Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering
7-22-1993

A Tighter Lower Bound for 1-D Bin-Packing

Heng-Yi Chao

Purdue University School of Electrical Engineering

Mary P. Harper,
Purdue University School of Electrical Engineering

Russell Quong
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Chao, Heng-Yi; Harper,, Mary P.; and Quong, Russell, "A Tighter Lower Bound for 1-D Bin-Packing" (1993). ECE Technical Reports.
Paper 236.
http://docs.lib.purdue.edu/ecetr/236

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages

A TIGHTER LOWER BOUND
FOR 1-D BIN-PACKING

HENG-Y1I CHAO
MARY P. HARPER
RUSSELL QUONG

TR-EE 93-27
JuLy 1993

e &y,
S~ SCHOOL OF ELECTRICAL ENGINEERING
%,<§ % PURDUE UNIVERSITY
[+

(2]

~ 'WEST LAFAYETTE, INDIANA 47907-1285

End
g
~

2

A Tighter Lower Bound
for 1-D Bin-Packing

Heng-Yi Chao, Mary P. Harper, and Russell Quong
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907-1285
hengyi @ecn.purdue.edu
harper @ecn.purdue.edu

guong8ecn.purdue.edu

July 22, 1993

Abstract

For NP-complete problems, it may not be possible to find an optimal solution in polynomial
time. However, efficient approximation algorithmsfor many NP-complete problems do exist. A
good approach is to find tighter upper and lower bounds on the optimal solutions. As the gap
between these two bounds approaches zero, optimality is reached. For minimization problems,
any feasible solution serves as an upper bound. In general, researchers attempt to find heuristic
algorithms to narrow the gap by decreasing the upper bound. Another approach is to narrow
the gap by increasing the lower bound. To determine a good lower bound on a problem requires
careful examination of the problem's characteristics.

In this paper, we present an efficient algorithm for calculating a lower bound on the number
of bins needed in a bin-packing problem. It isobvious that the sum of the sizes of all objects is
a lower bound. In addition to this, we consider objects that cannot share their bins with other
objects. We consider a subproblem class which contains only objects whose sizes are greater
than %, where L is the size of a bin, given the harmonic partition. An O(rlogr) algorithm
finds a lower bound for the subproblem, whichin turn isalower bound for the original problem.
Notably, our approach also leads to a polynomial time algorithm for finding optimal solutions
of some special cases of bin-packing.

Simulation data show that our lower bound provides an estimate of the optimal number of
bins required which isequal to or better than the sum. The approximateerror rate is normally

less than 1%6if our bound is used. The improvement can be as high as 79% when compared to
the sum.

Key words: Heuristic Performance Ratio, Bin-Packing, Lower Bound, Best-Fit Decreasing,
Harmonic Partition, Perfect-k-Way Merge, Matching.

Figure 1: Upper and lower bounds on the optimal solution.

1 INTRODUCTION

For NP-complete problems, it may not be possible to find optimal solutions in polynomial time.
However, efficient approximation algorithms for many NP-complete problems do exist. The quality
o approximation algorithmsis often measured by guaranteed worst-case performance ratios. With-
out loss of generality, we consider only minimization problems. Given instance | for a minimization
problem P, let §4(I) denote (the cost of) the solution obtained by using algorithm A and S$*(I)
be the optimal (minimum) solution. Note that $4(I) > §*(I). The worst-case performance ratio
of a minimization problem P using algorithm A is defined as:

A
HA)= glm P

A
which is an upper bound on the performance ratio %.—(%1 for dl instances of problem P using

algorithm A.

However, this bound has the following deficiencies:

1. The R(A) ratio may misudge the quality of a heuristic. Comparing two agorithms solely
using the R(A) ratio bounds can be misleading because the average case performance may
differ significantly from the worst case performance. The R(A) ratio for an algorithm is more
difficult to calculate as the complexity of the heuristic algorithm increases.

