
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

11-1-1993

The Feasibility of Using Compression to Increase
Memory System Performance
Jenlong Wang
Purdue University School of Electrical Engineering

Russell W. Quong
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Wang, Jenlong and Quong, Russell W., "The Feasibility of Using Compression to Increase Memory System Performance" (1993). ECE
Technical Reports. Paper 246.
http://docs.lib.purdue.edu/ecetr/246

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4947869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages

THE FEASIBILITY OF USING

COMPRESSION TO INCREASE

MEMORY SYSTEM PERFORMANCE

TR-EE 93-37
NOVEMBER 1993

The Feasibility of Using Compression to
Increase Memory System Performance

Jenlong Wang and Russell W. Quong
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

{wangj ,quong)@ecn.purdue.edu

November 9, 1993

The Feasibility of Using Compression to
Increase Memory System Performance

Abs t rac t

We investigate the feasibility of using instruction compression at some level in a multi-level memory
hierarchy to increase memory system performance. For example, compressing at main memory means
that main memory and the file system would contain compressed instructions, but upstream caches would
see normal uncompressed instructions. Compression effectively increases the memory size and the block
size reducing the miss rate at the expense of increased access latency due to decompression delays. We
present a simple compression scheme using the most frequently used symbols and evaluate it with several
other compression schemes. On a SPARC processor, our scheme obtained compression rirtio of 150% for
most programs.

We analytically evaluate the impact of compression on the average memory access (ime for various
memory systems and compression approaches. Our results show that feasibility of using compression
is sensitive to the miss rates and miss penalties at the point of compression and to a lesser extent the
amount of compression possible. For high performance workstations of today, compression already shows
promise; as miss penalties increase in future, compression will only become more feasible.

Keywords: Memory system performance, multi-level memory system, cache, data compression.

1 Introduction
As the ratio of processor speeds to memory speeds continues t o rise, design of faster memory systems has be-
come a crucial of computer systems design. Multi-level memory hierarchies [H I ~ ~] [P R H H ~ ~ : I [P R H H S S : ~ [S H L ~ ~]
are the standard way t o reduce average memory access t ime in a cost-effective manner. A memory hierarchy
uses one or more levels of cache between the processor and the main memory to reduce ithe average memory
access time. Fast, small upstream caches match the processor's speed, while larger, downstream caches
reduce traffic t o slower main memory.

T h e average access t ime of a cache is function of its hit time, miss rate, and miss penalty. We can reduce
the miss rat': of a cache either by making cache bigger or by making the program smaller. The latter can be
done in two ways.

1. Use ax1 instruction set [F L M M ~ ~ , W ~ F 8 7 1 with a higher code density. Unfortunately, designing an
instruction set is a complicated issue as i t affect many areas of the system including the processor
decoding complexity, and memory traffic. Also, from a commercial standpoint, a new instruction is
undesirable because it will not be compatible with previous designs.

2. Compiress the instruction stream. This approach are tha t it can be used with any processor, so
t h a t backward instruction-set compatibility can be maintained if desired. A small amount additional
hardware is needed.

We consi.der the second approach in this paper. Namely, we investigate improving :system performance
by compressing instructions in a multi-level memory hierarchy. Our approach is transparent to the processor
in tha t i t sees normal instructions. We require extra hardware for runtime decompiression and address
translation. Use of compression will also reduce executable sizes on disk, however we are not concerned with
this side effect. Finally, we do not consider compressing da ta , only instructions.

This paper is organized as follows. In Section 2, we illustrate our memory model using compression. In
Section 3, wls derive formulas showing when compression is advantageous given various parameters and show
that the use of compression is feasible now for t,oday's fastest processors. We discuss the ;additional hardware
needed for our method in Section 4. Finally, in Section 5 we evaluate several different compression schemes.

2 Mernory Hierarchy Model
In this section, we describe the memory hierarchy used in our study. Figure 1 shows the memory hierarchy
models with and without compression. The memory contents before or upstream of level i, (i.e. closer t o the

CPU) are the same for both approaches, so that the processor sees the same set of inlput symbols in both
approaches. The memory contents of all levels after level i are also compressed in the compression approach.
There is no architectural difference between these two approaches other than the decolnpression hardware.
Compress ion at level i denotes that the decompression is done between levels i - 1 and i as in Figure 1. In
the compre!ssion approach, the compiler (or compression software) creates an executal~le with compressed
instructions; a t the runtime, decompression hardware in the memory system restores the original instructions.
To be feasible, we must be able to build a fast hardware realization of the decompression algorithm.

