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ABSTRACT 

Bandwidth allocation is a fundamental problem in communication networks 

where bandwidth needs to be reserved for requests (connections) to guarantee a certain 

quality of service (QoS) for the request. Guaranteeing QoS to the request means that the 

user can explicitly speclfy certain requirements for a request such as bandwidth. The 

problem of bandwidth allocation is further intensified when the requested bandwidth 

exceeds the available unused bandwidth and so not all requests can be completely served. 

This research examines on-line bandwidth allocation, where the decision for acceptance 

or rejection of the request has to be made when future requests and their arrival statistics 

are not known. A request can be defined as a flow of information fiom a source to a 

destination with a certain amount of bandwidth, a priority level, a utility fbnction that is 

based on the bandwidth received, and a worth that is based on the utility function and the 

priority level. The goal of the research is to develop a scheduling heuristic for an 

overloaded system that attempts to schedule the requests such that the sum of the worths 

of the requests satisfied in a fixed interval of time is the maximum. The scheduling 

heuristic can preempt or degrade already scheduled requests. Three different types of 

utility functions, step, linear, and concave are examined. Other parameters being 

considered include network loading and the relative weights of the different priority 

levels. 



1. INTRODUCTION 

Bandwidth allocation is one of the most important problems in the management of 

networks that offer a guaranteed bandwidth policy, such as ATM [ATM99]. In such a 

network, if a user (i.e., an application) wants a guaranteed bandwidth for a 

communication (also called a request), the user has to reserve, in advance, the amount of 

bandwidth required. This is in contrast to the current Internet wherein the requests are 

satisfied with a best-effort policy, i.e., there is no guarantee on the bandwidth received by 

a user. The advantages of a guaranteed bandwidth policy are many. Examples are as 

follows. 

1. Bounded delay: the delay experienced by a user's request is bounded. 

2. Differentiated service: users can expect different levels of quality of service 

(OoS) based on the amount of money paid and the amount of bandwidth 

reserved. 

3. Simple pricing: a user can be charged for the amount of bandwidth allocated. 

4. Fairness: just one user cannot occupy all the bandwidth available. 

The major drawback of a guaranteed bandwidth policy is inefficiency; the 

bandwidth received may not actually be fblly utilized Thus, a good bandwidth allocation 

strategy is essential for such networks. 

If the network were to reserve bandwidth for a request and the request does not 

use all the reserved bandwidth then that would lead to under-utilization of the links. For 

example, assume the user requests an interactive multimedia session. An interactive 

multimedia session may involve human interaction due to which there will be periods 

when the link is not being used, e.g., when the user is reading the information presented. 

Because the bandwidth was reserved for the user's request, any unused bandwidth (that is 



not being used by the user's request) may not be used to satisfy other requests, and hence 

may result in a loss of revenue to the network bandwidth provider. It may be argued that 

the if the user is willing to pay for the unused bandwidth, there would be no loss of 

revenue to the network bandwidth provider. Given a choice, a user may not be willing to 

pay for the unused bandwidth. In this scenario, the network should be capable of 

dynamically allocating bandwidth as and when the user requires it. 

Another case where dynamic bandwidth allocation would be usefbl is a real-time 

multimedia session. For example, assume the user requests a video clip. The user may 

dynamically demand more bandwidth by resizing the window and consequently 

requesting a higher image resolution or, by fast-forwarding the clip. In this case, if the 

user is willing to pay for the extra bandwidth required, the network should be able to 

dynamically allocate more bandwidth to the user. If the network has a fixed bandwidth 

reservation policy, the user would have to reserve the total bandwidth needed during the 

session, i.e., the user would have to reserve and pay fbr the extra bandwidth too. But the 

user may not use the extra bandwidth for most of the time during the session. Thus, 

greater flexibility is needed than just reserving a fixed amount of bandwidth. This 

flexibility can be provided ifthe network is capable of dynamically allocating bandwidth. 

Dynamic bandwidth allocation constitutes a paradigm shift fiom current 

bandwidth allocation policies such as reservation of bandwidth. In dynamic bandwidth 

allocation the users do not reserve the required bandwidth, but dynamically rent the 

required bandwidth. The network service provider would like to maximize the revenue 

received by renting bandwidth to different users. Maximization of revenue may involve 

preemptingldegrading existing user requests to satisfy "more valuable" requests that 

would otherwise be rejected because of lack of available bandwidth. The rationale behind 

this is as follows. Assume a request has rented some bandwidth and paid some money for 

the rented bandwidth. If this request is occupying the bandwidth that is needed by a 

request paying more for the same amount of bandwidth, then it may be beneficial to 

preemptldegrade the lower paying request in hvor of the higher paying request. The goal 

of this research is to develop a heuristic that will aid in making decisions as to which 



request should be admitted/rejected, and what bandwidth should be allocated to the 

request if admitted. 

In particular, the objective of this research is to develop a scheduling heuristic for 

an overloaded system that attempts to schedule the requests such that the sum of the 

worth of the satisfied requests obtained by the schedule is the maximum. One of the 

factors affecting the worth of a request is the utility function of the request that is based 

on the amount of bandwidth received by the request. The utility function of the request 

depends upon the application generating the request. For example, a file transfer may 

have a concave utility function because it is not real-time and hence is delay insensitive, 

i.e., it can tolerate some delay [She95]. Alternatively, a real-time application such as 

Internet telephony may have step utility function [She95]. The heuristic developed in this 

research considers requests having three different types of utility functions: step, 

concave, and linear. Most of the requests that currently exist in the Internet have a utility 

bc t ion  that is one of these three types. To the best of the author's knowledge, there is 

no research reported in the literature with the objective of maximizing the sum of the 

worth of satisfied requests with these three different types utility functions of the 

requests. 

In a military environment, there may be many warfighters in remote locations 

requesting information such as terrain maps, enemy locations, and troop movements. 

Each of these requests fbr information may have a priority and a utility associated with it 

that indicates the "worth of the request to the warfighter. For example, if the warfighter 

receives the information requested after the deadline specified, then it would be of zero 

worth to the warfighter. If there were many warfighters requesting some information, 

then it may be possible that not all the requests can be satisfied. Thus, it may be 

beneficial to maximize the worths of all the requests satisfied. The heuristic developed in 

this research can be used to allocate the bandwidth to the different warfighter's requests 

such that the total worth of all the requests satisfied is the maximum. 

This heuristic can be used by Internet service providers @PJ that provide 

bandwidth to its clients for some amount of money. The value of a client's request may 

be the amount of money the client pays for the request, which is a function of the amount 



of bandwidth the client's request received and the cost per unit bandwidth the client is 

willing to pay. The ISP would like to maximize the total amount of revenue received by 

accepting the "more valuable" client requests and rejecting the "less valuable" client 

requests. The value of a client's request may correspond to the worth of a request in this 

research. Thus, maximizing the total revenue received by the ISP would correspond to 

maximizing the sum of the worth of all the requests satisfied in this research. The ISP 

can use the heuristic developed in this research to determine the bandwidth allocations to 

the different client requests such that the sum of the worth of the client requests satisfied 

is maximum, thus maximizing the revenue received. 

This dynamic bandwidth allocation heuristic has been developed for scheduling 

requests to achieve a high aggregated value within a distributed network idtastructure 

envisioned in the Defense Advanced Research Projects Agency (DARPA) Agile 

Information Control Environment (AICE) program [AIC98]. The objective of the 

DARPA AICE program is to enable dynamic management of network resources over 

distributed and disparate networks (including both military and commercial networks) in 

accordance with the commander's policy. This policy includes assignment of priority 

levels to requests and relative weights for the priority levels. AICE consists of four 

functional layers: a physical networks layer, a MetaNet layer, an Adaptive Information 

Control (AIC) layer, and an Information Policy Management (LPM) layer. The MetaNet 

layer interacts with multiple physical networks to provide end-to-end QoS differentiable 

services to the AIC layer for allocation. The AIC layer is responsible for the allocation of 

the end-to-end resources established by the MetaNet to requests to achieve a high global 

worth as defined by the IPM layer. The bandwidth allocation heuristic in this research has 

been developed for an AICE-like environment where the AIC has direct knowledge of 

the state of the underlying network. 

Thus, the scheduling heuristic presented here attempts to maximize the sum of 

the worth of the prioritized requests satisfied in an overloaded AICE-like 

communications environment. It assumes each request has a utility function for the 

bandwidth received that is concave, linear, or step function. Furthermore, a request's 

assigned bandwidth may be preempted or degraded by this heuristic. Simulation 



experiments are conducted to evaluate several variations of the heuristic and compare 

them to upper bounds and a simple scheduling technique. 

The report is organized as follows. The network model and the request model 

assumed in this research are described in Section 2. In Section 3, the problem that this 

research attempts to solve and the need for a heuristic are explained. A brief overview of 

some of the literature related to this work is presented in Section 4. In Section 5,  the 

scheduling heuristic developed in this research is explained and the bounds on the 

performance of the heuristic are examined in Section 6. The simulation experiments 

conducted and the results obtained are presented in Sections 7 and 8, respectively. The 

last section provides a brief summary of this work and also discusses possible future 

work The pseudo-code for the heuristic is given in Appendices A, B, and C, and the 

glossary of notation is presented in Appendix D. The C source code for the heuristic is 

given in [DhaOO]. 





2. DISTRIBUTED COMMUNICATION NETWORK 

2.1. Overview 

The underlying network model and the request model assumed in this report is 

discussed in this section. The performance measure for the heuristic is also presented in 

this section. The network model used in this research is similar to the network models 

considered in [:FeM95] and the Internet [Com95, NAP981. To explain the assumed 

network model better, a brief description of these other network models is presented. 

2.2. Existing Network Models 

2.2.1. Distributed computing 

An admission control heuristic for distributed applications (e.g., distributed 

computing) over an ATM network is described in [Feh4!95]. The admission control 

heuristic proposes to allow connections belonging to the same application to share 

common links to increase utilization. The network model used in [FeM95] is similar to 

the network model assumed in this research. The model in [FeM95] assumes that there 

are a set of slave hosts that send their requests to a master host via the same intermediate 

switch and the same intermediate link. The intermediate switch is assumed to be a high- 

speed switch that forwards the data fiom the slave hosts to the master host, but the 

intermediate link has a fmed capacity and hence is the bottleneck. If the sum of the 

bandwidths of the requests on the intermediate link exceeds the link bandwidth then some 

requests may have to be dropped. Thus, it is essential to perform admission control so 

that the sum of the bandwidths of the requests does not exceed the link bandwidth. A 



similar scenario exists in the network model assumed in this report, as will be explained 

in Subsection 2.3. 

2.2.2. Current Internet 

The original Internet architecture consisted of a single dominant National Science 

Foundation (NSF) backbone network that supported all the Internet traffic. This 

architecture underwent a major change fiom the single dominant NSF backbone network 

to a series of commercial provider owned backbone networks. The commercial providers 

typically are the ISPs that offer Internet access to their clients such as large corporations, 

universities, and individual dial-up users. Under these conditions, the backbones had to 

have some means of exchanging data. To serve this purpose the concept of a network 

access point (NAP) was introduced. NAPS were designated to serve as data interchange 

points for the ISPs, as shown in Figure 2.1. 

router &" 
Figure 2.1. Network access point (NAP). 

The ISPs send the M c  fiom its clients to the NAP and the NAP then forwards 

the traffic fiom one ISP to another. The NAP switches (i.e., forwards) data at a very high 

speed. The ISPs typically have a service level agreement (SLA) with the NAP wherein 

the ISPs agree to send data at a rate no greater than a predetermined fixed rate. The 

switching capacity of the NAP is typically very high, and if the ISPs do not violate their 

SLA, then the NAP is usually not the bottleneck. Thus, the ISP would like to maximize 



the sum of the "worths" of the requests that it sends to the NAP in accordance with its 

SLA. The heuristic developed in this research considers a similar problem for the 

network model shown in Figure 2.2. 

source/destination 1 ,O sourceldestination 2 
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U source/destination 5 source/destination 4 a 

Figure 2.2. Network model. 

2.3. Network Model 

The underlying network model assumed in this report is shown in Figure 2.2. The 

sources shown are the applications that generate the requests, where a request can simply 

be defined as a flow of information from a source to a destination, with a certain amount 

of bandwidth, a priority level, and a utility that is a function of the amount of bandwidth 

received. A request is formally defined later in this section. The decision to admitireject a 



request is made at the nodes shown in Figure 2.2. If a request is admitted, the amount of 

bandwidth to be allocated to the request is decided at the nodes. 

The nodes provide network ingress and network egress. If a request is admitted, 

the nodes send the request to the network cloud via the links connecting the node to the 

network cloud as shown in Figure 2.2. Each node is connected to the backbone network 

by two unidirectional links. A network ingress link transfers data fiom a node to the 

backbone network A network egress link transfers data fiom the backbone network to a 

node. The request would be routed by the backbone network to the destination node via 

its egress hk, and then delivered to the final destination. The backbone network can be 

thought of as a very high-speed switch that forwards the data fiom the ingress links to the 

egress links. The ingress links and egress links have fixed capacities. It is assumed that if 

a request can be accommodated by its associated ingress and egress links, then the 

network can satisfy the request. That is, it is the links that are the system bottlenecks, and 

not the backbone network Thus, the requests should be scheduled such that the sum of 

the bandwidths of the requests utilizing a link does not exceed the link bandwidth. 

The model assumed here is very similar to the model in [FeM95], where the link 

is the bottleneck and not the switch. If the backbone network in Figure 2.2 is a NAP (or a 

switch) and the ingresdegress nodes in Figure 2.2 are the ISPs, then the model assumed 

here is similar to the current Internet. In the Internet, the ISP would like to maximize the 

sum of the "worths" of the requests sent over a link. In the model assumed here, the goal 

is to maximize the sum of the worths of the requests satisfied such that the sum of the 

bandwidths of the satisfied requests does not exceed the link bandwidth. 

The problem of hierarchical link sharing has been discussed in [FLT95], where a 

single link has to be shared by multiple organizations with different levels of QoS 

requirements. In [:FU95], a single bottleneck link is considered, and this bottleneck link 

needs to be shared among different traffic types such as real-time (e.g., steaming audio 

and video) and non-real-time traffic (e.g., ftp). The network model assumed in this 

research can be considered to be an extension of the single bottleneck link model in 

[FLT95] by considering two bottleneck links instead of one. 



2.4. Request Model 

2.4.1. Request definition 

A request is defined as a flow of information fkom a source node to a destination 

node with a certain amount of bandwidth, a start time, an end time, a priority level, and a 

utility function that is based on the amount of bandwidth received. Requests that require a 

certain amount of bandwidth for some specified duration of time are called session type 

requests. Assume for a request 2, & is the network ingress link or the in-link, OJ - is the 

network egress link or the out-link, % is the start time, 9 is the end time, & is the 

requested bandwidth, & - is the current bandwidth, fi - is the priority level, UJ - is the utility 

(a value between 0 and 1 that is a function of the amount of bandwidth received by the 

request), and - is the worth. Thus, the request r k  can be represented by 

r k  = {ik, ok, rbk, bk, s k  ek, pk, Uk, wk} . 
The session of the request is dehed to be the time interval fkom the start time to the end 

time of the request. 

In the military environment where this research can be applied, if the request 

cannot be allocated its desired bandwidth (rbk) because of the oversubscribed network or 

its priority level, then the request may either be allocated degraded bandwidth 

(determined by the network) or no bandwidth at all. In such a situation only, the requestor 

may be willing to accept degraded bandwidth rather than have the request rejected. Thus, 

the bandwidth allocated to the request need not remain fixed for the duration of the 

request, i.e., the bandwidth allocated to the request can be decreased or increased during 

the session of the request. 

The total utility of a request is calculated based on the amount of the bandwidth 

that the request received during every time instant (e.g., second) of its session. The 

bandwidth received by the request at every time instant of its session is denoted by bk(t). 

Then, the total utility of a request rk is &, - a value between 0 and 1, where 



When calculating the worth of a request, a weighted priority of the request is used 

rather than just its priority level. The reason is explained in Subsection 2.4.2. The 

weighted priority is some function of the priority level of the request. Let this h c t i o n  be 

denoted by The worth of the request is defined as the weighed priority times the total 

utility of the request. Thus, the worth of the request is calculated as 

wk=17(pk) u k  

Therefore, substituting the expression for the total utility of the request fiom 

Equation 2.1, 

This approach to calculating the worth is based on the FISC measure in [:KiHOO]. The 

priorities and the utility functions are explained in detail in the fbllowing subsections. 

