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Abstract. We describe an experimental study of pruning methods for 
decision tree classifiers in two learning situations: minimizing loss and 
probability estimation. In addition to the two most common methods for 
error minimization, CART'S cost-complexity pruning and C4.5'~ error- 
based pruning, we study the extension of cost-complexity pruning to 
loss and two pruning variants based on Laplace corrections. We perform 
an empirical comparison of these methods and evaluate them with re- 
spect to the following three criteria: loss, mean-squared-error (MSE), and 
log-loss. We provide a bias-variance decomposition of the MSE to show 
how pruning affects the bias and variance. We found that applying the 
Laplace correction to estimate the probability distributions at the leaves 
was beneficial to all pruning methods, both for loss minimization and 
for estimating probabilities. Unlike in error minimizat,ion, and somewhat 
surprisingly, performing no pruning led to results that were on par with 
other methods in ternis of the evaluation criteria. The main advantage 
of pruning was in the reduction of the decision tree size, sometimes by 
a factor of 10. While no method dominated others on all datasets, even 
for the same domain different pruning mechanisms are better for dif- 
ferent loss matrices. We show this last result using Receiver Operating 
Characteristics (ROC) curves. 



1 Pruning Decision Trees 

Decision trees are a widely used symbolic modeling technique for classification 
tasks in machine learning. The most common approach to constructing decision 
tree classifiers is to grow a full tree and prune it back. Pruning is desirable be- 
cause the tree that is grown may overfit the data by inferring more structure than 
is justified by the training set. Specifically, if there are no conflicting instances, 
the training set error of a fully built tree is zero, while the true error is likely to  
be larger. To combat this overfitting problem, the tree is pruned back with the 
goal of identifying the tree with the lowest error rate on previously unobserved 
instances, breaking ties in favor of smaller trees (Breiman, Friedman, 0l:;hen & 
Stone 1984, Quinlan 1993). 

Several pruning methods have been introduced in the literature, including 
cost-complexity pruning (Breiman et al. 1984), reduced error pruning artd pes- 
simistic pruning (Quinlan 1987), error-based pruning (Quinlan 1993), penalty 
pruning (Mansour 1997), and MDL pruning (Quinlan & Rivest 1989, IMehta, 
Rissanen & Agrawal 1995, Wallace & Patrick 1993). Esposito, Malerba & Se- 
meraro (1995a, 19956) have compared several of these pruning algorithms for 
error minimization. Oates & Jensen (1997) showed that most pruning algorithms 
create trees that are larger than necessary if error minimization is the evaluation 
criterion. 

Our objective in this paper is different than the above-mentioned studies. 
Instead of pruning to minimize error, we aim to study pruning algorithrr~s with 
two related goals: loss minimization and probability estimation. Historically, 
most pruning algorithms have been developed to minimize the expected error 
rate of the decision tree, assuming that classification errors have the same unit 
cost. However in many practical applications one has a loss matrix associated 
with classification errors (Turney 1997, Fawcett & Provost 1996, Kubat, Holte 
& Matwin 1997, Danyluk & Provost 1993). In such cases, it may be desirable to 
prune the tree with respect to  the loss matrzx or to  prune in order to optimize 
the accuracy of a probability distribution given for each instance. A probability 
distribution may be used to  adjust the prediction to  minimize the expected 
loss or to  supply a confidence level associated with the prediction; in addition, 
a probability distribution may also be used to  generate a lift curve (Bcsrry & 
Linoff 1997). 