Conventional Memory Hierachy:

Ci-1) th
i-th level Ci+l) th n th level
memory level mem. level mem

memory

4 - - - - - - -
Faster but smaller

------- -
Slower but larger

Memory Hierachy with Compression at Level i :

(i-1) th
level i-th level (#+I) th n th

memory memory level mem. Level mem
7 - - - - - - - - - - - 1

-----___ - - - - - - - - - I :
I

HD
4 I

I I '
I ----_ I I I

Hardware --
decompression -. --.

Effective sizes after comprs:sslon - - - - - - - - ------- -
Faster but smaller Slower butt larger

Figure 1: Memory hierarchy models for the compression and non-compression approaches.

We defin.e the compress ion rat io as the increase in effective m e m o r y size increase due to compression.
Thus, if the compressed instructions are 114 the size of the original, the compression ratio = four, because
the same mc:mory can hold four times as much information.

Original size
Compression ratio =

Compressed size

The effec:tiveness of compression at a particular level depends on the following facto:rs.

1. The capacity and miss rate of that level.

2. The miss penalty of that level.

3. The increase in miss penalty due to hardware decompression.

4. The compression ratio and the effectiveness of compression in reducing the miss rate.

For a given design space, these factors are interdependent, because as memory size in'creases, access time
increases, but miss rate decreases. The compression ratio dictates the effective capacity increase, and the
compression/decompression methods impose various decoding delays.

We use the following definitions in the rest of this paper. A compressed level is memory level that
contains cornpressed code; a normal or vncompressed level contains uncompressed code. In comparing a
memory sys1;em using compression versus a normal memory syst,em, we make the following assumptions.

Both systems use the same processor and the same memory organization except the compression
approach has extra decompression hardware. The same memory size, associativity, blocklline size, and
replacement policy is used in both systems.

The effect of memory misalignment caused by compression is neglected. The misalignment penalty can
be mi:nimized by adding hardware, and it can be considered as part of the decompression delay.

The tracluston principle holds: The contents of level i are always in level j for all i < j < n, where n is
the number of levels in the memory hierarchy.

Uniformity condition: Compression changes the code density of all program parts equally, independent
of how often they are executed. The uniformity condition is not true for individual instructions but is
shown to be approximately true for extended basic blocks[S~89].

An important question to ask is "At which level should we decompress the program?" We answer this
question in Che next section where we will model the memory hierarchy and quantitatively predict the benefits
of using compression.

3 Tradeoff Between Compression Ratio and Average Memory
Access Time

Although compression increases the effective memory size, it also introduces a decoding penalty. Based on
empirical da.ta, we use a simple equation to parameterize relationship between the compi:ession ratio and the
reduction in miss rate. We use this relationship to determine the change in average access time when using
compression a t the i-th level memory and the effect on adjacent memory levels.

3.1 A Model for Miss Ratio versus Effective Memory Size

We assume 1;he global miss rate at memory level i changes as the (effective) memory size raised to the power
logp as desc:ribed by Equation 1. Alternatively, Equation 1 shows the miss rate is reduced by the compression
ratio raised to the power logp.

where m: = miss rate at level i of the new memory size and new block size.
mi = miss rate at level i of the original memory size.
C = original size / compressed size = size increase ratio

l g 2 = log2 2 function
p = reduction ratio = m:/mi where both new size and new block size are twice

of the original values.
In Equation 1, the parameter p indicates how much the miss rate decreases when both the memory size

and the line is size is doubled. For example, p = 0.3 means that doubling the memory size and block size
will reduce the miss rate to 3/10 of its previous value. Note that 0 5 p 5 1 and C > 11. For a fixed C, as
p decreases the new miss rate decreases as well. For a fixed p, as C increases the new :miss rate decreases.
Therefore, smaller p values (and larger C) values are "good" in that the miss rate decreases quickly.