2.4.2. Priority 

Bandwidth should be allocated to the requests in some order. Intuitively, this 

ordering should begin with "more important" requests. Some priority must therefore be 

associated with a request so that an algorithm can evaluate the relative merit of any given 

request compared to any other request. As mentioned earlier, a weighted priority (that is 

some function of the priority of the request) is used to calculate the worth of the request. 

The weight of a priority level indicates the relative importance of a priority level to 

another. 

In this research, it is assumed that there are four priority levels, where level i is 

more important than level j, for i < j, 1 5 i j  5 4. The priority scheme is based on a 

weightinn constant a as was used in [ThBOO]. The weight of priority level i is: 

a i )  = J4-'2 . 



Two cases for o are considered: mode two, when w = 2, and mode ten, when w = 

10. In mode two, with w = 2, the weighted priority of priority level one would be eight, 

and the weighted priority of priority level four would be one. In mode ten, with 

w = 10, the weighted priority of priority level one would be 1000, but the weighted 

priority of priority level four would still be one. Thus, even though the priority levels of 

the requests remain the same, the relative weighted priorities would change fiom mode 

two to mode ten. 

The reason for this concept of mode-based weighted priorities in the military 

context that this work was carried out is as follows. Assume that there are two different 

modes, a war mode (where w = 10) and a peace mode (where w = 2). A request issued by 

a commander may be assigned a priority of one while a request issued by a private may 

be assigned a priority of four. Recall that it is assumed that the communication system is 

overloaded. In peace mode, a priority level one request (with weight 23 = 8) is considered 

worth more than seven priority level four requests (7 x 2' = 7). It may be beneficial to 

satisfy one priority level one request instead of seven priority level four requests, or nine 

priority level four requests instead of one priority level one request. But in the war mode, 

a priority level one request (with weight lo3 = 1000) is considered worth more than 999 

priority level four requests (999 x 10' = 999). Thus, it may be beneficial to satisfy one 

priority level one request instead of 999 priority level four requests, or 1001 priority level 

four requests instead of one priority level one request. This effect of change in relative 

importance of priorities (of the requests) due to change in mode can be captured by the 

concept of a weighted priority as explained above. 

In a commercial network a similar situation may exist. The two modes can be a 

lightly loaded network (where w = 2) and a heavily loaded network (where w = 10). A 

request issued by the Chief Executive Officer (CEO) of the company may be assigned a 

priority of one while the request issued by an employee may be assigned a priority of 

four. In a lightly loaded network, a priority level one request (with weight 23 = 8) is 

considered worth more than seven priority level four requests (with weight 7 x 2' = 7). 

Hence, in a lightly loaded network, the priority level one request may be satisfied instead 

of seven priority level four requests. But in a heavily loaded network, a priority level one 



request (with weight lo3 = 1000) is considered worth more than 999 priority level four 

requests (with weight 999 x 10' = 999). Hence, the priority level one request would be 

satisfied instead of 999 priority level four requests. This significantly higher relative 

importance for the priority level one request, in a heavily loaded network, can be 

achieved by the weighted priority scheme described earlier. 

2.4.3. Utility function 

The utility of a request is a function of the bandwidth that the request receives 

during its session. This utility can be any arbitrary function of the bandwidth received, 

depending upon the application generating the request. Different types of applications 

could have different needs both in terms of desired bandwidth and ability to operate with 

less than the desired bandwidth 

For example, there may be high-quality multimedia applications that are designed 

to be transmitted at a fixed bandwidth. For such an application, if the bandwidth 

requirements are met, the utility obtained is the maximum utility of the request. If the 

requirements are not met (by not allocating sufficient bandwidth to the application), the 

utility obtained is zero. Thus, such an application may generate a request that has a step 

utility function, ie., if the application gets the bandwidth needed, then its utility would be 

the maximum utility and if not, zero utility [She95]. The utility function for such a 

request with a bandwidth requirement of rbk is illustrated in Figure 2.3. 

There may be other applications that are designed to adapt to transmissions with 

less than the full desired bandwidth. For example, a teleconferencing session may be 

structured to operate with reduced bandwidth and commensurate reduced quality. Such 

an application may generate a request that has a linear or a concave utility hc t ion  

[She95]. In addition to the requested bandwidth rbk, the request may even specify a 

minimum bandwidth requirement &. - If the request is allocated bandwidth less than its 

minimum bandwidth mbk, then its utility is zero. 
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Figure 2.3. Request with a step utility function. 

In case of a step utility function, the minimum bandwidth would be the bandwidth 

requested. The linear and concave utility functions of a request are illustrated in Figure 

2.4. Most of the requests that currently exist in the Internet have a utility function that is 

one of the three types of utility functions considered in this research [She95]. 

bandwidth 

I I 
0 mbk fbk > 

bandwidth 

Figure 2.4. Request with a (a) linear utility function, and (b) concave utility function. 



2.5. Performance Measure 

Let be the set of all the requests that arrive at the nodes over a fixed interval of 

time. The worth of a request is calculated using Equation 2.2. If a request in S is satisfied, 

Equation 2.2 yields the worth of the request, or else Equation 2.2 yields zero. The 

performance measure assumed in this report is the sum of the worths of all the requests in 

S. This sum of the worths of all the requests in S is the total worth y. 

Substituting the expression for wk fiom Equation 2.2 in Equation 2.3. 

The goal of this research is to maximize this total worth W Other studies that use the sum 

of the worths as the performance measure in AICE-like environments include [ThBOO, 

m o o ,  ThTOOb]. 

2.6. Summary 

The network model and the request model assumed in this research have been 

described in this section. The concept of weighted priorities and how it affects the 

relative importance of priorities of the requests has also been explained. In this section, 

the three different types of utility functions and the applications that can generate such 

utility functions have been discussed. The performance measure for the heuristic, i.e., 

sum of the worths of all the requests that arrive during a given interval of time, has also 

been stated. In the next section, the problem that this research attempts to solve and the 

need for a heuristic are explained. 



3. PROBLEM DEFINITION 

3.1. Overview 

In this section, the problem that this research attempts to solve is presented. The 

intractability of the problem is argued and the need for a heuristic is explained. The 

similarities and differences between the bandwidth allocation problem described here and 

the k t i o n a l  knapsack problem are discussed in Subsection 3.4. 

As dehed earlier in this report, a request is a flow of data fiom a source node to a 

destination node with a start time, an end time, a certain amount of bandwidth, a priority 

level, and a utility that is a function of the amount of bandwidth received. The worth of 

the request is defined as the product of the weighted priority and the utility of the request. 

The utility function of the request can be a linear, step, or a concave function of the 

amount of bandwidth the request receives. Recall that the performance of a schedule is 

determined by W, where 

3.2. Types of Scheduling 

Scheduling heuristics can be grouped into two categories: off-line scheduling and 

on-line scheduling. In the context of this research, an off-line scheduling algorithm would 

have howledge of all the requests that have arrived in the network LBrS991. The off-line 

scheduling algorithm, as the name suggests, is executed off-line with no time constraints 

such as, start time of a request. Alternatively, an on-line scheduling algorithm has to 



make decisions of acceptancelrejection of requests without prior knowledge of the future 

arrival of requests [MaA99]. In this research, no assumptions are made regarding the 

future arrival of requests. Thus, the performance of the heuristic developed in this 

research does not depend upon the arrival pattern of the requests. Because an off-line 

scheduling heuristic has knowledge of all the requests that have arrived at the nodes, and 

no time constraints, the value of W obtained by an off-line scheduling heuristic is usually 

better than that obtained by an on-line scheduling heuristic. 

On-line scheduling can be considered to consist of two types: immediate 

scheduling and batch scheduling [MaA99]. In immediate on-line scheduling, requests are 

considered for scheduling as soon as they arrive. Alternatively, in batch on-line 

scheduling, the requests are not considered for scheduling as soon as they arrive, but they 

are first grouped in batches. These batches are processed, and the processed batch is then 

considered for scheduling. For example, processing the batch of requests may involve 

sorting the batch by some measure such as worth per bandwidth desired by the request. 

The sorted batch may then be scheduled by first scheduling the request with the highest 

worth per bandwidth requested, then scheduling the request with the next highest worth 

per bandwidth requested, and so on. In this research, the immediate on-line scheduling 

problem is considered. This problem is fbrther explained in the next subsection. 

3.3. Immediate On-line Scheduling Problem 

The network ingress and network egress links, shown in Figure 2.2, have a fixed 

bandwidth. This fixed amount of link bandwidth needs to be shared among the requests 

utilizing the link, i.e., the link bandwidth needs to be allocated to the different requests on 

the link. The problem of bandwidth allocation arises when the total bandwidth required 

by the requests exceeds the available link bandwidth and not all requests can be satisfied. 

Such a system where the total bandwidth requested exceeds the available bandwidth is an 

overloaded system. The problem is further intensified because the decision for 

acceptancelrejection of the request has to be made on-line, i-e., the future arrival of 

requests is not known (and no assumptions are made regarding the arrival of requests). 



The objective is to maximize W over all the links subject to the constraint that the total 

bandwidth of the requests satisfied on a link does not exceed the link bandwidth. 

The goal of this research is to develop a scheduling heuristic for an overloaded 

system that attempts to maximize W. This research considers preemption as well as 

degradation of some existing requests to allow more bandwidth to be allocated to new 

requests to increase the sum of the worths of all the requests satisfied during a given 

interval of time. 

1 

bandwidth 

I 
I request 4 I rb4 

request 3 I rb3 

request 1 I I request 2 

time 

Figure 3.1. A snapshot of the requests satisfied at a link fiom time to to tl. Request 4 is 
the new request being considered for scheduling. Each rectangle indicates a 
request; the width of the rectangle is the duration of the request and the 
height of the request is the bandwidth required by the request. The height of 
the outer rectangle is the link bandwidth L. The start and the end times of the 
requests are indicated on the X-axis. 

To explain the problem more clearly, refer to Figure 3.1. Consider that there are a 

few requests (requests 1, 2, and 3 in Figure 3.1) that have been already been scheduled 

(i.e., allocated bandwidth during the time interval specified). Let these requests have the 

same ingress link i and different egress links. Now suppose a new request r4 (request 4 in 

Figure 3.1) arrives for scheduling at a time before to. Request r4 has the same ingress link, 

a requested bandwidth of rb4, and a worth of w4. If the sum of the bandwidths of the 



requests currently being scheduled and of request r4 exceeds the link bandwidth (as 

illustrated in Figure 3.1), then r4 cannot be satisfied with its desired bandwidth. A 

decision has to be made whether to admidreject request r4 and if r4 is admitted then what 

bandwidth should be allocated to r4. 

The goal is to maximize W, the problem is how to make a decision such that this 

goal is achieved. The reason is, because of the on-line nature of the problem, it is always 

possible to second guess decisions made in the past, i.e., a decision made previously to 

accept a request may have been wrong because it caused a subsequent request with a 

higher worth to be rejected. For example, the accepted request may have used up the 

entire available bandwidth on the link causing a subsequent request of higher worth to be 

rejected due to lack of available bandwidth. Thus, the on-line nature of the problem leads 

to a lower W than what an off-line scheduling heuristic that has full knowledge of the 

arrival of the requests could achieve. 

This aspect of the problem leads to the issue of degradation and preemption of 

existing requests to fiee up bandwidth to be used by new, "more valuable" requests. For 

example, if a request with a high worth cannot be satisfied because a request with a lower 

worth is occupying the available bandwidth then it would be beneficial to 

preemptldegrade the lower worth request to satisfjr the higher worth request. But the issue 

is deciding which requests should be preemptedldegraded, and what should be the 

amount of degradation if a request is degraded. This research attempts to develop a 

scheduling heuristic that will help make the above decision. 

One method for deciding which requests to preemptldegrade, and the amount by 

which the bandwidth of a request should be degraded, is exhaustive search. Consider a set 

of all the existing requests that overlap in time with the new request r4, i.e., consider all 

the requests that start or end or both during the session (i.e., time s 4  to e4) of the new 

request r4. This set of requests is the set of conflicting requests for r4's session. In the 

example shown in Figure 3.1, the conflicting requests would be requests 1, 2, and 3. Let 

there be g such conflicting requests. Many choices exist as to which request should be 

preemptedldegraded. For example, one choice may be to allocate the full bandwidth 

needed by the new request and preempt one of the existing requests (e.g., r3). Another 



choice may be to degrade the bandwidths of some of the existing requests (e.g., rl and r ~ )  

and allocate the fieed-up bandwidth to the new request. To determine which of these 

choices would result in maximizing the worths of this set of four requests, all the choices 

may have to be evaluated. Evaluating these choices may take a huge amount of time, as 

demonstrated next. 

An example of the time taken for an exhaustive search is as follows. For the sake 

of simplification, assume that the range of bandwidth (required bandwidth - minimum 

bandwidth) for all the requests is the same. Let this range be 3 Kbps. Assuming a 

minimum increment in bandwidth of lKbps, each request can have m choices for the 

amount of bandwidth received. If there are n conflicting requests, and each request can 

have m choices for the amount of bandwidth received, then the total number of choices to 

be evaluated are m n. If m = 100 (a typical value assumed in this research is 1000) and n 

= 6, the number of choices are 10". If the time taken for evaluating each choice is Ips, 

then time taken for evaluating 10" choices is 11.5 days, which is a huge amount of time. 

Hence, evaluating all the m n  choices is an infeasible solution for the on-line problem 

described above. Thus, there is a need for a heuristic that can solve the problem described 

above. 

The immediate on-line heuristic has to make decisions regarding the 

admission/rejection of requests without prior knowledge about the future arrival of the 

requests. The heuristic has to make this decision before the start time of the request, i.e., 

the start time of the request is a constraint for the heuristic. Because of the reasons 

mentioned above, the immediate on-line heuristic does not perform as well as the off-line 

scheduling heuristic, which has prior knowledge of all the requests that have arrived, and 

has no time constraints. 

Many heuristics are presented in the literature that consider the on-line scheduling 

problem. Some of the heuristics only consider preemption and not degradation of 

bandwidth allocated to the requests. Some heuristics only consider requests with a 

concave, continuously differentiable type of utility hction. To the best of the author's 

knowledge there is no known heuristic or algorithm presented in the open literature that 



addresses the above bandwidth allocation problem considering the three different types of 

utility hct ions of the requests. 

3.4. Fractional Knapsack Problem 

The bandwidth allocation problem described above is related to the fiactional 

knapsack problem. However, it will be shown that the problem addressed in this report is 

more complex. 

A fiactional knapsack problem is posed as follows [CoL90]. A thief robbing a 

store finds n items; the $ item is worth vi dollars and weighs gi pounds, where Vi,  gi are 

integers. The thief wants to take as valuable load as possible, but he can carry at most G 

pounds in the knapsack for some integer G. The thief can take fractions of the items 

rather than having to make a binary (011) choice for each item. What items should the 

thief take? 

The bandwidth allocation problem considered in this research can be thought of as 

a k t i o n a l  knapsack problem as follows. Assume the items correspond to requests, the 

worth of an item corresponds to the worth of a request, the weight of an item corresponds 

to the bandwidth required by a request, and the total weight G corresponds to the link 

bandwidth. In the fiactional knapsack problem the goal is to maximize the worth of the 

items stolen, while in this research, the goal is to maximize W. Satisfying means that the 

request (i.e., item) was allocated some bandwidth above the minimum bandwidth 

required, during its session (i.e., stolen). Thus, the bandwidth allocation problem 

considered to this problem has been shown to be very similar to a fiactional knapsack 

problem. 

In a fiactional knapsack problem, the thief can maximize the total worth of items 

stolen as follows. The worth per pound of each item is first calculated. Obeying the 

greedy strategy, the thief begins by taking as much as possible of the item with the 

greatest worth per pound. If the supply of that item is exhausted and the thief can still 

take more, the thief takes as much as possible of the item with the next greatest worth per 

pound and so forth until the weight limit G is reached. 