Pruning for loss minimization or for probability estimation can lead to differ- 
ent pruning behavior than does pruning for error minimization. Figure 1 (left) 
shows an example where the subtree should be pruned by error-minimization 
algorithms because the number of errors stays the same (51100) if the subtree is 
pruned t o  a leaf. If the problem has an associated loss matrix that specifies that 
the cost of misclassifying someone who is sick as healthy is ten times as costly 
as classifying someone who is healthy as sick, then we don't want the pruning 
algorithm to prune this subtree. For this loss matrix, pruning the tree leads to 
a loss of 50, whereas retaining the tree leads to a loss of 5 (the left hand leaf 
would classify instances as sick to minimize the expected loss). Figure 1 (right) 
illustrates the reverse situation: error-based pruning would retain the subtree, 

'3s ma- whereas cost-based pruning would prune the subtree. Given the same lo., 



Fig. 1. The left figure shows a tree that should be pruned by error-minimization algo- 
rithms (pruning does not change the number of errors) but not by loss-minimization 
algorithms with a 10 to 1 loss for classifying sick as healthy against vice-versa. The 
right tree shows the opposite situation where error minimization algorithms should not 
prune, yet loss minimization with a 10 to 1 loss should prune since both leaves should 
be labeled "sick." 

trix as the first example, each of the leaf nodes would classify an example as sick 
and a pruning algorithm that minimizes loss should collapse them (if pruning 
attempts to minimize loss then if all children are labeled the same, they should 
be pruned.) 

These examples illustrate that it is of crit.ical importance that the pruning 
criterion be based on the overall learning task evaluation criterion. In this pa- 
per, we investigate the behavior of several pruning algorithms. In addiiiion to  
the two most common met.hods for error minimization, cost-complexity prun- 
ing (Breiman et al. 1984) and error-based pruning (Quinlan 1993), we study 
the extension of cost-complexity pruning to loss and two pruning variants based 
on Laplace corrections (Cestnik 1990, Good 1965). We perform an empirical 
comparison of these met.hods and evaluate them with respect to  the following 
criteria: loss under two matrices, average mean-squared-error (MSE), and av- 
erage log-loss. While it is expected that no method dominates anot.her on all 
problems, we found that adjusting the probability distribut.ions at  the leaves 
using Laplace was beneficial to  all methods. While no method dominated others 
on all datasets, even for the same domain different pruning mechanisms are bet- 
ter for different loss matrices. We show this last result using Receiver Operating 
Characteristics (ROC) curves (Provost & Fawcett 1997). 

2 The Pruning Algorithms and Evaluation Criteria 

2.1 Probability Estimation and Loss Minimization at the Leaves 

A decision tree can be used to estimate a probability distribution on the label 
values rather than to  make a single prediction. Such trees are sometimes called 
class probability trees (Breiman et al. 1984). Several methods have been proposed 
to predict class distributions, including frequency  count.^, Laplace correc:tions, 
and smoothing (Breiman et al. 1984, Buntine 1992, Oliver & Hand 1995). In our 
experiments, we use the former two methods. 

The frequency-counts met.hod simply predicts a distribution based on the 
counts at  the leaf the test instance falls into. Frequency counts are sometimes 



unreliable because the tree was built to  separate the classes and the prol~ability 
estimates tend to be extreme at the leaves (e.g., zero probabilities). 

The Laplace correction method biases the probability towards a uniform dis- 
tribution. Specifically, if a node has m instances, c of which are from .s given 
class, in a k-class problem, the probability assigned to the class is (c+ l ) / ( m +  k )  
(Good 1965: Cestnik 1990). 

Given a probability distribution and a loss matrix, it is simple to  compute the 
class with the expected minimal lass by multiplying the probability distribution 
vector by the loss matrix. When misclassification costs are equal, minimizing 
the expected loss is equivalent to  choosing the majority class (ties can be broken 
arbitrarily). 

2.2 Pruning for Error and Loss Minimization 

Most pruning algorithms perform a post-order traversal of the tree, replacing 
a subtree by a single leaf node when the estimated error of the leaf replacing 
the subtree is lower than that of the subtree. The crux of the problem is to find 
an honest estimate of error (Breiman et al. 1934), which is defined as one that 
is not overly optimistic for a tree that was built to minimize errors in the first 
place. The resubstitution error (error rate on the training set) does not provide 
a suitable estimate because a leaf-node replacing a subtree will never haw fewer 
errors on the training set than the subtree. The two most commonly used pruning 
algorithms for error minimization are error-based pruning (Quinlan 1993) and 
cost-complexity pruning (Breiman et al. 1984). 

