View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

11-1-1993

The Feasibility of Using Compression to Increase
Memory System Performance

Jenlong Wang
Purdue University School of Electrical Engineering

Russell W. Quong
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Wang, Jenlong and Quong, Russell W.,, "The Feasibility of Using Compression to Increase Memory System Performance” (1993). ECE
Technical Reports. Paper 246.
http://docs.lib.purdue.edu/ecetr/246

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/4947869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages

THE FEASIBILITY OF USING
COMPRESSIONTO INCREASE
MEMORY SYSTEM PERFORMANCE

JENLONG WANG
RUSSELL QUONG

TR-EE 93-37
NOVEMBER 1993

\)

[/]
2

4

S, SCHOOL OF ELECTRICAL ENGINEERING
ol 3 PURDUE UNIVERSITY
® WEST LAFAYETTE, INDIANA 47907-1285

B

The Feasbility o Usng Compression to
Increase Memory System Performance

Jenlong Wang and Russell W. Quong
School d Electrical Engineering
Purdue University
West Lafayette, IN 47907
{wangj,quong) @ecn.purdue.edu

November 9, 1993

The Feasibility of Using Compression to
Increase Memory System Performance

Abstract

We investigate the feasibility of using instruction compression at some level in a multi-level memory
hierarchy to increase memory system performance. For example, compressing at main memory means
that main memory and thefile system would contain compressed instructions, but upstream caches would
see normal uncompressed instructions. Compression effectively increases the memory size and the block
size reducing the miss rate at the expense of increased access latency due to decompression delays. We
present asimple compression scheme using the most frequently used symbols and evaluate it with several
other compression schemes. On a SPARC processor, our scheme obtained compression ratio of 150% for
most programs.

We analytically evaluate the impact of compression on the average memory access time for various
memory systems and compression approaches. Our results show that feasibility of using compression
is sensitive to the miss rates and miss penalties at the point of compression and to a lesser extent the
amount of compression possible. For high performance workstations of today, compression already shows
promise; as miss penalties increase in future, compression will only become more feasible.

Keywords: Memory system performance, multi-level memory system, cache, data compression.

1 Introduction

Astheratio of processor speeds to memory speeds continues to rise, design of faster memory systems has be-
comea crucial of computer systems design. Multi-level memory hierarchies [Hi88][PRHH88|[PRHH89|[SHL88]
are the standard way to reduce average memory access timein a cost-effective manner. A memory hierarchy
uses one or more levels of cache between the processor and the main memory to reduce the average memory
access time. Fast, small upstream caches match the processor's speed, while larger, downstream caches
reduce traffic to slower main memory.

The average access time of a cacheisfunction of its hit time, missrate, and miss penalty. We can reduce
the missrat': of a cache either by makingcache bigger or by making the program smaller. The latter can be
done in two ways.

1. Use an instruction set [FLMMS87, WAF87] with a higher code density. Unfortunately, designing an
instruction set is a complicated issue as it affect many areas of the system including the processor
decoding complexity, and memory traffic. Also, from a commercial standpoint, a new instruction is
undesirable because it will not be compatible with previous designs.

2. Compress the instruction stream. This approach are that it can be used with any processor, so
that backward instruction-set compatibility can be maintained if desired. A small amount additional
hardware is needed.

We consider the second approach in this paper. Namely, we investigate improving :system performance
by compressing instructionsin a multi-level memory hierarchy. Our approach istransparent to the processor
in that it sees normal instructions. We require extra hardware for runtime decompression and address
translation. Use of compression will also reduce executable sizes on disk, however we are not concerned with
this side effect. Finally, we do not consider compressing data, only instructions.

This paper is organized asfollows. In Section 2, we illustrate our memory model using compression. In
Section 3, we derive formulas showing when compression is advantageous given various parameters and show
that the use of compression isfeasible now for today’s fastest processors. We discuss the additional hardware
needed for our method in Section 4. Finally, in Section 5 we evaluate several different compression schemes.

2 Memory Hierarchy Model

I'n this section, we describe the memory hierarchy used in our study. Figure 1 shows the memory hierarchy
models with and without compression. The memory contents before or upstream of level i, (i.e. closer tothe

CPU) are the same for both approaches, so that the processor sees the same set of input Symbols in both
approaches. The memory contents of all levels after level i are also compressed in the compression approach.
There is no architectural difference between these two approaches other than the decompression hardware.
Compression at level i denotes that the decompression is done between levelsi — 1 and ¢ asin Figure 1. In
the compression approach, the compiler (or compression software) creates an executable with compressed
instructions; at the runtime, decompression hardware in the memory system restores the original instructions.
To be feasible, we must be able to build afast hardware realization of the decompression algorithm.

Conventional Memory Hier achy:

i-1
(Ie'\zelth i-th level d+1) th Nnth
memory memory level mem. level mem
S —
| CPE‘I ----- |t -] |l ----.
R E—

- ——
Faster but smaller

Memory Hier achy with Compressionat Levea i :

@Gi-1)th i-th level d+1) th N th

level
memory memoery levelmem. _ _Ledrmem
————————— R i P =
' [1
1 : : H
[cru]--- 5 - i prsx |
[1
* | Pl |
————— ST o __t k- -l
Hardware A s ——:; _____
decompression ~ : e

Faster but smaller

Figure 1. Memory hierarchy modelsfor the compression and non-compression approaches.