We used trace-driven simulation to empirically estimate the value of p for various programs. Table 1
describes th'e four ATUM cache traces [A G S H ~ ~] and two other traces, spice and ccl we used. Using a
cache simulator, we gathered the instruction miss information for different cache and block sizes. The value
of p for a 4k cache with an 8-byte block size is denoted by hk /g and is given by pnt/g = :=, where m a k / l ~
is the miss]:ate of an 8k cache with block size of 16 bytes. We define the other p values similarly. Note
that an important effect of compressing instrlictions is that the effective line size increarses by C also. E.g.
if C = 4, a 92 byte line in a compressed cache has an effective line size of 128 bytes.

Table 1: Trace used to evaluate reduction ratio.

For the lthese programs, we found most p values ranged from 0.4 to 0.7 as shown in Figures 2-4, which
was somewh.at lower than we had expected. The reason p is so low is that the compression increases both the
effective memory size and the effective line size. Figure 2 shows p values for different cache sizes and a line
size of 8 bytes; Figures 3 and 4 shows p values for line sizes of 32 and 2048 bytes respectively. In Figure 4,
we model main memory with the 2048 byte block size corresponding to a memory page. We observe that y
values are constant for each application, as the only misses occur at startup, as the melnory sizes are much
larger than the number of distinct addresses in the traces. Thus, the increased line size from compression
accounts enliirely for the reduction in miss rate.

Range of p for block size - 8 bytes (Dir-c-Mapped)
0.9

1: ccl

2: spice

3 : decO
6 6 6 . .

5: forf

0.2 1 I
2 4 8 16 32 64 128 256 512

Cache size (K bytes)

o.6 - 6: lisp

CZ

0.5 -

0.4 -

Figure 2: Range of p values in different applications.

0.3

3.2 Evaluation of Systems With or Without Compression

..... .:
2 ".... - 6' 2

In this secticm, we analyze the average memory access time both with and without considlering block transfer
time. First, we ignore block transfer time, assuming early restart and out-of-order fetch [HP90, page 4581.
We then consider block transfer time. In both cases, we gives formulas for the average lnemory access time
as a function of C, p and the decompression time d .

We use effective memory access time as our performance metric to evaluate different memory systems.
Since we examine the instruction stream only, compression has no effect on the access time for data reads and
writes. Hereafter, the analysis concentrates on the time for instruction fetches. In the following analysis, a
subscript de:notes the memory level and a superscript denotes a compression or a non-compression approach,
e.g. rnC versus rnnC.

3.2.1 Average M e m o r y Access T i m e wi thou t Block Transfer T i m e

The effective access time at the i-th level memory ti is defined as

Range of p for block size = 32 bytes (Direct-Mapped)

1: cc l 4: fora

2: spice 5: forf

3: dec0 6: lisp

6 .. 6
6

6

Cache size (K bytes)

Figure 3: Range of p values in different applications.

Range of p for block size = 2048 bytes (Fully-Associative)

0.9 91

0-5 1 1: cc l 4: fora 1
2: spice 5: forf

3: decO 6: lisp

Memory size (M bytes)

Figure 4: Range of p values for different applications.

where hi = The access time to the i-th level memory when it is a hit, on a miss from the (i-1)th level.

Pi = ti+1 = The penalty incurred when the access to the i-th level is a miss.
= The effective access time at level i + 1.

mi = Probability of miss a t the i-th level memory. = Local miss ratio at level i .

- - Misses in the i-th level
Memory accesses to the i-th level

The glollal miss rate at memory level i, Mi, is defined as:

Misses at the i-th level
Mi =

Memory accesses generated by the CPU
i

The effective memory access time of a system is t l . In an n-level memory system, t can be determined
by

As there is no miss at the last memory level, m, = 0. Hence, t , = hn. If we define Mo = mo = 1 = the
miss rate at the CPU, then

n n

When compression is performed at the i-th memory level, levels closer to the CPU are unaffected, i.e.,
miss rate artd hit time of all levels before i are not affected. Hence,

where c denotes the compression approach and nc denotes the non-compression aplproach. As the only
hardware difference between these two approaches is the decompression hardware between the levels i - 1
and i , there is no access delay for levels > i. Hence, for levels after i, hit time is not changed

Let At =I tyc - i t = the time savings using compression. Thus, the compression approach is advantageous
only when

At = t;" - t ; > 0

Using Equation 3 and expanding until level i , we can derive the condition

for when using compression is favorable. Because Mi-l > 0 and Mi-, is independent of compression, the
only difference between the approaches is tyc and t i . Equation 2 indicates that ti is a fuiiction of hi, mi, and
t i t l . giving a recursive dependence down to level n. We use the following lemma to siniplify the recurrence
relation.