The error-based pruning algorithm used in C4.5 estimates the error of a leaf 
by computing a statistical confidence interval of the resubstitution error (error 
on the training set for the leaf) assuming an independent binomial model and 
selecting the upper bound of the confidence interval. The width of the confidence 
interval is a tunable parameter of the algorithm. The estimated error for a subtree 
is the sum of the errors for the leaves underneath it .  Because leaves haw fewer 
instances than their parents, their confidence interval is wider, possibly leading 
to larger estimated errors, hence they may be pruned. 

We were unable to  generalize C 4 . 5 ' ~  error-based pruning based on conlidence 
intervals to take into account losses. The naive idea of computing a confidence 
interval for each probability and computing the losses based on the upper bound 
of the interval for each class yields a distribution that does not add to one. 
Experimental results we made on some variants (e.g., normalizing the probabil- 
ities) did not perform well. Instead, we decided to use a Laplace-based pruning 
method. 

The Laplace-based pruning method we introduce here has a similar niotiva- 
tion to C 4 . 5 ' ~  error-based pruning. The leaf distributions based on the Laplace 
correction described above are computed. This correction makes the distribu- 
tion at the leaves more uniform and less extreme. Given a node, we can compute 
the expected loss using the loss matrix. The expected loss of a subtree is the 
expected loss of the leaves. Figure 2 (left) shows an example of Laplace-based 
pruning with a 10 to 1 loss matrix. In this case each of the children predicts sick 
in order to minimize the expected loss. To see why, consider the right-hand child 



Fig. 2. Example of Laplace-based pruning. On the left is an example where the parent 
has a lower loss than its children so the subtree would be pruned to a leaf. On the 
right is an example of an unintuitive behavior of Laplace-based pruning. The parent 
would classify instances as healthy while both children will classify them as sick. For 
each node, the expected loss for each class is computed by multiplying the nu~nber of 
instances at  the node by the estimated probability for the class times the loss given 
the leaf's prediction. 

for which we have 20 healthy and 10 sick instances. After the Laplace correction, 
we have the distribution 21/32 = 0.6562 for class healthy and 11/32 = ,3438 for 
class sick. If the loss from misclassifying a healthy case as sick is 1 and the cost 
of misclassifying sick as healthy is 10, then the expected loss for an instance of 
class healthy is 0.6562, whereas for class sick it is 3.438. Because the parent has 
a lower loss than the sum of losses of the children (20.0 versus 20.52), the subtree 
will be pruned. 

When coupled with loss matrices, the Laplace correction sometimes leads to  
unintuitive pruning behavior. Consider Figure 2 (right). Each of the leaves would 
predict sick given the 10 to  1 loss matrix described above. The expected loss of 
the children is 16.2 each when they predict sick, whereas the expected loss of 
the parent is 28.44 when it predicts healthy. Hence, unlike error-based pruning, 
if all children have the same label, the parent may predict a different labd. 

The cost-complexity-pruning (CCP) algorithm used in CART penalizes the 
estimated error based on the subtree size. Specifically, the error estimate assigned 
to  a subtree is the resubstitution error plus a factor cr times the subtree size. 
An efficient search algorithm can be used to  compute all the distinct cr values 
that change the tree size and the parameter is chosen to  minimize the errclr on a 
holdout sample or using cross-validation. Once the optimal value of cr is found, 
the entire training set is used to grow the tree and it is pruned using cr prekiously 
found. In our experiments, we have used the holdout method, holding back 20% 
of the training set to  estimate the best cr parameter. 

Cost complexity pruning extends naturally to loss matrices. Instead clf esti- 
mating the error of a subtree, we estimate its loss (or cost), using the resubstitu- 
tion loss and penalizing by the size of the tree times the cr factor as in error- based 
CCP. 