We define the compression ratio as the increase in effective memory size increase due to compression.
Thus, if the compressed instructions are 1/4 the size of the original, the compression ratio = four, because
the same memory can hold four times as much information.

Original size
Compressed size

The effectiveness of compression at a particular level depends on the following factors.

Compression ratio =

1 The capacity and miss rate of that level.
2. The miss penalty of that level.
3. Theincrease in miss penalty due to hardware decompression.
4. The compression ratio and the effectiveness of compression in reducing the miss rate.
For a given design space, these factors are interdependent, because as memory size increases, access time

increases, but miss rate decreases. The compression ratio dictates the effective capacity increase, and the

compression/decompression methods impose various decoding delays.
We use the following definitions in the rest of this paper. A compressed level is memory level that
contains cornpressed code; a normal or uncompressed level contains uncompressed code. In comparing a

memory system Using compression versus a hormal memory system, we make the following assumptions.

e Both systems use the same processor and the same memory organization except the compression
approach has extra decompression hardware. The same memory size, associativity, block/line size, and
replacement policy is used in both systems.

e Theeffect of memory misalignment caused by compression is neglected. The misalignment penalty can
be minimized by adding hardware, and it can be considered as part of the decompression delay.

e The inclusion principle holds: The contents of level i are alwaysin level j for all i < j < n, where n is
the number of levelsin the memory hierarchy.

e Uniformity condition: Compression changes the code density of all program parts equally, independent
of how often they are executed. The uniformity condition is not true for individual instructions but is
shown to be approximately true for extended basic blocks[ST89].

An important question to ask is "At which level should we decompress the program?*' We answer this
question in the next section where we will model the memory hierarchy and quantitatively predict the benefits
of using compression.

3 Tradeoff Between Compression Ratio and Average Memory
Access Time

Although compression increases the effective memory size, it also introduces a decoding penalty. Based on
empirical data, we use a simple equation to parameterize relationship between the compression ratio and the
reduction in miss rate. We use this relationship to determine the change in average access time when using
compression at the i-th level memory and the effect on adjacent memory levels.

31 A Model for Miss Ratio versus Effective Memory Size

We assume the global miss rate at memory level i changes as the (effective) memory size raised to the power
logp asdescribed by Equation 1. Alternatively, Equation 1 shows the missrateis reduced by the compression
ratio raised to the power logp.

m: = p’yCXm,-=C’“’><m,- (1)
where m! = missrate at level ¢ of the new memory size and new block size.
m; = missrateatlevel ¢ of theoriginal memory size.
C = origina size / compressed size = size increase ratio
lgz = logy 2 function
p = reduction ratio = m} /m; where both new size and new block size are twice

of the original values.

In Equation 1, the parameter p indicates how much the miss rate decreases when both the memory size
and the line is size is doubled. For example, p = 0.3 means that doubling the memory size and block size
will reduce the miss rate to 3/10 of its previous value. Note that 0 < p<1land C > 1L For afixed C, as
p decreases the new miss rate decreases as well. For a fixed p, as C increases the new :missrate decreases.
Therefore, smaller p values (and larger C) values are “good” in that the miss rate decreases quickly.

We used trace-driven simulation to empirically estimate the value of p for various programs. Table 1
describes the four ATUM cache traces [AGSH86] and two other traces, spice and cc! we used. Using a
cache simulator, we gathered the instruction missinformation for different cache and block sizes. The value
of pfor a 4k cache with an 8-byte block size is denoted by p4x /s and is given by par/s = '_;?Ti%’ where mg/16
is the miss rate of an 8k cache with block size of 16 bytes. We define the other p values similarly. Note
that an important effect of compressing instructions is that the effective line size increases by C also. E.g.
if C =4,a92bytelinein a compressed cache has an effective line size of 128 bytes.

Name Total # # Distinct | Include
References | I-Fetch I-Fetch OS Instr.
ccl 1000002 | 757341 31195 no

spice 1000001 782764 8964 no

dec0 361982 183023 7276 yes

fora 387934 199799 8716 yes
forf 368212 190915 14123 yes
lisp 291390 169786 929 yes

Table 1: Trace used to evaluate reduction ratio.

For the these programs, we found most p values ranged from 0.4 to 0.7 as shown in Figures 2-4, which
was somewhat lower than we had expected. The reason pisso low is that the compression increases both the
effective memory size and the effective line size. Figure 2 shows p values for different cache Sizes and aline
size of 8 bytes; Figures 3 and 4 shows p valuesfor line sizes of 32 and 2048 bytes respectively. In Figure 4,
we model main memory with the 2048 byte block size corresponding to a memory page. We observe that p
values are constant for each application, as the only misses occur at startup, as the memory sizes are much
larger than the number of distinct addresses in the traces. Thus, the increased line size from compression
accounts entirely for the reduction in miss rate.

Rangeof p for block size” 8 bytes (Direct-Mapped)

ccl
: spice _
: decO

: fora o..
: forf

| 6: lisp

oabwNR

0- 22 4 8 16 32 64 128 256 512

Cachesize (K bytes)

Figure 2: Range of p values in different applications.

