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ABSTRACT

Bandwidth dlocation is a fundamental problem in communication networks
where bandwidth needs to be reserved for requests (connections) to guarantee a certain
qudity of service (QoS) for the request. Guaranteeing QoS to the request means that the
user can explicitly specify certain requirements for a request such as bandwidth. The
problem of bandwidth alocation is further intengfied when the requested bandwidth
exceedsthe available unused bandwidth and so nat al requests can be completdy served.
This research examines on-line bandwidth alocation, where the decison for acceptance
or rgjection of the request has to be made when futurerequestsand their arrival statistics
are not known. A request can be defined as a flow of information from a source to a
destination with a certain amount of bandwidth, a priority level, a utility function that is
based on the bandwidth recaived, and aworth that is based on the utility function and the
priority level. The goa of the research is to develop a scheduling heurigtic for an
overloaded system that attemptsto schedulethe requests such that the sum of the worths
of the requests satisfied in a fixed interva of time is the maximum. The scheduling
heuristic can preempt or degrade adready scheduled requests. Three different types of
utility functions, step, linear, and concave are examined. Other parameters being
consdered include network loading and the relative weights of the different priority
levels.



1. INTRODUCTION

Bandwidthallocation is one of the most important problemsin the management of
networks that offer a guaranteed bandwidth policy, such as ATM [ATMS99]. In such a
network, if a user (ie., an application) wants a guaranteed bandwidth for a
communication(also called a request), the user has to reserve, in advance, the amount of
bandwidth required. This is in contrast to the current Internet wherein the requests are
satisfied with a best-effort palicy, i.e., there is no guarantee on the bandwidth received by
a user. The advantages of a guaranteed bandwidth policy are many. Examples are as
follows.

1. Bounded delay: the delay experienced by a user's request is bounded.

2. Differentiated service: users can expect different levels of quality of service

(QoS) based on the amount of money paid and the amount of bandwidth
reserved.

3. Smplepricing: a user can be charged for the amount of bandwidth allocated.

4. Farness. just one user cannot occupy all the bandwidth available.

The mgor drawback of a guaranteed bandwidth policy is inefficiency; the
bandwidth received may not actually be fully utilized Thus, a good bandwidth allocation
strategy isessential for such networks.

If the network were to reserve bandwidth for a request and the request does not
use al the reserved bandwidth then that would lead to under-utilization of the links. For
example, assume the user requests an interactive multimedia session. An interactive
multimediasession may involve human interaction due to which there will be periods
whenthelirk isnot being used, e.g., when the user is reading the information presented.
Because the bandwidth was reserved for the user's request, any unused bandwidth (that is



not being used by the user's request) may not be used to satisfy other requests, and hence
may result in a loss of revenue to the network bandwidth provider. It may be argued that
the if the user is willing to pay for the unused bandwidth, there would be no loss of
revenue to the network bandwidth provider. Given a choice, a user may not be willing to
pay for the unused bandwidth. In this scenario, the network should be capable of
dynamically allocating bandwidth as and when the user requiresit.

Another case where dynamic bandwidth allocation would be useful is a red-time
multimedia session. For example, assume the user requests a video clip. The user may
dynamically demand more bandwidth by resizing the window and consequently
requesting a higher image resolution or, by fast-forwarding the clip. In this case, if the
user is willing to pay for the extra bandwidth required, the network should be able to
dynamically alocate more bandwidth to the user. If the network has a fixed bandwidth
reservation policy, the user would have to reserve the total bandwidth needed during the
sesson, i.e., the user would have to reserve and pay for the extra bandwidth too. But the
user may not use the extra bandwidth for most of the time during the sesson. Thus,
greater flexibility is needed than just reserving a fixed amount of bandwidth. This
flexibility can be provided if the network i s capable of dynamically alocating bandwidth.

Dynamic bandwidth allocation constitutes a paradigm shift from current
bandwidth alocation policies such as reservation of bandwidth. In dynamic bandwidth
alocation the users do not reserve the required bandwidth, but dynamically rent the
required bandwidth. The network service provider would like to maximize the revenue
recaived by renting bandwidth to different users. Maximization of revenue may involve
preempting/degrading existing user requests to satisfy "more vauable” requests that
would otherwise be rejected because of lack of available bandwidth. The rationale behind
thisisasfollows. Assumearequest has rented some bandwidth and paid some money for
the rented bandwidth. If this request is occupying the bandwidth that is needed by a
request paying more for the same amount of bandwidth, then it may be beneficia to
preempt/degrade the lower paying request in favor of the higher paying request. The goal
of this research is to develop a heuristic that will aid in making decisions as to which



request should be admitted/rejected, and what bandwidth should be alocated to the
request if admitted.

In particular, the objective of thisresearch isto develop a scheduling heuristic for
an overloaded system that attempts to schedule the requests such that the sum of the
worths Of the satisfied requests obtained by the schedule is the maximum. One of the
factors affecting the worth of a request is the utility function of the request that is based
on the amount of bandwidth received by the request. The utility function of the request
depends upon the application generating the request. For example, a file transfer may
have a concave utility function because it is not red-time and hence is delay insensitive,
i.e., it can tolerate some delay [She95]. Alternatively, a real-time application such as
Internet telephony may have step utility function [She95]. The heuristic developed in this
research congders requests having three different types of utility functions. step,
concave, and linear. Mogt of the requeststhat currently exist in the Internet have a utility
function that is one of these three types. To the best of the author's knowledge, there is
no research reported in the literature with the objective of maximizing the sum of the
worths of satisfied requests with these three different types utility functions of the
requests.

In a military environment, there may be many warfighters in remote locations
requesting information such as terrain maps, enemy locations, and troop movements.
Each of these requests for information may have a priority and a utility associated with it
that indicatesthe " worth of the request to the warfighter. For example, if the warfighter
receives the information requested after the deadline specified, then it would be of zero
worth to the warfighter. If there were many warfighters requesting some information,
then it may be possible that not al the requests can be satisfied. Thus, it may be
beneficial to maximize the worths of all the requestssatisfied. The heuristic developed in
this research can be used to alocate the bandwidth to the different warfighter’s requests
such that the total worth of al the requests satisfied is the maximum.

This heurigtic can be used by Internet service providers (ISP) that provide
bandwidth to its clientsfor some amount of money. The value of aclient's request may
be the amount of money the client pays for the request, which is a function of the amount



of bandwidth the client's request received and the cost per unit bandwidth the client is
willing to pay. The ISP would like to maximize the total amount of revenue received by
accepting the "more vauable” client requests and regjecting the "less valuable™ client
requests. The value of aclient's request may correspond to the worth of arequest in this
research. Thus, maximizing the total revenue received by the ISP would correspond to
maximizing the sum of the worths of all the requests satisfied in this research. The ISP
can use the heuristic developed in thisresearch to determine the bandwidth allocations to
the different client requests such that the sum of the worths of the client requests satisfied
is maximum, thus maximizing the revenue received.

This dynamic bandwidth allocation heuristic has been developed for scheduling
requests to achieve a high aggregated value within a distributed network infrastructure
envisoned in the Defense Advanced Research Projects Agency (DARPA) Agile
Information Control Environment (AICE) program [AIC98]. The objective of the
DARPA AICE program is to enable dynamic management of network resources over
distributed and disparate networks (including both military and commercia networks) in
accordance with the commander's policy. This policy includes assignment of priority
levels to requests and relative weights for the priority levels. AICE consists of four
functional layers: a physicd networks layer, a MetaNet layer, an Adaptive Information
Control (AIC) layer, and an Information Policy Management (IPM) layer. The MetalNet
layer interacts with multiple physical networksto provide end-to-end QoS differentiable
servicesto the AIC layer for dlocation. The AIC layer isresponsiblefor the allocation of
the end-to-end resources established by the MetalNet to requeststo achieve a high globa
worthasdefined by the IPM layer. The bandwidthallocation heurigtic in this research has
been developed for an AICE-like environment where the AIC has direct knowledge of
the state of the underlying network.

Thus, the scheduling heuristic presented here attempts to maximize the sum of
the worths of the prioritized requests satisfied in an overloaded AICE-like
communications environment. It assumes each request has a utility function for the
bandwidth received that is concave, linear, or step function. Furthermore, a request's
assigned bandwidth may be preempted or degraded by this heuristic. Smulation



experiments are conducted to evaluate severa variations of the heuristic and compare
them to upper bounds and asimple schedulingtechnique.

The report is organized as follows. The network modd and the request modd
assumed in this research are described in Section 2. In Section 3, the problem that this
research attemptsto solve and the need for a heurigtic are explained. A brief overview of
some of the literature related to this work is presented in Section 4. In Section 5, the
scheduling heuristic developed in this research is explained and the bounds on the
performance of the heuristic are examined in Section 6. The smulation experiments
conducted and the results obtained are presented in Sections 7 and 8, respectively. The
last section provides a brief summary of this work and aso discusses possible future
work The pseudo-code for the heuristic is given in Appendices A, B, and C, and the
glossary of notation is presented in Appendix D. The C source code for the heurigtic is
given in [Dha00].






2. DISTRIBUTED COMMUNICATION NETWORK

2.1. Overview

The underlying network model and the request modd assumed in this report is
discussed in this section. The performance measure for the heuristic is aso presented in
this section. The network modd used in this research is Ssmilar to the network modes
consdered in [FeM95] and the Internet [Com95, NAP98]. To explain the assumed
network model better, a brief descriptionof these other network modelsis presented.

2.2. Existing Network M odels

2.2.1. Distributed computing

An admisson control heurigtic for distributed applications (e.g., distributed
computing) over an ATM network is described in [FeM95]. The admission control
heurigtic proposes to dlow connections belonging to the same application to share
common links to increase utilization. The network modd used in [FeM95] is similar to
the network moded assumed in this research. The modd in [FeM95] assumes that there
are aset of dave hogtsthat send thelr requeststo a master hogt viathe same intermediate
switch and the same intermediate link. The intermediate switch is assumed to be a high-
speed switch that forwards the data from the dave hosts to the master host, but the
intermediate link has a fixed capacity and hence is the bottleneck. If the sum of the
bandwidthsof the requestson the intermediate link exceedsthe link bandwidth then some
requests may have to be dropped. Thus, it is essential to perform admission control so
that the sum of the bandwidths of the requests does not exceed the link bandwidth. A



smilar scenario exists in the network model assumed in thisreport, as will be explained
in Subsection 2.3.

222. Current Internet

The original Internet architecture consisted of a single dominant Nationa Science
Foundation (NSF) backbone network that supported dl the Internet traffic. This
architectureunderwent a mgor change fiom the single dominant NSF backbone network
to aseriesof commercia provider owned backbone networks. The commercial providers
typicaly arethe ISPsthat offer Internet accessto their clients such as large corporations,
universities, and individual dia-up users. Under these conditions, the backbones hed to
have some means of exchanging data. To serve this purpose the concept of a network
access point (NAP) was introduced. NAPs were designated to serve as data interchange
pointsfor the |SPs, asshown in Figure 2.1.

ISP1 router router ISP3
\ /
NAP
ISP2 router router ISP4

Figure2.1. Network access point (NAP).

The 1SPs send the traffic fiom its clients to the NAP and the NAP then forwards
the traffic fiom one ISP to another. The NAP switches(i.e., forwards) dataat a very high
speed. The ISPstypicaly have a service level agreement (SLA) with the NAP wherein
the ISPs agree to send data a a rate no greater than a predetermined fixed rate. The
switching capacity of the NAP istypically very high, and if the ISPs do not violate their
SLA, then the NAP isusually not the bottleneck. Thus, the ISP would like to maximize



the sum of the "worths" of the requeststhat it sends to the NAP in accordance with its

SLA. The heuristic developed in this research considers a smilar problem for the
network model shown in Figure 2.2.

source/destination 1 O [ sourceldestination 2
node 1
ingress | [ egress
link 1 link 1

backbone network

ess

erexs// ingress

link ingress link 2

IheesS
nc-~3-\u 'lnkeg O
node 27 - 0
. i source/

sourcel \ destination 3

destination 6 .':
Osource/destination 5  source/destination 4 (]

Figure 2.2. Network modd.

2.3. Network Modd

The underlying network model assumed in thisreport is shown in Figure 22. The
sources shown are the applicationsthat generatethe requests, where a request can smply
be defined as a flow of information from a sourceto a destination, with a certain amount
of bandwidth, a priority level, and a utility thet is a function of the amount of bandwidth
received. A request isformaly defined later in this section. The decision to admit/reject a
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request is made at the nodes shown in Figure 2.2. If a request is admitted, the amount of
bandwidth to be allocatedto the request is decided a the nodes.

The nodes provide network ingress and network egress. If a request is admitted,
the nodes send the request to the network cloud via the links connecting the node to the
network cloud as shown in Figure 2.2. Each node is connected to the backbone network
by two unidirectiona links. A network ingress link transfers data fiom a node to the
backbone network A network egresslink transfers data fiom the backbone network to a
node. The request would be routed by the backbone network to the destination node via
its egress link, and then delivered to the fina destination. The backbone network can be
thought of asa very high-speed switchthat forwardsthe data fiom the ingresslinksto the
egress links. The ingress links and egress links have fixed capacities. It is assumed that if
a request can be accommodated by its associated ingress and egress links, then the
network can satisfy the request. That is, it isthe linksthat are the system bottlenecks, and
not the backbone network Thus, the requests should be scheduled such that the sum of
the bandwidthsof the requests utilizing a link does not exceed the link bandwidth.

The modd assumed here is very smilar to the modd in [FeM95], where the link
isthe bottleneck and not the switch. If the backbone network in Figure 2.2 isa NAP (or a
switch) and the ingress/egress nodes in Figure 2.2 are the ISPs, then the modd assumed
here is similar to the current Internet. In the Internet, the ISP would like to maximizethe
sum of the “worths” of the requests sent over a link. In the model assumed here, the goa
Is to maximize the sum of the worths of the requests satisfied such that the sum of the
bandwidths of the satisfied requestsdoes not exceed the link bandwidth.

The problem of hierarchical link sharing has been discussed in [FIJ95], where a
single link has to be shared by multiple organizations with different levels of QoS
requirements. In [FLJ95], a single bottleneck link is considered, and this bottleneck link
needs to be shared among different traffic types such as red-time (e.g., steaming audio
and video) and non-real-time traffic (e.g., ftp). The network modd assumed in this
research can be considered to be an extension of the single bottleneck link moddl in
[F1J95] by considering two bottleneck links instead of one.
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24. Request Modd
24.1. Request definition

A request is defined as a flow of information from a source node to a destination
node with a certain amount of bandwidth, a start time, an end time, a priority level, and a
utility function that is based on the amount of bandwidthreceived. Requeststhat requirea
certain amount of bandwidth for some specified duration of time are called session type

requests. Assume for arequest ry, i is the network ingress link or the in-link, o is the
network egress link or the out-link, sx is the start time, ¢; is the end time, rby is the

requested bandwidth, by is the current bandwidth, pg is the priority level, u, isthe utility
(avalue between 0 and 1 that is a function of the amount of bandwidth received by the
request), and wg isthe worth. Thus, the request ¢ can be represented by

ri = {ik, Ok, rbi, br, Sks €xs Ph> Uks Wi} .
The session of the request isdefined to be the time interval from the start time to the end
time of the request.

In the military environment where this research can be applied, if the request
cannot be alocated its desired bandwidth (rbg) because of the oversubscribed network or
its priority level, then the request may either be allocated degraded bandwidth
(determined by the network) or no bandwidthat dl. In such asituation only, the requestor
may be willing to accept degraded bandwidth rather than have the request rejected. Thus,
the bandwidth alocated to the request need not remain fixed for the duration of the
reguest, i.e., the bandwidth allocated to the request can be decreased or increased during
the session of the request.

The total utility of a request is calculated based on the amount of the bandwidth
that the request received during every time ingstant (e.g., second) of its sesson. The
bandwidith received by the request & every time instant of its session is denoted by & (¢).