If the hctional knapsack approach is used for the bandwidth allocation problem 

described here, then the set of conflicting requests should be sorted by the worth per unit 

bandwidth. The request with the highest worth per unit bandwidth should be satisfied 

first, the request with the next highest worth per unit bandwidth should be satisfied next, 

and so on, until there is no more available bandwidth. The fractional knapsack problem 

would have to be solved at every time instant, because the set of conflicting requests 

(items in the store to be stolen) is different at every time instant. 

It may appear from the above discussion that the solution to the fractional 

knapsack problem would yield a solution to the bandwidth allocation problem described 

in this research. But the solution to a "traditional" fractional knapsack problem would not 

a solution to the bandwidth allocation problem considered here. The reason is as follows. 

In a traditional hctional knapsack problem, the hc t ion  relating the weight of an item to 

its worth is linear, i.e., if the thief took half of the item, the thief would get half the worth 

of the item. But in this research the function relating the worth of a request (worth of an 

item) to the bandwidth required by the request (weight of an item) can be of three types, 

linear, step, or concave. For example, if the request is allocated half of the bandwidth, the 

worth obtained may be half the worth (in case of linear utility function), zero worth (in 

case of step utility function), or 3 1 4 ~  of the worth (in case of concave utility function). 

The bandwidth allocation problem described here is sort of a "multi-dimensional" 

fractional knapsack problem where the function relating the weight of the item and the 

worth of the item can be a linear, step, or concave function. Hence, the bandwidth 

allocation problem described here is more complex than the fractional knapsack problem. 

3.5. Summary 

The two types of scheduling methods, off-line and on-line scheduling were briefly 

discussed in this section. The bandwidth allocation problem considered in this research is 

an immediate on-line scheduling problem. In this section, the intractability of this 

problem has been demonstrated. The infeasibility of an exhaustive search solution and 

the need for a heuristic has also been presented. Many heuristics have been presented in 



the literature that are either applicable only for a concave continuously differentiable type 

utility function, or only consider preemption and not degradation. A summary of some 

such related work is presented in the next section. 



4. RELATED WORK 

To the best of the author's knowledge, the dynamic bandwidth allocation problem 

considering requests with step, concave, or linear utility functions has not been addressed 

in the literature. The research here also differs fkom the related work in the ways 

discussed in this section. The issue of non-preemptive (non-degrading) on-line bandwidth 

allocation (also referred to as call control) has been addressed in [AwA93, AwB941. Our 

research focuses in the use of preemption and degradation for the :immediate on-line 

scheduling problem. 

The problem described in [Ke197] is similar to the problem that this research 

attempts to solve. In [Ke197], the requests are assumed to have utility functions that are 

strictly concave, i.e., the utility functions are continuous and differentiable. The utility of 

a request (which is a function of the amount of bandwidth received) in [Ke197] 

corresponds to the worth of a request in this research. The goal of [Ke197] is to maximize 

the sum of the utilities of all the requests, such that the total bandwidth allocated to the 

requests does not exceed the link bandwidth. Because the utility functions of the requests 

in [Ke197] are strictly concave and differentiable, a theoretical solution using Lagrangian 

methods is proposed. In the current Internet, there may be many requests that do not have 

a strictly concave utility function. For example, requests generated by real-time 

applications such as audio and video may have a step utility function. Our research 

considers requests having three different types of utility functions: step, concave, and 

linear. Most of the requests in the current Internet have a utility function that is one of 

these three types [She95]. In [Ke197], a one-link network model is assumed, i.e., 

degradations in the bandwidth allocated to the request at are considered at one link. For 



each request there are two bottleneck links in the network model assumed in our research 

(the ingress and egress links in Figure 2.2). Hence, this research takes into consideration 

the case where the request's bandwidth may be degraded at both the ingress and the 

egress links. 

A decentralized market based approach for optimal resource aUocation is 

described in [ThTOOa]. The market-based approach offers an alternative to the policy- 

based approach, where requests are admitted based on the current willingness of the user 

to pay for the reservation of resources for the request. The market-based approach 

follows directly fiom research in the field of economics, where similar problems exist 

when equilibrium needs to be achieved between high demand and low supply. In 

[ThTOOa], as in our research, the users' preferences are summarized by means of their 

utility functions. The objective of the resource allocation problem in [ThTOOa] is to 

determine the amount of resources to be allocated to requests such that the sum of the 

users' utilities is maximized. The market-based approach in [ThTOOa] is a decentralized 

approach where the users can dynamically change the amount they are willing to pay for 

the resources requested. That is, it can be thought of as the priority levels of the requests 

can change. But in our research, the priority levels of the requests are fixed and do not 

change. Because the uses can dynamically change the amount they are willing to pay, the 

users' requests may be degraded arbitrarily without following any utility function per se. 

In our research the users' bandwidth is degraded considering the utility function of the 

users' request. For example, if a request has a step utility function, the request is not 

degraded by a small amount, it is either preempted or not degraded at all. In our research 

the user can even spec@ a minimum bandwidth requirement. If the users' request is 

allocated bandwidth less than the minimum bandwidth specified, the utility is zmo. 

In [BaM98], the problem of dynamic bandwidth allocation is considered by 

assuming that every request will have a delay requirement rather than a bandwidth 

requirement. The objective of [BaM98] is to minimize the number of bandwidth 

allocation changes while satisfjhg the delay requirements (there are no priorities). 

Heuristics for dynamic bandwidth allocation for the single-source single-destination case 

and the multiple- source multiple-destination case are presented in [BaM98]. In our 



research, the requests are assumed to have a bandwidth requirement and not a delay 

requirement, and the goal is to satis@ the bandwidth requirements of the requests while 

maximizing the total worth of all the requests that have arrived in a fixed interval of time. 

A class of resource allocation algorithms for scheduling requests to achieve a high 

aggregated value (i.e., utility) within a distributed network infrastructure is described in 

[PiWOO]. The utility of a request in [PiWOO] corresponds to the worth of a request in this 

research. In [PiWOO], a batch of requests, i.e., batch on-line scheduling (as discussed in 

the Subsection 3.2) is considered, as opposed to the immediate on-line scheduling 

problem considered in our research. The three heuristics described in [PiWOO] to solve 

the resource allocation problem are as follows. 

1. The baseline no scheduling heuristic, where no scheduling is done and the 

request is started at the earliest possible start time when enough bandwidth is 

available. 

2. The greedy heuristic, where the request that yields the maximum utility is 

scheduled first and so on, until the total bandwidth of the link is allocated. 

3. The maximum ratio heuristic, where the request that has the maximum utility 

per bandwidth ratio is scheduled first and so on, until the total bandwidth of 

the link is allocated. 

The two types of requests considered in [PiWOO] are as follows. 

1. Bandwidth based requests, where the requests have an earliest start time and 

latest end time and a firm time duration for which the bandwidth is required. 

The start time and end time specified are not firm, i.e., the request can start 

any time after the earliest start time and end before the latest end time. 

2. Volume based requests, where the requests specify a bandwidth requirement 

with an earliest start time and latest end time, but no time duration is 

specified. 

Our research only considers bandwidth type of requests with a firm start and end time 

(and hence the time duration for which the bandwidth is required is also firm). In contrast 

to the model for our research, in [PiWOO], the bandwidth used by a request cannot vary 

with time, and once a request begins transmission it cannot be preempted or degraded. 



The issue of dynamic bandwidth allocation for multimedia applications is 

discussed in [ReR98]. It is argued in [ReR98] that the requests generated by multimedia 

applications would dynamically demand different bandwidths during a session and the 

network should have the capability to dynamically reallocate the bandwidth to these 

requests. The requests in [ReR98] are assumed to have a satisfaction profile that 

expresses the satisfhction of the user with the bandwidth currently allocated to the user's 

request. The network dynamically adjusts the bandwidth allocated to the requests based 

on the bandwidth requirements of the requests and the satisfaction profiles of the 

requests. A concept called the application's softness that describes the application's 

tolerance to degradation in bandwidth allocated to its request and sensitivity to delay 

experienced by its request is presented in [ReR98]. The softness of the application is 

considered while deciding how much bandwidth needs to be allocated to the application 

during the length of the session. Our research incorporates the softness of the application 

(i.e., user) in the utility function of the request generated by the user. If the request has a 

concave utility function then it is tolerant to degradation in bandwidth during the session, 

but if its utility function is a step function then it is not tolerant to degradation in 

bandwidth during the session. The worth of a request considered in this research, 

corresponds to the satisfaction profile of the user's request in [ReR98], because it 

indicates how much the user is willing to pay for a certain amount of bandwidth. While 

the goal of [ReR98] is to design a framework that is capable of dynamically allocating 

bandwidth, the goal of our research is to dynamically allocate bandwidth to the different 

requests such that the total worth of all the requests satisfied in a fixed interval of time is 

maximized. 

In [FuR97], an on-line Dynamic Search Algorithm (DSA) that dynamically 

adjusts the resource allocation based on measured QoS parameters such as bandwidth and 

loss rate is presented. The QoS parameter considered in [Fa971 is the cell loss 

probability of a request. The DSA dynamically adjusts the bandwidth allocated to 

the requests to satisfy the desired CLP of the request. The goal of the DSA is to adjust the 

bandwidth so as to provide each request its desired CLP, with the minimum number of 

bandwidth allocation changes. DSA renegotiates the bandwidth periodically so as to 



minimize the number of changes in allocation. Our research differs fiom [FuR97] in that 

the bandwidth of a request is considered as the QoS parameter. In our research, the 

bandwidth is dynamically adjusted whenever the session of the new request overlaps with 

the session of an existing request. Furthermore our performance measure is worth 

(defined in Subsection 2.5) and the number of changes made to the bandwidth allocation 

is only a secondary concern. 

A bandwidth allocation method for elastic t d i c  is presented in [LowOO]. Elastic 

traffic is defined as traffic that can tolerate some degradations in bandwidth, i.e., the 

utility function of the traffic is a strictly concave function [Ke197, I.owOO, She951. In 

[LowOO], the users are allocated some h e d  minimum bandwidth arld a random extra 

amount of bandwidth. The allocations and the prices are adjusted to adapt to resource 

availability and user demands. Equilibrium is achieved when all the users optimize their 

worth and demand equals supply for non-fiee resources such as link bandwidth. The goal 

is to converge to this equilibrium, and the method proposed is similar to the one proposed 

in [ThTOOa] (described above). Our research does not divide the bandwidth allocated into 

fixed and variable bandwidth, rather it dynamically allocates bandwidths to the requests 

such that the amount of bandwidth allocated is at least the minimum bandwidth required. 

In [LowOO], the users can change the amount of money paid, i.e., the worth, at their own 

discretion, while in our research, the network changes the amount of bandwidth it 

allocates to different users based on the worth (fixed priority level and fixed utility 

function) of the user's request and the available bandwidth. 

A bandwidth allocation scheme with preemption is described in [BaC99]. The 

scheme in [BaC99] proposes that to decide which requests to reject/preempt, the duration 

of the request and the time for which the request has been in session should be 

considered, completely ignoring the bandwidth requirement of the request. In particular, a 

request with a very large bandwidth requirement may be preempted to accommodate a 

request with a longer duration and a smaller bandwidth requirement. The research in 

[BaC99] presents different algorithms such as the left-right algorithm that implements the 

compromise between the need to hold on to requests that have been running for the 

longest amount of time (thus, capitalizing on the work done) and the need to hold on to 



requests that will run for the longest time in the future (thus, guaranteeing future work). 

The algorithms presented in [BaC99] though surprisingly simple seem to ac'hieve good 

results. Our research differs fiom [BaC99] in that it allows for degradation of' bandwidth 

allocated to requests as well as preemption of requests. Thus, the heuristic presented in 

our research has to explore more choices when deciding whether to admitlreject the 

request. Furthermore, in [BaC99], requests do not have priority levels. 

A brief overview of some of the literature related to this work was presented in 

this section. The scheduling heuristic developed in this research is presented in the next 

section. 



5. SCHEDULING HEtTRTSTIC 

5.1. Overview 

In this research, the network is simulated using a resource allocation table and this 

is explained in detail in Subsection 5.2. In Subsection 5.3, the marninal worth, i.e., the 

change in the worth of the concave or linear request due to a unit change in the 

bandwidth allocated to the request, is described. An example of overlapping requests is 

illustrated in Subsection 5.4. In Subsection 5.5 the scheduling heuristic: is discussed. The 

design of the scheduling heuristic is explained step by step. The issues encountered while 

designing the heuristic and the corresponding design decisions made are stated. The 

heuristic is summarized at the end of Subsection 5.5, while the detailed pseudo-code is 

presented in Appendices A, B, and C. 

5.2. Network Simulator 

In this research, table is used to record information about the requests that were 

admitted. This table, called a resource allocation table (RAT) records information such as 

the ingress and egress links utilized by the request, the bandwidth allocated to the request, 

the start time, and the end time of the request. The RAT essentially simulates a network. 

The available bandwidth at each link and at every instant of time can be determined &om 

the RAT. When a new request arrives at an ingress node, the RAT is examined to 

determine whether there is enough bandwidth available to satisfy the new request at 

every time instant of its session, both at its ingress and egress links. If there is sufficient 

bandwidth available at every instant of time during the new request's session, then the 



information about the request is added to the RAT and the request is considered as 

satisfied. If sufficient bandwidth is not available then the scheduling heuristic is invoked. 

The heuristic performs computations to determine which bandwidths of the existing 

requests should be degraded and by what amount, if at all. If the new request can be 

satisfied with an increase in the total worth of satisfied requests, then the information 

about the new request is recorded in the RAT. 

5.3. Marginal Worth 

As mentioned earlier, the marginal worth is the change in the worth of a concave 

or linear request due to a unit change in the bandwidth allocated to the request. It is 

calculated as follows. The derivative of the utility hc t ion  of the request is called the 

marginal utility of the request. The marginal utility is essentially the slope of the utility 

function of the request. The marginal utility indicates the change in the utility of the 

request due to a unit change in the bandwidth allocated to the request. The worth of a 

request is the product of the weighted priority and the utility of the request (Equation 

2.2). Thus, the derivative of the worth of the request is the product of the weighted 

priority and the marginal utility of the request. The derivative of the worth of the request 

is the marginal worth of the request. 

The marginal worth of the request may change depending upon the amount of 

bandwidth received in case of a request with a concave utility function. In a concave 

utility hction, the utility obtained per bandwidth depends on the amount of bandwidth 

received. Because the worth depends upon the utility hction, the worth changes as the 

amount of bandwidth received changes. In Figure 5.1, the different marginal worths of a 

request depending upon the bandwidth received are shown. The marginal worth of the 

request with a concave utility function increases as the bandwidth allocated to the request 

is decreased (not decreased below mbk). 

For a linear utility hction, marginal utility is just the slope when the bandwidth 

is between mbk and rbk. When the bandwidth is below mbk, then the utility is zero and 

hence the marginal utility is zero. 
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Figure 5.1. Different marginal worth of a request with a concave utility hction. 

Figure 5.2. Marginal worth of a request with a step utility hction. 

The utility functions of the requests can also be non-differentiable hctions such 

as step hctions. In this research, the marginal worth of a request with a step utility 

function is considered to be the ratio of the worth of the request (wk) and the desired 

A , (0' marginal worth 

bandwidth (rbk) of the request as illustrated in Figure. 5.2. For a step hction, marginal 

worth does not represent the change in worth for a unit loss of bandwidth. The way a step 

function's marginal worth is used is explained in Subsection 5.5. 
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5.4. Overlapping Requests 
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A request rl overlaps with request r2 if: rl ends during r2's sesslon (i.e., fiom s 2  to 

e2), rl starts during r2's session, or rl starts and ends during n's session. These three 

cases are illustrated in Figure 5.3. Consider a new request that arrives to be scheduled. 
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Figure 5.3. Requests rl and r2 overlapping in time. (a) rl ends during rz's session. (b) rl 
starts during rz's session. (c) rl starts and ends during rz's session. 

The set of requests that overlap with the new request is the set of conflicting 

requests (and includes the new request). If a request is not in the set of conflicting 

requests, then degrading/preempting that request would not fiee up bandwidth for the 



new request. This is because, if two requests do not overlap in time (as shown in Figure 

5.3), then these two requests do not compete for the same bandwidth. Hence, the set of 

conflicting requests is considered when deciding which requests should be 

degradedlpreempted to make bandwidth available for the new request. 