3.2 Evauation o Systems With or Without Compression

In thissection, we analyze the average memory access time both with and without considlering block transfer
time. First, we ignore block transfer time, assuming early restart and out-of-order fetch [HP90, page 458].
We then consider block transfer time. In both cases, we gives formulasfor the average memory access time
as afunction of C, p and the decompression time d.

We use effective memory access time as our performance metric to evaluate different memory systems.
Since we examine the instruction stream only, compression has no effect on the access timefor data reads and
writes. Hereafter, the analysis concentrates on the time for instruction fetches. In the following analysis, a
subscript denotes the memory level and a superscript denotes a compression or a non-compression approach,
e.g. 1n° versus m"e.

321 Average Memory Access Timewithout Block Transfer Time

The effective access time at the i-th level memory ¢; is defined as

Range of p for block size = 32 bytes (Direct-M apped)

0.9
1: ccl 4: fora
0.8 2:spice 5: forf i
3: decO 6: lisp
ol 6 T CH 6 1
0.6 -
0.5 |
041 -
03} J
0‘2 L 1 I I n L L
2 4 8 16 32 64 128 256 512
Cachesize (K bytes)
Figure 3: Range of p values in different applications.
Rangeof p for block size = 2048 bytes (Fully-Associative)
0.9 T T T v v v T
0.86 6 L T 6 o 6 . 6o 6o 6. B3
3 3 3 3 3 3 3 3
o7p " S It R i Rt s I B I S0 _-%
4 4 A 4 4 _ - ST B 4. 4 (4
................... 2 22222 2R
1 1 1 1 1 1 1 1 1 1
0.5 /
1: ccl 4: fora
-
0.4L 2 spice 5: forf B
3: decO 6: lisp
0.3 s . N . N) 1 .
2 4 8 16 32 64 128 256 512 1024

Memory size (M bytes)

Figure 4: Range of p valuesfor different applications.

ti=hi+m; x P; (2)

where h; = The access time to the i-th level memory when it is a hit, on a missfrom the (i-1)th level.
ti+1 = The penalty incurred when the access to the i-th level is a miss.
The effective access time at level i+ 1.

m; = Probability of missat the i-th level memory. = Local miss ratio at level 1.
Misses in the i-th level
Memory accesses to the i-th level

The global miss rate at memory level i, M;, is defined as:

Misses at the i-th level
Memory accesses generated by the CPU

M;

i
= m1m2~--m,-=]:[mj
=1

The effective memory access time of a system is¢;. In an n-level memory system, t, can be determined
by

t, = hl + my Xtz
= hi +m x (hg + mg x t3)
i—-1
= h1+m1xh2+-~+(]:[mj)t.~ 3)
ji=1
n-1
= h + Z M;_1hi + M, _1t, (4)
i=2

As there is no miss at the last memory level, m,, = 0. Hence, t,, = h,. If we define My = mg = 1 = the
miss rate at the CPU, then

n n
ti=hy +EM.'—1h.'=EMi-1hi (5)
=2 i=1

When compression is performed at the i-th memory level, levels closer to the CPU are unaffected, i.e.,
miss rate and hit time of all levels before i are not affected. Hence,

K=k mp=mi MP=MP 1Si<i

where ¢ denotes the compression approach and nc denotes the non-compression approach. As the only
hardware difference between these two approaches is the decompression hardware between the levelsi — 1
and 1, there is no access delay for levels > i. Hence, for levels after ¢, hit time is not changed

hf=h}e, Vi<j<n

Let At = #7¢—¢{ = the timesavings using compression. Thus, the compression approach is advantageous
only when
At =1t -t >0

Using Equation 3 and expanding until level i, we can derive the condition

At = (ﬁmj)(tpc—tf) (6)
M 1) >0)
6

for when using compression is favorable. Because M;_, = 0 and M;_; is independent of compression, the
only difference between the approachesist?c and t{. Equation 2 indicates that ¢; is afuiiction of k;, mi, and
ti+1. giving a recursive dependence down to level n. We use the following lemmato simplify the recurrence
relation.

The following lemmas prove that compression does not change the local miss rates and the effective
access time of compressed memory levels after level i - We then derive a tradeoff condition to judge when
the compression approach gives better performance than the non-compression counterpart.

Applying Equation 1 to the global miss rate, we obtain

c_ lgC . ‘
M;=p°Mp°, i<j<n
Lemmal: m§=myc for i+1<j<n
Proof: By induction on j fromi+1 ton.
Basis: _
Since M§ = p' MPe, Vjsuch that i< j<nand M; =[[i_, m
M, = mi---mimi,

— ne ne lgC, nc ¢
= mi®--md x p?Umi® x miy,

ne — ne nc ne nc
i1 = My XMyt X myyy
c ne lg C c

a1 mpt xmiy, g
ne - ne nc -

Hence, m{,, = mJ{,.
Hypothesis: Assume that m§ = m}°, viti1<j<e.

I nduction:
M¢ m*pl9C s me.m¢ x m¢
k41 _ ™M P i41 k E+l _ 1gC
ne ne ne . ,nec nc -
Mk+1 m© x mly, me® x mig,

Hence, i, = mg,. Therefore, m{ = m}¢, Vjsuch that iti<j<n.m

Lemma2 : tg=tpc, for it1<j<n
Proof: (by induction)
Basis:
¢ =" = h,, because m;, = mg° =10

Hypothesis: Assumethat ¢ =t7°, V6 <j <n
Induction: Recall that

tior = hi_i+mi_ytf, and

per o= RS tmpc,epe
Since the compression is performed at level i ,we can obtain that

hi =h}°=h;, Vi< j<n,and
and from the previous lemma, m§{ = m}°, Vi< j < n. Hence,

tio1 =15,

Therefore, t§ =t7°, Vi<j<n.m

From Lemmas 1 and 2, the difference between t7*¢ and ¢{ thus relies only on the following.

