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Band-structure effects on channel carrier density in the ultrathin-body end of the ITRS roadmap silicon (100) n-type metal
oxide semiconductor field effect transistors (MOSFETs) are assessed here using a semi-empirical nearest-neighbor sp>d’s*
tight-binding model with spin-orbit interaction. The calculations focus on the body thickness range between 10 and 18 atomic
layers (~1.5-2.5nm). At this range, the standard effective mass approach is limited by its inability to capture the conduction
band nonparabolicity effects and the subband splitting. The tight-binding simulations show interesting effects of ground-state
subband splitting in this thickness range, and as a result of this, the channel charge density was found to fluctuate by as much
as 30%. Additionally, it was observed that strict process tolerance is necessary in this thickness range in order to maintain an

acceptable threshold voltage variation.
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1. Introduction

Over the past three decades, metal oxide semiconductor
field effect transistors (MOSFETs) have been scaled down
aggressively. According to the ITRS 2001 roadmap projec-
tion, devices in the 2016 will have channel lengths of 10 nm.
New device geometries must be explored to ensure electro-
static control. Thin semiconductor-on-insulator (SOI) and
Ge channel devices are considered in this regard. Design
studies of such devices have revealed that in order to curb
short channel effects, their body thickness should not exceed
2-3nm."? For such an extremely thin body, the underlying
atomistic texture makes the use of the ubiquitous effective
mass (EM) approach questionable and an atomistic treat-
ment of the device becomes essential. Here the semi-
empirical tight-binding (TB) theory is applied to semi-
conductor thin films on (100) wafers and the subband
structure as well as the effect of valley interaction are
investigated.

2. Approach

In this work, we explore the band-structure effects in the
ultrathin-body (UTB) silicon n-MOSFETs on (100) wafers.
The underlying atomic structure is schematically presented
in Fig. 1. The crystal structure for cubic semiconductors is
the FCC lattice with two atoms associated with each lattice
point—the lattice atom at the lattice site and the basis atom a
quarter of the body diagonal away. For elemental semi-
conductors (e.g., Si, Ge) these two are of the same atomic
type, however, for compound semiconductors (e.g., GaAs,
InP), they are of different types of atoms. For a (100) wafer,
the channel is formed by alternatively stacking such atomic
layers. In this figure, they are shown by layers of black and
white circles, respectively.

The band-structure of the thin silicon channel is explored
using a sp’d®s* tight-binding (TB) model.” This is an
atomistic approach, which offers a balance between treating
the finite atomic resolution at this scale and the convenience
of device simulation. Here, each atomic layer is modeled by

*Corresponding author. E-mail address: gekco@purdue.edu

Y

X

Fig. 1. The thin film on (100) wafers modeled in this work. The film is
composed of two types of alternately repeating atomic layers: lattice
atoms (black) and basis atoms (white).

ten atomlike orbitals for each spin. Spin-orbit coupling is
used in all simulations and therefore, each atomic layer
contributes a 20 x 20 block to the thin-film Hamiltonian.
Only the nearest-neighbor interaction is treated, therefore,
the thin-film Hamiltonian becomes block tridiagonal. The
atomistic representation of the channel along Z causes the
Hamiltonian to be a function of only the wave vector, kj,
which runs parallel to the channel-oxide interface. The
model allows us to explore the thin-film band-structures with
even as well as odd numbers of atomic layers. The orbital
interaction energies are optimized to give accurate band gaps
and effective masses for the lowest lying conduction band
valleys and valence bands in bulk silicon.?

In an UTB dual-gate (DG) silicon MOSFET, the channel
is sandwiched between two thin gate oxide layers and
therefore, the carrier motion is restricted along the thickness
direction. In this work, the zero boundary condition of the
associated wave function is assumed at the top and the
bottom silicon-oxide interface. The mismatch between
bonds in silicon and oxide layers results in dangling bonds
and forms surface states in semiconductor devices. Exper-
imentally, these surface states are pacified by hydrogen
absorption. In these simulations, we use the boundary
condition described in* to model pacification of the dangling
bonds. The subbands are the stationary states formed in this
quantum well due to energy quantization along the thickness
direction. A typical TB ground-state wave function for the
silicon subband is presented in Fig. 2 where the atomistic
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Fig. 2. Typical TB wave function in Si (100) films. The sum of squared
orbital contribution is plotted. Inset: The individual orbital contribution.
Only the orbitals shown contribute to the wave function.

nature is clearly visible. The carriers are free to move in the
X-Y plane, and the associated motion results in current in a
device.