2. In most practical applications, a solution is acceptable, if the error is guaranteed to be within
some range (say 5%). However, for many optimization problem algorithms, the R(A) ratio
bound often overestimates the error. Clearly, more precise error measurement is important
for selecting an appropriate algorithm.

For any problem instance I, Ib is a lower bound and ub is an upper bound on the optimal

n this paper, unless specified, dl quantities are implicitly dependent on the problem instance | . Hence, | is

dropped from the notation in situations where there is no ambiguity, e.g., S* means S*(I).

1

solution, if b < S* < ub. Note that no solution less than Ib can be found, and there exists a
solution equal to ub which can be found in polynomial time. It is clear that Ib should be as large
as possible, and ub should be as small as possible, with the goal of Ib = ub = S*. Note that any
existing heuristic algorithm provides an upper bound on the optimal solution. We call the range
between the maximum Ib and the minimum ub, the uncertainty region (e.g., the shaded region in
Figure 1) because no known polynomial time algorithm provides a solution within that region.

Because of the deficiencies of R(A) ratios and the following reasons, we believe a tight lower
bound is important for approximation algorithms:

1 Clearly, a solution which equals the lower bound is optimal. Often, researchers attempt to
find a new heuristic A" that provides a less costly solution than the solution given by some
other well known heuristic A, moving the upper bound down (see Figure 1, S4 N\, §4/)-
Another approach is to determine a tight lower bound on the optimal solution, moving the
lower bound up (see Figure 1, b 7 ID).

2. Usually researchers simulate their algorithms and other heuristics on randomly generated
samples or benchmarks, and then compare the solutions to see their relative performance.
On the other hand, a lower bound is an attribute of the problem instance itself and hence,
provides an absolute, universal performance measurement for &l heuristicsin a problem class.

3. A lower bound serves as a termination condition in exhaustive search methods.

4. A tight lower bound is useful for finding a better solution efficiently. It can help to focus on
a search path that leads to an optimal or near optimal solution.

5. To determine a tighter lower bound requires careful examination of the problem characteris-
tics, which may lead to a better heuristic.

In this paper, we present a technique for finding a tighter lower bound for bin-packing problems,
which may be extended to other NP-complete problems.

1.1 The Bin-Packing Problem

The 1-D bin-packing (BP) problem [GJ79] is the problem of packing a set of n objects into a
minimum number of bins of fixed capacity, L. Let | be the set of objects to be packed and s; be
the size of object i. The BP problem is formalized as:

[Continuous Bin-Packing (CBP)]

Given: a set of objects I={1...n), s; € (0,1],s;€ R, VieI.

Objective: assign each object to a unique bin, and minimize the total number
of bins used.

Constraint: The am of the sizes of all objects assigned to a bin (i.e., its
content) does not exceed 1.

[Discrete Bin-Packing (DBP)]

Given: a set of objects I={1...n}, s E(0,L],s;EN, ViEI.

Objective: assign each object to a unique bin, and minimize the total number
of bins used.

Constraint: the content of each bin does not exceed L.

The constraint that the content in each bin cannot exceed the bin's capacity is referred asthe
capacity constraint. For continuous bin-packing, the capacity of each bin is1, and all sizes are real
numbers in (0,1]. For discrete bin-packing, the capacity of each bin is L, and all sizes are integer
numbersin (0,L], with L < n normally. In this paper, we consider both continuous and discrete
bin-packing, though the primary emphasis is on discrete bin-packing. Without loss of generality,
we assume L is even (i.e., L=2M) and L=100. We say that two objects i and j are compatible,
if they can be assigned to the same bin, i.e. s; +s,- < L. Weindicatethat i X j < s; <sj,
1<j < s; <s;. Objectsassigned to the same bin form a pseudo object.