In Figure 5.4, the set of conflicting requests for the new request r4 consists of 

request rl at time s4, requests rl and r3 at time s3, and requests r2 and r g  at time sz. Hence 

the set of conflicting requests is different at times s4, s3, and s2 and may change at every 

instant of time, depending upon how many existing requests (i.e., heady scheduled 

requests) overlap with the new request. 
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Figure 5.4. A snapshot of the requests satisfied at a link fkom time to to tl. Request r4 is 
the new request being considered for scheduling. The rectangle indicates the 
request; the width of the rectangle is the duration of the request and the 
height of the rectangle is the bandwidth required by the request. The height 
of the outer rectangle is the link bandwidth L. The start and the end times of 
the requests are indicated on the X-axis. 



5.5. Immediate On-line Scheduling Heuristic 

In this research, the requests are assumed to have some time difference between 

their arrival time and their start time. This time difference is called the lead. time. The 

lead time is introduced because the heuristic takes a finite amount of time to schedule a 

request. Hence, ifthe heuristic cannot schedule the request before its start tinle (ie., the 

time difference between the arrival time and start time of the request is not sufficient for 

the heuristic to schedule the request) the request should be rejected immediately and not 

considered for scheduling. 

When a new request (e.g., r4 in Figure 5.4) is considered for scheduling (refer to 

the main module of the pseudo-code in Appendix A), the difference between the start 

time and the current time is compared with the lead time. If the difference is less than the 

lead time, the request is rejected. Otherwise, the RAT is queried to determine whether the 

request can be satisfied at every time instant of the request's session. If the request can be 

satisfied with its desired bandwidth at both its ingress and egress links, then the 

information about the request is recorded in the RAT and the request is admitted. If the 

request cannot be satisfied, the scheduling heuristic is invoked. 

The goal of the heuristic is to allocate the bandwidth to the different requests such 

that the total worth W is maximized. The methodology of the heuristic is to 

degradelpreempt the bandwidth allocated to existing requests, so that the &eed up 

bandwidth (due to degradationlpreemption of existing requests) can be allocated to the 

new request, such that the total worth W is maximized. The problem is to determine 

which existing requests' bandwidth should be degraded/preempted, and if degraded, by 

what amount, and what bandwidth should be allocated to the new request:. The new 

request may not be allocated the full bandwidth desired, depending upon its relative 

worth as compared to the other requests. For example, a maximum total worth of satisfied 

requests might be obtained when the bandwidths allocated to the existing requests are not 

degraded but the new request is allocated bandwidth less than its desired bandwidth. This 

may be because the marginal worth of the new request is less than the marginal worth of 

the existing requests. 



The main idea of the heuristic is that a request whose marginal worth is the 

smallest should be the first request whose bandwidth is degradedpreempted to 

accommodate the new request. Then the bandwidth of the request with the next higher 

marginal worth is degraded, and so on, until the new request can be satisfied either with 

desired or degraded bandwidth. Requests are considered in increasing order of marginal 

worth because if the bandwidth of the request whose marginal worth is the smallest is 

degraded by some amount, then the change in total worth for that amount of degradation 

in bandwidth is the least. This is because if the bandwidth of a request, whose marginal 

worth is not the smallest, is degraded by some amount, the resulting change in the total 

worth of satisfied requests would obviously be higher as compared to the change in total 

worth due to degradation of bandwidth of a request with the least marginal worth. Thus, 

at any instant of time, the bandwidth of the request whose marginal worth is the least is 

degraded. This is the crux of the heuristic. Only the bandwidths of the requests 

conflicting with the new request are degradedpreempted to accommodate the new 

request, as explained in Subsection 5.4. 

At every instant of time, the set of conflicting requests is determined (refer to the 

schedule module of the pseudo-code in Appendix A). This set of requests conflicting 

with the new request, and the new request, are assigned to an array & size 3. The marginal 

worth of every request in this set of conflicting requests (array R) is calculated. This array 

is sorted in the decreasing order of marginal worth (i.e., the request in. R[n] has the least 

marginal worth) and the bandwidth of the request with the smallest marginal worth is 

degraded. 

If the request has a concave utility function, the marginal worth of the request 

increases as the bandwidth allocated to the request is decreased (not decreased below the 

minimum bandwidth of the request mbk). Hence, the bandwidth of' a request with a 

concave utility function is degraded until the point when the marginal worth of that 

request is no longer the least (explained later in this subsection). This request is then 

inserted in the array in the correct position in the order of decreasing marginal worth. The 

request whose marginal worth is now the least should be degraded until its marginal 

worth is no longer the least. This continues until the bandwidth released by the 



degradations of the bandwidth's of existing requests is sufficient to satis@ the new 

request with desired or degraded bandwidth at that instant of time. 

Because the new request is included in the array R, the new request is also 

considered for degradationlpreemption. That is if the marginal worth of the new request 

is the least at any point in time, then its bandwidth should be degraded. Thus, the new 

request would be allocated the degraded bandwidth and not the full bandwidth desired. In 

case the new request is preempted, then that indicates that it cannot be satisfied. 

For example, consider a set of conflicting requests containing rl, r2, and the new 

request. Assume rl and r2 have concave and linear utility functions, respectively, as 

illustrated in Figure 5.5. Further assume that the marginal worth of the new request is 

greater than the marginal worths of rl and r2. This set of conflicting requests is assigned 

to array R. R is sorted in decreasing order of marginal worth as explained earlier. When rl 

is allocated bandwidth rbl, the marginal worth of request rl is the least. :Hence, the 

bandwidth of request rl would be degraded first. The bandwidth of request rl is degraded 

repeatedly until its marginal worth is no longer the least. Once the bandwidth allocated to 

rl has been degraded to bll, the marginal worth of r2 becomes slightly greater than 

marginal worth of request rl. The marginal worth of request r2 is now the least and hence 

r2 should now be degraded. The request rl is inserted in the array R in the correct position 

in the order of decreasing marginal worth. This continues until the bandwidth fieed up 

(due to degradations of existing requests) is sufficient to satisfy the new request with 

desired or degraded bandwidth. The bandwidth bll at which the marginal worth of 

request rl becomes less than the marginal worth of request r2 can be exactly determined 

because the marginal worths of the requests can be pre-computed when the requests 

arrive at the ingress node. Thus, the amounts by which the bandwidth of requests rl and 

r2 need to be degraded may be determined exactly. 

The set of conflicting requests may change at every time instant because of some 

requests ending, and some other requests starting during the new request's session. For 

example, in Figure 5.4, at time s4, the set of requests conflicting with the new request r4 

consists of request rl only. At time s3, the set of conflicting requests consists of requests 
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Figure 5.5. Marginal worths of (a) request rl with a concave utility function, and (b) 
request r 2  with a linear utility function. 

rl and r3. At time s2, the set consists of requests r 2  and r3. Thus, the above process may 

need to be repeated at every time instant of the request's session. But if' the above process 

were repeated at every time instant of the request then the heuristic would take too long. 

The heuristic is modified as follows (refer to the find-next-event module of the 

pseudo-code in Appendix A). The set of conflicting requests changes only when any 

request in that set ends, or some other existing request (not in the! set) begins. The 

heuristic needs to be executed only when the set of conflicting requests changes. An 

event is defined as the time instant when the set of conflicting requests changes. Thus, the 

event would be the next time instant after the earliest end time of the requests in the set or 

the earliest start time of some other request (not in the set), whichever is earlier. In Figure 

5.4, the events would be at times sq, the next time instant after el, s2, and the next time 

instant after e3. The heuristic is executed at every event during the new request's session. 

For the Figure 5.4 example, the heuristic would be executed at the times mentioned 



above. When a request is degraded, the bandwidth allocated to the request is degraded for 

the time interval fiom the current event to the next event. 

The heuristic would have to be executed at both the ingress link and the egress 

link because the set of conflicting requests is different for the links. But, bandwidth 

allocated to the request should be identical at both the links, i.e., if the request is allocated 

a certain amount of bandwidth at the ingress hk, it should be allocated the same 

bandwidth at the egress link too. The heuristic is executed to calculate the amount the 

degradations to the bandwidth of the new request at the ingress link. The new request, 

with the degraded amount of bandwidth is then considered at the egress link, to determine 

whether the request can be satisfied with its already degraded bandwidth, or fiuther 

degradations are needed. If the request is further degraded at the egress link, then the 

degradations are reflected back in the bandwidth allocated to the request at the ingress 

link. If the bandwidth allocated to a request was degraded at the new request's ingress 

link due to the new request, then the bandwidth allocated to the request is degraded at its 

other (ingress or egress) link too, i.e., the bandwidth of the request is degraded at both its 

links. This is done for all the requests that were degraded due to the new request. 

Whenever a request is preempted, if the bandwidth fieed up is more than the 

needed bandwidth, excess bandwidth is available. The excess bandwidth is redistriiuted 

to the other requests in decreasing order of marginal worth, starting with R[l]. If a 

request has a concave utility function, its marginal worth decreases as the bandwidth 

allocated to it increases. Hence, the request with a concave utility function is allocated 

bandwidth until its marginal worth is no longer the largest or is new current bandwidth 

equals its desired bandwidth. It is then reinserted in R in the correct order based on its 

marginal worth. If a request has a linear utility function, it is allocated bandwidth until its 

new current bandwidth equals its desired bandwidth. If a request has a step utility 

function, it is not allocated any bandwidth (because its current bandwidth equals its 

desired bandwidth). This is continued until all the excess bandwidth has been 

redistributed or all the other requests are at their desired bandwidth. When calculating the 

worth due to redistribution of excess bandwidth, the collective increase in worth due to 

the increase in the bandwidths allocated to requests is calculated. 



Once it is determined that the request can be satisfied at the ingress and egress 

links, the change in total worth due to degradation of bandwidths of existing requests and 

addition of worth due to redistribution of excess bandwidth and the new request is 

calculated. If this change in the total worth is more than zero, then there is an increase in 

worth obtained by satisfling the new request. The new request is admitted and the 

degradations/preemptions calculated for existing requests are implemented. If the change 

in the total worth is less than zero, then there is no increase in worth obtained by 

satisfying the new request. Hence, the new request is rejected and the calculated 

degradations to bandwidths of existing requests are ignored (not implemented). The 

bandwidths of the requests that were degraded by the new request are restored and also 

the requests that were preempted by the new requests are restored (allocated their original 

bandwidth). 

As suggested by the example above, the requests with concave, linear, and step 

utility functions are degraded differently (refer to the degrade module of the pseudo- 

code in Appendix A). The bandwidth allocated to a request with a concave utility 

function is degraded in steps (of unit size), because the marginal worth of the request 

changes with every unit change in the bandwidth allocated (refer to the 

degrade-concave module of the pseudo-code in Appendix A). The bandwidth allocated 

to the request is degraded in steps until the marginal worth of the request is no longer the 

least (as explained in the example above). The concave request is then reinserted in the 

correct position in R in the order of decreasing marginal worth. 

The bandwidth allocated to a request with a linear utility function is degraded as 

follows (refer to degrade-linear module of the pseudo-code in Appendix A). 

1. If the amount of bandwidth needed (amount of degradation) is less than the 

difference between the current bandwidth allocated to the request and the 

minimum bandwidth of the request, the request with the linear utility 

function is degraded by the amount of bandwidth needed. 

2. If the amount of bandwidth needed is greater than the difference between 

the current bandwidth allocated to the request and the minimum bandwidth 

of the request, the request with the linear utility function is preempted. 



If the bandwidth allocated to a request with a step utility function is degraded by a 

small amount, then the utility of the request would be zero and hence the worth is zero 

(refer to Figure 5.2). Hence, the bandwidth allocated to a request with a step utility 

function cannot be degraded by a small amount of bandwidth; it should either be 

preempted or not degraded at all. 

Preemption of a request with a step utility function may not be desirable in some 

cases. For example, assume that for a new request to be satisfied, the amount by which an 

existing request needs to be degraded is A. Further, assume that the marginal worth of a 

request with a step function is the least and hence the request may have to be preempted 

to satisfy the new request. Thus, R[n] contains the request with a step utility fiinction and 

the requests higher up in the list may have step, linear, or concave utility functions. 

If A is greater than the bandwidth rbk of the request with a step utility function, 

then the request with a step utility function can be preempted (refer to lines 6-12 of 

degrade module of the pseudo-code in Appendix A). The reason is as follows. The 

bandwidth needed is more than the bandwidth allocated to the request with a step utility 

function The request has the least marginal worth and hence it is being considered for 

degradationlpreemption. Because the bandwidth needed is more than the bandwidth 

allocated to the request (with the step utility function), it does not matter ,whether its 

utility function is step or not, because, its marginal worth does not change (as the 

marginal worth of a request with a concave utility function changes). For all practical 

purposes, the request can be thought of as a request with a linear utility function. If the 

bandwidth needed is more than the bandwidth currently allocated to a request with a 

linear utility function, the request is preempted. Similarly, if the bandwidth needed is 

more than the bandwidth rbk of a request with a step utility function, the request can be 

preempted. 

If A is less than rbk, then depending upon the ratio of A and rbk, a decision needs 

to be made whether the request k with a step utility function should be preempted or the 

request with the next higher marginal worth should be considered. The reason is as 

follows. 



If A is large (e.g., 90 percent of rbk), then it may be beneficla1 to preempt the 

request with a step utility function. Although there will be some unused bandwidth (ten 

percent) because of the preemption, it may be possible to reallocate this unused 

bandwidth to other requests that have been previously degraded. 

In contrast, if A is very small (e.g., ten percent of rbk), then it may not be 

beneficial to preempt the request with the step utility function. This is because it may not 

be possible to reallocate all of the unused bandwidth to the other requests. Also, the 

bandwidth needed, A, may be obtainable from other requests (e.g., the request with the 

next higher marginal worth), by losing less worth than the worth lost by preempting the 

request with a step utility function. 

For example, ifthe request R[n-1] has a concave or a linear utility function, and if 

the loss of worth by degrading R[n-1] by A is less than the worth lost by preempting the 

request with the step utility function (i.e., R[n]) then it may be beneficial to degrade 

R[n-1] by A rather than preempting R[n]. Alternatively, if R[n-1] has a step utility 

function, the bandwidth of R[n-1] may be smaller than the bandwidth of R[n], and 

preempting R[n-1] may result in a smaller loss of worth than preempting R[n]. Thus, 

degradinglpreempting the request with the next higher marginal worth may result is a 

smaller loss of worth than preempting R[n] and hence R[n-1] may be considered. The 

cases discussed above are some of the possibilities that exist. Three variations in the 

heuristic have been developed that consider the different possibilities. 

In the first variation for degrading a step function called the 50% variation 

(module degrade-step-50 of the pseudo code in Appendix A), the ratio of A and the 

bandwidth of R[n] is compared to 0.5. If the bandwidth needed is more than 50% of the 

bandwidth of the request R[n], the request in R[n] is preempted. If the bandwidth needed 

is less than 50% of the bandwidth of R[n], the request with the next higher marginal 

worth is considered, i.e., R[n-11. If the loss of worth obtained by degradinglpreempting 

the request R[n-1] is more than the worth of R[n], the request in R[n] should be 

preempted. If the loss of worth obtained by degradinglpreempting R[n--11 is less than the 



worth of R[n], then the request in R[n] is not preempted, and the request R[n-1] is 

considered for degradatiodpreemption. 

The reason why only R[n-1] is considered is as follows. If the heuristic decided 

not to preempt R[n], it would have to degradelpreempt some of the requests R[O] to 

R[n-1] in the list to satisfl the new request. The marginal worth of R[n-1] is the least as 

compared to the marginal worths of requests R[O] to R[n-1] (because the list is sorted in 

decreasing order of marginal worth). Degrading R[n-1] by a unit amount of bandwidth 

would result in the least loss of worth as compared to the loss of worth by degrading 

other requests in the list (R[O] to R[n-21) by a unit amount of bandwidth, but possibly not 

when degrading by A. Hence, the loss of worth obtained by degradinglpreempting R[n-1] 

by the amount of bandwidth needed is only an estimate of the amount of worth that will 

actually be lost if R[n] is not preempted and requests R[O] to R[n-1] are considered for 

degradation. This estimate of the loss of worth is used for comparison with the worth of 

the step function to make a decision of whether to preempt the request in R[n], or 

degradelpreempt the request in R[n-11. This is a heuristic approach to estimating the loss 

of worth. An exhaustive search may be employed to find the actual loss of worth, but the 

time complexity of an exhaustive search is too high (described in Subsection 3.3). Future 

work will attempt to determine better approaches to estimate the loss of worth. 