The compression ratio at the i-th level.
The miss ratio at the i-th level for compression and non-compression approaches
The access delay at the i-th level introduced by the decompression hardware.

Note the memory access time and missrate of level j,for all j > i, have no effect on At. When compression
at the i-th level memory is advantageous, the following conditions can be derived using Lemmas 1 and 2:

;o< 17
hi+mitiy, < RPC+mPl,
hi —hPe < mPeRy, — (P OmPoyg,, (8)
Letting d = h{ — h?*® = the delay due to decompression, and using t¢, ; = 7, = t;,, = B, the savings
from using compression is
tf — 1% = Mi_y [mPeR(1 - p'€) - d] (9)
Thus, compression at level i is advantageous when
d < mPtiy(1-p'9C) =mPP(1-p"°) (10)

Equation 10 indicates that dis directly proportional to mi, missrate at level i, and #;4,, the access time
of level i T 1. For example, if m?*® or t;4, doubles, d is doubled. We now assess two extreme cases, i = n
and 7 =1 as examples as a intuitive check of our analysis.

3.2.2 Cariestudiesofmemory systems

As examples, we evaluate using compression at the extreme ends of the memory hierarchy, namely at the
L1 cache and at secondary storage. We then study the general case, showing our approach is theoretically
feasible when used at main memory for next-generation processors.

Case 1: i = 1. Compression is done at the first level cache so that Equation 10 becomes

d < m}ty(1 - p ©)

In order to assess the feasibility of compression at this level, we use the parameters from Table 2 which
are typical in the early 1990's according to [HP90]. Using Equation 2, t; = h, +m,P, =85-34 cycles.
Let p=0.5-0.8,and C = 1.2 - 2.5, then the extreme values are

mety(1 — p' €) = 0.002 - 3.34 cycles
Even for an optimistic case where ¢ = 2.0 and p = 0.5,
mPe5(1 — p'? €) = 0.04— 3.4 cycles

As a ballpark figure, the allowed decompression delay for a 100 MHz processor would be .02-33.4 nS. Because
of the very :short latency alowed for hardware decompression, compression at the first llevd cache is simply
not feasible

[nce nc _ nc
e hye m3 Py =13

1% — 20% | 4 — 10 cycles | 15% ~ 30% | 30 — 80 cydies

Table 2 Parameters for Case 2

Case?2: i = n,i.e., compression isdone at the n-th memory level. E.g. thefilesystem containscompresses
executables, but memory holds normal executables. As m,, = 0, Equation 10 gives d < 0, which means that
any decompression delay slows down memory performance.

Thus, compression at the n-th level degrades average memory access time, which is expected. Although
memory response timeis not improved by doing compression at the last level, delay is much less than the

hit time on the n-th level. Typically t2:¢, the conventional disk access time, isin the range from 8 msto 20
ms. For a 100 MHz processor, the disk access timeisin the range from 8 x 10° - 2 x 10 cycles. The value
of d is due to extra hardware decompression delay. In other words, tg = t2° > d. Hence,

n-1
t; —t7° = (J[my)ts —ta) =0
i=1

Consequently, the only advantage of compression at this level is to save space.

Case 3: A general analysis. Figure 5 shows the maximum allowed decompression delay if using
compression. isto be effective. For the particular set of parameters (p= 0.7, m x P = 300 CPU cycles), points
on the ‘--’ curve show where compression neither helps nor hurts the average memory access time. Points
below the curve favor compression. As Section 5 will show, we can obtain C =~ 1.5, so that the maximum
allowed decompression delay is about 60 CPU cycles. Asd is proportional to m x P, we can calculate where
compression. is advantageous by simply scaling the graph. For example, if p=0.7,m X P> = 600 CPU cycles,
then d = 120 cycles. From the graph, if the original design has a large miss rate and the miss penalty is
large, a connpression approach gains significant improvement. Clearly, as C' grows, compression becomes
more feasible.

d=m*P*(1-p** (g (C))); m* P =300

300
-- p=0.4
xx p=0.5
250 XX P=2> e
- p=0.6 . eee=mmTTT J
- x X
L8 | _ T xxxxxxx*""x
4 .. p=0.7 POt xxX X
& 200-P - xxxRRR -
= e xxxxx]
= oo p=0.8 PP cxxx
= L xxxx
-~ x
E 150} X XTI T N
() L xXT T e
K= el xxx ____________________
5 I
k> ’ xT e cocoo0¢
3 100} ’/’xx °°o°°°°°°"°°°
1" Sox coo00©c°®°®
=) x - co0©0®
go0©
x oo0©®
"' x oooooo
[e) S x oo© -
S r Loo® o©
x o0 ®
..'.' oO
o ©
O '
1 1.5 2 2.5 3 3.5 4

C = compressionratio

Figure 5: The tradeoff conditions with various miss ratios and miss penalties. P = miss penalty to access
level i+1. m = missrate at level i. p= reduction ratio.