Then, thetotal utility of arequest r is Uy, avaue between 0 and 1, where
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Ui Hék (bk(t))] /(ek s )]. @

When cal culating the worth of a request, aweighted priority of the request is used
rather than just its priority level. The reason is explained in Subsection 24.2. The
weighted priority is some function of the priority leve of the request. Let this function be
denoted by 77. The worth of the request is defined as the weighed priority times the total
utility of the request. Thus, the worth of the request is calculated as

wiy = IKpy) x U
Therefore, subgtituting the expresson for the tota utility of the request from

Equation 2.1,
wi = IKpg) x l:[ ezkluk(bk(t))] /ek ~ 5k ):( (2.2)

t=s;

This gpproach to calculating the worth is based on the FISC measure in [KiH00]. The
prioritiesand the utility functions are explained in detail in the following subsections.

242. Priority

Bandwidth should be allocated to the requests in some order. Intuitively, this
ordering should begin with "more important™ requests. Some priority mus therefore be
associated with arequest so that an agorithm can eva uate the relative merit of any given
request compared to any other request. As mentioned earlier, a weighted priority (that is
some function of the priority of the request) is used to calculatethe worth of the request.
The weight of a priority level indicates the relative importance of a priority levd to
another.

In this research, it is assumed that there are four priority levels, where leve i is
more important than levd j,fori < j,1 < ij < 4. The priority scheme is based on a
weighting congtant @ aswasused in [ThB00]. The weight of priority leve i is

M=o
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Two casesfor ware consdered: mode two, when o= 2, and mode ten, when o =
10. In mode two, with » = 2, the weighted priority of priority level one would be eight,
and the weghted priority of priority level four would be one. In mode ten, with
o = 10, the weighted priority of priority level one would be 1000, but the weighted
priority of priority level four would still be one. Thus, even though the priority levels of
the requests remain the same, the relative weighted priorities would change from mode
two to modeten.

The reason for this concept of mode-based weighted priorities in the military
context that this work was carried out is as follows. Assume that there are two different
modes, awar mode (where o= 10) and a peace mode (where = 2). A request issued by
a commander may be assigned a priority of one while a request issued by a private may
be assigned a priority of four. Recal that it is assumed that the communication system is
overloaded. In peace mode, a priority level one request (with weight 2° = 8) is considered
worth more than seven priority level four requests (7 x 2° = 7). It may be beneficial to
satisfy one priority level one request instead of seven priority level four requests, or nine
priority level four requestsinstead of one priority level one request. But in the war mode,
apriority level one request (with weight 10* = 1000) is considered worth more than 999
priority level four requests (999 x 10° = 999). Thus, it may be beneficia to satisfy one
priority level onerequest instead of 999 priority level four requests, or 1001 priority level
four requests instead of one priority level one request. This effect of change in relative
importance of priorities (of the requests) due to change in mode can be captured by the
concept of aweighted priority as explained above.

In a commercid network a smilar situation may exist. The two modes can be a
lightly loaded network (where @ = 2) and a heavily loaded network (where @ = 10). A
request issued by the Chief Executive Officer (CEO) of the company may be assigned a
priority of one while the request issued by an employee may be assgned a priority of
four. In a lightly loaded network, a priority level one request (with weight 2° = 8) is
considered worth more than seven priority level four requests (with weight 7 x 2° = 7).
Hence, in alightly loaded network, the priority level one request may be satisfied instead
of seven priority level four requests. But in a heavily loaded network, a priority level one
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request (with weight 10° = 1000) is considered worth more than 999 priority level four
requests (with weight 999 x 10° = 999). Hence, the priority level one request would be
satisfied instead of 999 priority level four requests. This significantly higher relative
importance for the priority level one request, in a heavily loaded network, can be
achieved by the weighted priority scheme described earlier.

243. Utility function

The utility of a request is a function of the bandwidth that the request receives
during its sesson. This utility can be any arbitrary function of the bandwidth received,
depending upon the application generating the request. Different types of applications
could have different needs both in terms of desired bandwidth and ability to operate with
less than the desired bandwidth

For example, there may be high-quaity multimedia applications that are designed
to be transmitted a a fixed bandwidth. For such an application, if the bandwidth
requirements are met, the utility obtained is the maximum utility of the request. If the
requirementsare not met (by not alocating sufficient bandwidth to the application), the
utility obtained is zero. Thus, such an application may generate a request that has a step
utility function, i.e., if the application gets the bandwidth needed, then its utility would be
the maximum utility and if not, zero utility [She95]. The utility function for such a
request with a bandwidth requirement of »bg isillustratedin Figure 2.3

There may be other applications that are designed to adapt to transmissions with
less than the full desired bandwidth. For example, a teleconferencing sesson may be
structured to operate with reduced bandwidth and commensurate reduced quality. Such
an application may generate a request that has a linear or a concave utility function
[She95]. In addition to the requested bandwidth rbg, the request may even specify a

minimum bandwidth requirement mbs. If the request is allocated bandwidth less than its

minimum bandwidth mby, thenitsutility is zero.
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Figure2.3. Request with a step utility function.

In case of astep utility function, the minimum bandwidthwould be the bandwidth
requested. The linear and concave utility functions of a request are illustrated in Figure
24. Mog of the requeststhat currently exist in the Internet have a utility function that is
one of thethreetypesof utility functions considered in thisresearch [She95].
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utility
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Figure 2.4. Request with a (@) linear utility function, and (b) concave utility function.
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2.5. PerformanceM easure

Let S bethe set of al the requeststhat arrive at the nodes over a fixed interva of
time. The worth of arequest iscalculated using Equation 2.2. If arequest in S is satisfied,
Equation 2.2 yields the worth of the request, or ese Equation 2.2 yidds zero. The
performance measure assumed in thisreport isthe sumof the worths of al the requestsin
S Thissumof the worthsof al the requestsin S isthe total worth /.

W= w 2.3)
keS
Subgtituting the expressionfor wy from Equation 2.2 in Equation 2.3.

=Y Mppx [[t%uk(bk(t))J /ek—sk):| 2.4)

keSS =Sk
The goal of thisresearch isto maximizethistotal worth #. Other studiesthat use the sum

of the worths as the performance measure in AICE-like environments include [ThB0O,
ThS00, ThTO0O0b].

2.6. SUmmary

The network mode and the request model assumed in this research have been
described in this section. The concept of weighted priorities and how it affects the
relative importance of prioritiesof the requests has al'so been explained. In this section,
the three different typesof utility functions and the applications that can generate such
utility functions have been discussed. The performance measure for the heuristic, i.e.,
sum of the worths of al the requeststhat arrive during a given interval of time, has also
been stated. In the next section, the problem that this research attempts to solve and the
need for a heuristic are explained.
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3. PROBLEM DEFINITION

3.1. Overview

In this section, the problem that this research attempts to solve is presented. The
intractability of the problem is argued and the need for a heurigtic is explained. The
smilaritiesand differences between the bandwidth all ocation problem described here and
the fractional knapsack problem are discussed in Subsection34.

Asdefined earlier inthisreport, arequest isaflow of datafrom a sourcenodeto a
destination node with a start time, an end time, a certain amount of bandwidth, a priority
level, and a utility that is a function of the amount of bandwidth received. The worth of
the request is defined asthe product of the weighted priority and the utility of the request.
The utility function of the request can be a linear, step, or a concave function of the
amount of bandwidth the request receives. Recall that the performance of a scheduleis
determined by W where

W= 3 Mpyx [[ %uk(bk(t))]/ek —Sk):l

keS =Sk

32 Typesof Scheduling

Scheduling heuristicscan be grouped into two categories. off-line scheduling and
on-linescheduling. In the context of thisresearch, an off-line scheduling a gorithmwould
have knowledge of all the requeststhat have arrived in the network [BrS99]. The off-line
scheduling dgorithm, as the name suggests, is executed off-line with no time constraints
such as, start time of a request. Alternatively, an on-line scheduling agorithm has to
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make decisionsof acceptance/rejection of requestswithout prior knowledge of the future
arrival of requests [MaA99]. In this research, no assumptions are made regarding the
future arrival of requests. Thus, the performance of the heuristic developed in this
research does not depend upon the arriva pattern of the requests. Because an off-line
scheduling heuristic has knowledge of all the requeststhat have arrived at the nodes, and
no time congstraints, the value of W obtained by an off-line scheduling heuristic is usualy
better than that obtained by an on-line scheduling heuristic.

On-line scheduling can be considered to consst of two types immediate
scheduling and batch scheduling [MaA99]. In immediate on-line scheduling, requests are
conddered for scheduling as soon as they arive. Alternatively, in batch on-line
scheduling, the requestsare not considered for scheduling as soon asthey arrive, but they
arefirg grouped in batches. These batches are processed, and the processed batch is then
consdered for scheduling. For example, processing the batch of requests may involve
sorting the batch by some measure such as worth per bandwidth desired by the request.
The sorted batch may then be scheduled by first scheduling the request with the highest
worth per bandwidth requested, then scheduling the request with the next highest worth
per bandwidth requested, and 0 on. In this research, the immediate on-line scheduling
problemis considered. Thisproblem is further explained in the next subsection.

3.3. ImmediateOn-line Scheduling Problem

The network ingress and network egress|irks, shown in Figure 2.2, have a fixed
bandwidth. This fixed amount of lirk bandwidth needs to be shared among the requests
utilizingthelink, i.e., the link bandwidth needsto be allocated to the different requestson
the link. The problem of bandwidth allocation arises when the total bandwidth required
by the requests exceedsthe available link bandwidth and not al requests can be satisfied.
Such a system where the total bandwidth requested exceedsthe available bandwidth isan
overloaded sysem. The problem is further intensfied because the decison for
acceptance/rejection Of the request has to be made on-ling, ie., the future arrival of
requestsis not known (and no assumptions are made regarding the arrival of requests).
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The objective isto maximize W over dl the links subject to the constraint that the total
bandwidth of the requests satisfied on a link does not exceed the link bandwidth.

The god of this research is to develop a scheduling heuristic for an overloaded
system that attempts to maximize W. This research considers preemption as well as
degradation of some existing requests to dlow more bandwidth to be allocated to new
requests to increase the sum of the worths of dl the requests satisfied during a given

interva of time.
A
I____—_—___———_——_—-_—--_-—I
| request 4 irb4
L ;__ —
. request 3 rbs
bandwidth q
I'b1
request 1
a request 2 rb;
>
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Figure 31 A snagpshot of the requests satisfied a alink from time % to #. Request 4 is
the new request being considered for scheduling. Each rectangle indicates a
request; the width of the rectangle is the duration of the request and the
height of the request is the bandwidth required by the request. The height of
the outer rectangle isthe link bandwidth L. The start and the end times of the
requestsare indicated on the X-axis.

To explain the problem more clearly, refer to Figure3.1. Consder that there are a
few requests (requests 1, 2, and 3 in Figure 3.1) that have been aready been scheduled
(i.e., allocated bandwidth during the time interval specified). Let these requests have the
sameingresslink i and different egresslinks. Now suppose a new request r4 (request 4in
Figure 3.1) arrivesfor scheduling at atime before to. Request 4 has the same ingresslink,
a requested bandwidth of rb,, and a worth of wy, If the sum of the bandwidths of the
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requests currently being scheduled and of request r4 exceeds the lirk bandwidth (as
illustrated in Figure 3.1), then »4 cannot be satisfied with its desired bandwidth. A
decision hasto be made whether to admidreject request r4 and if 4 is admitted then what
bandwidth should be allocated to 7.

The goal isto maximize W, the problem is how to make a decision such that this
goal isachieved. The reason is, because of the on-line nature of the problem, it isaways
possible to second guess decisions made in the past, i.e., a decison made previoudy to
accept a request may have been wrong because it caused a subsequent request with a
higher worth to be rgjected. For example, the accepted request may have used up the
entireavailable bandwidth on the lirk causing a subsequent request of higher worthto be
rejected dueto lack of available bandwidth. Thus, the on-line nature of the problem leads
to a lower Wthan what an off-line scheduling heuristic that has full knowledge of the
arrival of the requestscould achieve.

This aspect of the problem leads to the issue of degradation and preemption of
existing requeststo free up bandwidth to be used by new, ""more valuable" requests. For
example, if arequest with a high worth cannot be satisfied because a request with a lower
worth is occupying the available bandwidth then it would be beneficid to
preempt/degrade the lower worth request to satisfy the higher worth request. But the issue
is deciding which requests should be preempted/degraded, and wha should be the
amount of degradation if a request is degraded. This research attempts to develop a
scheduling heuristic that will help make the above decision.

One method for deciding which requeststo preempt/degrade, and the amount by
which the bandwidth of arequest should be degraded, is exhaustive search. Consider aset
of al the existing requeststhat overlap in time with the new request #4, i.e., consider all
the requests that start or end or both during the session (i.e., time s4 to ) of the new
request rs. This set of requestsis the set of conflicting requests for r4’s sesson. In the
example shown in Figure 3.1, the conflicting requestswould be requests 1, 2, and 3. Let
there be n such conflicting requests. Many choices exist as to which request should be
preempted/degraded. For example, one choice may be to alocate the full bandwidth
needed by the new request and preempt one of the existing requests (e.g., r;). Another
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choice may be to degrade the bandwidthsof some of the existing requests(e.g., r1 and r2)
and allocate the freed-up bandwidth to the new request. To determine which of these
choices would result in maximizing the worths of thisset of four requests, al the choices
may have to be evaluated. Eva uating these choices may take a huge amount of time, as
demondtrated next.

An example of the time taken for an exhaustive search is as follows. For the sake
of amplification, assume that the range of bandwidth (required bandwidth — minimum
bandwidth) for dl the requests is the same. Let this range be m Kbps. Assuming a
minimum increment in bandwidth of 1Kbps, each request can have m choices for the
amount of bandwidth received. If there are n conflicting requests, and each request can
have m choicesfor the amount of bandwidth received, then the total number of choicesto

be evauated are m” . If m= 100 (atypical value assumed in this research is 1000) and n
= 6, the number of choices are 10'2. If the time taken for evaluating each choice is 1ps,
then time taken for evaluating 10" choicesis 11.5 days, which is a huge amount of time.

Hence, evauating al the m" choices is an infeasible solution for the on-line problem
described above. Thus, thereisaneed for a heurigtic that can solve the problem described
above.

The immediate on-line heuristic has to méeke decisons regarding the
admission/rejection of requests without prior knowledge about the future arrival of the
requests. The heuristic has to make this decision before the start time of the request, i.e.,
the start time of the request is a congtraint for the heuristic. Because of the reasons
mentioned above, the immediate on-line heuristic does not perform as well asthe off-line
scheduling heuristic, which has prior knowledge of all the requeststhat have arrived, and
has no time constraints.

Many heuristicsare presented in the literaturethat consider the on-line scheduling
problem. Some of the heuristics only consider preemption and not degradation of
bandwidth alocated to the requests. Some heuristics only consider requests with a
concave, continuoudy differentiable type of utility function. To the best of the author's
knowledge there is no known heuristic or algorithm presented in the open literature that
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addressesthe above bandwidth alocation problem considering the three different types of
utility functions of the requests.

3.4. Fractional Knapsack Problem

The bandwidth allocation problem described above is related to the fiactional
knapsack problem. However, it will be shown that the problem addressed in thisreport is
more complex.

A fiactional knapsack problem is posed as follows [CoL90]. A thief robbing a
store finds 7 items; the i item is worth v; dollars and weighs g; pounds, where v;, g; are
integers. The thief wantsto take as valuable load as possible, but he can carry a most G
pounds in the knapsack for some integer G. The thief can take fractions of the items
rather than having to make a binary (0/1) choice for each item. What items should the
thief take?

The bandwidthall ocation problem considered in thisresearch can be thought of as
a fractional knapsack problem as follows. Assume the items correspond to requests, the
worth of an item correspondsto the worth of a request, the weight of an item corresponds
to the bandwidth required by a request, and the total weight G corresponds to the lirk
bandwidth. In the fiactional knapsack problem the goal is to maximize the worth of the
items stolen, while in thisresearch, the goa isto maximize W. Satisfying means that the
request (i.e., item) was alocated some bandwidth above the minimum bandwidth
required, during its sesson (i.e., stolen). Thus, the bandwidth allocation problem
considered to this problem has been shown to be very similar to a fiactional knapsack
problem.