When calculating the loss of worth due to degradatiodpreemption of R[n-11, it is 

implicitly assumed that the all the bandwidth required is obtained fiom R[n-11. But when 

the requests are actually degraded, all the bandwidth need not be obtained by degrading 

R[n-1] alone; other requests may be degraded too. For example, assume that the request 

in R[n-1] has a concave utility function. It will be degraded in steps of unit size (refer to 

degrade-concave module of the pseudo-code in Appendix A), until its marginal worth 

is no longer the least. That is, all the bandwidth needed is not obtained by degrading 

R[n-1 ] alone, but other requests (R[n-21 to R[l]) may be degradedJpreempted too. In this 

section, the expression demade Rrn-1 + 1 1 is used to indicate that requests; R[n-1] to 

R[1] are considered for degradation in decreasing order of marginal worth. 



In summary, the loss of worth is calculated based only on R[n-1] when making a 

decision whether to preempt request R[n] or not. Once it is decided that the request R[n] 

is not to be preempted, the request R[n-1] is degraded as it normally would be. Thus, the 

actual loss of worth may be less than the loss of worth estimated by 

degradinglpreempting R[n- 1 ] alone. 

The bandwidth needed may be more than the bandwidth of request R[n-I.], and 

hence if it is decided not to preempt R[n], request R[n-1] will be preempted and other 

requests will have to be preempted. In this case the actual loss of worth incurred due to 

preemption of R[n-1] and degradation/preemption of other requests R[O] to R[n-21 is 

more than the loss of worth as estimated above. If the actual loss of worth is to be 

calculated, then an exhaustive search may have to be employed which takes a huge 

amount of time. Hence a trade-off between speed and accuracy is achieved by 

considering only the R[n-11th request for degradation/preemption. In the 25/75 variation, 

two thresholds are considered and both R[n-1] and R[n-21 are considered for 

degradationfpreempt ion. 

In the second variation for degrading a step hc t ion  called 25/75 (module 

degrade-step-25/75 of the pseudo-code in Appendix B), the ratio of A and rbk is 

compared with two thresholds, 0.25 and 0.75. The following three cases arise. 

1. If A is more than 75% of bandwidth of R[n], the request in R[n] is 

preempted. This is because a large amount of bandwidth is needed as 

signified by the fact that the bandwidth needed is more than 75% of the 

bandwidth of the request in R[n]. Because of the large amount of bandwidth 

needed there is a low probability that the loss of worth due to the 

degradatiodpreemption of requests besides R[n] is less than worth of R[n]. 

This is because it may require preempting requests higher up in the list (for 

example R[n-1] and R[n-21) to obtain the large amount of bandwidth 

needed. Thus, even though the bandwidth obtained by preemption is more 

than the bandwidth needed, the loss of worth may be still less as compared 

to degrading/preempting requests higher up in the list. Hence, in this case 



the request in R[n] is preempted. Furthermore, unused bandwidth may be 

reallocated to already scheduled requests with less than their requested 

bandwidths. 

2. If A is less than 25% of bandwidth of R[n], that indicates a small amount of 

bandwidth is needed. Hence the request with the next higher marginal 

worth is considered. Because the bandwidth needed is a small amount, there 

is a high probability that the loss of worth due to degradation of request 

R[n-I.] will be less than the worth of request R[n]. Hence, degrade 

R[n-1 + 11. 

3. If the amount of bandwidth needed is between 25% and 7.5% of the 

bandwidth of R[n], then the loss of worth by degradinglpreempting the 

requests R[n-11 and R[n-21 is considered. If the loss of worth is higher than 

the worth of request R[n], the request is R[n] is preempted. But if' the loss of 

worth is less than the worth of request R[n], then that indicates that it would 

be better to degradelpreempt the requests R[n-1] and R[n-21 (if need be) 

instead of preempting request R[n]. Thus, degrade R[n-1 + I.]. 
When calculating the loss of worth due to degradationlpreemption of requests 

R[n-1] and R[n-21, a set of conflicting requests consisting of two elements R[n-1] and 

R[n-21 is generated. The marginal worths of the requests are calculated and the 

bandwidth allocated to the requests is degraded based on the marginal worths of the 

requests, just like it is done in a typical situation, but only two requests R[n-1] and 

R[n-21 are considered. Here again, only when making a decision whether to preempt 

request R[n] or not, the requests R[n-1] and R[n-21 are degracledlpreempted to calculate 

the loss of worth. Once it is decided that the request R[n] is not to be preempted, the 

requests R[n-1] and R[n-21 are degraded as they normally would be. 

If the amount of bandwidth needed is between 25% to 75% of the bandwidth of 

R[n], then it indicates that a large amount of bandwidth is needed. The probability that 

this amount of bandwidth can be obtained by degradinglpreempting R[n-1] alone is low, 

compared to the A < 25% case. Hence, two requests R[n-'11 and R[n-21 are considered 



instead of only considering R[n-l] (as in the 25% case and the 50% variation). Future 

work may consider more than two requests. 

The bandwidth needed may be more than the bandwidths of R[n-l] and R[n-21. 

In this case too (as explained earlier for the 50% variation), the loss of worth as estimated 

above may be less than the actual loss of worth. Here again a trade-off is achieved 

between speed and accuracy. 

The 25/75 variation attempts to obtain a high W value than the 50% variation by 

using two thresholds. However, on average, its execution time is larger. As will be shown 

in Subsection 8.2, its performance is comparable to that of the 50% variation. 

The third variation for degrading a step hc t ion  is called redistribute (module 

degrade-step-redist of the pseudo-code in Appendix C). Here, the worth obtained due 

to redistribution of excess bandwidth (i.e., bandwidth of R[n] - A) is considered. When a 

request is preempted and the bandwidth obtained due to preemption is more than the 

bandwidth needed, then excess amount of bandwidth can be reallocated to the other 

existing requests. Hence, the net loss of worth of the request R[n] due to preemption is 

the worth of the request minus the worth obtained by reallocating the excess bandwidth to 

other requests. If the net loss of worth of R[n] is less than or equal to zero, the request 

R[n] is preempted. This is because the request R[n] can be preempted and the excess 

bandwidth can be redistributed to other requests achieving an increase in worth. 

Otherwise the following cases arise. 

1. If the bandwidth needed is less than the bandwidth of R[n--11, the net loss of 

worth of R[n] is compared to the loss of worth due to degradation of R[n-I]. 

If the request in R[n-l] has a step utility bction, the net loss of worth is 

considered as above. If the loss of worth by preempting R[n] is less than the 

loss of worth due to degradinglpreempting R[n-I 1, then R[n] is preempted. 

Otherwise, degrade R[n- 1 + 11. 
2. If the bandwidth needed is more than the bandwidth of R[n-11, a heuristic 

similar to the 50% variation is employed. If the bandwidth needed is more 

than 50% of the bandwidth of R[n], then request in R[n] is preempted. 

Otherwise, if the loss of worth due to preemption of R[n-l] is greater than or 



equal to the net loss of worth of R[n], then R[n] is preempted. If the net loss 

of worth of R[n] is more, then degrade R[n-1 -+ 11. 

The redistribute variation takes a ~ i g ~ c a n t  amount of time as compared to the 

50% variation and the 25/75 variation. However, it attempts to incorporate into the 

decision process the impact of the reallocation of the excess bandwidth. A more detailed 

explanation of the heuristic and the variations is given in the pseudo-code in Appendices 

A, B, and C. 

The heuristic and its variations proposed in this research use a greedy approach. 

In a greedy approach there is always a concern that the approach may lead to a local 

optimum (sum of worths being maximum at a single time instant) instead of a global 

optimum (total sum of worths being maximum over a given interval of time). Also, when 

making a decision whether to adrnitlreject a request, just comparing the new worth (after 

degradation of new and existing requests) and the old worth (before degradation of new 

and existing requests) may not yield good results. For example, assume a priority level 

four request is preempted to fiee up bandwidth for a priority level three request because 

the priority level three request gives more worth than the priority level four request. But 

the priority level three request may itself be preempted for a priority level one request 

that arrives later in time. The bandwidth fieed up due to preemption of the priority level 

three request may be sufficient to satisfl both the priority level one requests and the 

priority level four request. Thus, it would have be better to reject the priority level three 

request, and admit the priority level one and priority level four request, if it is 'known that 

the priority level one request would arrive later. The scheduling heuristic is an immediate 

on-line scheduling heuristic and future arrival of requests is not known. Hence, situations 

like the one described above may occur. 

The approach used in this research to deal with this issue is to introduce some 

randomness in the decision making. This random factor is called the globalization factor 

(GF). The GF is used as follows. A random number between 0 and 1 is generated. If the 

total worth of the requests after degradation of requests is more than the worth of the 

requests before the degradation, and the random number generated is more than the 

globalization factor, the new request is admitted and the degradationslpreemptions 



calculated for existing requests are implemented. Otherwise the new request is rejected 

and the calculated degradations to the bandwidths of existing requests are ignored (not 

implemented). The values of globalization factor experimented with in this research were 

5%, lo%, 15%, 20%, and 25%. The results of these experiments will be discussed in 

Section 8. The globalization factor introduces a random factor in the decision making 

and this random factor prevents decisions being made solely on the basis of difference in 

new and old worth. The globalization factor approach is only one approach that was 

experimented with in this report. There may be other approaches too and the fbture work 

will attempt to determine other approaches as a solution to the issue mentioned above. 

The fbll heuristic is presented as follows. When a new request rk amves at the 

node, the RAT is checked to determine whether the request can be satisfied at its ingress 

link. If the request can be satisfied, the information about the request is recorded and the 

request is admitted. If the request cannot be satisfied, the scheduling heuristic is invoked. 

The scheduling heuristic considers the request on a link by link basis. It first considers the 

ingress link. At the start time of the request rk, a set of requests conflicting with rk is 

determined. The new request is also added to this set. This set is sorted in decreasing 

order by the marginal worths of the requests. The request at the end of the set is the 

request with the least marginal worth. This request is degraded until its marginal worth is 

no longer the least. The heuristic handles requests with step utility functions with one of 

the three variations described above. The set is sorted again as before. This is continued 

until the new request can be satisfied at that instant of time. Satisfying a request at an 

instant of time means that the sum of the bandwidths of the requests in the set should not 

exceed the link bandwidth at that instant of time. 

The next event, at which a request fiom the current set ends or a new request fiom 

among the existing requests begins, is determined. At the next event the scheduling 

heuristic is executed, to determine whether the new request can be satisfied at that instant 

too. This is continued until the end time of the new request is reached. If the request 

could be satisfied at every event, then the heuristic is executed at the new request's egress 

link. Any additional degradations to the new request at its egress link are reflected back at 

its ingress link too and the bandwidth finally allocated to the request is the identical at its 



ingress and at its egress links. The change in the total worth, due to degradations in 

bandwidths of existing requests and addition of the worth of the new request, is 

calculated. If the total change of worth is greater than zero, and a randorn number 

generated between 0 and 1 is greater than the globalization kctor, the request is admitted 

and the degradations/preemptions calculated for existing requests are implemented. 

Otherwise the new request is rejected and the calculated degradations to the bandwidths 

of existing requests are ignored (not implemented). The detailed pseudo-code of the 

heuristic is presented in Appendices A, B, and C. The pseudo-code may be referred to for 

fuaher details. 

5.6. Summary 

The concept of marginal worths and overlapping requests was explained in this 

section. The heuristic and its three different variations were discussed. A conceptual 

overview of the heuristic was described in this section and the detailed pseudo-code is 

presented in the Appendices A, B, and C. The concept of globalization factor and the 

reason why it was introduced has also been explained. The performance of the heuristic is 

compared to the complete sharing policy and the upper bounds described in the next 

section. 



6. PERFORMANCE COMPARISONS 

6.1. Overview 

The heuristic and the different variations developed in this research were 

discussed in the last section. The performance of the heuristic is compared to a simple 

scheduling technique and three upper bounds presented in this section,. As per Equation 

2.4, the performance measure of the system is the sum of the worths (W) of the requests 

satisfied over a given interval of time. The interval of time, over which the sum of the 

worths of the requests is calculated, is called the simulation &. The concept of 

simulation time and the method for calculating the simulation time is explained in greater 

detail in the next section. 

6.2. Simple Scheduling Technique 

In this research, a simple scheduling technique is used to compare the 

performance of heuristic at the lower end and is based on the complete sharing policy (CSJ 

[BoM98]. In the complete sharing policy the scheduling heuristic is not invoked. When a 

new request arrives at an ingress node, RAT (resource allocation table, discussed in 

Section 5) is checked to determine whether there is enough bandwidth available to satis@ 

the new request's full bandwidth rbk at its ingress and egress links. If there is sufficient 

bandwidth available, the new request is admitted and information about the request is 

stored in the RAT. If the request cannot be satisfied, the request is rejected. The sum of 

the worths of all the requests satisfied in this manner, over a given interval of time is 



calculated. This sum is compared with the sum of the worths of the requests satisfied by 

the heuristic in Section 8. 

When calculating the sum of the worths of the requests satisfied over a given 

interval of time for the complete sharing policy, the requests are satisfied only with 

desired bandwidth and not degraded bandwidth. The utility functions of the requests are 

not considered and hence requests with concave, linear, and step utility functions are 

treated alike. The priority level of a request is not considered when making a decision 

whether to admit/reject the request. If sufficient bandwidth is available to satisfl the 

request, the request is admitted or else it is rejected. The bandwidths allocated to existing 

(already scheduled) requests are not degradedlpreempted to satisfl requests with a higher 

priority and hence higher worth. 

The scheduling heuristic considers degradatiodpreemption of existing requests to 

allocate more bandwidth to requests with a higher worth. The heuristic also considers the 

utility functions of the requests. The scheduling heuristic degradeslpreempts the requests 

differently based on the utility functions of the requests, thus attempting to maximize the 

worth W. 

6.3. Upper Bounds 

Three upper bounds were considered in this research. The first upper bound is the 

sum of the worths of all the requests that have arrived in the network during the 

simulation time. This bound is a loose upper bound in that it may be unachievable and 

optimistic. 

Two tighter upper bounds, an ingress upper bound and an egress upper bound, 

have been considered in this research. For the calculation of both the bounds, the full 

knowledge of all the requests that have arrived in the network is assumed. 

The k e s s  upper bound is calculated as follows. For ingress link i, a list of all the 

requests that utilize the ingress link i during the simulation time is considered. The 

number of bits that each request needs to transmit is obtained by multiplying the full 

bandwidth desired by the request and the duration for which the bandwidth is desired. 



The worth per bit of each request is calculated by dividing the full worth of the request by 

the number of bits that each request needs to transmit. All these requests in the list are 

then sorted in decreasing order of worth per bit, i.e., the first request in the sorted list 

would have the highest worth per bit. 

The interval of time over which the sum of worths of the requests is calculated is 

the simulation time. All the requests in the list would have started (and probably ended) 

during this simulation time. The maximum number of bits that can possibly be 

transmitted during this simulation time is the product of the link bandwidth (155 Mbps) 

and the simulation time. The requests are satisfied in the decreasing order of worth per bit 

(i.e., the request with the highest worth per bit is satisfied first, the request with the next 

highest worth per bit is satisfied next and so on) until the number of bits satisfied equals 

the maximum number of bits that can possibly be transmitted during the simulation time 

(discussed further in Section 7). The sum of the worths of all the requests that could be 

satisfied in the manner described above, on the link i, is calculated. 

The process is repeated for a l l  the ingress links in the system The total sum of 

worths obtained by summing up the worths of the requests satisfied on each link, is an 

upper bound on the performance of the heuristic. 

For the upper bound calculation described above, any congestion at the egress 

link is not considered (and hence it is called the ingress upper bound). That is, if a request 

is allocated some bandwidth at the ingress link it is assumed for the ingress upper bound 

calculation that it is allocated the same bandwidth at the egress link too, without any 

degradation. Because the calculation of the upper bound assumes full prior knowledge of 

all the requests that have arrived in the network, it can sort the requests in decreasing 

order of worth per bit and satisfy only those requests that yield the maximum worth per 

bit. For the upper bound calculation, the start and stop times of the requests are ignored 

and only the bits of the request are considered. 