We empirically estimated m X P by measuring local miss ratios using trace-driven simulations. The
miss ratios and memory organization are shown in Table 3. To calculate the average access time and miss
penalty of each memory level, we assumed a 200 MHz processor with a disk access time of 5ms- 15ms and
a memory system with parameters similar to that in [HP90] as shown in Table 4. In thisdesign, we observe
that m x P value for the second level cache range from impractically small (1-3 cycles) to moderate (20-56
cycles). However, m X P for main memory islarge (300 CPU cycles) even with the most pessimistic miss rate
measured and the least disk access time (5ms). With a moderate miss rate 0.05% and 9ms disk access time,
the m x P =z 900 CPU cycles which makes compression a distinct possibility. For example, with p = 0.7 and
C = 1.5, the maximum alowed d is 180 CPU cycles. For a near-future CPU running at 400 MHZ, using
compression becomes even more attractive.

Memory level First level cache Second level cache Main memory
Size (bytes) 8K — 256K 256K — 1M 1M - 1G
Block size (bytes) 4 - 128 4 — 256 256 - 8192
Associativity Direct Direct — Fully associative | Fully associative
local miss rate (%)

cel 0.3100 — 22.3000 0.2076 — 0.4548 0.0305 — 0.0638
decO 0.4200 — 16.3600 0.2249 — 0.4548 0.0519 — 0.157
fora 0.3100 — 8.6700 0.4245 — 0.6000 0.0505 — 0.1290
forf 0.7300 — 14.7500 0.4466 — 0.4637 0.0477 — 0.1411
lisp 0.3200 — 1.7500 0.0611 — 0.0906 0.2710 — 0.3103
spice 0.0600 — 9.0900 0.1276 — 0.5667 0.0293 — 0.0882

Table 3: Local missratesin % of various applications.

CPU speed 200 MHz 400 MHZ

Main memory hit time 50 ns 25ns

Disk access time 5ms-15ms

Memory level 2nd level main 2nd level main
cache memorv cache memory

Avg. access time (cycles) 5-66 310 — 9310 6—122 610 — 18610

Block transfer time (cycles) 2-22 10* — 10" 2—22 2x 107 -2 x 10°

m = Local missrate (%) 0.06 - 0.6 0.03-0.31 0.06- 0.6 0.03-0.31

P = Miss penalty (cycles) | 310-9310 [106 — 3 x 10° || 610 — 18610 | 2 x 10° — 6 x 10°

mx P (cycles) 1-56 300 — 9300 1-112 600 — 18600

Table 4: Design parameter sets.

323 Average Memory Access Time with Block Transfer Time

The effective access time at the i-th level memory t; is still defined as t; = h; + m; x P;. Every term in this
eguation remains the same except P;, which is now defined as

P, = tipz+zin
= The penalty incurred when the access to the i-th level is a miss.
tiy1 — Thelatency time to obtain thefirst datafrom level i +1.
z;41 = Timeto transfer a block from level it 1toleve i.
_ _B; _ Block size at level ¢.

Xiy1 Transfer rate from level i T 1 to level i.

Equation 10 remains applicable, giving the following bound for dp for increased memory performance.
dg < mPtig(1—pYC)+mPai(1-p"°), or

dp < mP(l—p'9) (tigr + zig1) = mPP(1—p¥) (11)

Asshown in Equation 11, the delay time alowed for decompression isincreased when block transfer time
can not be hidden by mechanismssuch as early restart and out-of-order fetch.

4 Design of Memory Systems Using Compression

Our comprassion method requires additional hardware for two reasons, runtime instruction decompression
and translation of uncompressed addresses to compressed addresses. For any compression algorithm, we

10

refer to the mapping from normal symbols to compressed symbols as the codebook. We maintain an address
table and a codebook for each process as shown in Figure 6.

The address translation problem occurs because the compressed instruction stream does not preserve a
linear addressing space. Thus, if we branch to (uncompressed) address A, where do we find A among the
compressed instructions? The address mapping table contains an index into the compressed instructions for
each cache index. For example, if the L2 cache has a line size of 256 bytes and addresses are 32 bits (4 bytes)
wide, then the address table would contain a 32-bit index into the compressed program for every 256 bytes
of code. Thus, the address table would be be 4/256 = 1.6% of the original program size. As we shall see,
this additional overhead reduces the effective compression ratio.

Figure 6 shows that the hardware leaves the data stream intact. Decompression hardware also tracks
whether a programisin compressed form. A selective bypassing capability allows the system to run uncom-
pressed programs. In our example, we have assumed all caches are virtually addressed. The decompression
hardware stores a copy of the current codebook.

OS maintains
2 puinters

for each
CPU m compressed
Program
L1 I—cachj L1 D-cachj

Use n
virtual ‘ Address mapping table
address A
codebook Non-swappable
~cache D-ca R 1—5W
e 12 che Address mapping table regionin (he
main memory
Data stream codebook
always bypass
|
Instruction 1 Decompress HW
atream —’f

sql.ct:l.voly\\ | ”
bypass decode tablell

[

Region for compressed

0S updatesa the Swappable
decode table programs regigr‘],in
switoning themain
Use memory
physical Main
addrass memory page table
Memory Hierarchy Maln Memory Usage

Figure 6: Design of memory system with compression occuring at main memory.