The follmowing lemmas prove that compression does not change the local miss rates and the effective
access time of compressed memory levels after level i. We then derive a tradeoff condition to judge when
the compression approach gives better performance than the non-compression counterpart.

Applyinl: Equation 1 to the global miss rate, we obtain

Lemma 1 : mi = myc, for i+ 15 j 5 n

Proof: By induction on j from i + 1 to n.
Basis:
Since MJ = p'g CMTC, V j such that i 5 j 5 n and Mj = n;=, ml

Hence, mt+:[= my;l.
Hypothesis: Assume that m j = myc, V i + 1 5 j 5 6.
Induct ion:

Hence, m i t l = mi!, . Therefore, mi = myC, V j such that i + 1 5 j 5 n. H

Lemma 2 : t j = tyC, for i + 1 5 j 5 n

Proof: (by induction)
Basis:

tz = t:C = h,, because mz = mEC = 0

Hypothesis: Assume that t i = t?", V 6 5 j 5 n
Induction: Recall that

ti-1 = hi-, + mi-, t i , and

tgC1 = h;!, + mtClt;"

Since the cc~mpression is performed at level i, we can obtain that

and from the previous lemma, m j = myc, V i < j < n. Hence,

n c t i-1 = it-1

Therefore, t j = tYC, V i < j 5 n .

From Lemmas 1 and 2, the difference between tyC and t t thus relies only on the following.

The compression ratio at the i-th level.

The nriss ratio at the i-th level for compression and non-compression approaches

The access delay a t the i-th level introduced by the decompression hardware.

Note the memory access time and miss rate of level j, for all j > i , have no effect on At. When compression
at the i-th level memory is advantageous, the following conditions can be derived using Lemmas 1 and 2:

Letting ti = h: - h l c = the delay due to decompression, and using tic+, = t l i l = ti+l = Pi, the savings
from using (:ompression is

t4 - t;" Mi-l [m l c R (l - pig ') - d] (9)
Thus, compression a t level i is advantageous when

Equatioii 10 indicates that d is directly proportional to mi, miss rate at level i, and the access time
of level i + 1. For example, if myc or t;+l doubles, d is doubled. We now assess two extreme cases, i = n
and i = 1 as examples as a intuitive check of our analysis.

3.2.2 C a r i e s t u d i e s o f m e m o r y sys tems

As examples, we evaluate using compression at the extreme ends of the memory hiera.rchy, namely a t the
L1 cache and a t secondary storage. We then study the general case, showing our apprloach is theoretically
feasible when used a t main memory for next-generation processors.

Case 1: i = 1. Compression is done at the first level cache so that Equation 10 becomes

In order t o assess the feasibility of compression a t this level, we use the parameters from Table 2 which
are typical in the early 1990's according to [HP90]. Using Equation 2, t2 = h2 + m2f i = 8.5 - 34 cycles.
Let p = 0.5 - 0.8, and C = 1.2 - 2.5, then the extreme values are

m;"tz(l - p'g ') = 0.002 - 3.34 cycles

Even for an optimistic case where C = 2.0 and p = 0.5,

myCt2(1 - ') = 0.04 - 3.4 cycles

As a ballpark figure, the allowed decompression delay for a 100 MHz processor would be .02-33.4 nS. Because
of the very :short latency allowed for hardware decompression, compression a t the first llevel cache is simply
not feasible

Table 2: Parameters for Case 2

my

C a s e 2: i = n, i.e., compression is done at the n-th memory level. E.g. the filesystem contains compresses
executables, but memory holds normal executables. As m, = 0, Equation 10 gives d < 0, which means that
any decompression delay slows down memory performance.