3. Results and Discussion

In Fig. 3, the ground-state energy is plotted as a function
of body thickness. The results obtained using the sp*d>s*-SO
tight-binding model (symbols) and the EM approach
(dashed) are presented in this figure. In the thick body limit,
as expected, the ground-state energy approaches the bulk
conduction band edge. It can be seen that for a body
thickness of 25 atomic layers (~3.5 nm) or more, the results
of the EM approach agrees well with tight-binding results.
However, for thinner bodies, TB results show two interesting
features that are otherwise not revealed by the EM approach.
First, the nonparabolicity of the E-k relationship along [001]
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Fig. 3. The ground-state energy vs body thickness calculated using the

sp>d’s*-SO tight-binding model and the EM approach. Below a thickness
of 25 atomic layers, two effects are seen in TB results which are not
apparent in the EM result. First, the nonparabolicity of the E-k
relationship along lowers the TB subband energies. Second, the
interaction between the two conduction band ellipsoids splits the
ground-state energy. In the EM approach, such an interaction is absent
and the ground state is twofold degenerate. The ground-state of the
fourfold degenerate primed ladder is also plotted (solid). Inset: TB
ground-state energies for thickness of 10-18 atomic layers.

lowers the TB subband energies. Secondly, in TB results, the
interaction between the two conduction band ellipsoids splits
the ground-state subband edge. In the EM approach, this
interaction is absent and the ground state is twofold
degenerate. This work focuses is on the end devices of the
ITRS roadmap, which have to body thicknesses of 1.5—
2.5nm (~10-18 atomic layers). The ground state of the
fourfold degenerate primed subband ladder is also plotted in
this figure. These subbands are formed by the four inplane
valleys which have smaller transverse effective mass along
the quantum well thickness direction, and hence, such
subbands are higher in energy. The inset shows the ground-
state energies in this thickness range, obtained by tight-
binding calculation. Two horizontal lines at £ = 1.1 and
1.3 eV represent the non-degenerate and degenerate injector
Fermi levels which are used in Figs. 8-9.

It is observed in Fig. 3 that for very thin channels, the
ground-state subbands in silicon are no longer twofold
degenerate, but the interaction between the valleys causes
them to split in energy. For thicker bodies, this splitting is
negligible, however, it becomes considerable for body
thickness below 20 atomic layers. In Fig. 4, this ground-
state splitting is plotted as a function of quantum well
thickness, calculated using the tight-binding model. The odd
and even numbers of atomic layers show similar splitting
profiles. This is not obvious in the inset where the odd and
even numbers of layers are not distinguishable from each
other. The origin of subband splitting is schematically
presented in Fig. 5. The bulk Brillouin zone is shown on the
left and E—k along at k, = k, = 0 is shown on the right. The
black and white circles represent four traveling states around
the two band minima which combine to form two subbands.
At small body thickness, these states move to higher energy
and the interaction between them becomes stronger. This
interaction is the cause of subband splitting.>®

Using the tight-binding model, the E—k relationship is
calculated over the entire two-dimensional Brillouin zone
and the data are converted to the densities of states. In
Fig. 6, the 2D density of states vs energy plots are presented
for body thicknesses between 10 and 18 atomic layers. At
room temperature, valley splitting as large as 2kgT is
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Fig. 4. The splitting vs quantum well thickness in silicon using TB. The
odd and even numbers of atomic layers show similar splitting profiles.
This is not obvious in the inset where the odd and even numbered layers
are not distinguishable from each other.
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Fig. 5. The origin of subband splitting. The bulk Brillouin zone is shown
on the left and the E—k along at k, = k, = 0 is shown on the right. The
black and white circles represent four traveling states around the two band
minima which combine to form two subbands. At small body thickness,
these states move to higher energy and the interaction between them
becomes stronger. This interaction is the cause of subband splitting.”

observed, which significantly alters the band-structure at the
subband edge. For the 14 atomic layers (~2nm) channel,
valley splitting is practically zero, however, it abruptly
increases for both higher and lower thicknesses.