The operating system stores the codebook and the address mapping table in a non-swappable region in
the main memory. On a context switching, the operating system must reload the decode table with the

appropriate codebook.
As an example, we illustrate the sequence of actions for a L2 cache miss for virtual address A.

e A hit at main memory: Look in the address mapping table for the L2 line holding address A. Read
the index X into the compressed instructions in main memory. Since this table is never swapped out,
it cost an extra main memory access latency. The decompression hardware then starts decompression
at index X in main memory.

e A page fault: After translating the virtnal address to a physical address, the operating system detects
a page fault. The page of compressed instructions is loaded from disk into main memory. We then
proceed as above when there is a hit on main memory.

Both the address mapping table and codebook require space in main memory and must be saved with the
compressed program in the filesystem. Therefore, the actual compression ratio must bt: adjusted. Figure 7
shows the adjusted compression ratio as a function of compression ratio and the mapping overhead. Most

11

current workstations have L1 caches of size greater than 32 bytes or 8 instructions for most RISC processors
[HP90]. Thus, the overhead of address mapping will be less than 1/8. To be effective, the L2 I-cache
typically will have much larger size and line size than the L1 I-cache. As the cache size in most workstation
is increased, the block size will change correspondingly. We expect the overhead to be less than 1/32. For
C = 1.5, the adjusted compression ratiois 1.4.

Adjusted C = 1/ ((1/C) + overhead)

3 T T T
overhead= A
solid line: 0 -
o5l Solidline:o S e !
—-:1/32 : : :
B :
a3 YT
Eé Pz : : : —+
-E- 2 - 000> 1/16------- W T
£ : :
a
&
'53 b I SR s 1T v o
@
=
T)
<t
“, ..
1 P i
O'51 1.5 2 25 3

Co}npression ratio (C) of the text segm'ent

Figure 7: Adjusted compression ratio.

5 Compression Methods and Basic Compression Unit

In this section, we address compression requirements and the choice of the smallest unit of code to be
compressed. We also present measurements for a simple compression method suitable for use in a memory
system.

5.1 Decompression requirements

Data compression [Hu52])[LEH87][{ST88][WE84] has been used extensively to reduce datastorage and trans-
mission costs. Recently, data is compressed on secondary storage, with the slight time penalty needed for
decompression morethan offset by theincrease in disk space. Asan example, the operating system MS-DOS
6.0 contains a file-compression utility. These utilities compress the entire executable including instructions,
data, and the symbol table. Before execution, the entire program is decompressed and copied to main
memory. As we have seen compression at the file system level must degrade memory system performance.

Because we will be decompressing fragments (i.e. a cache ling) of a program at runtime, we require a
compression scheme that requires minimal synchronization between compression and decompression. On a
cache missto instruction |, the system must locate I among the compressed instructions and decompress |,
filling the appropriate upstream cache slots. As I might be the target of a branch, | can have an arbitrary
address and the system might not have decompressed neighboring instructions. Thus, the Ziv-Lempel-Welch
(Lzw) algorithm [WE84] is unsuitable because it uses a dynamic codebook for compression/decompression
that is built. during a sequential pass over the data.

12

We only compress read-only items, such as instructions or read-only data. Thus, we do not consider
compressing the writable data stream because data changes as the program executes so that it would have
to be recompressed during a write. We do not know of any fast, effective technique that can compress small
amounts (a cache line) of dynamically changing data. By considering only read-only items, the compression
can be done at compile/link time. At runtime we only need to do decompression.

Our last consideration was the size of the basic compression unit (BCU). A small BCU offers little
opportunity for compression, as there is little repeated information. Hence, a basic block in a program,
normally 3-9 instructions, is not an effective BCU. A small sized procedure has the same potential drawback,
and there is no guarantee a program will not have small procedures. In addition, procedure calls and returns
complicate the use of a procedure as the BCU. Thus, we use an entire program as the BCU.

5.2 Experimental Compression Ratio

In this section, we compare the compression ratios of several compression methods on various Unix exe-
cutable~.We used the entire text segment from an executable as the BCU and fed it to the compression
algorithms. The compression ratios are measured on executable files of a SUN SPARC workstation running
SUN-OS 4.1.1.

After some experimentation, we found that independent compression of the different fields of a machine
instruction performed well. We broke down each instruction by its fields (opcode, operand, jump displace-
ment, immediate value, etc.) [Ro90] and compress each field. For example, an opcode "LD", a register
“r31”, and an immediate value “#4095” all belong to different fields. Each instruction uses only some of
the fields;, e.g. a ADD instruction would not have a jump displacement field. We used this approach of
compressing fields on al the following strategies except LZW.

e Most frequently used (MFU): For each field, we used a f-cache (field-cache) of fixed-size preloaded with
the most frequent values for that field. E.g. an opcode f-cache of size four might be preloaded with
0: emptyl], |1: LOAD] |2 : STORE], |3 : BRANCH| In the compressed instruction stream, each
field is an index into the appropriate f-cache. In the event the field value is not in the f-cache, we use
a specia index (say 0) followed by the actual (uncompressed) value. Thus, the most frequently used
instructions are represented by f-cache indices, and al others result in f-cache misses. Indices into the
f-caches are shorter than the actual fields giving compression.