Because the bin-packing problem is NP-complete, heuristic algorithms have been studied ex-
tensively [Joh74, GJ79, Baa88, CLR90]. Several of the basic algorithms are shown in table 1.
Garey and Johnson's work [Joh73, Joh74, GJ79] provides worst-case performance ratios for two
well-known bin-packing algorithms: R(FF)=17/10, R(FFD)=11/9. Note that BF and BFD ago-
rithms have essentially the same worst-case performance as the FF and FFD algorithms [GJ79].
However, BFD performs better than the othersin practice.

12 A Lowe Bound for the Bin-Packing Problem

Let SUM be the sum of the szes of all objects in the set. Obviously, SUM is a lower bound on
S* for CBP. Bentley and Johnson's experimental study [BJ83] used empty space to measure the
average performance of FF, FFD algorithms, where samples are numbers drawn uniformly on the
range [0,v], 0 < v < 1. They define the empty space (error) as "the number of bins used
-> 11 8". Though the worst case performance ratios of BF and BFD algorithms are essentially
the same as FF and FFD algorithms [GJ79], in practice, the BFD algorithm provides much better
solutions because it tends to eliminate the empty space in bins. The empty space obtained by
performing BFD on samples uniformly distributed over the entire interval are normally less than
2% [GJ79, BJ83]. Though the error is quite small, it grows when v reaches 0.8 (a similar result is
shown in Figures 16 and 18), an effect that the authors provided no explanation for.

3

First-Fit(FF) Assign each object sequentially to thefirst bin into which it fits.

Next-Fit(NF) The bins are filled one at a time and a new bin isstarted when the current object

does not fit in the bin being packed.

Best-Fit(BF) Assign each object sequentially to the bin into which it fits such that the remaining

empty space is minimized.

Worst-Fit(WF) | Assign each object sequentially to the bin into which it fits such that the remaining

empty space is maximized.

FFD, BFD, WFD | exactly the same as the FF, BF and WF algorithms respectively, except that the

dataissorted in decreasing (or non-increasing) order before they are packed.

Table 1: Basic Bin-Packing Heuristics

We believe that the reason for the increased error in [BJ83] results from the fact that empty
space is not the only important factor for measuring performance. In fact, our study reveals that
the distribution of the sizes of objectsalso affects the error. In this paper, we develop an O(nlogn)
lower bound algorithm for CBP and DBP, and an O(n +L logL) lower bound algorithm for DBP.
Our work considers s; € (u,v], where 0 < » < v < L. Simulation data using BFD algorithm
shows that our method provides an equal or better estimate of the optimal solution than the sum.
Additionally, our approach leads to a polynomia time algorithm that finds an optimal solution
for some special non-trivial bin-packing problems, and BFD provides an optimal solution for these
specia problems.

Therest of this paper is organized as follows. In Section 2, we introduce the basic terminology
and theorems used in this paper. In Section 3, we introduce a special class of the bin-packing
problem and provide a greedy lower bound for that subproblem. In Section 4, algorithms for
calculating a tighter lower bound are presented. In Section 5, we demonstrate the impact of this
lower bound technique by simulating the BFD algorithm on sets of objects with sizes distributed
over different intervals (u,v] of (0,L] for 0 < u < v < L. Finaly we draw conclusions in Section 6.

Frequently used symbols in this paper arelisted in Appendix A for convenience.

2 BASIC TERMINOLOGY AND THEOREMS

In this section, we describe some basic terminology that is used in this paper. All definitions and
theorems also apply to CBP, if L=I with the sizes of objects being real number in (0,1]. First, we

] 1
I]
L L
3 2
Figure 2 Harmonic Partition

introduce terminology for categorizing objects into classes based on sub-intervals of (0,L]. Second,
we introduce the definition for approximate error rate. Finally, we define our new lower bound for
the bin-packing problem.