2.3 Pruning with Respect to Probability Estimates 

One possible objective for inducing a decision tree is to use it as a probability 
tree, namely, to predict probability distributions. Such a tree has several ad- 



vantages: it can give a confidence level for its predictions; it can be used with 
different loss matrices, computing the best label for each instance using the prob- 
ability distribution and the loss matrix at hand; and it can be used to generate 
a lift curve (Berry & Linoff 1997). 

The KL-pruning that we introduce prunes only if the distribution of a node 
and its children are similar. Specifically, the method is based on the Kullback- 
Leibler (KL) distance (Cover & Thomas 1991) between the parent distri~bution 
and its children. For each node, we estimate the class distribution using the 
Laplace correction detailed in Section 2.1. If q, is the parent's probability for 
class c and pic is the ith child's probability for class c, the KL distance for child i 
is calculated by distancei = Cc picEog(pic/qc). This gives us a distance value for 
each child node. We then compute a weighted average distance of the c clnildren 
as 

C 

distance = x distancei * mi/m 

where m is the number of instances observed at  the parent node and m, is the 
number of instances observed at  child node i. If the average distance is less than a 
given threshold factor (parameter of the algorithm), then the subtree is pruned. 
Because the Laplace correction is used, the probabilities are never zero (alt:,hough 
this method is still valid if frequency counts are used because a zero probability 
for a class in the parent forces a zero probability for that same class in the child). 
In these experiments, we set the threshold to 0.01 based on initial experiments. 
In other experiments, we have noted that pruning performance can be ra,dically 
improved when this parameter is customized to the particular dataset. However, 
we did not attempt to fine-tune this parameter for the specific datasets used in 
this paper. 

2.4 Evaluation Criteria 

For any given learning task there is a domain-specified evaluation criterion. The 
majority of reported research in decision trees has assumed that the learning 
evaluation criterion is to minimize the expected error of the classifier. 

In cases where a loss matrix is specified, the average loss for a testm-set is 
the average of the losses over the instances in the test set as determined by 
the loss matrix. Algorithms that make probabilistic distributions can easily be 
generalized to  take into account the loss matrix by multiplying the two and 
predicting the class with the smallest loss. 

In many practical applications, it is important not only to classify each in- 
stance correctly or to  minimize loss, but to also give a probability distribution on 
the classes. To measure the error between the true probability distribution and 
the predicted distribution, the mean-squared error (MSE) can be used (Breiman 
et al. 1984, Definition 4.18). The MSE is computed as the sum of the scluared 
differences between the probability p assigned by the classifier to each class c 
and the true probability distribution f:  

MSE = x ( f ( c )  - ~ ( c ) ) '  



Because test-sets supplied in practice have a single label per instance, one class 
has probability 100% and the others have zero. The MSE is therefore bounded 
between zero and two (Kohavi & Wolpert 1996), so in this paper we use half the 
MSE as a "normalized MSE" in so that it is a number between 0% and 100%. 
A classifier that makes a single prediction is viewed as assigning a probability of 
one t o  the predicted class and zero t o  the other classes; under those conditions, 
the average normalized MSE is the same as the classification error. 

A different measure of probability estimates is log-loss, which is sorr~etimes 
claimed to be a natural measure of the goodness of probability estimates (Elernardo 
& Smith 1993, Mitchell 1997). The loss assigned to a probability distribution p 
for an instance, whose true probability distribution is f ,  is the weighted sum of 
minus the log of the probability p assigned by the classifier to  class c, where the 
weighting is done by the probability of class c: 

log-loss = - ) f (c) log, p(c)  
C 

Because test-sets supplied in practice have a single label per instance, the log- 
loss of an instance is the log of the probability assigned to that instance. PLS with 
MSE, the average log-loss is the average of the loss over the test-set. Log-loss 
can only be computed for classifiers that never predict a zero probability for the 
correct label (or else the penalty is infinite). 