Thus, cclmpression at the n-th level degrades average memory access time, which is expected. Although
memory response time is not improved by doing compression at the last level, delay is much less than the

1% - 20% 1 4 - 10 cycles 1 15% - 30% 1 30 - 80 cycles
h y my I P2nC = tge

hit time on the n-th level. Typically t i C , the conventional disk access time, is in the ra:nge from 8 ms to 20
ms. For a ISDO MHz processor, the disk access time is in the range from 8 x lo5 - 2 x 11D6 cycles. The value
of d is due t,o extra hardware decompression delay. In other words, th R t i C >> d. Hence:,

Consequently, the only advantage of compression a t this level is to save space.

Case 3: A general analysis. Figure 5 shows the maximum allowed decompression delay if using
compression. is to be effective. For the particular set of parameters (p = 0.7, m x P = 300 CPU cycles), points
on the '--' curve show where compression neither helps nor hurts the average memory access time. Points
below the curve favor compression. As Section 5 will show, we can obtain C R 1.5, so that the maximum
allowed decompression delay is about 60 CPU cycles. As d is proportional to m x P, we can calculate where
compression. is advantageous by simply scaling the graph. For example, if p = 0.7, m x I' = 600 CPU cycles,
then d = 1:!0 cycles. From the graph, if the original design has a large miss rate and the miss penalty is
large, a connpression approach gains significant improvement. Clearly, as C grows, compression becomes
more feasible.

C = compression ratio

Figure 5: The tradeoff conditions with various miss ratios and miss penalties. P = m.iss penalty to access
level i + 1. m = miss rate a t level i. p= reduction ratio.

We empirically estimated na x P by measuring local miss ratios using trace-driven simulations. The
miss ratios and memory organization are shown in Table 3. To calculate the average a.ccess time and miss
penalty of each memory level, we assumed a 200 MHz processor with a disk access time: of 5ms - 15ms and
a memory s,ystem with parameters similar to that in [HP90] as shown in Table 4. In this design, we observe
that m x P value for the second level cache range from impractically small (1-3 cycles) to moderate (20-56
cycles). However, m x P for main memory is large (300 CPU cycles) even with the most pessimistic miss rate
measured and the least disk access time (5ms). With a moderate miss rate 0.05% and 9ms disk access time,
the m x P == 900 CPU cycles which makes compression a distinct possibility. For example, with p = 0.7 and
C = 1.5, the maximum allowed d is 180 CPU cycles. For a near-future CPU running at 400 MHz, using
compression becomes even more attractive.

First level cache Second level cache
8K - 256K 256K - 1M

4 - 128 4 - 256
Direct Direct - Fully associative

local miss rate (%)

Table 3: Local miss rates in % of various applications.

200 MHz
50 ns

5 ms - 15 ms
2nd level I main 1 1 2nd level I

I I I cache I memorv 1 1 cache I ~memorv 1 1
access time (cycles)
transfer time (cycles)

miss rate (%)

Table 4: Design parameter sets.

\ ,

Miss penalty (cycles)
m x P (cycles)

3.2.3 Average M e m o r y Access T i m e wi th Block Transfer T i m e

5 - 66
2 - 22

0.06 - 0.6

The effectiv'e access time at the i-th level memory ti is still defined as ti = hi + mi x Pi. Every term in this
equation remains the same except Pi, which is now defined as

310 - 9310
1 - 56

= The penalty incurred when the access to the i-th level is a miss.

310 - 9310
lo4 - 10"

0.03 - 0.31

ti+1 = The latency time to obtain the first data from level i + 1.

6 - 122

0.06 - 0.6
lo6 - 3 x
300 - 9300

= Time to transfer a block from level i + 1 to level i .

- -- Bi Block size at level i.
- -

Xi+l Transfer rate from level i + 1 to level i.

10"lO

Equation 10 remains applicable, giving the following bound for dB for increased me~mory performance.

- 18610 2 x
1 - 112

As shown in Equation 11, the delay time allowed for decompression is increased when block transfer time
can not be hidden by mechanisms such as early restart and out-of-order fetch.

4 Design of Memory Systems Using Compression

Our comprassion method requires additional hardware for two reasons, runtime instrulction decompression
and translation of uncompressed addresses to compressed addresses. For any compression algorithm, we

refer to the mapping from normal symbols to compressed symbols as the codebook. We maintain an address
table and a codebook for each process as shown in Figure 6.