21 Partitioning the Set of Objects

Many researchers have utilized subintervals to study the bin-packing problem. Y ao[Yao080] classified
objects and bins into four classes, (0,3],(3,2],(%,1],(3,1]. Each object was first examined to
determineits class and then assigned to a bin corresponding to the same classin a First-Fit fashion.
C.C. Leeand D T. Lee [LL85] proposed a Harmonic algorithm which partitions the interval (0,1]
into M subintervals, Ir = (57, £, if 1< k<M and Ips = (0, 37]. An object 7 iscalled an I-piece,
if s; € Ir. A bin designated to pack I-pieces exclusively is called an Ix-bin. For each incoming
object ¢, if it is an Ig-piece, then the algorithm places it in a non-full Ir-bin. Hence, typicaly k
I-pieces are packed in an Ix-bin. We have modified Le€'s definition of harmonic partition slightly
to accommodate DBP:

Definition 1 (Harmonic Partition) A harmonic partition is the partition o the interval (0,L]
into harmonic intervals Iy, k = 1,2,..., where

I ={z:

L
< —
k+1<z_k,:ceN}

is called the k-th harmonic interval. For K C A/,

Ix=J I
keK

Example 1 If L=100, then the harmonic intervals are I;=(50..100], Io=(33..50], I3=(25..33], and
I 3=(25,50] is the union of I; and Is.

Notethat x € It <= k= |L/z]. The concept of harmonic partition is attractive because of
thefact that exactly k Ix-pieces can be packed into a single bin.

5

Lemma 1 Ezactly K Ii-pieces can ke placed in the same bhin.

Proof: It follows directly from the definition. o
Corollary 1 Each I;-piece has to ke assigned to an individua bin.

Corollary 2 If the set o objects to be packed consistsd only Ix-pieces, then it is optimal to pack
k objects together.

Proof: Lemma 1 implies that k and at most k objects can be packed together. If there are n
Ii-pieces, then packing every k Ix-pieces in a bin requires [£] bins, which is alower bound on the
optimal solution; hence, it is optimal. m]

In this paper, we subdivide objects into several classes in order to calculate a tighter lower
bound for the bin-packing problem. The harmonic partition is extremely useful, but is not general
enough for our purposes. Let X and Y be arbitrary subintervals of (0,L]. An object i is caled an
X-piece, if s; € X (aY-pieceisdefined similarly). The complement of a subinterval X is defined as
X =(0,L]- X. |X|indicates the number of X-pieces. A biniscaled an (X,Y)-bin if it is composed
of an X-piece and a Y-piece. This notation can be extended to arbitrary tuples. A bin-packing
problem is denoted as BP(X), if all objects are X-pieces. Another useful fact for calculating tighter
lower bound follows:

Lemma 2 At most one object in I 3 can ke packed with an I;-piece.
Proof: Suppose i and j are I, 3-pieces that can be packed with an I;-piece k, then s; + s; + Sg >

Lyl+ L = I, which contradicts the capacity constraint. O

2.2 Approximate Error Rate

Let S4(I) be the number of bins used by algorithm A and §*(I) be the minimal number of bins
needed for packing a set of objects | . The approzimate error rate for an algorithm A using Ib as
an estimate of the optimal solution is defined as:

§A-Ip
Iy

SA
r4(lb) = = (5 — 1)+ 100% (1)

We define the approximate error rate to evaluate the optimality of the solutions provided by BFD
(see Section 5).
Lemma 3 r4(Ib) is an upper bound on the actual error rate.

A
Proof: The actual error rate = %‘.ﬁ - % -1< % = 1=r4(Ib)

2.3 Lowe Bound Calculation

The following lemma is useful for determining a tight lower bound for optimization problems and
plays a central role in our development of a new lower bound for bin-packing problems. For a
bin-packing problem instance, |, asubset 1’ of | is caled a subproblem of |, and | is referred as the
original problem.

Lemma4 (Subproblem Principle) The optimal solution d a subproblem is a lower boundfor

the original problem. The lower bound d a subproblem is a lower boundfor the original problem.

Thatis, I' C | = Ib(I") < S*(I') < §*(I).