In the scheduling heuristic, the request may be degraded at the ingress and at the 

egress link. Also, the heuristic makes decisions regarding admissionlrejection of a request 

on-line, without prior knowledge of future arrival of requests. Furthermore, the 

scheduling heuristic also considers start and stop times of the requests. Thus, for the 



reasons mentioned above, the upper bound may be an unachievable upper bound on the 

performance of the heuristic. However, the heuristic allows degradatiodpreemption, 

whereas the ingress upper bound does not. Thus, this is an upper bound on an optimal 

schedule if no degradatiodpreemption is allowed. 

The enress uvper bound is similar to the ingress upper bound described above. In 

the egress upper bound, the same process described above is conducted for the egress 

links and congestion at the ingress links is not considered. 

The reason why an egress upper bound is needed in addition to the ingress upper 

bound is as follows. For example, assume that all the requests have different ingress links 

but the same egress link. If the ingress and egress upper bounds were computed, the 

ingress upper bound would yield a comparatively loose upper bound because the 

degradations at the egress links are not considered. But the egress upper bound would 

yield a tighter upper bound because the degradations at the egress links are considered. 

Hence, the egress upper bound would give a more accurate estimate of the achievable 

performance in the situation described above. 

6.4. Summary 

Three upper bounds and one simple scheduling technique used for comparison 

with the performance of the scheduling heuristic were presented in this section. The 

simulation experiments conducted in this research are explained in the next section. The 

different parameters considered and the values assumed in the  experiment.^ are also 

described in the next section. 



7. SIMULATION EXPERIMENTS 

7.1. Overview 

The simulation experiments conducted in this research are described in this 

section. Loading of the network, weighting of priority levels, and the globalization factor 

are considered. Motivation for the values that were selected for these parameters is also 

given. 

7.2. Parameters 

Without loss of generality, a link bandwidth of 155 Mbps (OC3) was assumed for 

the ingress and egress links in Figure 2.2. The link bandwidth of 155 Mbps is the typical 

link bandwidth needed by large corporations and ISPs [NAP98]. In a military 

environment, such high bandwidth links may exist between the different military 

headquarters spread across the country (or the full world). A high bandwidth link may 

also exist between the military headquarters and the satellite base stations. For the sake of 

simplicity, the link bandwidths of all the ingress and egress links shown in Figure 2.2 are 

assumed to be the same. The link bandwidths may be different and these different link 

bandwidths can be considered by the heuristic. Again for the sake of simplicity, the 

number of links was chosen to be fifteen. The number of links in the network does not 

affect the operation of the heuristic. 

The bandwidth required by a request depends upon the application generating the 

request. For example, applications such as audio conferencing, streaming audio (CD 

quality), and low quality video transmission [MiM96] may require a bandwidth of 500 



Kbps (Kilobits per second). Applications such as high quality MPEG video may require 

a bandwidth of 10 Mbps (Megabits per second) [ReR95]. The requests in this research 

were assumed to have a bandwidth requirement in the range of 500 Kbps to LOMbps. In 

this research, a uniform random distribution was used to generate the bandwidth 

requirements of the requests in the range of 500 Kbps to 10 Mbps. Recall that the 

requests were assumed to have four priority levels (1, 2, 3, and 4). Two mode values o 

(the weighting constant that decides the weights of the priority levels) were assumed: 

mode two and mode ten. The weighting bct ion  for a priority level i, as explained in 

Subsection 2.4.2, was assumed to be 

q i )  = ,3j4i(4-9. 

The utility functions of the requests were assumed to be of three types: concave, 

linear, and step. The utility of the request, as determined by the utility bction, is a value 

between 0 and 1. If a request with a desired bandwidth of rbk and a minimum bandwidth 

of mbk is allocated bandwidth bdt) at time t, then the concave utility function of a request 

is given by 

The linear utility function of such a request is given by 

rb, - mb, 

The step utility function of a request with desired bandwidth rbk (desired bandwidth rbk = 

minirnurn bandwidth mbk) is given by 

~ d b d t ) )  = 1 if bdt) 2 rbk (7.3) 

= 0 if bdt) < rbk. 

In this research, the minirnurn bandwidth (mbk) desired by a request (in case of 

requests with linear and concave utility functions) is assumed to be in the range of 25% to 

75% of the required bandwidth of the request (rbk), i.e., the bandwidth of a request can be 

degraded by an amount equaling 25% to 75% of its required bandwidth. 



The values of P (see Equation 7.1) for the concave utility functions assumed for 

the simulation experiments were determined based on the average slope of the linear 

utility functions of the requests. The values of P were determined to be 0.0004, 0.000835, 

and 0.001 5. The concave utility functions of requests with these P values are illustrated in 

Figure 7.1. 

3000 3500 4000 4500 5000 
bandwidth (Kbps) 

Figure 7.1. Concave and linear utility fhctions of the requests with a minimum 
bandwidth of 2625 Kbps (average minimum bandwidth) and required 
bandwidth of 5250 Kbps (average required bandwidth). 

These P values were chosen to ensure that the bandwidth allocated to a request 

with a concave utility function is not degraded always when compared to a request with a 

linear utility function. Referring to Figure 7.1, when the bandwidth allocated to the 

request with a concave utility function of p = 0.004 is 3900 Kbps (half of the average 

requested bandwidth of the request), the marginal worth of the request will be more than 



the average marginal worth of a request with a linear utility function. Hence, on average 

the bandwidth allocated to a request with a linear utility function will now be degraded 

instead of the request with the concave utility function (the heuristic degrades the request 

with the least marginal worth). Initially, based on averages, when the bandwidth allocated 

to a request with a concave utility knction is the required bandwidth of the request, the 

marginal worth of the request is smaller than the marginal worth of a linear utility 

function. But when the bandwidth allocated to the request is reduced to half 

(approximately) of its required bandwidth, the marginal worth of the request with a 

concave utility function becomes more than a request with a linear utility function and 

hence the bandwidth allocated to a request with a linear utility function will be degraded. 

The average required bandwidth of a request with a step function is equal to the average 

maximum bandwidth of request with a concave or a linear utility hct ion,  while the 

minimum bandwidth of the step hc t ion  is zero. 

In the simulation studies discussed in Section 8, the types of the utility functions 

of the requests were randomly select d as one of step, linear, and each of three concave 

functions. Thus, there are approximat ly 20% of each type. 

Ethernet traffic and World W de Web traffic has been shown to be self-similar in 

[CrB96, LeT941. Self-similarity is he property associated with an object when its i 
appearance remains unchanged reg less of the scale at which it is viewed. In case of 

objects such as Ethernet tratfic, a lon -range dependence is observed [LeT94], i.e., values 

at any instant are typically non-neglig'bly correlated with values at all future instants. 7 
A distribution is heavv-tailed if P[X>x]-x-"asx+oc, whereO< a <2. 

It has been shown in [PaK96] that t e traf£ic in the Internet is self-similar because the h 
files and data transferred follow a kavy-tailed distribution. Considering this fact, the 

session durations of the requests constidered in the simulation experiments were assumed 

to follow heavy-tailed distribution. That is, the random distribution used to generate the 

session durations of the requests (i.e., the start time to the end time of the request) was 

assumed to be heavy-tailed [PaK96]. One of the simplest heavy-tailed distributions is the 



Pareto distribution. The probability density hnction of the Pareto distribution is 

given by 

AX> = &xrrl 

where a,k > 0, and x 2 k. The cumulative distribution has the form 

F(x) = P[X 5x1 = 1 - ( k l ~ ) ~ .  

The parameter k represents the smallest possible value of the random variable. If 

a 5 2 the distribution has infinite variance; if a 5 1 then the distribution also has infinite 

mean. As a decreases, a large proportion of the probability mass is present in the tail of 

the distribution. In practical terms, if the session duration follows a heavy-tailed 

distribution, then extremely large session durations can be generated with non-negligible 

probability. In the simulations here, although the session duration was assumed to follow 

a Pareto distribution, the session durations were truncated at some high value for practical 

considerations. The reason is that in a realistic networklsystem, there will never be a 

request that has infinite duration. Hence, considering a realistic environment, the session 

duration was truncated at some high value. Although the random distribution used to 

generate the session durations is not a true heavy-tailed distribution, it is based on a 

heavy-tailed distribution that is truncated for practical considerations. 

The degree of self-similarity of a series (or traffic) is expressed by the Hurst 

parameter H. The Hurst parameter H is related to the parameter a in the Pareto 

distribution as H = (3 - a) 1 2 [PaK96]. The typical values of H were shown to be in the 

range of 0.7 to 0.8 for the World Wide Web traffic [FelOO, CrB97, PaK961. From the 

values of H, the typical values of a were calculated to be from 1.4 to 1.6. The a value 

assumed in the simulation experiments was 1.5. The request durations were assumed to 

be in the range of 2 minutes to 60 minutes. A typical voice application would require 

bandwidth for the duration of a few minutes. Applications such as video conferencing, 

streaming videos for movies, or lecture broadcasts (over the Internet) would typically 

require session duration of over 30 minutes. The session durations of 2 minutes to 60 

minutes assumed in this research encompasses all these different session duration 

requirements. Thus, the parameter k in the Pareto distribution has a value of 2 minutes or 

120 seconds. The mean of the Pareto distribution is &(a - 1). For the values of k and a 



assumed in the simulation experiments, the mean of the Pareto distribution is 6 minutes. 

The session duration is truncated at 60 minutes (ten times the mean), i.e., only session 

durations between 2 minutes to 60 minutes are generated. 

In the simulation experiments the arrival sequence of the requests is assumed to 

be correspond to a Poisson arrival sequence. An arrival sequence of requests is said to 

follow the Poisson arrival sequence with rate l/h (units) if the inter-arrival time between 

the requests follows an exponential distribution with mean h. The higher the mean h of 

the exponential distribution used to generate the inter-arrival time between requests, the 

lower the rate of the Poisson arrival sequence will be. The method of determining the 

arrival rate of l/h is explained later in this subsection. 

The lead time assumed in this research was 2 minutes to 2 hours. A minimum lead 

time of 2 minutes is only an estimate of the worst case performance of the heuristic 

(maximum time taken by the heuristic) and does not reflect actual execution times of the 

heuristic. An upper limit of 2 hours (7200) seconds was assumed to prevent requests fiom 

requesting bandwidth many hours (or days) in advance. This reduces the time for the 

simulation experiments and does not in any way affect the performance of the heuristic. 

The simulation experiments in this research are conducted for a time interval 

corresponding to the earliest start time of all the requests until the time when N requests 

end. The number N chosen for the simulation experiments was 2000. Thus, the time 

interval is the time interval between the earliest start time (of all the requests) and the 

time when 2000 requests end. The start and end times for a simulation experiment are 

called the simulation start and simulation times, respectively. Because the simulation 

end time corresponds to the time when N requests end (i.e., Nth end time), there may be 

many requests which begin before the simulation end time but do not end before the 

simulation end time. These requests are also considered for the simulation experiments. 

Thus, it should be noted that the time interval between the earliest start time (of all the 

requests) and the time when N requests end is considered for the simulation experiments 

and not a fixed number of requests. The number of requests considered during the 

simulation time interval (the time difference between the simulation end time and 

simulation start time) could be more than N. (This number depends upon the "arrival 



rate" of the requests and this is explained. later in this section). F denotes the total number 

of requests that start before the simulation end time (i.e., start time of the request is 

before the simulation end time). N of these requests end before or at the simulation time 

while (F - N) requests start before the simulation end time but end after the simulation 

end time. 

The reason why the above method is chosen is as follows. ' f ie "steady state" 

performance of a heuristic should be used for evaluating performance of the heuristic. If a 

fixed number of requests are considered for the simulation experiments as opposed to a 

fixed interval of time, the system is not in steady state for the duration of the simulation 

time interval. For example, if 2000 requests are considered (and not a tixed time 

interval), at the time instant before the simulation end time, the 2000th request will be the 

only request being scheduled, i.e., it is not competing for bandwidth with any other 

request. Hence, there are some "transient" effects during the start of the simulation and 

during the end of the simulation. Alternatively, when a fixed interval of time is 

considered for the simulation experiments, even at the simulation end time there are 

many requests overlapping in time and hence competing for the available bandwidth. 

Thus, the performance of the heuristic in the steady state is determined. 

The performance measure for the system is the sum of the worth of the requests 

satisfied during this simulation time interval. Recall the total sum. of worth W is 

calculated as (explained in Subsection 2.5): 

The set S over which the total sum of worth is calculated consists of these F 

requests. The worth of a request is calculated as the worth obtained during the simulation 

time interval. Hence, for requests that begin during the simulation time interval and do 

not end before (or at) the simulation end time, the worth is calculated as the worth 

obtained due to bandwidth allocated to the request during the simulation time interval. 

The worth obtained due to bandwidth allocated to the request aRer the simulation time 



interval is not considered. This can be thought of as if a request does not end during the 

simulation time interval, it is truncated at the simulation end time. It should be noted that 

the heuristic does not truncate the requests. It considers the entire duration of the request 

while scheduling the request. But when the total worth of all the requests satisfied during 

a fixed interval of time is calculated, only the worth of a request obtained due to the 

bandwidth allocated to it during the simulation time interval is considered. 

The upper bounds and the complete sharing policy only consider all the requests 

in 5'. In the calculation of the upper bounds, any request that begins during the simulation 

time, but ends afterwards, receives prorated worth (i.e., the percentage of its worth that 

corresponds to the percentage of its bits that are received before the simulation time 

ends). Similarly, for the complete sharing policy, the prorated worth of such a request is 

considered if it received full bandwidth during the simulation time. 

The three different parameters that were varied to observe the performance of the 

heuristic are as follows. 

I. Loading h t o r  (If): The loading k t o r  indicates the amount of "load" that is 

placed on the network. The loading fkctor is defined as the ratio of total 

number of bits that needs to be allocated during a fixed interval of time and 

the maximum number of bits that can possibly be allocated during that fixed 

interval of time (simulation time). 

The loading factor is calculated as follows. The desired bandwidth of each 

of the F requests is converted into bits by multiplying the desired bandwidth 

with the time duration for which the bandwidth is desired. Only the bits of a 

request that need to be allocated before the simulation end time are 

considered. The bits that need to be allocated after the simulation end time are 

neglected (i.e., the requests are truncated as explained above). The total 

number of bits that need to be allocated during the simulation time interval is 

called the offered load. The offered load indicates the amount of bandwidth 

desired by the requests during the simulation time interval. Thus, 

F 

offkred load = c G.b, x (sk - ek )I. 
k=l 



The maximum number of bits that can be allocated during the simulation 

time interval is calculated by multiplying the link bandwidth L by the number 

of ingress links and the simulation time interval. This number is the maximum 

number of allocable bits for the simulation time interval. The simulation time 

interval is denoted by sim time and the total number of ingress links in the 

network is M; Thus, 

maximum allocable bits = (L x M x sim__time) . (7.5) 

The loading factor is the ratio of the offered load and the maximum 

allocable bits. 

loading factor = offered load / maximum allocable bits. (7.6) 

Substituting the Equations 7.4 and 7.5 in 7.6 the loading factor is calculated as 

loading factor = *=' 
L x M x sim-time 

(7.7) 

The two loading factors considered in this research are 0.7 and 1.2. As 

mentioned earlier, the loading fhctor indicates the load placed on the network. 

A loading factor of 0.7 represents a moderately loaded network situation when 

not all requests can be satisfied. (A typically loaded network would have a 

loading factor of under 0.5.) A loading factor of 1.2 indicates the load on the 

network during periods of heavy congestion andlor periods of burst in traflic. 

For example, in the Internet, a burst in t r a c  may occur when a large number 

of packets arrive at a router and the router cannot route all these packets. 

Thus, variation of the loading factor explores the performance of the heuristic 

in different overloaded network conditions. 

The arrival rate indicates the number of requests that arrive (in the 

network) per second. The loading factor depends upon the arrival rate of the 

requests, the average duration of the requests, and the average desired 

bandwidth of the request. Increasing the arrival rate increases the loading 

factor, while keeping the average vahes of the duration and the desired 

bandwidth of the request the same. Because the loading fixtor was considered 



as the parameter to be varied, the arrival rate is adjusted so that a loading 

factor of 0.7 and 1.2 is achieved. The arrival rates were adjusted by trial and 

error to determine what arrival rate would result in a loading factor of 0.7 and 

1.2. 

