Q - 1 + z j  bits, where z j  is the number of leading zeros in jth sub-computation. The 

amount log2& - 1 can be added to z j  by re-assigning the control lines such that the .value z j  on shift 

control lines results in a shift by log2Q - 1 + z j  bits. 

The relative speed advantage of the GD multiplier over a carry-save array multiplier will be called 

de lay  e f i c i e i z cy .  For the G D L + ~  multiplier, it is given as ~ G D , L + M  = T ~ ~ ~ / T ~ ~ , ~ + ~  where TCSA and 

TGD,L+M are delays through the CSA and G D L + ~  multipliers, respectively. The delay efficiency for 

the G D M + L  multiplier is similarly defined. The delay efficiency is easily computed b,y accounting for 

the driver fan-outs, loading effects for the given SELECT unit structure. We considered pass-gate based 

SHIFT, MUX and ISHIFT units and considered the loading on appropriate drivers to obtain the delay 

efficiency cul-ves shown in figure 13. The figure shows the delay efficiency obtained for the GD multiplier 

assuming the following normalized parameter values: TINV = T~~ = 1, T n a n d  = 1.5, T H A  == 2 and T F A  = 3, 

where T I N V ,  T ~ ~ ,  ~ ~ ~ ~ d ,  T H A a n d T F A  represent the delay through an inverter, pass-gate, nand gate, half- 

adder and full-adders, respectively. We observe that most computational advantage due to sharing is lost 

in the sequential scheme due to the recurring T S E L  in the critical path for every sub-computation. Hence, 

the alphabet search must be performed in a parallel fashion such that the search does not severely degrade 

the computational advantage. Figure 13 shows that despite the recurring T ~ E L  delay, speed advantage of 

about 25% can be achieved for the single-stage SHIFT unit. Further, the delay efficiency decreases as W 

increases due: to iricreased drive requirements. In the case of logarithmic shifter, the oterheads and the 

recurring T S ~ ~ L  leads to a delay efficiency which is less than l! Clearly, we need to investigate alternative 

structures which modify the decoding rule such that alphabets can be searched in parallel. The simplest 

way to achieve that is to remove the condition of variable alphabet boundaries. This is explored in the 

next section. 

B. F ixed  S i z e  Look- up  Mul tzp l icatzon 

The major draw-back of the GD multiplication is the variability of alphabet partitions. Consequently, 

it is not possible to  construct a parallel multiplier to speed up computation. If the alphabet boundaries 

can be fixed, one can use parallel SELECT units to search for matching alphabets starting from known 

positions, thereby providing the option of simpler multiplier. Hence, alternative decornposition rule is 



Fig. 13. GD nlultiplier delay efficiency for various W and Q with (a) Single-stage SHIFT unit, (b) Logarithmic SHIFT unit. 

needed to  er;.able parallel search for alphabets in the input value. 

One such rule is a fized szze look-up (FSL) rule in which we only discard a fixed maximum number 

of trailing zeros. Each SELECT unit considers a maximum of L = l o g z Q  + 1 bits in identification 

of the alpha.bet. Hence, the input value is decomposed into [ W / L l  parts, each of which is processed 

independently. In a parallel multiplication scheme, each of these [ W / L l  parts is applied to  a separate 

SELECT unit as shown in figure 14. The SHIFT unit must only provide a maximum shift of L - 1 

bits since a t  most: we could encounter L - 1 leading zeros before the first alphabet. The leading zeros 

are simply discarded and the resulting right-shifted number is used to  generate the index  value for the 

sub-computation, similar to the GD multiplier, by shifting the number once to  the right. The ISHIFT 

silllply inverses the operation performed by the SHIFT by providing an opposite shift of exactly the same 

amount using the same shift control values. Its complexity is identical t o  the complexity of the SHIFT 

unit. 

The upper SELECT unit generates the product of L LSB bits of the input value with the scalar, s. 