Proof: By definition, 1b(I") < §*(I"). $*(I') < §*(I) because I"' C I. a
Obvioudly, I' = {i € | : L/4 < s; <L) CI; hence, Ib(I") < §*(I) and provides a lower

bound on §*(I). A greedy algorithm is given in the next section to determine alower bound for the

subproblem that contains only I; 7 3-pieces of the original problem. This lower bound, in turn, isa
lower bound for the original problem.

Next, we introduce our lower bound for a bin-packing problem.

Definition 2 (Lower Bound) LB(u)isdefinedasmaz{SUM, BIG(u)}, whereSUM = [Tic;s,/L)
and BIG(u) is alower bound on S*{i € | : s5; > u).

Note that our lower bound, LB(u), is defined to be the maximum of two terms, which are themselves
lower bounds. The definition of SUM is modified slightly to accommodate DBP. By corollary 1,
each I,-piece needs an individual bin. Hence, agood initial lower bound is max{SUM, BIG(M)},
where BIG(M) = |I|. LB(u) ismoreprecise, if uissmall; however, it is more difficult to determine

for u< % LB(u) is alower bound on $* as the following lemma shows:

Lemma5 S* > LB(u).
Proof: Each bin has a capacity of L. Hence,

S**L2Y si=S2> si/L=5>[Lsi/L]=SUM

S* > BIG(u) by the subproblem principle. It follows that S* > max{SUM, BIG(u)}, which is
used as our lower bound, LB(u). O

3 BP(l53) and OPTIMAL MATCHING

We know that |I;| provides a good lower bound. However, if we consider I; and I5 pieces, a tighter

lower bound is obtained. To calculate BI G(%), we consider aspecia classdf bin-packing problems,

7

BP(I, 2,3) which contains only I, Iz, and I5 pieces.

An object i issaid to be absorbed by an I;-piece, j,if i and j are assigned to the same bin. We
say that aset of objects X = {z;1...z.,,} isabsorbable, if thereexist distinct I;-pieces Y={31...¥m}
such that Vi, #; can be absorbed by y;, and M = (X,Y) ={(z;, %):1<i < m) formsamatching.
Note that each I;-piece consumes one bin (at acost of 1) and at most one I, 3-piece can be absorbed
by an I-piece without requiring a new bin (at a cost of 0). A greedy algorithm matches I 3-pieces
to some I;-piece, if possible, such that the remaining I 3-pieces consume a minimum number of
bins (which are referred as extra bins) in addition to those required by I-pieces. Let LEFT contain
dl I s-pieces and RIGHT contain a| I;-pieces. For each i € LEFT, N (i) denotes the set of I;-
pieces that are compatible with i. For any absorbable set X, f (X) = S*(LEFT — X) iscdled the
cost of X. Note that f(X) represents the minimum extra bins required by the remaining I, s-pieces
after absorption. The total number of bins used by an optimal packing is given by the following
equation:

S*(I) = |RIGHT|+ min{S*(LEFT - X): X is an absorbable subset of LEFT) (2)
= |RIGHT|+ S*(LEFT — X*) (3)
= |RIGHT|+ f(X*) (4)

where X * is an absorbable subset that achieves minimum cost. Note that X * is maximal, otherwise

it can beenlarged toeliminate moreobjectsin LEFT. If X * is absorbed by Y*,then M* = (X*,Y*)
is said to be an optimal matching for BP(I12,3). An algorithm that finds an optimal matching is
given as follows:

[Absorb(K)]

1. sort K into nonincreasing order by size
2. X,¥Y <0
3. for each object ¢z in K
(a) if N(:)#0,
let j be the largest object in N(i)
Xe—X+1,Y«<Y+3, 1L, -].

Theor em1 (Optimal Matching) Absorb(I;3)findsan optimal matchingfor BP(I, 23) in O(nlogn)
time.