In afiactional knapsack problem, the thief can maximizethe total worth of items
stolen as follows. The worth per pound of each item is first caculated. Obeying the
greedy strategy, the thief begins by taking as much as possible of the item with the
greatest worth per pound. If the supply of that item is exhausted and the thief can still
take more, the thief takes as much as possible of the item with the next greatest worth per
pound and so forth until the weight limit G is reached.
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If the fractional knapsack approach is used for the bandwidth allocation problem
described here, then the set of conflicting requests should be sorted by the worth per unit
bandwidth. The request with the highest worth per unit bandwidth should be satisfied
first, the request with the next highest worth per unit bandwidth should be satisfied next,
and so on, until there is no more available bandwidth. The fractional knapsack problem
would have to be solved a every time ingtant, because the set of conflicting requests
(itemsin the storeto be stolen) isdifferent a every time instant.

It may appear from the above discussion that the solution to the fractiond
knapsack problem would yield a solution to the bandwidth all ocation problem described
in thisresearch. But the solution to a™'traditiond™ fractional knapsack problem would not
a solution to the bandwidth all ocation problem considered here. The reason is as follows.
In atraditiona fractional knapsack problem, the function relating the weight of an itemto
itsworthislinear, i.e., if the thief took haf of the item, the thief would get haf the worth
of the item. But in this research the function relating the worth of a request (worth of an
item) to the bandwidth required by the request (weight of an item) can be of three types,
linear, step, or concave. For example, if the request isallocated hdf of the bandwidth, the
worth obtained may be half the worth (in case of linear utility function), zero worth (in
case of step utility function), or 3/4™ of the worth (in case of concave utility function).
The bandwidth alocation problem described here is sort of a "multi-dimensond”
fractional knapsack problem where the function reating the weight of the item and the
worth of the item can be a linear, step, or concave function. Hence, the bandwidth
alocation problem described here is more complex than the fractional knapsack problem.

35. Summary

The two types of scheduling methods, off-lineand on-line scheduling were briefly
discussed in this section. The bandwidth allocation problem considered in thisresearch is
an immediate on-line scheduling problem. In this section, the intractability of this
problem has been demondtrated. The infeasibility of an exhaustive search solution and
the need for a heuristic has aso been presented. Many heuristics have been presented in
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the literaturethat are ather applicable only for a concave continuoudy differentiable type
utility function, o only consder preemption and not degradation. A summary of some
such related work ispresented in the next section.
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4. RELATED WORK

To the best of the author's knowledge, the dynamic bandwidth allocation problem
considering requests with step, concave, or linear utility functionshas not been addressed
in the literature. The research here adso differs from the related work in the ways
discussed in this section. The issue of non-preemptive (non-degrading) on-line bandwidth
allocation (also referred to as call control) has been addressed in [AWA93, AwB94]. Our
research focuses in the use of preemption and degradation for the immediate on-line
scheduling problem.

The problem described in [Kel97] is similar to the problem that this research
attemptsto solve. In [Kel97], the requests are assumed to have utility functions that are
dtrictly concave, i.e., the utility functionsare continuousand differentiable. The utility of
a request (which is a function of the amount of bandwidth received) in [Kel97]
correspondsto the worth of arequest in thisresearch. The goal of [Kel97] isto maximize
the sum of the utilities of all the requests, such that the total bandwidth allocated to the
requests does not exceed the link bandwidth. Becausethe utility functions of the requests
in [Kel97] are dtrictly concave and differentiable, a theoretical solution using Lagrangian
methods is proposed. I1n the current Internet, there may be many requeststhat do not have
a drictly concave utility function. For example, requests generated by red-time
applications such as audio and video may have a step utility function. Our research
considers requests having three different types of utility functions. step, concave, and
linear. Mogt of the requests in the current Internet have a utility function that is one of
these three types [She95]. In [Kel97], a one-link network modd is assumed, ie.,
degradations in the bandwidth alocated to the request @ are considered a one link. For
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each request there are two bottleneck linksin the network modd assumed in our research
(the ingress and egress links in Figure 2.2). Hence, this research takes into consderation
the case where the request's bandwidth may be degraded a both the ingress and the
egresslinks.

A decentralized market based approach for optima resource allocation is
described in [ThTOO4. The market-based approach offers an aternative to the policy-
based approach, where requests are admitted based on the current willingness of the user
to pay for the reservation of resources for the request. The market-based approach
follows directly from research in the field of economics, where smilar problems exist
when equilibrium needs to be achieved between high demand and low supply. In
[ThTOOH, as in our research, the users’ preferences are summarized by means of their
utility functions. The objective of the resource alocation problem in [THTOOH is to
determine the amount of resources to be alocated to requests such that the sum of the
users utilities is maximized. The market-based approach in [THTOOY is a decentraized
approach where the users can dynamically change the amount they are willing to pay for
the resourcesrequested. That is, it can be thought of asthe priority levels of the requests
can change. But in our research, the priority levels of the requests are fixed and do not
change. Becausethe uses can dynamicaly change the amount they arewilling to pay, the
users requests may be degraded arbitrarily without following any utility function per se.
In our research the users bandwidth is degraded consdering the utility function of the
users request. For example, if a request has a step utility function, the request is not
degraded by a small amount, it is either preempted or not degraded @ dl. In our research
the user can even specify a minimum bandwidth requirement. If the users request is
allocated bandwidth lessthan the minimum bandwidth specified, the utility iszero.

In [BaM98], the problem of dynamic bandwidth alocation is considered by
assuming that every request will have a dday requirement rather than a bandwidth
requirement. The objective of [BaM98] is to minimize the number of bandwidth
dlocation changes while satisfying the delay requirements (there are no priorities).
Heuristics for dynamic bandwidth alocation for the single-source single-destinationcase
and the multiple- source multiple-destination case are presented in [BaM98]. In our

. —
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research, the requests are assumed to have a bandwidth requirement and not a deay
requirement, and the goal is to satisfy the bandwidth requirementsof the requests while
maximizing the total worth of al the requeststhat have arrived in afixed interva of time.

A class of resourcealocation dgorithmsfor scheduling requeststo achievea high

aggregated vaue (i.e., utility) within a distributed network infrastructure is described in
[AWOCQ]. The utility of arequest in [AWOQ] corresponds to the worth of a request in this
research. In [AWQOCQ], a batch of requedts, i.e., batch on-line scheduling (as discussed in
the Subsection 3.2) is considered, as opposed to the immediate on-line scheduling
problem considered in our research. The three heuristics described in [FWOQ] to solve
the resourcealocation problem are as follows.

1. The basdine no scheduling heurigtic, where no scheduling is done and the
request is darted at the earliest possble start time when enough bandwidth is
avalable.

2. The greedy heurigtic, where the request that yields the maximum utility is
scheduled first and so on, until the total bandwidth of the link is allocated.

3. The maximum ratio heuristic, where the request that has the maximum utility
per bandwidth ratio is scheduled first and so on, until the total bandwidth of
thelink isalocated.

Thetwo types of requestsconsidered in [AWOOQ)] are asfollows.

1. Bandwidth based requests, where the requests have an earliest start time and
latest end time and a firm time duration for which the bandwidth is required.
The start time and end time specified are not firm, i.e., the request can start
any time after the earliest start time and end before the latest end time.

2. Volume based requests, where the requests specify a bandwidth requirement
with an earliest gart time and latest end time, but no time duration is
specified.

Our research only considers bandwidth type of requests with a firm start and end time
(and hence the time duration for which the bandwidth is required isaso firm). In contrast
to the modd for our research, in [AWQOQ), the bandwidth used by a request cannot vary
with time, and once a request beginstransmissionit cannot be preempted or degraded.
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The issue of dynamic bandwidth allocation for multimedia applications is
discussed in [ReR98]. It is argued in [ReR98] that the requests generated by multimedia
applications would dynamically demand different bandwidths during a session and the
network should have the capability to dynamically reallocate the bandwidth to these
requests. The requests in [ReR98] are assumed to have a satisfaction profile that
expressesthe satisfaction of the user with the bandwidth currently allocated to the user's
request. The network dynamically adjusts the bandwidth allocated to the requests based
on the bandwidth requirements of the requests and the satisfaction profiles of the
requests. A concept called the application's softness that describes the application's
tolerance to degradation in bandwidth alocated to its request and sensitivity to delay
experienced by its request is presented in [ReR98]. The softness of the application is
considered while deciding how much bandwidth needs to be allocated to the application
during the length of the session. Our research incorporatesthe softness of the application
(i.e., us) in the utility function of the request generated by the user. If the request has a
concave utility function then it istolerant to degradation in bandwidth during the session,
but if its utility function is a step function then it is not tolerant to degradation in
bandwidth during the session. The worth of a request considered in this research,
corresponds to the satisfaction profile of the user's request in [ReR98], because it
indicates how much the user is willing to pay for a certain amount of bandwidth. While
the goal of [ReR98] is to design a framework that is capable of dynamicaly allocating
bandwidth, the goal of our research isto dynamically allocate bandwidth to the different
requests such that the total worth of all the requests satisfied in a fixed interval of timeis
maximized.

In [FaR97], an on-line Dynamic Search Algorithm (DSA) that dynamically
adj uststhe resource all ocation based on measured QoS parameters such as bandwidth and
loss rate is presented. The QoS parameter considered in [FuR97] is the cell loss
probability (CLP) of a request. The DSA dynamically adjusts the bandwidth alocated to
the requeststo satisfy the desired CLP of the request. The goal of the DSA isto adjust the
bandwidth so as to provide each request its desired CLP, with the minimum number of
bandwidth allocation changes. DSA renegotiates the bandwidth periodically so as to
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minimize the number of changes in alocation. Our research differs from [FuR97] in that
the bandwidth of a request is consdered as the QoS parameter. In our research, the
bandwidth is dynamically adjusted whenever the session of the new request overlapswith
the sesson of an existing request. Furthermore our performance measure is worth
(defined in Subsection 2.5) and the number of changes mede to the bandwidth alocation
isonly asecondary concern.

A bandwidth allocation method for eadtic traffic is presented in [Low00]. Elastic
traffic is defined as traffic that can tolerate some degradations in bandwidth, i.e., the
utility function of the traffic is a strictly concave function [Kel97, Low00, She95]. In
[Low00], the users are alocated some fixed minimum bandwidth and a random extra
amount of bandwidth. The alocations and the prices are adjusted to adapt to resource
availability and user demands. Equilibrium is achieved when al the users optimize their

worth and demand equal s supply for non-free resources such as link bandwidth. The goal
isto converge to thisequilibrium, and the method proposed is similar to the one proposed
in [ThT00a] (described above). Our research does not divide the bandwidth allocated into
fixed and variable bandwidth, rather it dynamicaly allocates bandwidthsto the requests
such that the amount of bandwidth alocated is at least the minimum bandwidth required.
In [Low00], the users can change the amount of money paid, i.e., the worth, a their own
discretion, while in our research, the network changes the amount of bandwidth it
allocates to different users based on the worth (fixed priority level and fixed utility
function) of the user's request and the available bandwidth.

A bandwidth allocation scheme with preemption is described in [BaC99]. The
scheme in [BaC99] proposesthat to decide which requeststo reject/preempt, the duration
of the request and the time for which the request has been in sesson should be
considered, completely ignoring the bandwidth requirement of the request. In particular, a
request with a very large bandwidth requirement may be preempted to accommodate a
request with a longer duration and a smaler bandwidth requirement. The research in
[BaC99] presentsdifferent dgorithms such asthe left-right agorithm that implementsthe
compromise between the need to hold on to requests that have been running for the
longest amount of time (thus, capitalizing on the work done) and the need to hold onto
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requeststhat will run for the longest time in the future (thus, guaranteeing future work).
The agorithms presented in [BaC99] though surprisingly smple seem to achievegood
results. Our research differs from [BaC99] in that it alows for degradation of' bandwidth
alocated to requests as well as preemption of requests. Thus, the heuristic presented in
our research has to explore more choices when deciding whether to admit/reject the
request. Furthermore, in [BaC99], requestsdo not have priority levels.

A brief overview of some of the literature related to this work was presented in
this section. The scheduling heuristic developed in this research is presented in the next
section.
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5. SCHEDULING HEURISTIC

5.1. Overview

In thisresearch, the network is ssimulated using a resource alocation table and this
is explained in detall in Subsection 5.2. In Subsection 5.3, the marginal worth, i.e., the
change in the worth of the concave or linear request due to a unit change in the
bandwidth allocated to the request, is described. An example of overlapping requestsis
illustrated in Subsection 54. In Subsection 5.5 the scheduling heuridtic: is discussed. The
design of the scheduling heuristic is explained step by step. The issues encountered while

designing the heuristic and the corresponding design decisions mede are stated. The
heurigtic is summarized at the end of Subsection 5.5, while the detailed pseudo-code is
presented in AppendicesA, B, and C.

5.2. Network Simulator

In this research, table is used to record information about the requeststhat were
admitted. Thistable, called aresourceallocation table{ RAT) recordsinformation such as
theingress and egress links utilized by the request, the bandwidth all ocated to the request,
the start time, and the end time of the request. The RAT essentially simulates a network.
The available bandwidthat eachlirk and at every instant of time can be determined from
the RAT. When a new request arrives a an ingress node, the RAT is examined to
determine whether there is enough bandwidth available to satisfy the new request a
every time instant of its sesson, both a its ingress and egress links. If there is sufficient
bandwidth available at every ingant of time during the new request's session, then the
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information about the request is added to the RAT and the request is consdered as
satisfied. If sufficient bandwidth is not availablethen the scheduling heuristic is invoked.
The heurigtic performs computations to determine which bandwidths of the existing
requests should be degraded and by what amount, if at dl. If the new request can be
satisfied with an increase in the total worth of satisfied requests, then the information
about the new request isrecorded in the RAT.

5.3. Marginal Worth

As mentioned earlier, the marginal worth is the change in the worth of a concave
or linear request due to a unit change in the bandwidth alocated to the requedt. It is
caculated as follows. The derivative of the utility function of the request is called the
marginal utility of the request. The margind utility is essentially the dope of the utility

function of the request. The margina utility indicates the change in the utility of the
request due to a unit change in the bandwidth alocated to the request. The worth of a
request is the product of the weighted priority and the utility of the request (Equation
2.2). Thus, the derivative of the worth of the request is the product of the weighted
priority and the margind utility of the request. The derivative of the worth of the request
Is the marginad worth of the request.

The marginal worth of the request may change depending upon the amount of
bandwidth received in case of a request with a concave utility function. In a concave
utility function, the utility obtained per bandwidth depends on the amount of bandwidth
received. Because the worth depends upon the utility function, the worth changesas the
amount of bandwidth received changes. In Figure 5.1, the different margina worths of a
request depending upon the bandwidth recelved are shown. The margind worth of the
request with a concave utility function increases as the bandwidth allocated to the request
is decreased (not decreased below mby).

For alinear utility function, margina utility is just the dope when the bandwidth
is between mb; and rb.. When the bandwidth is below mb;, then the utility is zero and
hence the margina utility is zero.
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Figure5.1. Different margina worths of a request with a concave utility function.

The utility functionsof the requests can also be non-differentiable functions such
as step functions. In this research, the marginal worth of a request with a step utility
function is considered to be the ratio of the worth of the request (wy) and the desired

A .-~ marginal worth
Wk' -------------- b Pl
worth
”’ ~
7~
rbg
bandwidth

Figure5.2. Margind worth of arequest with astep utility function.

bandwidth (rbx) of the request as illustrated in Figure. 5.2. For a step function, margind
worth does not represent the change in worth for a unit loss of bandwidth. The way a step
function's margina worth is used is explained in Subsection 5.5.