Figure 7 shows the effects of ground-state splitting on
carrier densities at three different temperatures: 300, 77 and
4 K. Here, for each body thickness, the Fermi level is placed
exactly at the lower ground-state subband edge. As a result,
the variation of carrier densities in these tuned devices is a
direct consequence of subband splitting. It is observed that
the effect of subband splitting on carrier density can be as
high as 30%.

The effect of the injector (source or drain in MOSFETS)
Fermi level on the channel carrier density is shown in
Figs. 8-9. Here, the equilibrium channel charge is calculated
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Fig. 7. Effect of ground-state splitting on carrier density at 300, 77 and
4 K. For each body thickness, the Fermi level is placed at the lower of the
two ground-state energies. The difference in carrier density is a direct
consequence of subband splitting.

using two different injector Fermi levels. For a degenerately
doped (~10'8/cm?®) injector, the Fermi level is above the
bulk band edge (1.13eV). In Fig. 8, carrier density vs body
thickness is plotted at this limit. Here, the Fermi level is
fixed at Er = 1.3 eV, which is close to or above the lowest
channel subband, and the inversion layer charge is calculated
in the silicon channel using the 2D tight-binding band-
structure. The strong effect of body thickness on charge
density is apparent in this plot.

Finally, the calculations used in the case of Fig. 8 are
repeated for Fig. 9 in the limit where the injector is
nondegenerately doped. In this figure, the Fermi level is
placed well below the subband edge, at Er = 1.1eV. In this
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Fig. 6. The 2D density of states vs energy plots for body thicknesses between 10 and 18 atomic layers. The strong first subband
splitting is visible in the plots. At 14 atomic layers (~2nm), splitting is practically zero, however, it abruptly increases in both

directions.
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Fig. 8. Carrier density vs body thickness in the degenerate injector
(source/drain) limit. Here the Fermi level is fixed at Er = 1.3 eV and the
inversion layer charge is calculated in the silicon channel using the 2D
tight-binding band-structure. The strong effect of body thickness on
charge density is apparent.
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Fig. 9. Carrier density vs body thickness in the nondegenerate injector
limit. The Fermi level is placed well below the subbands, Er = 1.1eV.
The channel is depleted of carriers and this resembles the off-state for a
MOSFET. At 300K, the channel charge depends strongly on the body
thickness and therefore, a strict process tolerance is necessary to ensure
an acceptable threshold voltage.

limit, the channel is populated by carriers with energies in
the tail of the Fermi function. This resembles the depleted
channel at the off-state of a MOSFET. The strong variation
of charge density with body thickness reveals that a strict

process tolerance is necessary at this thickness limit to
ensure an acceptable threshold voltage. In Figs. 7-9, carrier
density is calculated by integrating densities over the entire
2D Brillouin zone, and therefore, they also include the
carriers residing in the upper subbands and in the fourfold
degenerate primed subband ladder. In Figs. 7 and 9, such
subbands are much higher compared to the Fermi Energy,
and therefore, are practically empty. In the degenerate
injector limit (Fig. 8), they contribute to charge density only
for body thickness of 17 and 18 atomic layers, however,
such contribution is a small fraction of the total charge
density.

4. Conclusion

In this work, we explored the band-structure effects in
ultrathin-body Si n-MOS devices using an atomistic tight-
binding model. In order to include the correct effective
masses and band gaps of the indirect band gap material, Si,
in the model, the sp>d’s* basis set with spin-orbit interaction
was used. The simulation revealed interesting features in the
MOSFETs at the scaling limit, which otherwise are not
captured by the traditional EM approach. Valley interaction
causes the removal of subband degeneracy, which may have
crucial effect on the transport properties of CMOS devices at
the end of the roadmap and beyond. Additionally, a stringent
process tolerance was found to be a key issue at this body-
thickness limit, since even a variation of one monolayer
changes the threshold voltage considerably, resulting in a
large variance in Vr.
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