For each field, we tried different f-cache sizes (always powers of two) and we selected the size providing
the best compression. The sizes of the f-caches differed depending on the field. Larger f-cache sizes
reduce the "miss rate" increasing compression, but require larger indices decreasing compression.

The MFU method isideal for use in a memory system, as the decompression hardware is always "in
sync" because the MFU f-caches are fixed. MFU lends itself to a straight forward implementation of
the decompression hardware.

e Static Huffman coding: We estimated the effect of independently compressing each instruction field
via Huffman coding. We underestimated the compressed size by calculating the entropy of each field
and then adding the space required for the Huffman trees.

e Compression bound: We calculated the entropy for each field, giving a theoretical upper bound for
compression schemes that independently compress each field. For field k (say the jump displacement
field) with possible values f1, fa,...,f,,, the entropy is Hx = 3., — Pr(f:)log, Pr(fi), where Pr(f;)
is the probability off; occurring, given that field k exists. The entropy for the entire instruction isthe
sum of the entropies for each field. Note that by adding the space for a Huffman encoding tree, we get
the Huffman bound.

While better compression might be possible by viewing instructions differently, our measurements
indicate our bound isfairly good (making it difficult to beat in practice).

e Lempel-Ziv-Welch (LZW) [WEB4]. We also measured the popular LZW algorithm used by the UNIX
utility. conpress. The LZW result is used only as a comparison point as LZW is unsuitable for our
purposes, as previously mentioned in Section 5.1.

13

5.3 Results of Compression Methods

Filename Orig || MFU + MFU | Comp || Huffman | Comp || Comp | Comp LZW | Comp
f-cache only

size size size | ratio size | ratio || bound | ratio size | ratio
chgrp 4680 3316 2961 | 141.1 3087 | 151.6 2076 | 225.4 3218 | 1454
cmp 3968 2816 2547 | 140.9 2614 | 151.8 1720 | 230.7 2704 | 146.7
cp 5616 3956 3601 | 142.0 3674 | 152.9 2412 | 232.8 3826 | 146.8
env 2224 1688 1563 | 131.8 1552 | 143.3 978 | 227.4 1602 | 138.8
hostid 1096 843 808 | 130.0 795 | 137.9 469 | 233.7 784 | 139.8
kill 2856 2135 2021 | 133.8 1983 | 144.0 1289 | 221.6 1975 | 144.6
1dd 2864 2131 1771 | 1344 1965 | 145.8 1232 | 2325 2026 | 141.4
xfig 1040384 || 806122 | 801482 | 129.1 717880 | 144.9 || 556048 | 187.1 (| 660188 | 157.6
bash 278528 196290 | 193826 | 141.9 173741 | 160.3 || 128120 | 217.4 || 164398 | 169.4
bibtex 122880 81969 | 81095 | 149.9 71765 | 171.2 53339 | 2304 75547 | 162.7
archie 32768 17651 | 17225 | 185.6 16183 | 202.5 11108 | 295.0 16959 | 193.2
detex 24576 14032 | 13589 | 175.1 12546 | 195.9 8800 | 279.3 12550 | 195.8
dvips 98304 68330 | 67516 | 143.9 61698 | 159.3 45961 | 213.9 63933 | 153.8
f2c 270336 181267 | 180098 | 149.1 158632 | 170.4 || 111538 | 242.4 || 137398 | 196.8
flex 81920 54209 | 53419 | 151.1 48681 | 168.3 35976 | 227.7 50490 | 162.2
gee 49152 29946 | 29504 | 164.1 26080 | 188.5 17770 | 276.6 24127 | 203.7
gdb 466944 || 326756 | 324626 | 142.9 287185 | 162.6 || 200742 | 232.6 || 240985 | 193.8
yacc 49152 29723 | 29396 | 165.4 26765 | 183.6 18992 h8.8 27594 | 178.1
SCC 212992 156458 | 155195 | 136.1 140014 | 152.1 || 104506 | 203.8 || 138629 | 153.6
as 180224 128720 | 127558 | 140.0 113925 | 158.2 84536 | 213.2 || 109619 | 164.4
cc 81920 53524 | 52978 | 153.1 47037 | 174.2 36586 | 223.9 46646 | 175.6
cpp 163840 117271 | 116577 | 139.7 106970 | 153.2 78687 | 208.2 || 100479 | 163.1
ex 196608 144315 | 141788 | 136.2 128144 | 153.4 96002 | 204.8 || 131211 | 149.8
1d 122880 83341 | 82078 | 147.4 73754 | 166.6 54828 | 224.1 73017 | 168.3
nawk 106496 77646 | 76853 | 137.2 70561 | 150.9 54359 | 195.9 73603 | 144.7
emacs 1327104 || 880325 | 875902 | 150.8 783179 | 169.5 || 587737 | 225.8 || 706037 | 188.0
idraw 786432 || 549372 | 545286 | 143.2 469971 | 167.3 || 366864 | 214.4 || 351191 | 223.9
ghostview | 835584 || 645307 | 640875 | 129.5 577669 | 144.6 || 438736 | 190.5 || 532519 | 156.9
virtex 237568 171996 | 170421 | 138.1 153821 | 154.4 || 115574 | 205.6 || 159686 | 148.8
77 57344 36406 | 35860 | 157.5 32115 | 178.6 24938 | 229.9 31923 | 179.6
pc 196608 147094 | 145831 | 133.7 131868 | 149.1 98107 | 200.4 || 126343 | 155.6
m2¢ 57344 35966 | 35420 | 159.4 31789 | 1804 24431 | 234.7 31670 | 181.1
csh 139264 97356 | 95874 | 143.0 87119 | 159.9 65849 | 211.5 87775 | 158.7
sh 90112 61050 | 59784 | 147.6 54384 | 165.7 36740 | 245.3 51393 | 175.3
lex 49152 30844 | 30293 | 1594 27782 | 176.9 19974 | 246.1 28762 | 170.9

Table 5: Experimental compression ratios. All sizes in bytes; all compression ratiosin percent.