The address translation problem occurs because the compressed instruction stream does not preserve a
linear addressing space. Thus, if we branch to (uncompressed) address A, where do we find A among the
compressed instructions? The address mapp ing table contains an index into the compressed instructions for
each cache index. For example, if the L2 cache has a line size of 256 bytes and addresses are 32 bits (4 bytes)
wide, then the address table would contain a 32-bit index into the compressed program for every 256 bytes
of code. Thus, the address table would be be 41256 = 1.6% of the original program size. As we shall see,
this additioinal overhead reduces the effective compression ratio.

Figure 6 shows that the hardware leaves the data stream intact. Decompression h~ardware also tracks
whether a program is in compressed form. A selective bypassing capability allows the system to run uncom-
pressed programs. In our example, we have assumed all caches are virtually addressed. The decompression
hardware stores a copy of the current codebook.

Usr
v i r t u a l
addrmra

Non-swappabk
region in (he
main memory

Swappable
region in
the main
memory

Memory Hierarchy Maln Memory Usage

Figure 6: Design of memory system with compression occuring at main memory.

The operating system stores the codebook and the address mapping table in a non-swappable region in
the main memory. On a context switching, the operating system must reload the decode table with the
appropriate codebook.

As an example, we illustrate the sequence of actions for a L2 cache miss for virtual address A.

A hit a t main memory: Look in the address mapping table for the L2 line ho1di:ng address A. Read
the index X into the compressed instructions in main memory. Since this table is never swapped out,
it cost an extra main memory access latency. The decompression hardware then starts decompression
at index X in main memory.

A page fault: After translating the virtnal address to a physical address, t.he operating system detects
a page fault. The page of compressed instructions is loaded from disk into maill memory. We then
proceed as above when there is a hit on main memory.

Both the address mapping table and codebook require space in main memory and must be saved with the
compressed program in the filesystem. Therefore, the actual compression ratio must bt: adjusted. Figure 7
shows the adjusted compression ratio as a filnct,ion of compression ratio and the mapping overhead. Most

current worlcstations have L1 caches of size greater than 32 bytes or 8 instructions for most RISC processors
[HP90]. Tlius, the overhead of address mapping will be less than 118. To be effeci,ive, the L2 I-cache
typically will1 have much larger size and line size than the L1 I-cache. As the cache size in most workstation
is increased, the block size will change correspondingly. We expect the overhead to be less than 1/32. For
C = 1.5, the adjusted compression ratio is 1.4.

Adjusted C = 1/ ((l/C) + overhead)

Figure 7: Adjusted compression ratio.

5 Connpression Methods and Basic Compression Unit
In this section, we address compression requirements and the choice of the smallest unit of code to be
compressed. We also present measurements for a simple compression method suitable for use in a memory
system.

5.1 Dec:ompression requirements

Data compression [H u ~ ~] [L E H ~ ~] [S T ~ ~] [W E ~ ~] has been used extensively to reduce data storage and trans-
mission cos1;s. Recently, data is compressed on secondary storage, with the slight time penalty needed for
decompression more than offset by the increase in disk space. As an example, the operating system MS-DOS
6.0 contains a file-compression utility. These utilities compress the entire executable including instructions,
data, and the symbol table. Before execution, the entire program is decompressed and copied to main
memory. As we have seen compression at the file system level must degrade memory system performance.

Because we will be decompressing fragments (i.e. a cache line) of a program a t runtime, we require a
 compression^ scheme that requires minimal synchronization between compression and decompression. On a
cache miss t o instruction I, the system must locate I among the compressed instructions and decompress I,
filling the appropriate upstream cache slots. As I might be the target of a branch, I can have an arbitrary
address and the system might not have decompressed neighboring instructions. Thus, the Ziv-Lempel-Welch
(LZW) algorithm [WE841 is unsuitable because it uses a dynamic codebook for compre:;sion/decompression
that is built during a sequential pass over the data.

We only compress read-only items, such as instructions or read-only data. Thus, we do not consider
compressing the writable data stream because data changes as the program executes so that it would have
to be recompressed during a write. We do not know of any fast, effective technique that can compress small
amounts (a cache line) of dynamically changing data. By considering only read-only items, the compression
can be done at compile/link time. At runtime we only need to do decompression.