3 A Comparison of Pruning Algorithms 

3.1 Experimental Methodology 

Our goal in designing these experiments was to  understand which pruning meth- 
ods work well when the decision tree classifier is evaluated on loss given a loss 
matrix, and which methods are also capable of providing good probability es- 
timates. The basic decision tree growing algorithm is implemented in ;LfLC++ 
(Kohavi, Sommerfield & Dougherty 1996) and called MC4 (MLC++ C4.5). It is 
a Top-Down Decision Tree (TDDT) induction algorithm very similar to C4.5. 
The algorithm grows the decision tree following the standard methodology of 
choosing the best attribute according to the gain-ratio evaluation criterion and 
stopping when a node has fewer than two instances. The trees are pruned using 
the following pruning algorithms: 

eb-fr Error-based pruning (C4.5) with probabilities estimated using 
frequency counts. 

eb-lc Error-based pruning with probabilities estimated using the Laplace 
correction. 

np-lc No-pruning with probabilities estimated using the Laplace correction. 
lp Laplace-based pruning with probabilities estimated using the Laplace 

correction. 
ccp-lc Cost-complexity pruning based on loss with probabilities estimated 

using the Laplace correction. 
kl-lc KL pruning with probabilities estimated using the Laplace correction. 



Table 1. Summary of the Dataset Characteristics 

In our initial experiments, Laplace correction outperformed frequency counts 
in all variants. Therefore, excluding the basic method of error-based-pruning, all 
other pruning methods were run with the Laplace correction both for computing 
the class that. will minimize the expected loss and for returning a probability 
distribution. 

To choose the datasets, we decided on the following desiderata: 

Dataset 
adult 
breast 
chess 
crx 
german 
pima 
road 
satimage 
shuttle 
vehicle 

1. Datasets should be two-class to  make the evaluation easier and to al lol~ us to 
show ROC curves. This desideratum was hard to  satisfy and we resorted to  
converting several multi-class problems into two-class problems by choosing 
the least prevalent class as the goal class. 

2. Datasets should not have too many unknowns. To avoid another factor in 
this evaluation, we removed all unknown instances from the files. 

3. The standard error of the estimated loss should be small. This was very im- 
portant because with loss matrices the standard deviations of the estimates 
can be large. We therefore decided to require at least 500 instances and train 
on only 25% of t.he data,  leaving the remaining instances for testing. 

Ten datasets, shown in Table 1 with their characteristics, were chosen from the 
UCI repository (Merz & Murphy 1997). For all files we trained on 25% of the 
data and tested on 75% of the data,  repeating the process 10 times. 

For each dataset we cornpared performance of the pruning algorithms on two 
different loss matrices, which respectively set a loss of 10 and 100 for misclassi- 
fying the less frequent of the two classes. This was done to simulate real-world 
scenarios in which t,he less frequent class is the important class. Experiments 
were also done with the losses reversed, with similar conclusions to  those shown 
below. 

The results are displayed as graphs showing the average error/loss for the 
ten files as bars using the scale on the left, and the average relative error/loss as 
X-symbols with the scale 011 the right. The relative errors/losses are comput,ed as 
the ratio between the error ofthe pruning method and eb-fr, our baseline mlzthod. 
These ratios are then averaged across the ten datasets to  create summary graphs. 

Number of 
Instances 

45222 
683 

3196 
653 

1000 
768 

2021 
6435 

58000 
846 

Attributes 
Cont/Nomin 

618 
1010 
0136 

619 
7/13 
810 
710 

3610 

910 
1810 

Name of 
God Class 
> 501i 
malignant 
nowin 

yes 
bad 
1 
DIRT 
4 
6 
4 

Percent of 
Goal Class 

24.78 
34.99 
47.78 
45.33 
30.00 
34.90 
0.45 
9.73 
0.02 

23.52 



In cases for which the errors/losses are small, the ratio is a better indicator of 
performance. 