Table 5 shows compression ratios of various fileson a SUN4. The original size of the text (code) segment,
is listed. The size for MFU compression includes the space for the preloaded f-cache values. For smaller
programs, the overhead due to the preloaded f-caches significantly decreased the compression ratio. For larger
programs, MFU had an compression ratio of roughly 150%, including the space for the f-caches codebook.

The size for static Huffman coding includes the size of the Huffman tree. The compression bound gives
the projected best possible compression. The majority of the difference between Huffman encoding and the
compressiont bound is due to the Huffman tree, which amounts to roughly 1/3 of the compression bound
size. The compression ratio of Huffman encoding is always greater than the simple MFU encoding.

We also listed the compression ratio of LZW compression method. For small to medium size programs,

14

the Huffman encoding performs slightly better than LZW encoding. For large programs, LZW usually gives
better compression ratios.

6 Conclusion

We have analyzed the effect of using compression in a memory system on the average system access time.
We have found that if a compression ratio of around 1.5 can be achieved, compression is feasible at main
memory for computers of today. We also found that the benefit from compression is quite sensitive to the
miss ratio and miss penalty at the level of compression.

We proposed a memory system design to deal with instruction decompression and address translation
and suggested OS support for this particular design. This design is capable of running compressed and
uncompressed programs. This capability provides a way to utilize compression when it improves memory
performance.

We have also measured the compression ratios of several different compression techniques. A simple
compression method using a f-cache of MFU values achieved compression ratios of 15096. A static Huffman
encoding gives even better compression ratios. With miss penalties increasing in future systems, we believe
using compression in the memory system will only become more viable as time progresses.

7 Acknowledgements

We thank Glary Lauterbach for his comments.

Refer ences

[AGSH86] Agarwal, A.,Sites, R., and Horowitz, M. ATUM: A New Technigue for Captaring Address Traces
Using Microcode. Proceedings of the 13th Annual Symposium on Computer Architecture, June 1986,
pp. 119-127.

[FLMMS87] Flynn, M. J., Mitchell, C., Mulder, H., And Now a Case for More Cemplez Instruction Sets.
|EEE Computer, Sep. 1987, pp. 71-83

[HP90] Hennessy, J. L., Patterson, D. A., Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, 1990.

[H188] Hill, M. D., A Case for Direct-Mapped Caches. |IEEE Computer, Dec. 1988, pp. 25-40.

[Hu52] Huffman, D. A., A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE, 40(9),
1952, pp. 1098-1101.

[LEH87] Lelewer, D. A., Hirschberg, D. S., Data Compression. ACM Computing Surveys, Vol. 19, No. 3,
Sep. 1987, pp. 261-296.

[PRHHS88] Przybylski, S., Horowitz, M., Hennessy, J., Performance Tradeoffs in Cache Design. Proceedings
of the 15th Annual International Symposium on Computer Architecture, 1988, pp. 290-298.

[PrRHHS89] Przybylski, S., Horowitz, M., Hennessy, J., Characteristics of Performance-Optimal Multi-Level
Cache Hierarchies. Proceedingsof the 16th Annual International Symposium on Computer Architecture,
1989, pp. 114-121.

[PrRY0] Przybylski, S., Cache and Memory Hierarchy Design: a Performance-Directed Approach. Morgan
Kaufmann Publishers, 1990

[Ro90] ROSS Technology, Inc., SPARC RISC User's Guide. Cypress Semiconductor Corporation, 2nd Ed.,
Feb., 1'990

15

[SHL88] Short, R. T., Levy, H., A Simulation Study of Two-Level Caches. Proceedings of the 15th Annual
International Symposium on Computer Architecture, 1988, pp. 81-88.

[SM82] Smith, A. J., Cache Memories. ACM Computing Survey, Vol.14, No. 3, Sep. 1982.

[ST89] Steenkiste, P., The Impact of Code Density on Instruction Cache Performance. Proceedings of the
16th Annual International Symposium on Computer Architecture, 1989, pp. 252-259.

[ST88] Storer, J. A., Data Compression: Methods and Theory. Computer Science Press, 1988.

[WAF87] Wakefield, S. P., Flynn, M. J., Reducing Execution Parameters Through Correspondence in Com-
puter Architecture. IBM J. Res. Develop., Val. 31, No. 4, July 1987, pp. 420-434

[WE84] Welch, T. A., A Technique for High-Performance Data Compression. |[EEE Computer, Jun. 1984,
pp. 8-19.

16

	Purdue University
	Purdue e-Pubs
	11-1-1993

	The Feasibility of Using Compression to Increase Memory System Performance
	Jenlong Wang
	Russell W. Quong