54. Overlapping Requests
A request r, overlapswith request r, if: 1 endsduring r;’s session (i.e., from s; to

e), n Starts during r;’s sesson, or r starts and ends during r2’s sesson. These three
casesareillustrated in Figure5.3. Consider anew request that arrivesto be scheduled.
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Figure 53 Requestsr; and r» overlapping intime. (a) i endsduring r2’s session. (b) 7
startsduring r2’s session. (C) r; startsand ends during r,’s session.

The st of requests that overlap with the new request is the set of conflicting
requests (and includes the new request). If a request is not in the set of conflicting
requests, then degrading/preempting that request would not free up bandwidth for the
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new request. TN S is because, if two requests do not overlap in timeg(as  shown in Figure
5.3), then these two requests do not compete for the same bandwidth. Hence, the set of
conflicting requests is conddered when deciding which requests should be
degraded/preempted to make bandwidth available for the new request.

In Figure 54, the set of conflicting requests for the new request r, conssts of
request r at timess, requestsry and r; at time s3, and requestsr, and r; a time s,. Hence
the set of conflicting requestsis different at times s4, s3, and s2 and may change & every
ingtant of time, depending upon how many existing requests (i.e., already scheduled
requests) overlap with the new request.

A
! |
| e e
L — —
bandwidth rs rbs
I'b1
r
1 r rbz
o s S S3 e S2 es €4 e 4 >
time

Figure 54. A sngpshot of the requests satisfied a a link from time # to #. Request r4 IS
the new request being considered for scheduling. The rectangle indicates the
request; the width of the rectangle is the duration of the request and the
height of the rectangleis the bandwidth required by the request. The height
of the outer rectangle isthe lirk bandwidthL. The start and the end times of
the requests areindicated on the X-axis.
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5.5. Immediate On-lineScheduling Heuristic

In this research, the requests are assumed to have some time difference between
their arrival time and their start time. TN's time difference is called the lead. time. The
lead time is introduced because the heuristic takes a finite amount of time to schedule a
request. Hence, if the heuristic cannot schedule the request before its start time (ie., the
time difference between the arrival time and start time of the request is not sufficient for
the heuristic to schedule the request) the request should be rejected immediately and not
considered for scheduling.

When a new request (e.g., 74 in Figure 54) is considered for scheduling (refer to
the main module of the pseudo-code in Appendix A), the difference between the start
time and the current time is compared with the lead time. If the difference is lessthan the
lead time, the request isrgjected. Otherwise, the RAT is queried to determine whether the
request can be satisfied at every time instant of the request's session. If the request can be
satisfied with its desired bandwidth at both its ingress and egress links, then the
information about the request is recorded in the RAT and the request is admitted. If the
request cannot be satisfied, the scheduling heuristic isinvoked.

The goal of the heuristicisto allocatethe bandwidth to the different requests such
that the total worth W is maximized. The methodology of the heuristic is to
degrade/preempt the bandwidth alocated to existing requests, so that the freed up
bandwidth (due to degradation/preemption of existing requests) can be alocated to the
new request, such that the total worth W is maximized. The problem is to determine
which existing requests bandwidth should be degraded/preempted, and if degraded, by
what amount, and what bandwidth should be alocated to the new request:. The new
request may not be allocated the full bandwidth desired, depending upon its relative
worth as compared to the other requests. For example, a maximum total worth of satisfied
requests might be obtained when the bandwidthsalocated to the existing requestsare not
degraded but the new request isallocated bandwidth lessthan its desired bandwidth. This
may be because the margina worth of the new request is less than the margina worth of
the existing requests.
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The main idea of the heuristic is that a request whose marginal worth is the
smalest should be the first request whose bandwidth is degraded/preempted to
accommodate the new request. Then the bandwidth of the request with the next higher
margina worth is degraded, and so on, until the new request can be satisfied either with
desired or degraded bandwidth. Requests are consdered in increasing order of margina
worth because if the bandwidth of the request whose margind worth is the smallest is
degraded by some amount, then the change in total worth for that amount of degradation
in bandwidth is the least. This is because if the bandwidth of a request, whose margina
worth is not the smallest, is degraded by some amount, the resulting change in the total
worth of satisfied requests would obviously be higher as compared to the change in total
worth due to degradation of bandwidth of a request with the least margind worth. Thus,
a any ingtant of time, the bandwidth of the request whose margind worth is the leest is
degraded. This is the crux of the heuristic. Only the bandwidths of the requests
conflicting with the new request are degraded/preempted to accommodate the new
request, asexplained in Subsection 5.4.

At every ingtant of time, the set of conflicting requests is determined (refer to the
schedule module of the pseudo-code in Appendix A). This set of requests conflicting
with the new request, and the new request, are assigned to an array R size n. The margind
worth of every request in thisset of conflicting requests(array R) is caculated. Thisarray
is sorted in the decreasing order of marginad worth (i.e., the request in. R[n] hes the least
margina worth) and the bandwidth of the request with the smallest margina worth is
degraded.

If the request has a concave utility function, the margina worth of the request
increases as the bandwidth allocated to the request is decreased (not decreased below the
minimum bandwidth of the request mb,). Hence, the bandwidth of' a request with a
concave utility function is degraded until the point when the margind worth of that
request is no longer the least (explained later in this subsection). This request is then
inserted in the array in the correct position in the order of decreasing marginad worth. The
request whose margind worth is now the least should be degraded until its margind
worth is no longer the least. This continues until the bandwidth released by the
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degradations of the bandwidth's of existing requests is sufficient to satisfy the new
request with desired or degraded bandwidth at that instant of time.

Because the new request is included in the array R, the new request is adso
considered for degradationlpreemption. That is if the margina worth of the new request
is the least a any point in time, then its bandwidth should be degraded. Thus, the new
request would be allocated the degraded bandwidth and not the full bandwidth desired. In
case the new request is preempted, then that indicatesthat it cannot be satisfied.

For example, consider a set of conflicting requests containing ry, 12, and the new
request. Assume r and r; have concave and linear utility functions, respectively, as
illustrated in Figure 5.5. Further assume that the marginal worth of the new request is
greater than the marginal worths of » and .. This set of conflicting requestsis assigned
to aray R. R issorted in decreasing order of marginal worth as explained earlier. Whenry
is alocated bandwidth rb;, the margina worth of request »; is the least. Hence, the
bandwidth of request »; would be degraded first. The bandwidth of request r; is degraded
repeatedly until its margina worth is no longer the least. Once the bandwidth allocated to
r1 has been degraded to b1,, the margind worth of », becomes dightly greater than
margina worth of request . The margina worth of request r, isnow the least and hence
r» should now be degraded. Therequest r, is inserted in the array R in the correct position
in the order of decreasing margina worth. This continues until the bandwidth freed up
(due to degradations of existing requests) is sufficient to satisfy the new request with
desired or degraded bandwidth. The bandwidth 41, at which the margina worth of
request r1 becomes less than the margina worth of request »; can be exactly determined
because the marginal worths of the requests can be pre-computed when the requests
arrive at the ingress node. Thus, the amounts by which the bandwidth of requests , and
r» need to be degraded may be determined exactly.

The set of conflicting requests may change at every time instant because of some
requests ending, and some other requests starting during the new request's sesson. For
example, in Figure 54, a time s4, the set of requests conflicting with the new request 74
consists of request r only. At timess, the set of conflicting requests consistsof requests
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Figure 55 Margind worths of (a) request 1 with a concave utility function, and (b)
request r, with a linear utility function.

r and r3. At time s,, the set consists of requests », and r3. Thus, the above process may
need to berepeated at every time ingant of the request's sesson. Buit if'the above process
were repeated at every time instant of the request then the heuristic would take too long.

The heurigtic is modified as follows (refer to the find—next—event module of the
pseudo-code in Appendix A). The set of conflicting requests changes only when any
request in that set ends, or some other existing request (not in the! set) begins. The
heuristic needs to be executed only when the set of conflicting requests changes. An
event isdefined as the time instant when the set of conflicting requestschanges. Thus, the
event would be the next time instant after the earliest end time of the requestsin the set or
the earliest start time of some other request (not in the set), whichever isearlier. In Figure
54, the events would be at times s4, the next time indant after e, s, and the next time
instant after 8 The heuristic is executed at every event during the new request's sesson.
For the Figure 54 example, the heuristic would be executed a the times mentioned
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above. When arequest is degraded, the bandwidth alocated to the request is degraded for
thetime interval fiom the current event to the next event.

The heurigtic would have to be executed & both the ingress link and the egress
link because the set of conflicting requests is different for the lirks. But, bandwidth
alocated to the request should be identica at boththe links, i.e., if the request isalocated
a certain amount of bandwidth at the ingress link, it should be alocated the same
bandwidth at the egress link too. The heuristic is executed to calculate the amount the
degradationsto the bandwidth of the new request a the ingress link. The new request,
with the degraded amount of bandwidth isthen considered at the egresslirk, to determine
whether the request can be satisfied with its dready degraded bandwidth, or further
degradations are needed. If the request is further degraded @ the egress lirk, then the
degradations are reflected back in the bandwidth alocated to the request at the ingress
link. If the bandwidth alocated to a request was degraded a the new request's ingress
link due to the new request, then the bandwidth alocated to the request is degraded at its
other (ingress or egress) link too, i.e., the bandwidth of the request isdegraded at both its
links. Thisisdonefor al the requeststhat were degraded due to the new request.

Whenever a request is preempted, if the bandwidth freed up is more than the
needed bandwidth, excess bandwidth is available. The excess bandwidth is redistributed
to the other requests in decreasing order of margina worth, garting with R[1]. If a

request has a concave utility function, its margina worth decreases as the bandwidth
alocated to it increases. Hence, the request with a concave utility function is alocated
bandwidth until its margind worth is no longer the largest or is new current bandwidth
equals its desired bandwidth. It is then reinserted in R in the correct order based on its
marginal worth. If arequest hasa linear utility function, it is alocated bandwidth until its
new current bandwidth equals its desred bandwidth. If a request has a step utility
function, it is not alocated any bandwidth (because its current bandwidth equals its
desred bandwidth). This is continued until al the excess bandwidth has been
redistributed or dl the other requestsarea their desired bandwidth. When calculating the
worth due to redistribution of excess bandwidth, the collective increase in worth due to
the increasein the bandwidthsall ocated to requestsis cal cul ated.
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Once it is determined that the request can be satisfied a the ingress and egress
links, the change in total worth dueto degradation of bandwidthsof existing requestsand
addition of worth due to redistribution of excess bandwidth and the new request is
caculated. If this change in the total worth is more than zero, then there isan increase in
worth obtained by satisfying the new request. The new request is admitted and the
degradations/preemptions calculated for existing requestsare implemented. If the change
in the total worth is less than zero, then there is no increase in worth obtained by
satisfying the new request. Hence, the new request is rgected and the calculated
degradations to bandwidths of existing requests are ignored (not implemented). The
bandwidths of the requeststhat were degraded by the new request are restored and aso
the requeststhat were preempted by the new requestsare restored (all ocated their original
bandwidth).

As suggested by the example above, the requests with concave, linear, and step
utility functions are degraded differently (refer to the degrade module of the pseudo-
code in Appendix A). The bandwidth alocated to a request with a concave utility
function is degraded in steps (of unit size), because the marginal worth of the request
changes with every unit change in the bandwidth allocated (refer to the
degrade—concave module of the pseudo-codein Appendix A). The bandwidth allocated
to the request is degraded in steps until the margina worth of the request is no longer the
least (as explained in the example above). The concave request is then reinserted in the
correct positionin R in the order of decreasing margind worth.

The bandwidth allocated to a request with a linear utility function is degraded as
follows(refer to degrade—linear module of the pseudo-code in Appendix A).

1. If theamount of bandwidth needed (amount of degradation) is less than the
difference between the current bandwidth allocated to the request and the
minimum bandwidth of the request, the request with the linear utility
function is degraded by the amount of bandwidth needed.

2. If the amount of bandwidth needed is greater than the difference between
the current bandwidth allocated to the request and the minimum bandwidth
of the request, the request with the linear utility function is preempted.
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If the bandwidth alocated to arequest with a step utility function is degraded by a
small amount, then the utility of the request would be zero and hence the worth is zero
(refer to Figure 5.2). Hence, the bandwidth allocated to a request with a step utility
function cannot be degraded by a small amount of bandwidth; it should either be
preempted or not degraded &t dl.

Preemption of arequest with a step utility function may not be desirablein some
cases. For example, assumethat for anew request to be satisfied, the amount by which an
existing request needs to be degraded is A. Further, assume that the marginal worth of a
request with a step function is the least and hence the request may have to be preempted
to satisfy the new request. Thus, R[#] contains the request with a step utility fiinction and
the requestshigher up inthe list may have step, linear, or concave utility functions.

If A isgreater than the bandwidth rb; of the request with a step utility function,
then the request with a step utility function can be preempted (refer to lines 6-12 of
degrade module of the pseudo-code in Appendix A). The reason is as follows. The
bandwidth needed is more than the bandwidth allocated to the request with a step utility
function. The request has the least margina worth and hence it is being considered for
degradation/preemption. Because the bandwidth needed is more than the bandwidth
allocated to the request (with the step utility function), it does not matter whether its
utility function is step or not, because, its margina worth does not change (as the
margina worth of a request with a concave utility function changes). For al practical
purposes, the request can be thought of as a request with a linear utility function. If the
bandwidth needed is more than the bandwidth currently allocated to a request with a
linear utility function, the request is preempted. Similarly, if the bandwidth needed is
more than the bandwidth »b; of a request with a step utility function, the request can be
preempted.

If A islessthan rb;, then depending upon the ratio of A and rb;, a decison needs
to be made whether the request k with a step utility function should be preempted or the
request with the next higher marginal worth should be considered. The reason is as
follows.
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If A is large (e.g., 90 percent of rby), then it may be beneficial to preempt the
request with a step utility function. Although there will be some unused bandwidth (ten
percent) because of the preemption, it may be possible to redlocate this unused
bandwidth to other requeststhat have been previoudy degraded.

In contrast, if A is very smal (e.g., ten percent of rbg), then it may not be
beneficid to preempt the request with the step utility function. This is because it may not
be possible to redlocate all of the unused bandwidth to the other requests. Also, the
bandwidth needed, A, may be obtainable from other requests (e.g., the request with the
next higher margina worth), by losing less worth than the worth lost by preempting the
request with a step utility function.

For example, if the request R[n—-1] hasaconcave or alinear utility function, and if
the loss of worth by degrading R[n—1] by A is lessthan the worth lost by preempting the
request with the step utility function (i.e., R[n]) then it may be beneficia to degrade
R[n-1] by A rather than preempting R[n]. Alternatively, if R[n-1] has a step utility
function, the bandwidth of R[n—1] may be smaler than the bandwidth of R[n], and
preempting R[n—1] may result in a smaller loss of worth than preempting R[#]. Thus,
degrading/preempting the request with the next higher margina worth may result is a
smaler loss of worth than preempting R[n] and hence R[n—1] may be considered. The
cases discussed above are some of the possibilities that exist. Three variations in the
heuristic have been developed that consider the different possibilities.

In the first variation for degrading a step function called the 50% variation
(module degrade—step—50 of the pseudo code in Appendix A), the ratio of A and the
bandwidth of R[n] iscompared to 0.5. If the bandwidth needed is more than 50% of the
bandwidth of the request R[n], the request in R[n] is preempted. If the bandwidth needed
is less than 50% of the bandwidth of R[n], the request with the next higher margina
worth is considered, i.e., R[n—1]. If the loss of worth obtained by degrading/preempting
the request R[n-1] is more than the worth of R[n], the request in R[n] should be
preempted. If the loss of worth obtained by degrading/preempting R[n—-1] is |ess than the
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worth of R[n], then the request in R[n] is not preempted, and the request R[n—1] is
considered for degradation/preemption.