2. Mode vahe: Two mode values, w = 2 and w = 10, were considered in this 

research. The concept of mode values and weighted priorities was explained 

in Subsection 2.4.2. Variation in the mode values would show the 

performance of the heuristic in different situational modes. The mode values 

of two and ten were used in a manner similar to [ThBOO]. 

3. Globalization factor (GF): Values of the globalization factor experimented 

with (in addition to 0%) were 5%, lo%, 15%, and 25%. A globalization factor 

of 5% gave the best results and hence the 5% globalization factor was used for 

the simulation experiments (in addition to W). 

For the scenario where If = 1.2, w = 1.2, and GF = 0%, simulation experiments 

were conducted to find the number of experiments that yields a 95% confidence interval 

of less than f 5% of the mean of the sum of the worths of the requests satisfied. Each 

experiment involved F (-2000) requests. A set of 20 different experiments, 40, and 60 

were examined. It was found that 20 experiments were sufficient, as discussed &her in 

Section 8. 

7.3. Summary 

The values of the different parameters that were considered in this research such 

as, the bandwidth desired by the requests, the session duration of the requests, and the 

random distribution used to generate the requests, have been presented in this section. 

The loading factor, the mode vahe, and the globalization factor that were varied and the 

reason why these parameters were varied also have been discussed in this section. The 

results of the simulation experiments are discussed in the next section. 



8. RESULTS OF SIMULATION EXPERIMENTS 

8.1. Overview 

The simulation experiments conducted in this research were discussed in the 

previous section. The parameters varied for the experiments and the values of the 

parameters assumed were also described in the previous section. The results of the 

simulation experiments are presented in this section. The performance of the scheduling 

heuristic under different loading conditions, different mode values, and different values 

of the globalization factor is discussed in this section. The trends displayed as these 

parameters are varied are also explained in this section. 

8.2. Evaluation of Simulations 

Twenty, 40, and 60 randomly generated experiments were conducted for the If = 

1.2, w = 10, and GF = 0% scenario and for the 50% heuristic variation as was discussed 

in Section 7. The total sum of worths obtained was averaged over these 20, 40, and 60 

test cases. This average sum of worths, along with the confidence intervals is plotted in 

Figure 8.1. The size ofthe 95% confidence interval reduces as the number of experiments 

increases fiom 20 to 40 to 60. The 95% confidence interval reduced fiom + 1.56% of the 

mean for 20 experiments, to + 1.07% for 40 experiments, to + 0.86% for 60 experiments. 

Because the size of the 95% confidence interval for 20 experiments was within the 

desired range of f 5%, 20 was chosen as the number of experiments for all the remaining 

simulation experiments. 



number of experiments 

Figure 8.1. Confidence intervals of 20, 40, and 60 experiments with a mode value w = 
10, loading factor = 1.2, and GF = 0% for the 50% variation of the heuristic. 



The three parameters varied were the loading factor, the mode, value and the GF. 

The two vahes of the loading factor examined were 0.7 and 1.2. The mode values 

examined were value o = 2 and o = 10. The GF values examined were 0% and 5%. 

Thus, eight different cases were examined. 

The average sum of the worth (over 20 experiments) obtained by complete 

sharing policy, the heuristic variations, and the upper bounds for these eight cases are 

shown in Figures 8.2 to 8.9. The 95% confidence intervals are also given. The general 

trends that can be observed are as follows. The three heuristic variations perform 

comparably as shown. As the mode value o is increased fiom 2 to 10, the average sum of 

worths obtained increases because the worth of the requests of priorit:y levels 1 to 3 are 

much higher. 

As the loading factor is increased fiom 0.7 to 1.2, the number of requests 

considered for the simulation experiments increases, leading to an increase in the number 

of preemptionsldegradations of requests (a preemption of a new request is a rejection of 

that request). This results in a decrease in the number of requests being satisfied. Hence, 

the average sum of the worths obtained decreases as the loading factor is increased from 

0.7 to 1.2. 

The performance improvement of the heuristic variations over the complete 

sharing policy varies. As the loading factor is increased fiom 0.7 to 1.2, the performance 

improvement of the heuristic variations over the complete sharing policy increases. For 

the scenario where, the loading factor is 1.2, o = 10, and GF = 0%, the heuristic 

variations are approximately 90% better than the complete sharing policy. 

The globalization factor did not achieve any significant improvement in the 

performance of the heuristic. Even though several values were experimented with, it 

might be the case that a GF value not experimented with in this research might achieve a 

significant improvement in performance. It may also be the case that the GF should not 

be a constant, but should rather be a function of the change in worth (after degradation of 

bandwidths of existing requests and addition of the new request), the priority levels of the 

requests under consideration, and so on. Future work may determine the values of GF and 

parameters that GF depends upon to achieve a significant improvement in performance. 



Figure 8.2. Comparison of performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for w = 2, loading factor = 0.7, andl GF = 0% 
averaged over 20 experiments. The loose upper b o d  is 85 14. 
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Figure 8.3. Comparison of performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for w = 2, loading factor = 0.7, and GF = 5% 
averaged over 20 experiments. The loose upper bound is 85 14. 



Figure 8.4. Comparison of performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for w = 10, loading factor = 0.7, and GF = 0% 
averaged over 20 experiments. The loose upper bound is 632741. 
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Figure 8.5. Comparison of performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for w = 10, loading hctor = 0.7, and GF = 5% 
averaged over 20 experiments. The loose upper bound is 632741. 



Figure 8.6. Comparison of  performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for w = 2, loading factor = 1.2, and GF = 0% 
averaged over 20 experiments. The loose upper bound is 9417. 



Figure 8.7. Comparison of performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for o = 2, loading factor = 1.2, and GF = 5% 
averaged over 20 experiments. The loose upper bound is 9417. 
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Figure 8.8. Comparison of performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for w = 10, loading fhctor = 1.2, and GF = 0% 
averaged over 20 experiments. The loose upper bound is 700 1 52. 



Figure 8.9. Comparison of performance of heuristic variations with the complete sharing 
policy (cs) and upper bounds for w = 10, loading factor = 1.2, and GF = 5% 
averaged over 20 experiments. The loose upper bound is 700152. 



The average number of priority level 1, 2, 3, and 4 requests satisfied by the 

heuristic variations for the eight cases of cq If, GF are shown in Figures 8.10 to 8.13. The 

general trends that can be observed are as follows. 

As expected, the number of priority level 1 requests satisfied in mode ten is 

higher than that satisfied in mode two. This is because of the greater relative difference in 

the weighted priorities of the requests in mode ten as compared to mode two. In mode 

two, the scheduling heuristic may satis@ eight priority level four requests instead of one 

priority level one request. But in mode ten, the scheduling heuristic would have to satis@ 

1000 priority level four requests instead of one priority level one request. Thus, the 

number of priority level one requests satisfied in mode ten is higher than that satisfied in 

mode two. At the same time, the number of priority level four requests satisfied in mode 

ten is less than that satisfied in mode two. 

The three heuristic variations achieve nearly the same total sum of worth (W) 

averaged over 20 experiments. But as is apparent fiom Table 8.1 and Table 8.2, the 

heuristics behave differently in terms of number of preemptionsldegradations of requests 

with different utility functions. The general trend that can be observed in Table 8.1 and 

8.2 is that the number of degradations/preemptions of requests with concave and step 

utility functions is the highest for the 50% variation the least for 25/75. The number of 

preemptioddegradations of requests with linear utility functions is the highest for the 

25/75 variation, and the lowest for the redistribute variation. The globalization factor has 

no significant effect on the number of preemptions/degradations of requests with the 

different types of utility functions. 

In 50% variation, the bandwidth needed is compared to one threshold (i.e., 50% 

of the bandwidth of the request with the step utility function) when making a preemption 

decision. In contrast, the 25/75 variation compares the bandwidth needed with two 

thresholds (25% and 75% of the bandwidth of the request with the step utility function) 

and hence reduces the number of preemptions of requests with step utility functions. 



50% 25/75 redist 50% 25/75 redist 

Figure 8.10. Comparison of the average number of requests of priority level 1, 2, 3, and 
4 satisfied by the heuristic variations in mode value w = 2 and w = 10 with 
loading fhctor = 0.7 and GF = 0%. 



50% 25/75 redist 50% 25/75 redist 

w = 2  w =  10 

Figure 8.11. Comparison of the average number of requests of priority level 1 ,  2, 3, and 
4 satisfied by the heuristic variations in mode value w = 2 and w = 10 with 
loading hctor = 0.7 and GF = 5%. 
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Figure 8.12. Comparison of the average number of requests of priority 
4 satisfied by the heuristic variations in mode value w = 2 
loading factor = 1.2 and GF = 0%. 

level 1, 2, 3, and 
and w = 10 with 



50% 25/75 redist 50% 25/75 redist 

Figure 8.13. Comparison of the average number of requests of priority level 1, 2, 3, and 
4 satisfied by the heuristic variations in mode value w = 2 and w = 10 with 
loading factor = 1.2 and GF = 5%. 



The number of priority level one requests satisfied by the redistribute variation is 

slightly less than that satisfied by the 50% and the 25/75 variation. But, the overall sum 

of the worths of the satisfied requests is approximately equal to that obtained by the other 

two variations. This can be attributed to the fact that the redistribute variation actually 

considers the worth of redistribution, i.e., it may preempt a higher priority request if the 

excess bandwidth (bandwidth obtained by preemption of request minus the bandwidth 

needed) can be redistributed among other requests with an increase in total worth. The 

50% and the 25/75 variation of the heuristic do not consider the worth of redistribution 

when making decisions regarding preemption of requests with step utility functions. At 

the same time, the redistribute variation achieves approximately the same overall worth, 

with less number of degradationslpreemptions of requests as compared to the 50% 

variation 

In general, the number of degradationdpreemptions of requests with concave 

utility hc t ions  is much higher than the number of degradations/preemptions of requests 

with linear utility functions. This is because, when a request with a linear utility function 

is degraded, either all the bandwidth needed is obtained fiom the request, or the request is 

preempted. Hence, when a linear utility h c t i o n  is degradedlpreempted, there is only a 

single change in bandwidth. In contrast, the concave utility fhction is degraded in steps 

(of unit size). After degrading the request with the concave utility h c t i o n  by some units 

of bandwidth, the marginal worth of the request may no longer be the smallest. Hence, 

some other request may be degraded. However, the request with concave utility fhction 

may be degraded again for the scheduling event. Thus, a request with a concave utility 

function may be degraded multiple times at each scheduling event. 

A request may be degraded by different amounts at each scheduling event with 

every total change in bandwidth allocation to the request at a event being counted as one 

degradation. The total number of degradations of a request is the sum of the degradations 

at a l l  scheduling events. 

The execution times for the heuristic variations were calculated for one simulation 

experiment with a mode value of w = 10, If= 1.2, and GF = 0%. The 50% variation took 

the least amount of time: 52 rns per request. The 25/75 variation compares the bandwidth 



Table 8.1. Number of degradations and preemptions for requests with step (S), linear (L), 
and concave (C) utility hctions for loading factors (If) of 0.7 and 1.2, GF = 

O%, and mode values o= 2 and o= 10. 

If = 
0.7 

0 = 2  
GF = 
0% 

If = 
0.7 
0 =  
10 

GF = 
0% 

If = 
1.2 

0 = 2  
GF = 
0% 

If = 
1.2 
0 =  
10 

GF = 
0% 

S 

152 

176 

273 

329 

L 

169 

289 

352 

608 

S 

131 

156 

253 

313 

redistribute 

C 

60610 

22328 

154320 

49778 

L 

217 

353 

485 

667 

L 

194 

333 

461 

634 

25/75 

C 

51643 

19511 

116646 

39864 

50% 

C 

80689 

26770 

187398 

50728 

S 

174 

187 

314 

336 



Table 8.2. Number of degradations and preemptions for requests with step (S), linear (L), 
and concave (C) utility functions for loading factors (It) of 0.7 and 1.2, GF = 

5%, and mode values w = 2 and w = 10. 

If = 
0.7 
w = 2  
GF = 
5% 

If = 
0.7 
w =  
10 

GF = 
5% 

If = 
1.2 
w = 2  
GF = 
5% 

If = 
1 -2 
w =  
10 

GF = 
5% 

L 

196 

325 

481 

617 

50% 

C 

75761 

27039 

198868 

49968 

L 

213 

350 

487 

662 

S 

177 

188 

322 

331 

S 

149 

171 

320 

331 

25175 

C 

51963 

18988 

115597 

39740 

L 

163 

278 

465 

595 

S 

124 

158 

254 

296 

redistribute 

C 

57007 

25102 

154357 

51067 



needed to two thresholds (in one case of the variation), and hence takes slightly more 

time: 75 ms per request. The redistribute variation actually calculates the worth due to 

redistribution of excess bandwidth to other requests and hence it takes more time than the 

other two variations. The execution time of the redistribute variation is 250 ms per 

request. 

8.3. Summary 

The results of the simulation experiments conducted in this research were 

presented in this section. The performance of the heuristic variations has been compared 

to the simple scheduling technique (complete sharing policy) and upper bounds. The 

globalization factor did not achieve any significant improvement in the performance of 

the heuristic variations. The conclusions and suggestions for future work will be 

discussed in the next section. 



9. CONCLUSIONS AND FUTURE WORK 

Bandwidth allocation is an important problem in current networks in view of the 

different types of applications using the same network and each application having 

different quality of service requirements. In dynamic bandwidth allocation, the users do 

not reserve (with a guarantee) fixed amounts of bandwidth, but are dynamically allocated 

the bandwidth. Heuristic variations were developed that attempt to schedule the requests 

such that the total worth of satisfied requests over a given interval of time is the 

maximum. 

Three different heuristic variations were developed in this research. The different 

parameters considered were the network loading, a globalization fixtor, and the relative 

weights of the different priority levels. Three different types of utility functions of the 

requests, step, linear, and concave, were wnsidered. The performance of three heuristic 

variations were shown and compared to the three upper bounds and one simple 

scheduling technique (based on the complete sharing policy). The results presented 

showed that the three variations perform comparably to each other. Although the total 

sum of the worths of the satisfied requests obtained by the three heuristic variations are 

similar, the heuristic variations degradelpreempt the requests differently. 

The 50% variation of the heuristic achieves a high total sum of' worth of satisfied 

requests, but it also has the maximum number of preemptions of requests with step utility 

function and has the maximum number of degradationlpreempti~~ of requests with 

concave utility function. The 25/75 heuristic variation reduces the number of 

degradations/preemptions for requests with concave utility functions and also reduces the 

number of preemptions for the step utility function while achieving a comparable total 

sum of worths satisfied. But the number of preemptionsldegradations of requests with 



linear utility fbnctions is higher than the corresponding number for the 50% and the 

redistribute variation of the heuristic. In contrast, the redistribute variation of the heuristic 

has least number of degradations/preemptions of requests with a linear utility function, 

and comparable number of degradations/preemptions of requests with step and concave 

utility hctions. The performance of the redistribute function is comparable t.o both the 

50% and the 25/75 variation. The 50% variation has the smallest execution time. All 

variations improve on the complete sharing policy (as much as 90%). 

Future work will consider determining the values of the globalization factor that 

will result in a significant improvement in the performance of the heuristic. As discussed 

earlier, in the heuristic variations, only the request one position above the request with a 

step utility h c t i o n  is used to estimate the loss of worth. Future work will consider 

looking at more requests to calculate the loss of worth. Future work will also consider 

utility functions of requests other than step, linear, and concave, e.g., a multi-point step 

h c t i o n  (for requests with layered encoded data [Sha92]). 

The heuristic variations developed first consider the new request's ingress link 

and then the new request's egress link to calculate the degradations of existing and new 

requests. Future work may consider both the links simultaneously when calculating the 

degradations of the existing and new requests. 

Whether a request has already begun transmitting or how soon the request will 

complete transmitting is not considered when choosing among requests to preempt. 