Our last consideration was the size of the basic compression unit (BCU). A small BCU offers little
opportunity for compression, as there is little repeated information. Hence, a basic l>lock in a program,
normally 3-19 instructions, is not an effective BCU. A small sized procedure has the same potential drawback,
and there is no guarantee a program will not have small procedures. In addition, procedure calls and returns
complicate tihe use of a procedure as the BCU. Thus, we use an entire program as the BCU.

5.2 Experimental Compression Ratio

In this section, we compare the compression ratios of several compression methods om various Unix exe-
cutable~. We used the entire text segment from an executable as the BCU and fed it to the compression
algorithms. The compression ratios are measured on executable files of a SUN SPARC workstation running
SUN-OS 4.1 . l .

After some experimentation, we found that independent compression of the different fields of a machine
instruction]performed well. We broke down each instruction by its fields (opcode, operand, jump displace-
ment, immediate value, etc.) [R090] and compress each field. For example, an opcode "LD", a register
"r31", and <an immediate value "#4095" all belong to different fields. Each instruction uses only some of
the fields; e.g. a ADD instruction would not have a jump displacement field. We used this approach of
compressing fields on all the following strategies except LZW.

Most frequently used (MFU): For each field, we used a f-cache (field-cache) of fixed-size preloaded with
the m'ost frequent values for that field. E.g, an opcode f-cache of size four might be preloaded with
--,
10 : e r 4 , I 1 : LOAD 1, 12 : STORE 1, 13 : BRANCH I. In the compressed instruction stream, each
field if; an index into the appropriate f-cache. In the event the field value is not in the f-cache, we use - - -

a special index (say 0) followed by the actual (uncompressed) value. Thus, the most frequently used
instructions are represented by f-cache indices, and all others result in f-cache misses. Indices into the
f-caches are shorter than the actual fields giving compression.

For each field, we tried different f-cache sizes (always powers of two) and we selected the size providing
the best compression. The sizes of the f-caches differed depending on the field. Larger f-cache sizes
reduce the "miss rate" increasing compression, but require larger indices decreasing compression.

The MFU method is ideal for use in a memory system, as the decompression hardware is always "in
sync" because the MFU f-caches are fixed. MFU lends itself to a straight forward implementation of
the decompression hardware.

Static Huffman coding: We estimated the effect of independently compressing e,ach instruction field
via Huffman coding. We underestimated the compressed size by calculating the entropy of each field
and then adding the space required for the Huffman trees.

Compression bound: We calculated the entropy for each field, giving a theoretical upper bound for
compression schemes that independently compress each field. For field k (say the jump displacement
field) with possible values f i , f2, . . . , f,,, the entropy is 'Hk = Cy='=l - Pr(f;) log2 lPr(f;), where Pr(f;)
is the probability off; occurring, given that field k exists. The entropy for the entire instruction is the
sum of the entropies for each field. Note that by adding the space for a Huffman encoding tree, we get
the Hluffman bound.

While better compression might be possible by viewing instructions differently, our measurements
indicate our bound is fairly good (making it difficult to beat in practice).

Lemp,el-Ziv-Welch (LZW) [W ~ 8 4] . We also measured the popular LZW algorithm used by the UNIX
utility. compress. The LZW result is used only as a comparison point as LZW is unsuitable for our
purposes, as previously mentioned in Section 5.1.

5.3 Results of Compression Methods

Table 5: Experimental compression ratios. All sizes in bytes; all compression ratios in percent.

Table 5 shows compression ratios of various files on a SUN4. The original size of the text (code) segment,
is listed. The size for MFU compression includes the space for the preloaded f-cache values. For smaller
programs, tlne overhead due to the preloaded f-caches significantly decreased the compression ratio. For larger
programs, MFU had an compression ratio of roughly 150%, including the space for the f-caches codebook.

The size for static Huffman coding includes the size of the Huffman tree. The compression bound gives
the projected best possible compression. The majority of the difference between Huffmisn encoding and the
compressior~ bound is due to the Huffman tree, which amounts to roughly 1/3 of the compression bound
size. The cc~mpression ratio of Huffman encoding is always greater than the simple MFU encoding.