The reason why only R[n—1] is consdered is as follows. If the heuristic decided
not to preempt R[n], it would have to degradelpreempt some of the requests R[0] to
R[n—1] inthe lig to satisfy the new request. The margind worth of R[n—1] isthe least as
compared to the margina worths of requests R[0] to R[n-1] (because the ligt is sorted in
decreasing order of margina worth). Degrading R[»—1] by a unit amount of bandwidth
would result in the least loss of worth as compared to the loss of worth by degrading
other requestsin the list (R[0] to R[n-2]) by a unit amount of bandwidth, but possibly not
when degrading by A. Hence, the loss of worth obtained by degrading/preempting R[n-1]
by the amount of bandwidth needed is only an estimate of the amount of worth that will
actually be lost if R[n] is not preempted and requests R[0] to R[»—1] are considered for
degradation. This estimate of the loss of worth is used for comparison with the worth of
the step function to make a decision of whether to preempt the request in R[n], or
degradelpreempt the request in R[n—1]. Thisis a heuristic approach to estimating the loss
of worth. An exhaustive search may be employed to find the actual loss of worth, but the
time complexity of an exhaustive search istoo high (described in Subsection 3.3). Future
work will attempt to determine better approachesto estimatethe loss of worth.

When calculating the loss of worth due to degradation/preemption of R[n-1], it iS
implicitly assumed that the al the bandwidth required is obtained from R[n—1]. Bt when
the requests are actually degraded, all the bandwidth need not be obtained by degrading
R[n-1] done; other requests may be degraded too. For example, assume that the request
in R[n-1] hasa concave utility function. It will be degraded in steps of unit size (refer to
degrade—concave module of the pseudo-codein Appendix A), until its margina worth
is no longer the least. That is, al the bandwidth needed is not obtained by degrading
R[n-1] aone, but other requests(R[n-2] to R[1]) may be degraded/preempted too. Inthis
section, the expression degrade R[n—1 — 1] is used to indicate that requests, R[n-1] to
R[1] are considered for degradation in decreasing order of margina worth.
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In summary, the loss of worth is calculated based only on R[n—-1] when making a
decision whether to preempt request R[n] or not. Once it is decided that the request R[n]
is not to be preempted, the request R[n-1] is degraded as it normally would be. Thus, the
actual loss of worth may be less than the loss of worth edimated by
degrading/preempting R[n—1] aone.

The bandwidth needed may be more than the bandwidth of request R[n-1], and
hence if it is decided not to preempt R[n], request R[n—1] will be preempted and other
requests will have to be preempted. In this case the actua loss of worth incurred due to
preemption of R[n—1] and degradation/preemption of other requests R[0] to R[n-2] is
more than the loss of worth as estimated above. If the actua loss of worth is to be
calculated, then an exhaustive search may have to be employed which takes a huge
amount of time. Hence a trade-off between speed and accuracy is achieved by
congdering only the R[n—1]th request for degradation/preemption. In the 25/75 variation,
two thresholds are consdered and both R[n-1] and R[n-2] are consdered for
degradation/preemption.

In the second variaion for degrading a step function caled 25/75 (module
degrade—step—25/75 of the pseudo-code in Appendix B), the ratio of A and rb; is
compared with two thresholds, 0.25 and 0.75. Thefollowing three casesarise.

1L If A is more than 75% of bandwidth of R[n], the request in R[n] is

preempted. This is because a large amount of bandwidth is needed as
sgnified by the fact that the bandwidth needed is more than 75% of the
bandwidth of the request in R[n]. Because of the large amount of bandwidth
needed there is a low probability that the loss of worth due to the
degradation/preemption of requests besides R[n] is less than worth of R[n].
Thisis because it may require preempting requests higher up in the list (for
example R[n-1] and R[n-2]) to obtain the large amount of bandwidth
needed. Thus, even though the bandwidth obtained by preemption is more
than the bandwidth needed, the loss of worth may be ill less as compared
to degrading/preempting requests higher up in the lis. Hence, in this case
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the request in R[n] is preempted. Furthermore, unused bandwidth may be
reallocated to already scheduled requests with less than their requested
bandwidths.

2. If A islessthan 25% of bandwidth of R[n], that indicates a smal amount of
bandwidth is needed. Hence the request with the next higher margind
worth is considered. Because the bandwidth needed is a smal amount, there
is a high probability that the loss of worth due to degradation of request
R[n-1] will be less than the worth of request R[n]. Hence, degrade
R[n-1 > 1].

3. If the amount of bandwidth needed is between 25% and 7.5% of the
bandwidth of R[n], then the loss of worth by degrading/preempting the
requests R[n-1] and R[n-2] iscongdered. If the loss of worth is higher than
the worth of request R[n], therequest is R[n] is preempted. But if'the loss of
worth is less than the worth of request R[n], then that indicatesthat it would
be better to degrade preempt the requests R[n—1] and R[n-2] (if need be)
instead of preempting request R[n). Thus, degradeR[n-1 — 1].

When calculating the loss of worth due to degradation/preemption of requests
R[n-1] and R[n-2], a st of conflicting requests consisting of two eements R[n-1] and
R[n-2] is generated. The margind worths of the requests are calculated and the
bandwidth alocated to the requests is degraded based on the margina worths of the
requests, jud like it is done in a typicad Stuation, but only two requests R[n-1] ad
R[n-2] are conddered. Here again, only when making a decison whether to preempt
request R[n] or not, the requests R[n—1] and R[n-2] are degraded/preempted to calculate
the loss of worth. Once it is decided that the request R[n] is not to be preempted, the
requests R[n-1] and R[n-2] are degraded asthey normally would be.

If the amount of bandwidth needed is between 25% to 75% of the bandwidth of
R[n], then it indicatesthat a large amount of bandwidth is needed. The probability that
this amount of bandwidth can be obtained by degrading/preempting R[n—1] done is low,
compared to the A < 25% case. Hence, two requests R[n—1] and R[n-2] are consdered
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instead of only considering R[n-1] (as in the 25% case and the 50% variation). Future
work may consider more than two requests.

The bandwidth needed may be more than the bandwidthsof R[n—1] and R[n-2].
In this case too (as explained earlier for the 50% variation), the loss of worth as estimated
above may be less than the actuad loss of worth. Here again a trade-off is achieved
between speed and accuracy

The 25/75 variation attempts to obtain a high W vaue than the 50% variation by
using two thresholds. However, on average, its executiontime islarger. Aswill be shown
in Subsection8.2, its performanceis comparableto that of the 50% variation.

The third variation for degrading a step function is called redistribute (module
degrade—step—redist of the pseudo-codein Appendix C). Here, the worth obtained due
to redistribution of excessbandwidth (i.e., bandwidthof R[n] - A) isconsidered. Whena
request is preempted and the bandwidth obtained due to preemption is more than the
bandwidth needed, then excess amount of bandwidth can be reallocated to the other
exiging requests. Hence, the net loss of worth of the request R[»] due to preemption is
the worth of the request minusthe worth obtained by reall ocating the excess bandwidth to
other requedts. If the net loss of worth of R[n] is less than or equa to zero, the request
R[n] is preempted. RS is because the request R[n] can be preempted and the excess
bandwidth can be redistributed to other requests achieving an increase in worth.
Otherwise the following casesarise.

1. If the bandwidth needed is less than the bandwidth of R[n-1], the net loss of

worth of R[n] is compared to the loss of worth due to degradation of R[n-1].
If the request in R[n—1] has a step utility function, the net loss of worth is
considered as above. If the loss of worth by preempting R[#] is less than the
loss of worth due to degrading/preempting R[n—1], then R[n] is preempted.
Otherwise, degrade R[n—1 — 1].

2. If the bandwidth needed is more than the bandwidth of R[n-1], a heuristic
smilar to the 50% variation is employed. If the bandwidth needed is more
than 50% of the bandwidth of R[n], then request in R[~] is preempted.
Otherwise, if the loss of worth due to preemption of R[n—1] is greater than or




- 48 -

egual to the net loss of worth of R[n], then R[n] is preempted. If the net loss
of worth of R[n] is more, then degrade R[n-1 — 1].

The redistribute variation takes a significant amount of time as compared to the
50% variation and the 25/75 variation. However, it attempts to incorporate into the
decision processthe impact of the reallocationof the excess bandwidth. A more detailed
explanation of the heuristic and the variations is given in the pseudo-code in Appendices
A B,andC.

The heuristic and its variations proposed in this research use a greedy approach.
In a greedy approach there is aways a concern that the approach may lead to a loca
optimum (sum of worths being maximum a a single time instant) instead of a global
optimum (total sum of worths being maximum over agiven interval of time). Also, when
making a decision whether to admit/reject a request, just comparing the new worth (after
degradation of new and existing requests) and the old worth (before degradation of new
and existing requests) may not yield good results. For example, assume a priority level
four request is preempted to free up bandwidth for a priority levd three request because
the priority levd three request gives more worth than the priority level four request. But
the priority level three request may itself be preempted for a priority level one request
that arrives later in time. The bandwidth freed up due to preemption of the priority level
three request may be sufficient to satisfy both the priority level one requests and the
priority level four request. Thus, it would have be better to reject the priority level three
request, and admit the priority level one and priority level four request, if it is'knownthat
the priority level one request would arrive later. The scheduling heurigtic is an immediate
on-line scheduling heuristic and future arrival of requestsis not known. Hence, situations
like the one described above may occur.

The approach used in this research to ded with this issue is to introduce some
randomnessin the decision making. This random factor is called the globalization factor
(GF). The GF is used as follows. A random number between 0 and 1 is generated. If the
total worth of the requests after degradation of requests is more than the worth of the
requests before the degradation, and the random number generated is more than the
globalization factor, the new request is admitted and the degradations/preemptions
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calculated for existing requests are implemented. Otherwise the new request is rejected
and the calculated degradationsto the bandwidths of existing requests are ignored (not
implemented). The valuesof globalizationfactor experimented with in this research were
5%, 10%, 15%, 20%, and 25%. The results of these experiments will be discussed in
Section 8. The globdization factor introduces a random factor in the decison making
and this random factor prevents decisions being meade solely on the basis of difference in
new and old worth. The globalization factor approach is only one approach that was
experimented with in this report. There may be other approachestoo and the future work
will attempt to determine other approachesas a solution to the issue mentioned above.

The full heurigtic is presented as follows. When a new request ¢ amves at the
node, the RAT is checked to determine whether the request can be satisfied at its ingress
link. If the request can be satisfied, the information about the request is recorded and the
request isadmitted. If the request cannot be satisfied, the scheduling heuristic is invoked.
The scheduling heuristic considersthe request on alink by link basis. It first consdersthe
ingress link. At the start time of the request r¢, a set of requests conflicting with ry is
determined. The new request is also added to this set. This st is sorted in decreasng
order by the marginal worths of the requests. The request a the end of the st is the
request with the least margina worth. Thisrequest isdegraded until its margina worth is
no longer the least. The heuristic handles requests with step utility functions with one of
the three variations described above. The st is sorted again as before. This is continued
until the new request can be satisfied a that ingant of time. Satisfying a request a an
ingtant of time meansthat the sum of the bandwidths of the requestsin the set should not
exceed thelirk bandwidth at that instant of time.

The next event, at which arequest from the current set ends or a new request from
among the exigting requests begins, is determined. At the next event the scheduling
heurigtic isexecuted, to determine whether the new request can be satisfied a that instant
too. This is continued until the end time of the new request is reached. If the request
could be satisfied at every event, then the heuristicis executed a the new request's egress
link. Any additional degradationsto the new request at itsegresslink are reflected back at
itsingress link too and the bandwidth finally allocated to the request is the identicdl at its
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ingress and at its egress links. The change in the total worth, due to degradations in
bandwidths of existing requests and addition of the worth of the new requedt, is
caculated. If the total change of worth is greater than zero, and a randorn number
generated between 0 and 1 is greater than the globalization factor, the request is admitted
and the degradations/preemptions calculated for existing requests are implemented.
Otherwise the new request is rejected and the cal culated degradations to the bandwidths
of exigting requests are ignored (not implemented). The detailed pseudo-code of the
heuristic is presentedin Appendices A, B, and C. The pseudo-codemay be referred to for
further details.

56. Summary

The concept of margina worths and overlapping requests was explained in this
section. The heurigtic and its three different variations were discussed. A conceptual
overview Of the heuristic was described in this section and the detailed pseudo-code is
presented in the Appendices A, B, and C. The concept of globalization factor and the
reason why it wasintroduced has a so been explained. The performance of the heuristicis
compared to the complete sharing policy and the upper bounds described in the next
section.
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6. PERFORMANCE COMPARISONS

6.1. Overview

The heurigtic and the different variations developed in this research were
discussed in the last section. The performance of the heurigtic is compared to a Ssmple
scheduling technique and three upper bounds presented in this section. As per Equation
2.4, the performance measure of the system is the sum of the worths (#) of the requests
satisfied over a given interval of time. The interva of time, over which the sumof the
worths of the requests is calculated, is called the smulation time. The concept of

simulation time and the method for calculating the simulationtime is explained in greater
detail in the next section.

6.2. Smple Scheduling Technique

In this research, a smple scheduling technique is used to compare the

performanceof heuristic at the lower end and is based on the complete sharing policy (cs)
[BoM98]. Inthe complete sharing policy the scheduling heurigtic is not invoked. When a
new request arrives a an ingress node, RAT (resource alocation table, discussed in
Section 5) ischecked to determine whether there is enough bandwidthavailableto satisfy
the new request's full bandwidth r4; at its ingress and egress links. If there is sufficient
bandwidth available, the new request is admitted and information about the request is
stored in the RAT. If the request cannot be satisfied, the request is rejected. The sum of
the worths of al the requests satisfied in this manner, over a given interva of time is
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caculated. Th's sum is compared with the sum of the worths of the requests satisfied by
the heurigticin Section 8.

When caculating the sum of the worths of the requests satisfied over a given
interval of time for the complete sharing policy, the requests are satisfied only with
desired bandwidth and not degraded bandwidth. The utility functions of the requedts are
not consdered and hence requests with concave, linear, and step utility functions are
treated alike. The priority level of a request is not considered when making a decision
whether to admit/reject the request. If sufficient bandwidth is available to satisfy the
request, the request isadmitted or else it isrgected. The bandwidthsallocated to existing
(already scheduled) requestsare not degraded/preempted to satisfy requests with a higher
priority and hence higher worth.

The scheduling heuristic considers degradation/preemption of existing requeststo
allocate more bandwidth to requestswith a higher worth. The heuristic dso consders the
utility functions of the requests. The scheduling heuristic degrades/preempts the requests
differently based on the utility functionsof the requests, thus attempting to maximizethe
worth W,

6.3. Upper Bounds

Three upper boundswere considered in thisresearch. Thefirst upper bound isthe
sum of the worths of al the requests that have arrived in the network during the
smulation time. This bound is a loose upper bound in that it may be unachievable and
optimigtic.

Two tighter upper bounds, an ingress upper bound and an egress upper bound,
have been considered in this research. For the calculation of both the bounds, the full
knowledge of all the requeststhat have arrived in the network isassumed.

The ingress upper bound iscalculated asfollows. For ingresslirk i, alist of al the
requests that utilize the ingress link i during the smulation time is consdered. The
number of bits that each request needs to tranamit is obtained by multiplying the full
bandwidth desired by the request and the duration for which the bandwidth is desired.




-53-

The worth per bit of each request is calculated by dividing the full worth of the request by
the number of bits that each request needs to tranamit. All these requestsin the ligt are
then sorted in decreasing order of worth per hit, i.e., the first request in the sorted list
would have the highest worth per hit.

The interva of time over which the sumof worths of the requestsis calculated is
the smulationtime. All the requestsin the list would have started (and probably ended)
during this smulation time. The maximum number of bits that can possbly be
transmitted during this smulation time is the product of the link bandwidth (155 Mbps)
and the smulation time. Therequestsare satisfied in the decreasing order of worth per bit
(i.e., the request with the highest worth per bit is satisfied first, the request with the next
highest worth per bit is satisfied next and so on) until the number of bits satisfied equas
the maximum number of bitsthat can possibly be transmitted during the smulation time
(discussed further in Section 7). The sum of the worths of all the requeststhat could be
satisfied in the manner described above, onthelirk i, is calcul ated.