3.2 Performance Criterion: Minimizing Expected Loss 

Our first set of experiments was designed to evaluate the performance of the 
various pruning methods when loss matrices are given. We wanted to test the 
following hypotheses: 

1. Laplace correction for estimating probabilities at the leaves leads tcb lower 
loss than frequency counts. 

2. Considering the loss matrix during pruning leads to  lower loss than pruning 
based on errors. 

3. Building a tree for optimizing probabilities will also lead to improved per- 
formance when you have loss matrices (although the tree doesn't change 
according to the loss matrix, loss performance can be better). 

The average losses and average relative losses for the two loss matrices are 
shown in Figures 3 and 4. The following observations can be made: 

1. Error-based pruning with frequency counts performs the worst. 
2. Laplace-based pruning (lp) performs the best on the 10 to 1 loss matrix and 

is comparable to the best on the 100 to 1 loss matrix. 
3. No-pruning (np-lc) performs surprisingly well on both loss matrices! 
4. Cost-complexity pruning (ccp-lc) is slightly inferior to  nepruning, but better 

than K L  and error-based pruning (eb) on the 100 to 1 loss matrix. 
5. Tree sizes were radically different. The average tree sizes for the 10 to  1 loss 

matrix are: ccp(47), eb(118), k1(203), 1p(382), and np(670). Cost-complexity 
pruning was by far the smallest, which confirms the observation by 0,ztes & 
Jensen (1997) for error minimization. 

Our hypothesis that Laplace correction for estimating probabilities at the 
leaves outperforms frequency counts was confirmed. It was also confirmed for 
the np, ccp and kl pruning methods when they were run with frequency counts 
(results not shown). Interestingly, no-pruning performed very well, suggesting 
that when we have loss matrices and when tree size is not important, pruning 
need not be done. This result differs from error minimization, where pi:uning 
was consistently shown to help. 

Pruning based on loss matrices performed better than pruning based on 
error for frequency counts for all methods. This result (for frequency counts) 
has been observed previously for reduced error/cost pruning (Draper, Brociley & 
Utgoff 1994). When the Laplace correction was used, pruning with loss matrices 
performed better than error-based pruning (eb-lc) for the 100:l (ccp-lc, 111) but 
there was no significant difference for the 10:l loss matrix. We were unable to 
confirm our third hypothesis because our current implementation of kl-lc and 
our base method eb-lc have similar performance. 



Average loss with 10:l loss ratio 

0.4 
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0.2 0.4 X Rela1:ive 

0.1 

0.0 

Fig. 3. Losses for the different algorithms for the 10 to 1 loss matrix. Two selected 
datasets with significant differences are shown on the top, followed by a graph of the 
average errors and the average of the relative errors below. 
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Fig. 4. Losses for the different algorithms for the 100 to 1 loss matrix. 
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Fig. 5. Bias plus variance decomposition of the MSE. 

3.3 Performance Task: Predicting Probabilities 

Our second set of experiments was designed to evaluate the performance of the 
various pruning methods when evaluated on the mean-squared-errors (hISEs). 
We wanted to  test the following hypotheses: 

1. Laplace correction for estimating probabilities at the leaves leads to lower 
MSE than frequency counts. 

2.  Pruning based on probability estimates can outperform error-based PI-uning 
because it might reduce variance (as compared to other pruning meiihods) 
but without increasing the bias as much as error-based pruning that i:; opti- 
mizing a different crit.erion (error). 

For each pruning method, applying the Laplace correction improved perfor- 
mance on average. Only in a few cases did Laplace correction lead to a lnigher 
MSE than frequency counts. 

To provide a deeper understanding of the MSE results, we ran a set of ex- 
periments using the bias-variance decomposition of the MSE (Geman, Bienen- 
stock & Doursat 1992). The bias-variance decomposition is a tool for analyzing 
learning scenarios that. have a quadratic loss function. Given a fixed target. and 
training set size, the decomposition breaks expected error into the sum of't.hree 



non-negative quantities: 1) intrinsic target noise, which is a lower bound on the 
expected error of any learning algorithm; 2) squared bias, which measures how 
closely the learning algorithm's average guess matches the target; and 2) vari- 
ance, which measures how rnuch the learning algorithm's guess bounces (zround 
for the different training sets of the given size. 