The lower SELECT unit produces the product of next L bits with s. Hence, a shift of L bits is provided 

using interconnect wiring when feeding these two sub-computations to  the ADDER. This shift operation 

does not increase any computation overhead. This scheme require [ W / L l  - 1 add operations independent 

of the input value. In comparison, the usual parallel multiplication in an array fashion requires W - 1 

computations. Hence, the FSL rule provides a reduction in average add operations per input value by a 

factor of ([P;/ILl - l ) / ( W  - 1) which is its delay efficiency. The example in figure 14 considers both W 

and Q equal to  8. Hence, L = 4 and W / L  - 1 = 1 add operations are needed. This scheme reduces the 

average computation by a factor of 7. We note from figure 6 that this case requires no xzdd computation 

in the GD rrlultiplier and implements multiplication through the use of a single SELECT unit. 

The advantage of removing recurring T ~ E L  delay in the sub-computations is clearly exhibited in figure 

15. which sh3w FSL multipliers constructed using a single stage and l o g z Q  stage SHIFT units, respectively. 



Fig. 15. FSL inultiplier delay efficiency for various W and Q with (a) Single-stage SELECT unit, (b) logzQ-stage SELECT 

unit. 

The results clearly indicate that 2-3 times computation speed-up is easily achievable using the FSL scheme. 

Further gains may be achieved by considering more elaborate methods of parallel alphabet search. 

A close observation of the array type FSL multiplier shows that the maximum of the delays through the 

first two SELECT units occur on the critical path.  Hence, it must be kept small. As ure progress down 

the array, the latency available to the SELECT units increases and one may use a higher Q SELECT 

unit in subsequent subcomputations. This is shown in figure 16 which shows a 14 x 14 in (a) and a 

16 x 16 multiplier in (b),  constructed using SELECT units of increasing alphabet size. Clearly, if the 

delay through the third SELECT unit can be made equal to  the sum of the delays t,hrough the first 

SELECT unit and the half-adder, one can significantly reduce the computation further. This technique of 



I*. 

mriTinai l l l  11, 

(a) 

Fig. 16. Po'jsible configurations for (a) 14 x 14, and (b) 16 x 16 multipliers using parallel FSL multiplication schemes. 

balancing the path delays using tapering of SELECT units is a well known approach used in logic synthesis. 

The ideal ccmputation gains shown in figure 7 ignore T ~ E L  which increases with increasing values of Q 

and W. However,. they can provide a rough base-line for evaluating the performance of a decoding rule 

and its implementation. 

In order to verify the computational advantage of the proposed FSL multiplication scheme, we imple- 

mented an 8 x 8 bit array multiplier using an alphabet set size Q = 8 and L = 4 in 0 . 6 ~  CMOS technology. 

A 3-stage SHIFT unit was employed in the multiplier. We also implemented a CS arra.y multiplier and 

compared the delay and power of the two schemes using analog simulation. The proposed multiplier had 

a delay efficiency of 1.85 and it consumed 1.9 times more power than the CSA multiplier. Usi~ig voltage 

scaling, one could reduce the power dissipation of the proposed multiplier by a factor of approximately 

0.29,  thereby, resulting in a power advantage over the normal CSA multiplier by 44%. We observe that 

these gains are mainly dependent on the choice of Q and L and the delay T ~ E L , Q  and various trade-offs 

exist as these selections are changed. Hence, a carefully designed SELECT unit greatly improves the 

relative advantage of the proposed scheme. 