The process is repeated for all the ingress links in the system The total sum of
worths obtained by summing up the worths of the requests satisfied on each link, is an
upper bound on the performance of the heuristic.

For the upper bound calculation described above, any congestion at the egress
link is not considered (and henceit is caled the ingress upper bound). That is, if a request
is alocated some bandwidth at the ingress link it is assumed for the ingress upper bound
caculation that it is alocated the same bandwidth at the egress lirk too, without any
degradation. Because the calculation of the upper bound assumes full prior knowledge of
all the requeststhat have arrived in the network, it can sort the requests in decreasing
order of worth per bit and satisfy only those requests that yield the maximum worth per
bit. For the upper bound caculation, the start and stop times of the requests are ignored
and only the bits of the request are consdered.

In the scheduling heurigtic, the request may be degraded at the ingressand at the
egresslink. Also, the heuristic makes decisionsregarding admission/rejection of arequest
on-line, without prior knowledge of future arivad of requests. Furthermore, the
scheduling heuristic also considers start and stop times of the requests. Thus, for the
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reasons mentioned above, the upper bound may be an unachievable upper bound on the
performance of the heuristic. However, the heurigtic alows degradation/preemption,
whereas the ingress upper bound does not. Thus, this is an upper bound on an optimal
scheduleif no degradation/preemption is allowed.

The egress upper bound issimilar to the ingress upper bound described above. In
the egress upper bound, the same process described above is conducted for the egress
linksand congestionat the ingress linksis not considered.

The reason why an egress upper bound is needed in addition to the ingress upper
bound isas follows. For example, assumethat dl the requests have different ingresslinks
but the same egress link. If the ingress and egress upper bounds were computed, the
ingress upper bound would yied a comparatively loose upper bound because the
degradations at the egress links are not considered. But the egress upper bound would
yidd a tighter upper bound because the degradationsat the egress links are considered.
Hence, the egress upper bound would give a more accurate estimate of the achievable
performance in the situation described above.

64. Summary

Three upper bounds and one smple scheduling technique used for comparison
with the performance of the scheduling heuristic were presented in this section. The
simulation experiments conducted in this research are explained in the next section. The
different parameters consdered and the vaues assumed in the experiments are aso
described in the next section.
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7. SIMULATION EXPERIMENTS

71 Overview

The smulation experiments conducted in this research are described in this
section. Loading of the network, weighting of priority levels, and the globdization factor
are consgdered. Mativation for the vaues that were selected for these parameters is al'so

given.

7.2. Parameters

Without loss of generality, alink bandwidth of 155 Mbps (OC3) was assumed for
the ingress and egress links in Figure 2.2. The link bandwidth of 155 Mbpsis the typica
link bandwidth needed by large corporations and ISPs [NAP9&]. In a military
environment, such high bandwidth links may exist between the different military
headquarters spread across the country (or the full world). A high bandwidth link may
aso exist between the military headquartersand the satellite base stations. For the sake of
simplicity, the link bandwidthsof all the ingressand egress linksshown in Figure 2.2 are
assumed to be the same. The lirk bandwidths may be different and these different link
bandwidths can be considered by the heuristic. Again for the sake of smplicity, the
number of links was chosen to be fifteen. The number of links in the network does not
affectthe operation of the heurigtic.

The bandwidth required by a request depends upon the application generating the
request. For example, applications such as audio conferencing, streaming audio (CD
quality), and low quality video transmission [MiM96] may require a bandwidth of 500
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Kbps (Kilobits per second). Applications such as high quality MPEG video may require
a bandwidth of 10 Mbps (Megabits per second) [ReR95]. The requestsin this research
were assumed to have a bandwidth requirement in the range of 500 Kbpsto [0Mbps. In
this research, a uniform random distribution was used to generate the bandwidth
requirements of the requests in the range of 500 Kbps to 10 Mbps Recdl that the
requests were assumed to have four priority levels (1, 2, 3, and 4). Two mode vaues o
(the weighting congtant that decides the weights of the priority levels) were assumed:
mode two and mode ten. The weighting function for a priority leve i, as explained in
Subsection 2.4.2, wasassumed to be
Ixi) = .

The utility functions of the requests were assumed to be of three types: concave,

linear, and step. The utility of the request, as determined by the utility function, isavaue

between 0 and 1. If arequest with a desired bandwidth of b, and a minimum bandwidth
of mby isallocated bandwidth bx(7) & timet, then the concave utility function of a request

isgiven by

_ - BB(r)-ms,)
1-e } (7.1)

ur(br) = [T-W
The linear utility function of such arequest isgiven by

u(b(?)) = [br*b(’)_;r'r”é’*}. (7.2)

The step utility function of arequest with desired bandwidth rb (desired bandwidth rbg =
minimum bandwidth mby) isgiven by
uby(0)) = 1if b(f) > rbg (7.3)
= 0 if by(r) < rby.

In this research, the minimum bandwidth (mbg) desred by a request (in case of
requestswith linear and concave utility functions) is assumed to be in the range of 25%to
75% of the required bandwidth of the request (rby), i.e., the bandwidth of a request can be
degraded by an amount equaling 25% to 75% of itsrequired bandwidth.
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The vaues of B (see Equation 7.1) for the concave utility functions assumed for
the smulation experiments were determined based on the average dope of the linear
utility functionsof the requests. The vauesof g were determined to be 0.0004, 0.000835,
and 0.0015. The concave utility functions of requests with these g valuesare illustrated in
Figure7.1.
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Figure 71 Concave and linear utility functions of the requests with a minimum
bandwidth of 2625 Kbps (average minimum bandwidth) and required
bandwidth of 5250 Kbps (average required bandwidth).

These g vaues were chosen to ensure that the bandwidth allocated to a request
with aconcave utility functionis not degraded alwayswhen compared to a request with a
linear utility function. Referring to Figure 7.1, when the bandwidth alocated to the
request with a concave utility function of 8 = 0.004 is 3900 Kbps (half of the average
requested bandwidth of the request), the margina worth of the request will be more than
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the average margina worth of a request with a linear utility function. Hence, on average
the bandwidth alocated to a request with a linear utility function will now be degraded
instead of the request with the concave utility function (the heuristic degradesthe request
with the least marginal worth). Initially, based on averages, when the bandwidth all ocated
to a request with a concave utility function is the required bandwidth of the requet, the
margina worth of the request is smaller than the margina worth of a linear utility
function. But when the bandwidth alocated to the request is reduced to half
(approximately) of its required bandwidth, the margina worth of the request with a
concave utility function becomes more than a request with a linear utility function and
hence the bandwidth all ocated to a request with a linear utility function will be degraded.
The average required bandwidth of arequest with a step function is equal to the average
maximum bandwidth of request with a concave or a linear utility function, while the
minimum bandwidthof the step function is zero.

In the smulation studies discussed in Section 8, the types of the utility functions
of the requestswere randomly selected as one of step, linear, and each of three concave
functions. Thus, there are gpproximately 20% of each type.

Ethernet traffic and World Wide Web traffic has been shown to be self-similarin
[CrB96, LeT94]. Sdaf-smilarity is the property associated with an object when its
appearance remains unchanged r less of the scale a which it is viewed. In case of
objects such as Ethernet traffic, a long-range dependenceis observed [LeT94], i.e., values
a any ingant aretypically non-negligibly correlated with valuesat dl future instants.

A distribution isheavy-tailed |

P[X > x] ~x"Jasx — oc, where 0 < a <2,
It has been shown in [PaK96] that I@Le traffic in the Internet is salf-smilar because the
files and data transferred follow a I-Jeavy-tailed distribution. Consdering this fact, the
session durationsof the requests considered in the Smulation experiments were assumed
to follow heavy-tailed distribution. That is, the random distribution used to generate the
session durations of the requests (i.e., the start time to the end time of the request) was
assumed to be heavy-tailed [PaK96]. One of the Smplest heavy-tailed distributionsis the
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Pareto distribution. The probability dengity function (PDF) of the Pareto distribution is
given by
fx) = k!
where ek > 0, and x > k. The cumulativedistribution hasthe form
F(x) =X <x] = 1- (k/x)*

The parameter k representsthe smallest possible value of the random variable. If
a< 2thedigribution hasinfinite variance; if a < 1 then the distribution also has infinite
mean. As adecreases, alarge proportion of the probability mass is present in the tail of
the digtribution. In practical terms, if the sesson duration follows a heavy-tailed
distribution, then extremely large session durations can be generated with non-negligible
probability. In the smulations here, although the session duration was assumed to follow
a Pareto digtribution, the session durations were truncated at some high vaue for practica
congiderations. The reason is that in a redlistic network/system, there will never be a
request that has infinite duration. Hence, considering a redlistic environment, the session
duration was truncated a some high vaue. Although the random distribution used to
generate the session durations is not a true heavy-tailed distribution, it is based on a
heavy-tailed distributionthat is truncated for practical considerations.

The degree of sdlf-amilarity of a series (or traffic) is expressed by the Hurst
parameter 4. The Hurg parameter H is related to the parameter a in the Pareto
distributionasH = (3 — &) / 2 [PaK96]. The typical valuesof H were shown to be in the
range of 0.7 to 0.8 for the World Wide Web traffic [Fel00, CrB97, PaK96]. From the
values of H, the typical vaues of awere caculated to be from 1.4 to 1.6. The avdue
assumed in the simulation experiments was 1.5. The request durations were assumed to
be in the range of 2 minutesto 60 minutes. A typical voice application would require
bandwidth for the duration of a few minutes. Applications such as video conferencing,
streaming videos for movies, or lecture broadcasts (over the Internet) would typicaly
require session duration of over 30 minutes. The session durations of 2 minutes to 60
minutes assumed in this research encompasses al these different sesson duration
requirements. Thus, the parameter k in the Pareto distribution has a vaue of 2 minutes or
120 seconds. The mean of the Pareto distributionis ak/(a - 1). For the valuesof kand a
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assumed in the smulation experiments, the mean of the Pareto distribution is 6 minutes.
The session duration is truncated at 60 minutes (ten times the mean), i.e., only session
durations between 2 minutesto 60 minutesare generated.

In the smulation experimentsthe arrival sequence of the requests is assumed to
be correspond to a Poisson arrival sequence. An arrival sequence of requestsis said to
follow the Poisson arrival sequence with rate 1/A (units) if the inter-arrival time between
the reguests follows an exponentia distribution with mean h. The higher the mean A of
the exponential distribution used to generate the inter-arrival time between requests, the
lower the rate of the Poisson arrival sequence will be. The method of determining the
arrival rateof 1/A isexplained later in this subsection.

The lead time assumed in thisresearch was 2 minutesto 2 hours. A minimum lead
time of 2 minutes is only an estimate of the worst case performance of the heuristic
(maximum time taken by the heuristic) and does not reflect actual execution timesof the
heuristic. An upper limit of 2 hours(7200) seconds was assumed to prevent requests from
requesting bandwidth many hours (or days) in advance. This reduces the time for the
simulation experimentsand does not in any way affect the performanceof the heuridtic.

The smulation experiments in this research are conducted for a time interva
correspondingto the earliest start time of all the requests until the time when N requests
end. The number N chosen for the simulation experiments was 2000. Thus, the time
interval is the time interval between the earliest start time (of al the requests) and the
time when 2000 requests end. The start and end times for a Smulation experiment are
called the amulation start and Smulation end times, respectively. Because the smulation

end time correspondsto the time when N requestsend (i.e., Nth end time), there may be
many requests which begin before the smulation end time but do not end before the
simulation end time. These requests are aso considered for the smulation experiments.
Thus, it should be noted that the time interval between the earliest start time (of al the
requests) and the time when N requests end is considered for the Smulation experiments
and not a fixed number of requests. The number of requests consdered during the
smulation time interva (the time difference between the smulation end time and
simulation start time) could be more than N. (This number depends upon the "arriva
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rate”" of therequests and thisisexplained.later in this section). £ denotes the total number
of requests that start before the smulation end time (i.e., start time of the request is
before the smulation end time). N of these requests end before or & the smulation time
while (F - N) requests Sart before the smulation end time but end after the smulation
end time.

The reason why the above method is chosen is as follows. The "seady State'
performanceof aheuristic should be used for evaluating performance of the heurigtic. If a
fixed number of requests are considered for the simulation experiments as opposed to a
fixed interva of time, the system is not in steady state for the duration of the smulation
time interval. For example, if 2000 requests are consdered (and not a fixed time
interval), at the time instant before the smulationend time, the 2000th request will be the
only request being scheduled, i.e., it is not competing for bandwidth with any other
request. Hence, there are some "'trangent™ effects during the start of the smulation and
during the end of the smulation. Alternatively, when a fixed interval of time is
consdered for the smulation experiments, even a the smulation end time there are
many requests overlapping in time and hence competing for the available bandwidth.
Thus, the performanceof the heuristic in the steady state is determined.

The performance measure for the system is the sumof the worths of the requests
satisfied during this smulation time interval. Recdl the total sum. of worths W is
calculated as (explained in Subsection 2.5):

w= > IXppx H ezk"k(bk(’))}/(ek ‘sk):|-

keS I=sg

The st Sover which the total sum of worths is caculated consists of these F
requests. The worth of a request is calculated as the worth obtained during the simulation
time interval. Hence, for requests that begin during the smulation time interval and do
not end before (or &) the simulation end time, the worth is caculated as the worth
obtained due to bandwidth allocated to the request during the smulation time interval.
The worth obtained due to bandwidth alocated to the request after the simulation time
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interval is not considered. This can be thought of as if a request does not end during the
smulation timeinterval, it istruncated a the smulationend time. It should be noted that
the heuristic does not truncate the requests. It considersthe entire duration of the request
while scheduling the request. But when the total worth of all the requests satisfied during
a fixed interval of time is caculated, only the worth of a request obtained due to the
bandwidth allocated to it during the smulationtime interval is considered.

The upper bounds and the complete sharing policy only consider al the requests
in . In the calculation of the upper bounds, any request that begins during the smulation
time, but ends afterwards, receives prorated worth (i.e., the percentage of its worth that
corresponds to the percentage of its bits that are received before the smulation time
ends). Smilarly, for the complete sharing policy, the prorated worth of such a request is
considered if it received full bandwidthduring the smulationtime.

The three different parametersthat were varied to observe the performance of the
heurigtic areas follows.

1. Loading factor (If): The loading factor indicates the amount of "*load" that is
placed on the network. The loading factor is defined as the ratio of total
number of bits that needs to be alocated during a fixed interva of time and
the maximum number of bits that can possibly be alocated during that fixed
interval of time (Smulationtime).

The loading factor is calculated as follows. The desired bandwidth of each
of the Frequestsis converted into bits by multiplying the desired bandwidth
with the time duration for which the bandwidth is desired. Only the bits of a
request that need to be dlocated before the smulation end time are
consdered. The bitsthat need to be allocated after the smulationend time are
neglected (i.e., the requests are truncated as explained above). The total
number of bitsthat need to be alocated during the smulation time interva is
called the offered load. The offered load indicates the amount of bandwidth
desired by the requests during the simulationtimeinterva. Thus,

offered load = i [r5, xG, el (7.4)
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The maximum number of bitsthat can be allocated during the smulation
time interva is caculated by multiplying the link bandwidth L by the number
of ingresslinksand the smulationtime interval. This number is the maximum
number of alocable bits for the smulation time interval. The smulation time
interva is denoted by sm time and the total number of ingress links in the
networkis M. Thus,

maximum allocable bits= (L x M x sim_time) . (7.5)
The loading factor is the ratio of the offered load and the maximum
alocable bits.
loading factor = offered load / maximum allocabl e bits. (7.6)
Substitutingthe Equations 7.4 and 7.5 in 7.6 the loading factor iscalculated as
irbk X (sk —ek)

loading factor = = S 7.7
Lx M x sim_time

The two loading factors consdered in this research are 0.7 and 1.2. As
mentioned earlier, the loading factor indicates the load placed on the network.
A loading factor of 0.7 representsa moderately loaded network situation when
not dl requests can be satisfied. (A typically loaded network would have a
loading factor of under 0.5.) A loading factor of 1.2 indicatesthe load on the
network during periods of heavy congestion and/or periods of burst in traffic.
For example, in the Internet, a burgt in traffic may occur when a large number
of packets arrive a a router and the router cannot route all these packets.
Thus, variation of the loading factor explores the performance of the heuristic
in different overloaded network conditions.