To estimate the bias and variance, we used a twestage sampling procedure 
detailed in Kohavi & Wolpert (1996). After splitting the data  into a training 
and test-set (half and half), we sample 50% of the training data  repeatedly 
(without replacement) to estimate the bias and variance on the test-set. This 
yields training sets that are 25% of the original size, the same size used in the 
experiments detailed in Section 3.2. The first split was repeated three times and 
the second-level sampling was done 10 times. Because in practice, it is impossible 
to estimate the intrinsic noise, the bias term includes the intrinsic noise. 

The results of the bias-variance analysis are shown in Figure 5. The following 
observations can be made: 

1. Cost-complexity pruning has the smallest variance, but also the highest bias. 
Overall, it outperformed the other pruning methods for the MSE criterion. 
The largest variance occurred for error-based pruning with frequency counts 
and nepruning with the Laplace correction. 

2. The MSE was similar for all Laplace correction algorithms. 
3. The average tree sizes were ccp(26.9), eb(117.8), k1(203.3), l ~ ( 2 8 0 . 2 ) ~  and 

np(670). 

Our hypothesis that  Laplace correction helps was confirmed, but there was 
little difference between the pruning methods in terms of the MSE. The main 
difference between the pruning algorithms was in the tree size. 

Our third set of experiments was to evaluate probabilistic predictions based 
on log-loss. Frequency counts could not be used for this experiment b'xause 
zero probability predictions cause infinite loss. The algorithms had the following 
average log-losses: ccp(0.400), eb(0.411), k1(0.417), lp(0.419), np(0.429). 

3.4 ROC Curves 

The Receiver Operating Characteristic curves provide a way of showing how 
false positive predictions increase as true positive predictions increase (Provost 
& Fawcett 1997). The curves are generated by varying the loss matrix (in our 
case from a ratio of 20 to 1 to a ratio of 1 to 20) and plotting the number of 
false and true positive identifications of the goal class for the test-set. The best 
possible performance is the top-left corner. 

Figure 6 shows two selected curves. The curve for crx shows that np-lc ( n e  
pruning) is always dominated by another pruning method, i.e., no matter which 
loss-matrix one uses, np-lc should not be used with this dataset. For pinna, on 
the other hand, np-lc dominates all other pruning methods in the left half of the 
curve. 



Fig. 6. ROC curves for t,wo datasets. 

4 Conclusions 

Of the two steps in inducing a decision tree-growing and pruning-we c~ncen-  
trated only on the latter stage. We view this as a necessary first step to study 
before studying different growing techniques as was done in Pazzani, Merz, Mur- 
phy, Ali, Hume & Brunk (1994). 

We extended cost-complexity pruning to loss and introduced two methods 
that can be used with loss matrices: Laplace-pruning and KL-pruning. Laplace- 
pruning was the best pruning method with the 10 to 1 loss matrix and tied 
for best pruning with no-pruning with Laplace correction for the 100 to  1 loss 
matrix. 

Our study revealed that Laplace correction a t  the leaves is extremely ben- 
eficial and aids all pruning methods used. We also found that for the datasets 
tested, pruning did not help much in reducing the loss, but did lead to smaller 
trees. Cost-complexity pruning was especially effective at  reducing the tr1.e size 
without increasing the loss, and in fact, decreased the MSE the most. 

No single pruning algorithm dominated over all datasets in terms of loss / 
MSE / log-loss, but more interestingly, even for a fixed domain, different pruning 
algorithms were better for different loss matrices as shown by the ROC curves. 
These differences, however, were not major. Given the fact that there wa:j little 
difference in loss/MSE even for algorithms that did not use the loss matrix during 
tree induction (pruning), we conclude that it will usually suffice to induce a single 
probability tree and use it with different loss matrices, especially in the same 
area of the ROC curve. 
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