Future work may consider these factors. 
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APPENDIX A. PSEUDO-CODE FOR THE "50% HEURISTIC" 

main 

begin 
if ( current-time 2 (newreq-starttime - lead-time) ) 

/*lead-time needed for executing heuristic = 120 secs*/ 
request cannot be scheduled before start time 
reject request 

else 
check resource allocation table (RAT) to determine 
whether there is available bandwidth 
if (available bandwidth 2 newretbandwidth) at 
every time instant of the new request's session at source and 
destination links 

request can be satisfied 
admit request 

store the request in the RAT 
else 

call schedule(newreq) 
end 



begin 
total-old-worth = sum of worths of scheduled requests 
link = newreq-ingresslink 
L = link-bandwidth 
check-at-ti me = newreq-starlti me 
while (check-at-time I newreq-endtime) 

find set of requests conflicting with newreq at time check-at-time 
assign these requests to array R I* numbered 1 to n - 1 *I 
let number of conflicting requests be n - 1 
R[n] = newreq /*add newreq to the array R *I 
B = total bandwidth of requests in R 
bwneeded = B - L 
next-check-at-time = function-find-next-event(link, check-at-time) 
while (bwneeded > 0) 

order the requests in R by decreasing marginal worth 
P last request is the request with least marginal worth*/ 

amount-bw-deg = degrade(RJnJ bwneeded) 
P degrade the request in R[n]*l 

bwneeded = (bwneeded - amount-bw-deg) 
end while 
if (bwneeded < 0) 

reallocate(- bwneeded) 
P request satisfied at one time interval, check at next time interval *I 
check-at-time = next-check-at-time 

end while 
for any request degraded at this link 

if this link was the request's ingress link 
degrade that request at its egress link by the same amount. 

else 
degrade that request at its ingress link by the same amount. 

repeat steps 4-27 with link = newreq-egresslink 
let modified-worth be worth of scheduled requests (including newreq) 
after executing steps 3-28 I* explained in text *I 
if (modified-worth > total-old-worth) 

admit new request 
else 

reject new request 
restore to all requests the bandwidths degradedlpreempted during this 
call 

end 



degrade(R, n, bwneeded) 

begin 
if utility function of R[n] = linear function 

amt-bw-deg = degrade-linear(R, n, bwneeded) 
if utility function of R[n] = concave fi~nction 

amt-bw-deg = deg rade-concave(R, n, bwneeded) 
if (utility function of R[n] = step fun

cti

on) 
if (bwneeded 2 bandwidth of R[n]) 

preempt request in R[n] 
arn-bw-deg = bandwidth of R[n] 

else 
amt-bw-deg = degrade_step_50(R, bwneeded) 

return amt-bw-deg 
end 



degrade_step_50%(R, bwneeded) 

I* 50% variation of the heuristic is being used *I 
I* R[n] is a request with a step utility function */ 

begin 
if (bwneeded 2 (0.5 x bandwidth of R[n])) 

preempt request in R[n] 
amt-bw-degraded = bandwidth of R[n] 

else 
I* bandwidth needed (bwneeded) < 0.5 x bandwidth of R[n], check 
whether the loss of worth due to degradation1 preemption of R[n -11 is 
more than the worth of the request R[n] *I 
if worth of R[n] < loss-of-worth(R, (n-1), bwneeded) 

preempt the request in R[n] 
amt-bw-degraded = bandwidth of R[n] 

else 
if (utility function of R[n-1] = linear function) 

amt-bw-deg = degrade-linear(R, n-1 ,bwneeded) 
if (utility function of R[n-1] = concave function) 

amt-bw-deg = degrade-concave(R, n -1, bwneeded) 
if (utility function of R[n-1] = step function) 

preempt request in R[n-I] 
amt-bw-deg = bandwidth of R[n-1] 

return amt-bw-deg 
end 



find-next-event(link, check-at-time) 

for every existing-request utilizing link do 
.find the earliest start time of an existing request that is later than the 
check-at-time and earlier than the end time of the new request 
find the earliest end time of an existing request that is later than the 
check-at-time and earlier than the end time of the new request 

if new request is the request ending the earliest and no existing request 
begins before or at newreq-endtime 

next-event = newreq-endtime + 1 
return next-event 

else 
assign the earliest start time to temp-stime 
assign the earliest end time to temp-etime 
temp-etime = temp-etime + 1 
if (temp-stirne > temp-etime) 

next-event = temp-etime 
else 

next-event = temp-stime 
return next-event 

end 



P bw is the bandwidth that is to be reallocated to the requests*/ 

begin 
request-num = 0 
while (bw > 0 and request-num I n) 

if (Nrequest-numl's utility function = step function ) 
request-num = request-num + 1 
continue (go to step 3) 

if (Nrequest-numl's utility function = linear function) 
if (Nrequest-numl-allocated- bandwidth < 
Nrequest-numldesired-bandwidth ) 

if ((R[request-numldesired-bandwidth - 
Rrequest-num]-allocated-bandwidth) 2 bw) 

R[request-numLallocated-bandwidth = 
Nrequest-numLallocated-bandwidth + bw 
return 

else 
Nrequest-numLallocated-bandwidth = 
R[request-numl-desired-bandwidth 
bw = bw - (Nrequest-numldesired-bandwidth - 

Nrequest-numLallocated-bandwidth) 
request-num = request-num + 1 
continue (go to step 3) 

else 
request-num = request-num + 1 
continue (go to step 3) 

while((R[request-numl's marginal worth is the highest) and (bw > 0) 
and (Nrequest-numLallocated-bandwidth < 

R[request-numldesired-bandwidt h) ) 
Nrequest-numLallocated-bandwidth = 
Nrequest-numLallocated-bandwidth + 1 
bw= bw- 1 

end while 
if (bw > 0) 

reinsert Nrequest-nurrl] in the proper order in the list 
request-num = 0 

end while 
return 
end 



degrade-li near(R, x, bwneeded) 

1. begin 
2. if (bwneeded < (current bandwidth of R[x] - minimum bandwidth of R[x]) ) 
3. degrade bandwidth allocated to R[x] by amount = bwneeded 

I* bandwidth of a request is degraded until the next event *I 
4. amt-bw-degraded = bwneeded 
5. else 
6. preempt request in R[x] 
7. arn-bw-degraded = bandwidth of R[x] 
8. return amt-bw-deg 
9. end 

degrade-concave(R, x, bwneeded) 

begin 
amt-bw-deg = 0 
while (R[xLmarginal worth I R[x -1 Lmarginal-worth) 

degrade bandwidth allocated to R[x] by unit amount 
/* bandwidth of a request is degraded until the next event *I 

/* unit amount is 1 Kbps*l 
amt-bw-deg = amt-bw-deg + 1 
R[xLmarginal worth = new marginal worth 

/*after degradation by unit amount *I 
end while 
retum arnt_bw-deg 
end 



loss-of_worth(bwneeded, R, reqnum) 

1. begin 
2. if (bwneeded c (current bandwidth of Mreqnurrl] - 

minimum bandwidth of R[reqnum])) 
3. loss-worth = (worth of qreqnum] at current bandwidth - 

worth of R[reqnum] at (current bandwidth-bwneeded)) 
4. else 
5. loss-worth = worth of qreqnum] at current bandwidth 
6. return loss-worth 
7. end 



APPENDIX B. PSEUDO-CODE FOR "25175 HEURISTIC " 

Same as the 50% heuristic in Appendix A, except: 
(a) step 11, of degrade(R, n, bwneeded) is: 

1 1. arnt-bw-deg = degrade_step_25175(R, bwneeded) 

(b) the routines degrade-step_25/75(R, bwneeded) and 
loss-of-wrth_2(bwneeded, R, reqnum) are used (see the following 
pages). 



degrade-step-25/75(R, bwneeded) 

P 25/75 variation of the heuristic is being used */ 
I* R[n] is a request with a step utility function *I 

begin 
if (bwneeded 2 (0.75 x bandwidth of R[n])) 

preempt request in R[n] 
arnt-bw-deg = bandwidth of R[n] 

else 
if (bwneeded s (0.25 x bandwidth of R[n])) 
I* bandwidth needed (bwneeded) r 0.25 x bandwidth of R[n], check 
whether the loss of worth due to degradationlpreemption of R[n -I] 
is more than the worth of the request R[n] *I 

if worth of R[n] < loss~of~worth(bwneeded, R, (n-I) ) 
preempt the request in R[n] 
amt-bw-deg = bandwidth of R[n] 

else 
if utility function of R[n-1] = linear function 

arnt-bw-deg = degrade-linear(R, n-I , bwneeded) 
if utility function of R[n-I] = concave function 

amt-bw-deg = degrade-concave(R, n-I , bwneeded) 
if utility function of R[n-I] = step function 

preempt request in R[n-I] 
amt-bw-deg = bandwidth of R[n-I] 

else 
I* bwneeded is more than 25% and less than 75% of bandwidth of 

R[nl *I 
if worth of R[n] < lo~s-of~wrth-2(R, (n-I), bwneeded) 

preempt the request in R[n] 
amt-bw-deg = bandwidth of R[n] 

else 
if utility fi~nction of R[n-I] = linear function 

arnt_bw-deg = degrade-linear(R, n-I , bwneeded) 
if utility function of R[n-I] = concave function 

amt-bw-deg = degrade-concave(R, n-I , bwneeded) 
if utility function of R[n-I] = step function 

preempt request in R[n-1] 
arn-bw-deg = bandwidth of R[n-I] 

return amt-bw-deg 
end 



loss-of-worth_2(bwneeded, R, reqnum) 

1. begin 
2. if bwneeded 2 flreqnumLcurrent-bandwidth + 

Rreqnum-1 Lcurrent-bandwidth 
I* bwneeded is greater than the sum of bandwidths of Mreqnum] and 

R[reqnuml], so loss of worth will be the current worths of mreqnum] 
and R[reqnuml] *I 

3. loss-worth = worth of Mreqnum] at current bandwidth + 
worth of Mreqnum-1] at current bandwidth 

4. else 
I* bwneeded is less than sum of the bandwidths of Rreqnum] and 
Mreqnuml], calculate the loss of worth by considering a set of 
conflicting requests R consisting of requests Rreqnum] and 
R[reqnuml] and executing the steps 13-20 of the schedule function 
for R'. find the degraded bandwidths of Mreqnum] and Rreqnum-I] 
and calculate the loss of worth due to degradation *I 

5. R[reqnumLoriginal-bw = R[reqnum]-current-bandwidth 
6. Mreqnuml Loriginal-bw = R[reqnum-1 Lcurrent-bandwidth 
7. generate a set of conflicting requests R consisting of requests 

qreqnurn] and mreqnum-l] only 
8. repeat steps 13-20 of "schedule1' with the set FT instead of R 
9. loss-worth = (worth of Rreqnum] at MreqnumLoriginal-bandwidth - 

worth of Mreqnum] at R[reqnumLcurrent-bandwidth) + 
(worth of R[reqnuml] at R[reqnumlLoriginal-bandwidth 
- worth of qreqnum] at R[reqnum]current-bandwidth) 

10. return loss-worth 
11. end 





APPENDIX C. PSEUDO-CODE FOR "REDISTRIBUTE 

HEURISTIC " 

Same as the 50% heuristic in Appendix A, except: 
(a) step 11, of degrade(R, n, bwneeded) is: 

1 1. amt-bw-deg = degrade_step_25/75(R, bwneeded) 

(c) the routines degrade-step-redistribute(R, bwneeded) and 
worth-of-redistribution(bw) are used (see the following pages). 



degrade-step-redistribute(R, bwneeded) 
I*  redistribute variation of the heuristic is being used *I 
I* R[n] is a request with a step utility function *I 

begin 
if ( (worth of request R[n]) s worth-of-redistribution(bandwidth of R[n] - 

bwneeded) ) 
preempt request in R[n] 
amt-bw-deg = bandwidth of R[n] 

else 
I*  worth of request R[n]) 2 worth-of-redistribution(bandwidth of R[n] - 

bwneeded) *I 
if (bwneeded < bandwidth of R[n-I]) 

if ( (worth of request R[n] - worth-of-redistribution(bandwidth of 
R[n] - bwneeded) ) ) I (worth of R[n-I] at current bandwidth - 
worth of R[n-I] at (current bandwidth - bwneeded) ) ) 

preempt request in R[n] 
amt-bw-deg = bandwidth of R[n] 

else 
if utility function of R[n-I] = linear function 

amt_bw-deg = degrade-linear(R, n-1 , bwneeded) 
if utility function of R[n-I] = concave function 

amt-bw-deg = degrade-concave(R, n-I , bwneeded) 
if utility function of R[n-l] = step function 

preempt request in R[n-I] 
amt-bw-deg = bandwidth of R[n-I] 

else 
I* bwneeded 2 bandwidth of R[n-I]) *I 
if (bwneeded 2 (0.5 x bandwidth of R[n])) 

preempt request in R[n] 
amt-bw-deg = bandwidth of R[n] 

else 
/" bandwidth needed (bwneeded) < 0.5 x bandwidth of R[n], check 
whether the loss of worth due to degradation1 preemption of R[n -I]  
is more than the worth of the request R[n] *I 

if ( (worth of R[n] - worth-of-redist~ibution(bandwidth of R[n] - 
bwneeded)) < loss-of-worth(bwneeded, R, (n-I) ) 
preempt the request in R[n] 
amt-bw-deg = bandwidth of R[n] 

else 
preempt R[n-I] 
amt-bw-deg = bandwidth of R[n-I ] 

return amt-bw-deg 
end 



begin 
request-num = 0 
inc-worth = 0 
while (bw > 0 and request-num I n) 

if (mrequest-numl's utility function = step function ) 
request-num = request-num + 1 
continue I* go to step 4 *I 

if (mrequest-numl's utility function = linear function) 
if (mrequest-numLallocated- bandwidth < 

mrequest-numldesired-bandwidth ) 
if ((mrequest-numldesired-bandwidth - 
mrequest-numLallocated-bandwidth) 2 bw) 

inc-worth = inc-worth + worth of R[request-num] at 
(mrequest-numlcurrent-bandwidth + bw) - 
worth of R[request-num] at current bandwidth 
return inc-worth 

else 
inc-worth = inc-worth + worth of R[request-num] at desired 
bandwidth - worth of Rtrequest-num] at current bandwidth 
bw = bw - (mrequest-numldesired-bandwidth - 

R[request-numlcurrent-bandwidth) 
request-num = request-num + 1 
continue I* go to step 4 *I 

else 
request-num = request-num + 1 
continue P go to step 4 *I 

while((mrequest-num]'s marginal worth is the highest) and (bw > 0) 
and (mrequest-numlcurrent-bandwidth < 

wrequest-nun?Ldesi red-bandwidth)) 
mrequest-numlcurrent-bandwidth = 
wrequest-numlcurrent-bandwidth + 1 
inc-worth = inc-worth + (worth of R[request-nun?] at current 

bandwidth +1) - worth of Rtrequest-num] at current 
bandwidth) 

b w = b w - l  
end while 
if (bw > 0) 

reinsert mrequest-num] in the proper order in the list 
request-num = 0 

end while 
return 
end 





APPENDIX D. GLOSSARY OF NOTATION 

rk 

ik 

Ok 

Sk 

dk 

bkif) 

session of a request 

uk 

4 

Wk 

W 

rbk 

a request arriving at the ingress node 

ingress link of the request rk 

egress link of the request rk 

start time of the request rk 

end time of the request rk 

bandwidth received by the request rk 
at time t 

(dk - sd 

utility of the request rk, which is a 
function of the bandwidth received by 
the request rk 
total utility of ,the request rk obtained 
by summing the utilities at every time 
instant of the request's session 
worth of the request rk that is the 
product of the weighted priority and 
the total utility of the request 
worth of all the requests satisfied in a 
given interval of time; W is the 
performance measure of the system 
requested bandwidth of the request rk 



mbk 

Pk 

cc) 

n(Pk) 

sim-time 

loading factor 

arrival rate h 

lead time 

bwneeded 

GF 

minimum bandwidth required by the 
request rk 

priority level of the request rk, 
1 < p k < 4  

weighting constant, which depends 
upon ,the mode; in mode two cc, = 2, in 
mode ten a= 10 
weightirrg function for a priority level 
that depends upon the mode value. 

simulation time over wt~ich the sum of 
the worths of the requests satisfied is 
calculated 
indicates the amount of "load" that is 
placed on the network. 

arrival rate of requests modelled as a 
Poisson arrival sequence; h depends 
upon the loading factor 
,time between the arrival time and the 
start time of the request 

bandwidth still needed to be obtained 
by degradationlpreemption of some 
request(s) 
globalization factor, a factor used to to 
introduce randomness in decision 
making 
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