The arrival rate indicates the number of requests that arrive (in the
network) per second. The loading factor depends upon the arriva rate of the
requests, the average duration of the requests, and the average desired
bandwidth of the request. Increasing the arriva rate increases the loading
factor, while keeping the average values of the duration and the desred
bandwidth of the request the same. Because the loading factor was considered
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as the parameter to be varied, the arrival rate is adjusted so that a loading
factor of 0.7 and 1.2 is achieved. The arrival rates were adjusted by tria and
error to determinewhat arrival rate would result in a loading factor of 0.7 and
12

2. Mode value: Two mode vaues, @ = 2 and » = 10, were conddered in this
research. The concept of mode values and weighted priorities was explained
in Subsection 24.2. Vaiation in the mode values would show the
performance of the heuristic in different situational modes. The mode values
of two and ten were used in a manner similar to [ThBOO].

3. Globdization factor (GF): Vadues of the globalization factor experimented
with (in addition to 0%) were 5%, 10%, 15%, and 25%. A globalization factor
of 5% gave the best results and hence the 5% globalization factor was used for
the simulation experiments (in addition to 0%).

For the scenario where If = 1.2, o = 1.2, and GF = 0%, smulation experiments
were conducted to find the number of experimentsthat yieldsa 95% confidenceinterval
of lessthan £ 5% of the mean of the sum of the worths of the requests satisfied. Each
experiment involved  (—2000) requests. A set of 20 different experiments, 40, and 60
were examined. It was found that 20 experiments were sufficient, as discussed further in
Section 8.

73 Summary

The values of the different parametersthat were considered in this research such
as, the bandwidth desired by the requests, the session duration of the requests, and the
random distribution used to generate the requests, have been presented in this section.
The loading factor, the mode value, and the globalization factor that were varied and the
reason why these parameters were varied also have been discussed in this section. The
resultsof the simulation experimentsare discussed in the next section.
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8. RESULTS OF SSIMULATION EXPERIMENTS

8.1. Overview

The smulation experiments conducted in this research were discussed in the
previous section. The parameters varied for the experiments and the vaues of the
parameters assumed were dso described in the previous section. The results of the
simulation experimentsare presented in this section. The performance of the scheduling
heuristic under different loading conditions, different mode vaues, and different vaues
of the globalization factor is discussed in this section. The trends displayed as these
parametersare varied are also explained in this section.

8.2. Evaluation of Simulations

Twenty, 40, and 60 randomly generated experiments were conducted for the If =
12, @ =10, and GF = 0% scenario and for the 50% heurigtic variation as was discussed
in Section 7. The total sum of worths obtained was averaged over these 20, 40, and 60
test cases. Th's average sumof worths, dong with the confidence intervals is plotted in
Figure8.1. The szeof the 95% confidenceinterval reduces as the number of experiments
increases from 20 to 40 to 60. The 95% confidenceinterval reduced from + 1.56% of the
mean for 20 experiments, to + 1.07% for 40 experiments, to + 0.86% for 60 experiments.
Because the size of the 95% confidence interva for 20 experiments was within the
desired rangeof + 5%, 20 was chosen as the number of experiments for dl the remaining
simulation experiments.



- 66 -

45 [

I L
N ) w w
T T T T

average sum of the worths
o
]

0.5

20

40 60

number of experiments

Figure 8.1. Confidence intervals of 20, 40, and 60 experiments with a mode value @ =
10, loading factor = 1.2, and GF = 0% for the 50% variation of the heurigtic.
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The three parametersvaried were the |oading factor, the mode, vaue and the GF.
The two values of the loading factor examined were 0.7 and 1.2. The mode vaues
examined were value o = 2 and » = 10. The GF values examined were 0% and 5%.
Thus, eight different cases were examined.

The average sum of the worths (over 20 experiments) obtained by complete
sharing policy, the heuristic variations, and the upper bounds for these eight cases are
shown in Figures 8.2 to 8.9. The 95% confidence intervals are also given. The genera
trends that can be observed are as follows. The three heuristic variations perform
comparably asshown. Asthe mode value @ is increased fiom 2 to 10, the average sum of
worths obtained increases because the worths of the requests of priority levels 1 to 3 are
much higher.

As the loading factor is increased fiom 0.7 to 1.2, the number of requests
consdered for the smulation experimentsincreases, leading to an increase in the number
of preemptions/degradations of requests (a preemption of a new request is a regjection of
that request). ThS results in a decrease in the number of requests being satisfied. Hence,
the average sumof the worths obtained decreases as the loading factor is increased from
0.7tol12

The peformance improvement of the heuristic variations over the complete
sharing policy varies. Asthe loading factor is increased fiom 0.7 to 1.2, the performance
improvement of the heuristic variations over the complete sharing policy increases. For
the scenario where, the loading factor is 1.2, @ = 10, and GF = 0%, the heuristic
variationsare approximately 90% better than the completesharing policy.

The globalization factor did not achieve any significant improvement in the
performance of the heuristic. Even though several values were experimented with, it
might be the case that a GF value not experimented with in this research might achieve a
significant improvement in performance. It may aso be the case that the GF should not
be a constant, but should rather be a function of the change in worth (after degradation of
bandwidths of existing requests and addition of the new request), the priority levels of the
requests under consideration, and so on. Future work may determinethe vauesof GF and
parametersthat GF dependsupon to achieve a significant improvement in performance.
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Figure 8.2. Comparison of performanceof heurigic variations with the complete sharing
policy (cs) and upper bounds for @ = 2, loading factor = 0.7, and GF = 0%
averaged over 20 experiments. The loose uppa bound is 8514.
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Figure 8.4. Comparison of performanceof heurigic variations with the complete sharing
policy (cs) and uppe boundsfor @ = 10, loading factor = 0.7, and GF = 0%
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Figure 8.5. Comparison of performance of heurigtic variations with the complete sharing
policy (cs) and upper bounds for @ = 10, loading factor = 0.7, and GF = 5%
averaged over 20 experiments. The loose upper bound is 632741.
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Figure 8.6. Comparison of performanceof heurigtic variationswith the complete sharing
policy (cs) and upper bounds for @ = 2, loading factor = 1.2, and GF = 0%
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Figure 8.7. Comparison of performance of heurigic variations with the complete sharing
policy (cs) and uppe bounds for @ = 2, loading factor = 1.2, and GF = 5%
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Figure8.8. Comparison of performance of heurigtic variationswith the complete sharing
policy (cs) and uppe boundsfor @ = 10, loading factor = 1.2, and G- = 0%
averaged over 20 experiments. The loose upper bound is 700152.
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Figure8.9. Comparison of performance of heuridic variationswith the complete sharing
policy (cs) and upper boundsfor @ = 10, loading factor = 1.2, and GF = 5%
averaged over 20 experiments. The loose upper bound is 700152.
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The average number of priority level 1, 2, 3, and 4 requests satisfied by the
heuristic variationsfor the eight casesof @ If, GF are shown in Figures8.10 to 8.13. The
general trendsthat can be observed are asfollows.

As expected, the number of priority level 1 requests satisfied in mode ten is
higher than that satisfied in mode two. Thisis because of the greeter relative difference in
the weighted priorities of the requests in mode ten as compared to mode two. In mode
two, the scheduling heuristic may satisfy eight priority level four requests instead of one
priority level one request. But in mode ten, the scheduling heuristic would have to satisfy
1000 priority level four requests instead of one priority level one request. Thus, the
number of priority level one requestssatisfied in mode ten is higher than that satisfied in
mode two. At the same time, the number of priority level four requests satisfied in mode
tenislessthan that satisfied in mode two.

The three heurigtic variations achieve nearly the same total sum of worths (W)
averaged over 20 experiments. But as is apparent from Table 8.1 and Table 8.2, the
heuristics behave differently in terms of number of preemptions/degradations of requests
with different utility functions. The general trend that can be observed in Table 8.1 and
82 is that the number of degradations/preemptions of requests with concave and step
utility functionsis the highest for the 50% variation the least for 25/75. The number of
preemptions/degradations Of requests with linear utility functions is the highest for the
25/75 variation, and the lowest for the redistributevariation. The globalizationfactor hes
no significant effect on the number of preemptions/degradations of requests with the
different typesof utility functions.

In 50% variation, the bandwidth needed is compared to one threshold (i.e., 50%
of the bandwidth of the request with the step utility function) when making a preemption
decison. In contrast, the 25/75 variation compares the bandwidth needed with two
thresholds (25% and 75% of the bandwidth of the request with the step utility function)
and hence reducesthe number of preemptionsof requestswith step utility functions.
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Figure 8.10. Comparison of the averagenumber of requestsof priority leve 1, 2, 3, and
4 satisfied by the heurigtic variationsin mode value w = 2 and w = 10 with
loading factor = 0.7 and GF = 0%.
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The number of priority level one requests satisfied by the redistribute variation is
dightly less than that satisfied by the 50% and the 25/75 variation. But, the overall sum
of the worths of the satisfied requestsis approximately equal to that obtained by the other
two variations. This can be attributed to the fact that the redistribute variation actually
considersthe worth of redistribution, i.e., it may preempt a higher priority request if the
excess bandwidth (bandwidth obtained by preemption of request minus the bandwidth
needed) can be redistributed among other requests with an increase in total worth. The
50% and the 25/75 variation of the heuristic do not consider the worth of redistribution
when making decisions regarding preemption of requests with step utility functions. At
the same time, the redistribute variation achieves approximately the same overall worth,
with less number of degradations/preemptions of requests as compared to the 50%
variation

In genera, the number of degradations/preemptions of requests with concave
utility functions is much higher than the number of degradations/preemptions of requests
with linear utility functions. Thisis because, when arequest with a linear utility function
isdegraded, either all the bandwidth needed is obtained from the request, or the request is
preempted. Hence, when a linear utility function is degraded/preempted, there is only a
single change in bandwidth. In contrast, the concave utility function is degraded in steps
(of unit size). After degrading the request with the concave utility function by some units
of bandwidth, the margina worth of the request may no longer be the smallest. Hence,
some other request may be degraded. However, the request with concave utility function
may be degraded again for the scheduling event. Thus, a request with a concave utility
function may be degraded multiple timesat each scheduling event.

A request may be degraded by different amounts at each scheduling event with
every total change in bandwidth allocation to the request & a event being counted as one
degradation. The total number of degradations of a request is the sum of the degradations
a all scheduling events.

The executiontimesfor the heuristic variationswere calculated for one simulation
experiment withamodevaueof o = 10, If = 1.2, and GF = 0%. The 50% variation took
the least amount of time: 52 ms per request. The 25/75 variation comparesthe bandwidth




Table8.1. Number of degradationsand preemptionsfor requestswith step (S), linear (L),

and concave (C) utility functions for loading factors (If) of 0.7 and 1.2, GF =
0%, and mode values @= 2 and o= 10.

50% 25/75 redistribute

L C S L C S L C S

194 | 80689 | 174 | 217 | 51643 | 131 | 169 | 60610 | 152

0%

333 | 26770 | 187 | 353 | 19511 | 156 | 289 | 22328 | 176

461 | 187398 | 314 | 485 | 116646 | 253 | 352 | 154320 | 273

0%

634 | 50728 | 336 | 667 | 39864 | 313 | 608 | 49778 | 329




Table 8.2. Number of degradationsand preemptionsfor requestswith step (S), linear (L),
and concave (C) utility functions for loading factors (if) of 0.7 and 1.2, GF =

5%, and mode values @= 2 and o= 10.

50% 25175 redistribute
L C S L C S L C S
If =
0.7
g;z 196 | 75761 | 177 | 213 | 51963 | 124 | 163 | 57007 | 149
5%
If =
0.7
w:
10 325 | 27039 | 188 | 350 | 18988 | 158 | 278 | 25102 | 171
GF =
5%
If =
12
g; 3 481 | 198868 | 322 | 487 | 115597 | 254 | 465 | 154357 320
5%
If =
1.2
w:
10 617 | 49968 | 331 | 662 | 39740 | 296 | 595 | 51067 | 331
GF =
5%
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needed to two thresholds (in one case of the variation), and hence takes dightly more
time: 75 ms per request. The redistribute variation actually calculates the worth due to
redistributionof excess bandwidth to other requests and hence it takes more time than the
other two variations. The execution time of the redistribute variation is 250 ms per

request.

8.3. Summary

The results of the simulation experiments conducted in this research were
presented in this section. The performance of the heuristic variations has been compared
to the smple scheduling technique (complete sharing policy) and upper bounds. The
globalization factor did not achieve any significant improvement in the performance of
the heuristic variations. The conclusions and suggestions for future work will be
discussed in the next section.
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9. CONCLUSIONS AND FUTURE WORK

Bandwidth alocation is an important problem in current networks in view of the
different types of applications using the same network and each application having
different quality of service requirements. In dynamic bandwidth alocation, the users do
not reserve (with a guarantee) fixed amounts of bandwidth, but are dynamically allocated
the bandwidth. Heuristic variations were devel oped that attempt to schedule the requests
such that the total worth of satisfied requests over a given interva of time is the
maximum.

Three different heuristic variations were developed in this research. The different
parameters considered were the network loading, a globalization factor, and the relative
weights of the different priority levels. Three different types of utility functions of the
requests, step, linear, and concave, were considered. The performance of three heuristic
variations were shown and compared to the three upper bounds and one smple
scheduling technique (based on the complete sharing policy). The results presented
showed that the three variations perform comparably to each other. Although the total
sumof the worths of the satisfied requests obtained by the three heuristic variations are
smilar, the heurigtic variations degrade/preempt the requests differently.

The 50% variation of the heuristic achieves a high total sum of'worth of satisfied
requests, but it also has the maximum number of preemptionsof requests with step utility
function and has the maximum number of degradation/preemptions of requests with
concave utility function. The 25/75 heuristic variation reduces the number of
degradations/preemptions for requestswith concave utility functionsand also reducesthe
number of preemptions for the step utility function while achieving a comparable total
sum of worths satisfied. But the number of preemptions/degradations of requests with
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linear utility functions is higher than the corresponding number for the 50% and the
redistribute variation of the heuristic. In contrast, the redistribute variation of the heuristic
has least number of degradations/preemptions of requests with a linear utility function,
and comparable number of degradations/preemptions of requests with step and concave
utility functions. The performance of the redistribute function is comparable to both the
50% and the 25/75 variation. The 50% variation has the smallest execution time. All
variations improve on the complete sharing policy (as much as 90%).

Future work will consder determining the vaues of the globalization factor that
will result in a significant improvement in the performance of the heuristic. As discussed
earlier, in the heurigtic variations, only the request one position above the request with a
step utility function is used to estimate the loss of worth. Future work will consider
looking a more requests to calculate the loss of worth. Future work will also consider
utility functions of requests other than step, linear, and concave, e.g., a multi-point step
function (for requestswith layered encoded data[Sha92]).

The heuridtic variations developed first consider the new request's ingress link
and then the new request's egress link to calculate the degradationsof existing and new
requests. Future work may consider both the links smultaneoudy when calculating the
degradationsof the existing and new requedts.

Whether a request has aready begun tranamitting or how soon the request will
complete transmitting is not considered when choosing among requests to preempt.
Future work may consider these factors.
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APPENDIX A. PSEUDO-CODE FOR THE “50% HEURISTIC"

begin
if (current-time > (newreq_starttime - lead—time) )
Mead-time needed for executing heuristic = 120 secs*/
request cannot be scheduled before start time
reject request
else
check resource allocation table (RAT) to determine
whether there is available bandwidth
if (available bandwidth > newreq_bandwidth) at
every time instant of the new request's session at source and
destination links
request can be satisfied
admit request
store the requestin the RAT
else
call schedule(newreq)
end
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schedule(newreq)

16.