The computational advantage of using the GD multiplier as shown in figure 7 ignores the delay through 

the SELECT unit as t,he lookup of pre-computed values are riot considered as "computations". The 

actual advantage of t,he proposed computation sharing multiplication is dependent on implementation as 

well as the circuit style used. The multiplication scheme presented here must deal with relatively larger 

fan-outs and a technology which is relatively insensitive to larger fanout will yield gains that are closer 

t o  the ones 3hown in figure 7. A close observation of the units shown in the example implementations 

shown in this paper shows that these implenlentations favor domino CMOS circuit style. It is further 



noted that the FSL multiplier can also be pipelined. Hence, the computational advantage of using a 

computation. sharing multiplication can be further improved by considering alternative circuit styles and 

technologies Additionally, the proposed schemes also give an opportunity to explore further computation 

sharing by considering more intricate inter-relationships between the elements of given vectors by adding 

a small storage overhead. Hence, the proposed schemes offer more flexibility in reducing computational 

redundancy in a given DSP algorithm implementation. 

VII.  CONCLUSION 

We present a multiplication approach which specifically targets reduction of redundanl; computation in 

common digital signal processing (DSP) tasks such as filtering and matrix multiplication. We showed that 

such tasks can be expressed as multiplication of vectors by scalars and by sharing computation in such 

vector scaling operations, the execution time of such tasks can be reduced. We presented computation 

sharing multiplication schemes which considerably reduce redundant computation by decomposing the 

vectors in a manner which results in maximal computation sharing, thereby, resulting in a faster and 

potentially low-power implementation. Two decomposition approaches were presented. First, based on 

a greedy decomposition, and, the second, based on a fixed-size lookup rule. It was shown that the delay 

efficiency of the proposed multipliers is only limited by the delay through the SELECT unit. Analysis 

of the proposed implementations based on FSL rule show the speed-up by a factor of up to 3. This is 

confirmed by analog simulation of an example multiplier which yields a speed advantage by a factor of 

about 1.85 over a conventional carry save array multiplier and a power disadvantage of 1.9. Using voltage 

scaling, we could reduce the power dissipation by a factor of 0.29, thereby, obtaining 44% reduction 

in power over a CSA multiplier. Hence, the ideas presented in this paper can assist design of DSP 

algorithms and their implementations for high-speed applications. Alternatively, using voltage scaling, 

one can significantly reduce the power consumption of such applications for any desired performance. 

REFERENCES 

[I]  K. Muhaminad and  K .  Roy, "Very Low-Complexity Digital Filters Based On Computat ional  Redundancy Reduction," 

Submitted to I E E E  Transactions on V L S I  systems. 

[2] J .  M. Rabaey,  "Digital Integrated Circuits: A Design Perspective," Prentice Hall, New Jersey, 1996. 

[3] N.  H .  E. Weste a n d  K .  Eshraghian. "Principles of CMOS VLSI Design: A Systems Perspective," 2nd Edition, Addison 

Wesley, 196'4. 

[4] E. E. Swart.zlander, "Computer  Arithmetic," IEEE Computer Society Press, 1990. 

[5] S.  E. McQuillan and  J .  V .  McCanny, "A Systematic Methodology for the Design of High Perf0rmanc.e Recursive Digital 

Filters," I L E E  Trans. on Computers, Vol. 44, No. 8, pp. 971-982, Aug. 1995. 

[6] N.  Sankarayya, K .  Roy, a n d  D. Bhattacharya,  "Algorithms for low power and  high speed F I R  filter realization using 

differential coefficients," I E E E  Trans. Circuits and Systems,  Vol. 44, No. 6, pp.  488-497, Jun .  1997. 

[7] T .  H. Cormen,  C. E. Leiserson and  R .  L. Rivest, "Introduction t o  Algorithms," T h e  M I T  Press, 1990. 

[8] E. Cooper,  "Minimizing Quantizat ion Effects Using the  TMS320 Disgital Signal Processor Family:" :1pplication Report, 

http://wwu.ti.com/sc/docs/psheets/abstract/apps/spra035.htm, Texas Instruments,  1994. 


	Purdue University
	Purdue e-Pubs
	3-1-1999

	A Computational Redundancy Reduction Approach for High performaice and Low Power DSP Algorithm Implementation
	Khurram Muhammad
	Kaushik Roy