We also listed the compression ratio of LZW compression met,hod. For small t,o medium size programs,

the Huffmail encoding performs slightly better than LZW encoding. For large programs, LZW usually gives
better compression ratios.

We have analyzed the effect of using compression in a memory system on the average system access time.
We have found that if a compression ratio of around 1.5 can be achieved, compressior~ is feasible at main
memory for computers of today. We also found that the benefit from compression is quite sensitive to the
miss ratio and miss penalty at the level of compression.

We proposed a memory system design to deal with instruction decompression and address translation
and suggested OS support for this particular design. This design is capable of running compressed and
uncompresst:d programs. This capability provides a way to utilize compression when it improves memory
performance.

We have also measured the compression ratios of several different compression techniques. A simple
compression method using a f-cache of MFU values achieved compression ratios of 15096. A static Huffman
encoding gives even better compression ratios. With miss penalties increasing in future systems, we believe
using compl.ession in the memory system will only become more viable as time progresses.

7 Acknowledgements

We thank Glary Lauterbach for his comments.

References

[AGSH~G] .Agarwal, A., Sites, R., and Horowitz, M. ATUM: A New Technique for Captaring Address Traces
Using ,Vicrocode. Proceedings of the 13th Annual Symposium on Computer Architecture, June 1986,
pp. 1191-127.

[F L M M ~ ~] Flynn, M. J . , Mitchell, C., Mulder, H., And Now a Case for More Compi'ez Instruction Sets.
IEEE Computer, Sep. 1987, pp. 71-83

[HP90] Hennessy, J . L., Patterson, D. A,, Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, 1990.

[H188] Hill, M. D., A Case for Direct-Mapped Caches. IEEE Computer, Dec. 1988, pp. 25-40.

[Hu52] Huffman, D. A., A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE, 40(9),
1952, pp. 1098-1101.

[L E H ~ ~] Lt!lewer, D. A., Hirschberg, D. S., Data Compression. ACM Computing Surveys, Vol. 19, No. 3,
Sep. 1987, pp. 261-296.

[P R H H ~ ~] Przybylski, S., Horowitz, M., Hennessy, J. , Performance Tradeofls in Cache Design. Proceedings
of the 115th Annual International Symposium on Computer Architecture, 1988, pp. 290-298.

[P R H H ~ ~] Przybylski, S., Horowitz, M., Hennessy, J . , Characteristics of Performance-Optimal Multi-Level
Cache Hierarchies. Proceedings of the 16th Annual International Symposium on Computer Architecture,
1989, pp. 114-121.

[PR~O] Przybylski, S., Cache and Memory Hierarchy Design: a Performance-Directed Approach. Morgan
Kaufmann Publishers, 1990

[R090] ROSS Technology, Inc., S P A R C RISC User's Guide. Cypress Semiconductor Corporation, 2nd Ed.,
Feb., 1'990

[S H L ~ ~] Short, R. T., Levy, H., A Simulation Study of Two-Level Caches. Proceedings of the 15th Annual
International Symposium on Computer Architecture, 1988, pp. 81-88.

[S ~ 8 2] Smith, A. J . , Cache Memories. ACM Computing Survey, Vo1.14, No. 3, Sep. 1982.

[S ~ 8 9] Steenkiste, P., The Impact of Code Density on Instruction Cache Performance. Proceedings of the
16th Annual International Symposium on Computer Architecture, 1989, pp. 252-259.

[S ~ 8 8] Storer, J . A., Data Compression: Methods and Theory. Computer Science Press, 1988.

[W A F ~ ~] Wakefield, S. P., Flynn, M. J. , Reducing Execution Parameters Through Correspondence in Com-
puter A.rchitecture. IBM J . Res. Develop., Vol. 31, No. 4, July 1987, pp. 420-434

[W ~ 8 4] Welch, T. A., A Technique for High-Performance Data Compression. IEEE Computer, Jun. 1984,
pp. 8-1'3.

	Purdue University
	Purdue e-Pubs
	11-1-1993

	The Feasibility of Using Compression to Increase Memory System Performance
	Jenlong Wang
	Russell W. Quong