17.
18.
19.
20.

21.
22.
23.
24,
25.
26.
27.
28.
29.

30.
31.
32.
33.

35.

©XONOOAWN-=

begin
total—-old—worth = sum of worths of scheduled requests
link = newreq_ingresslink
L = link—bandwidth
check—-at—time = newreq_starttime
while (check-at-time < newreq_endtime)
find set of requests conflicting with newreq at time check—at-time
assign these requeststo array R IAumbered1ton -1 */
let number of conflicting requests ben - 1
R[n] =newreq /*add newreqto the array R */
B = total bandwidth of requests in R
bwneeded =B -L
next—check-at—time = function_find_next_event(link, check—at-time)
while (bwneeded > 0)
order the requests in R by decreasing marginal worth
/* last request is the request with least marginal worth*/
amount—bw—-deg = degrade(R,n,bwneeded)
I* degrade the requestin RIn]*/
bwneeded = (bwneeded - amount—bw-deQ)
end while
if (owneeded < 0)
reallocate(- bwneeded)
* request satisfied at one timeinterval, check at next time interval */
check-at—time = next—check-at-time
end while
for any request degraded at this link
if this link was the request's ingress link
degrade that request at its egress link by the same amount.
else
degrade that request at its ingress link by the same amount.
repeat steps 4-27 with link = newreq_egresslink
let modified—worth be worth of scheduled requests (including newreq)
after executing steps 3-28 /* explainedin text */
If (modified—worth > total-old—worth)
admit new request
else
reject new request
restore to all requests the bandwidths degraded/preempted during this
call
end
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degrade(R, n, bwneeded)

PN OONOO RN

begin
if utility function of R{n] = linear function
amt_bw_deg = degrade_linear(R, n, bwneeded)
if utility function of R[n] = concave function
amt_bw_deg = degrade_concave(R, n, bwneeded)
if (utility function of R[n] = stepfun  on)
if (bwneeded = bandwidth of R[n])
preempt request in R{n]
amt_bw_deg = bandwidth of R[n]
else
amt_bw_deg = degrade_step_50(R, bwneeded)
return amt_bw_deg
end
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degrade_step_50%(R, bwneeded)

/* 50% variation of the heuristic is being used *I
I* R[n] is a request with a step utility function */

10.
11.
12.
13.
14,
15.
16.
17.
18.
19.

2

begin
if (bwneeded > (0.5 x bandwidth of R{n]))
preempt request in R[n]
amt_bw_degraded = bandwidth of R[n]
else
I* bandwidth needed (bwneeded) < 0.5 x bandwidth of R[n], check
whether the loss of worth due to degradationlpreemption of Rfn —-1] is
more than the worth of the request R[n] */
if worth of R[n] < loss_of_worth(R, (n-1), bwneeded)
preempt the request in R[n]
amt_bw_degraded = bandwidth of R[n]
else
if (utility function of R[n—1] = linear function)
amt-bw—deg = degrade_linear(R, n—1,bwneeded)
if (utility function of R[n-1] = concave function)
amt—-bw—-deg = degrade_concave(R, n -1, bwneeded)
if (utility function of R[n—1] = step function)
preempt request in R{n-1]
amt-bw—deg = bandwidth of R{n-1]
return amt—bw-deg
end
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find_next_event(link, check—at—time)

B

for every existing—request utilizing link do
find the earliest start time of an existing request that is later than the
check-at—time and earlier than the end time of the new request
find the earliest end time of an existing request that is later than the
check-at—time and earlier than the end time of the new request
if new requestis the request ending the earliestand no existing request
begins before or at newreq_endtime
next—event = newreq_endtime + 1
return next—event
else
assign the earliest start time to temp-stime
assign the earliest end time to temp-etime
temp—etime = temp—etime + 1
if (temp—stirne > temp—etime)
next—event = temp—etime
else
next—event = temp-stime
return next—event
end




reallocate(bw)

I* bw is the bandwidth that is to be reallocated to the requests*/

NoOORhON 2

©

10.

11.
12.
13.

14.

15.
16.
17.
18.
19.
20.

21.

22.
23.
24.
25.
26.
27.
28.
29.

begin
request—-num=20
while (bw > 0 and request-num < n)
if (Rfrequest_num)]'s utility function = step function)
request—num = request—-num + 1
continue (go to step 3)
if (Rfrequest_numy's utility function = linear function)
if (Rfrequest_num)]_allocated_ bandwidth <
Rirequest_num]_desired_bandwidth )
if (R[request_num]_desired_bandwidth -
Rlrequest_num]_allocated_bandwidth) > bw)
Rfrequest_num]_allocated_bandwidth =
Rirequest_num]_allocated_bandwidth + bw
return
else
Rfrequest_num)]_allocated_bandwidth =
R[request_num] desired_bandwidth
bw = bw - (R{request_num]_desired_bandwidth —
Rfrequest_num]_allocated_bandwidth)
request—num = request—-num + 1
continue (go to step 3)
else
request—num = request—-num + 1
continue (go to step 3)
while((Rfrequest_num]'s marginal worth is the highest) and (bw > 0)
and (R{request_num]_allocated_bandwidth <
R{request_num]_desired_bandwidth) )
Rfrequest_num)]_allocated_bandwidth =
R[request_num]_allocated_bandwidth + 1
bw=bw-1
end while
if (ow >0)
reinsert Rfrequest_num)] in the proper order in the list
request—-num =0
end while
return
end
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degrade-linear(R, x, bwneeded)

1 begin
2. if (bowneeded < (current bandwidth of R{x] — minimum bandwidth of R{x]) )
3. degrade bandwidth allocated to R[x] by amount = bwneeded
/* bandwidth of a request is degraded until the next event */
4, amt_bw_degraded = bwneeded
5. else
6. preempt request in R{x]
7. amt_bw_degraded = bandwidth of R{x]
8. return amt_bw_deg
9. end

degrade_concave(R, x, bwneeded)

begin
amt_bw _deg=0
while (R{x]_marginal worth < Rfx -1] marginal_worth)
degrade bandwidth allocated to R[x] by unit amount
* bandwidth of a requestis degraded until the next event */
* unit amount is 1Kbps*/
amt_bw_deg —amt_bw_deg +1
R[x]_marginal worth = new marginal worth
[*after degradation by unitamount */

PON=

2

end while
retum amt_bw_deg
end

Lo~




-98-

loss_of_worth(bwneeded, R, reqnum)

1. begin
2. if (owneeded < (current bandwidth of Rfreqnum] -
minimum bandwidth of R[reqnum]))

3 loss—worth = (worth of Rfreqnum] at current bandwidth -

worth of R[reqnum] at (current bandwidth—bwneeded))
4. else
5. loss—worth =worth of R{regnum] at current bandwidth
6. return loss—worth
7. end




(@)

(b)
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APPENDIX B. PSEUDO-CODE FOR “25/7S HEURISTIC”

Same as the 50% heuristicin Appendix A, except:
step 11, of degrade(R, n, bwneeded) is:

11. amt_bw_deg = degrade_step_25/75(R, bwneeded)

the routines degrade_step_25/75(R, bwneeded)and
loss_of_worth_2(bwneeded, R, regnum) are used (see the following
pages).
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degrade_step_25/75(R, bwneeded)

* 25/75 variation of the heuristic is being used */
I* R[n] is a request with a step utility function */

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

NOoOOALON =~

begin
if (bwneeded > (0.75 x bandwidth of R[n]))
preempt requestin R{n]
amt_bw_deg = bandwidth of R[n]
else
if (owneeded < (0.25 x bandwidth of R[n}))
Ibandwidth needed (bwneeded) < 0.25 x bandwidth of R[n], check
whether the loss of worth due to degradation/preemption of R[n -1]
is more than the worth of the request R[n] */
if worth of Rfn] < loss_of_worth(bwneeded, R, (n-1))
preempt the request in R{n]
amt—bw—deg = bandwidth of R[n]
else
if utility function of R{n—1] = linear function
amt_bw_deg = degrade_linear(R, n—-1, bwneeded)
if utility function of R[n—1] = concave function
amt-bw—deg = degrade_concave(R, n-1, bwneeded)
if utility function of R[n-1] = step function
preempt requestin R{n-1]
amt-bw—deg = bandwidth of R[n-1]
else
/* bwneeded is more than 25% and less than 75% of bandwidth of
Rin] */
if worth of R[n] < loss_of_worth_2(R, (n-1), bwneeded)
preempt the request in R[n]
amt-bw—deg = bandwidth of R{n]
else
if utility function of R{n-1] = linear function
amt_bw_deg = degrade_linear(R, n-1, bwneeded)
if utility function of R[n-1] = concave function
amt-bw—-deg = degrade_concave(R, n-1, bwneeded)
if utility function of R[n-1] = step function
preempt request in R{n-1]
amt_bw_deg = bandwidth of R{n-1]
return amt—bw—-deg
end
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loss_of worth_2(bwneeded, R, reqgnum)

1. begin
2.  if bwneeded 2 Rlregnum]_current_bandwidth +
Rireqnum-1]_current_bandwidth
I* bwneeded is greater than the sum of bandwidths of R[reqnum] and
Rfreqnum-1], so loss of worth will be the current worths of Rfreqnum]
and Rfreqnum-1] */
3. loss—worth = worth of Rfreqnum] at current bandwidth +
worth of R[reqnum-1] at current bandwidth
4, else
* bwneeded s less than sum of the bandwidths of R{reqnum] and
Rireqnum-1], calculate the loss of worth by considering a set of
conflicting requests R’ consisting of requests Rfreqnum]} and
Rlregnum—1)] and executing the steps 13-20 of the schedule function
for R'. find the degraded bandwidths of R{reqnum] and R[reqnum-1]
and calculate the loss of worth due to degradation */

5. Rfreqnum]_original_bw = R{reqnum]_current_bandwidth
6. R[regnum-1]_original_bw = R{reqnum-1]_current_bandwidth
1. generate a set of conflicting requests R’ consisting of requests

Rfregnum] and Rfreqnum-1] only
repeat steps 13-20 of "schedule” with the set R’ instead of R
9. loss—worth = (worth of Rfreqnum)] at R[reqnum]_original_bandwidth -
worth of R[reqnum] at R{reqnum]_current_bandwidth) +
(worth of Rfreqnum-1] at Rireqnum—1]_original_bandwidth
- worth of Rfreqnum] at R{reqnum]_current_bandwidth)
10. return loss—worth
1. end

o

e
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APPENDIX C. PSEUDO-CODE FOR"REDISTRIBUTE
HEURISTIC”

Same as the 50% heuristic in Appendix A, except:
(a) step 11, of degrade(R, n, bwneeded)is:

11. amt_bw_deg = degrade_step_25/75(R, bwneeded)

(c) theroutines degrade_step_redistribute(R, bwneeded) and
worth_of_redistribution(bw) are used (see the following pages).
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degrade_step_redistribute(R, bwneeded)
I* redistribute variation of the heuristic is being used */
I* R[n] is a request with a step utility function */

1.
2.

3.
4.
5

NOo

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.

24.

25.
26.
27.
28.
29.
30.
31.

begin
if ( (worth of request R[n]) < worth_of_redistribution(bandwidth of R[n] -
bwneeded) )
preempt request in R[n]
amt—bw-deg = bandwidth of R[n]
else
I* worth of request R[n]) > worth_of_redistribution(bandwidth of R[n] -
bwneeded) */
if (owneeded < bandwidth of R{n-1])
if ( (worth of request R[n] - worth_of _redistribution(bandwidth of
R[n] - bwneeded)) ) < (worth of R[n—1] at current bandwidth -
worth of R[n—-1] at (current bandwidth — bwneeded) ) )
preempt request in R[n]
amt—-bw—deg = bandwidth of R[n]
else
if utility function of Rfn—1] = linear function
amt_bw_deg = degrade_linear(R, n-1, bwneeded)
if utility function of R{n—1] = concave function
amt-bw—deg = degrade_concave(R, n—1, bwneeded)
if utility function of R[n—1] = step function
preempt request in R{n-1]
amt-bw-deg = bandwidth of R{n-1]
else
/* bwneeded > bandwidth of R[n-1]) */
if (bwneeded > (0.5 x bandwidth of R[n]))
preempt requestin R[n]
amt—-bw-deg = bandwidth of R[n]
else
I* bandwidth needed (bwneeded) < 0.5 x bandwidth of R{n], check
whether the loss of worth due to degradationlpreemption of R{n -1]
is more than the worth of the request R[n] */
if ( (worth of R[n] — worth_of_redistribution(bandwidth of R[n] -
bwneeded)) < loss_of_worth(bwneeded, R, (n-1))
preempt the requestin R[n}]
amt_bw_deg = bandwidth of R[n]
else
preempt R{n-1]
amt-bw—deg = bandwidth of R{n-1]
return amt—bw—-deg
end
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worth_of_redistribution(bw)

-—
o

=N
=N

12.
13.
14.

15.

16.
17.
18.
19.
20.
21.

22.

23.

24.
25.
26.
27.
28.
29.
30.
31.

CoNOONAWN =

begin
request—-num =20
inc—worth =0

while (bw > 0 and request—num < n)
if (Rfrequest_num)]’s utility function = step function)
request—num = request—-num + 1
continue /* go to step 4 */
if (Rfrequest_num]’s utility function =linear function)
if (Rirequest_num]_aliocated_ bandwidth <
Rfrequest_num]_desired_bandwidth )
if (Rfrequest_num]_desired_bandwidth —
Ri{request_num]_allocated_bandwidth) > bw)
inc—worth = inc—worth + worth of R[request_num] at
(Rirequest_num]_current_bandwidth + bw) -
worth of R[request_num] at current bandwidth
return inc—worth
else
inc—worth = inc—worth + worth of R[request_num] at desired
bandwidth — worth of R[request_num] at current bandwidth
bw = bw - (R{request_num]_desired_bandwidth -
Rlrequest_num]_current_bandwidth)
request—num = request-num + 1
continue /* go to step 4 */
else
request—num = request—num + 1
continue /* goto step4 */
while((R[request_num]'s marginal worth is the highest) and (bw > 0)
and (R{request_num]_current_bandwidth <
Rirequest_num] desired—bandwidth))
Rirequest_num]_current_bandwidth =
Rirequest_num]_current_bandwidth + 1
inc—-worth =inc—worth + (worth of R[request_num] at current
bandwidth +1) — worth of R[request_num] at current
bandwidth)
bw=bw - 1
end while
if (ow> 0)
reinsert Rfrequest_num] in the proper order in the list
request—-num=0
end while
return
end
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APPENDIX D. GLOSSARY OF NOTATION

ry a request arriving at the ingress node
ik ingress link of the request ri
Ok egress link of the request rk
Sk start time of the request r
o end time of the request rk
bi(t) bandwidth received by the request ry

attime t

session of a request

(dk - Sk

Uk

utility of the request ry, which is a
function of the bandwidth received by
the request rk

Uk

total utility of the request ri obtained
by summing the utilities at every time
instant of the request's session

Wi

worth of the request ri that is the
product of the weighted priority and
the total utility of the request

worth of all the requests satisfied in a
given interval of time; W is the
performance measure of the system

rbk

requested bandwidth of the request ri
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mby minimum bandwidth required by the
request ri
Pk priority level of the request r,
1<pxk< 4
® weighting constant, which depends
upon the mode; in mode two @ = 2, in
mode ten @ =10
IApy) weighting function for a priority level
that depends upon the mode value.
sim_time simulation time over which the sum of

the worths of the requests satisfied is
calculated

loading factor

indicates the amount of "load" that is
placed on the network.

arrival rate A

arrival rate of requests modelled as a
Poisson arrival sequence; A depends
upon the loading factor

lead time time between the arrival time and the
start time of the request
bwneeded bandwidth still needed to be obtained
by degradationlpreemption of some
request(s)
GF globalization factor, a factor used to to

introduce randomness in decision
making
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