Proof: Let M* = (X*,Y™*) be an optimal matching (hence, it must be maximal). Consider the
currently largest object ¢ in LEFT.

1 If N(3) = O, then thereis no compatible I;-piece for z; hence, i g X*.

2. f N(i) # 0 and j is the largest element in N(i), we claim that (i,j) € M*. It is proven by
contradiction and by swapping objectsin bins without increasing the cost.
(a) First we provethat i belongs to an optimal matching. Supposei ¢ X*.

o If j & Y* then (i,j) can be added to M*, which contradicts the fact that M* is
maximal .

o If j € Y* then 3k € X* absorbed by j (i.e. (k,j) € M*). Then M = M* — (k,j)+
(i,j)isaso optimal.
(b) Next we show that i is absorbed by j. Assumei is absorbed by I # j (i.e., (i,1) € M*).
Note that I < j because j was thelargest in N (7).

e If jgY* ThenM = M* = (i,1)* (i,j) is also optimal.
e If j € Y*, then 3k € X* absorbed by 5. Then M = M*—(3,1) — (k,7) + (3,7)+ (k,1)
is also optimal?.

Hence, there exists an optimal matching that contains (i,]).

By continuing the above argument for the currently largest object in LEFT, we can decide whether
it should be included in an optimal matching or not and which I;-piece it should be matched to.
It follows that Absorb(LEFT) finds an optimal matching for BP(/1,2,3). Because each I 3-piece
requires O(log n) time to find thelargest compatible I;-piece, the time complexity for Absorb(I2,3)
is O(nlogn). O

Corollary 3 If(X*,Y*) isan optimal matchingfor BP(I,23), it isoptimal to pack each z; € X*
with the correspondingy; € Y*.

Proof: Because (X*,Y*) is an optimal matching, f(X*) < f(X) for any absorbable set X €
LEFT. Suppose X € LEFT isabsorbed by Y € RIGHT in an optimal packing P. Then S =
|RIGHT|* f(X) by equation 4. Let Q be a packing with X* absorbed by Y*, then f (X*) <
f(X) = |RIGHT| T f(X*) < |RIGHT|*f(X)=S*.So, Qisaso an optimal packing. o

Corollary 4 An optimal solution isobtained in O(nlogn) for BP(I; ;).

Proof: Notethat the problem isa special case o BP(I; 23). Hence, Absorb(LEFT) finds an optimal
matching (X*,Y*) for the problem in O(nlogn) time by theorem 1. By corollary 3, it is optimal
to pack each z; € X* with the corresponding y; € Y*. Because the sizes of all objects are greater
than L/3, the objects remaining in LEFT are al I,-pieces after absorption. Packing any two of the
objects remaining in LEFT is optimal by corollary 2. o

A similar result holdsfor BP(I; 3), except that threeof the remaining Is-pieces should be packed
in a bin after absorption.

2k,1 are compatible because s, Ts; < sp tsj < L.

4 A NEW LOWER BOUND

In Section 3, we have given an algorithm for absorbing a maximal subset of I, s-pieces such that the
remaining Iz 3-pieces require a minimum number of extra binsin addition to those bins consumed
by I1-pieces. The following lemma is used for calculating a lower bound on the minimum number
of bins required by the remaining I, 3-pieces.

Lemma6 Consider BP(I;3), which contains only I 3-pieces. Assume i and | are the smallest

» M 1 L
two objects and s; = a,s; = f,a< f. Let Z = [, M] if a> 3
(L-a-B,M] if £<a<i

Then it is optimal to pack two 2-pieces together.
Proof: For BP(l33), at most three objects can be packed together because the size of each object
is greater than £. However,

1L ifa> %, then dl objects are I;-pieces; hence, it is optimal to pack two objects together by
corollary 2.

2.ifL<a< & thenZ=(L-a- B, M) Hence

e Each Z-piece can be packed with at most one object in a bin. Assumethat k isa Z-piece
that can be packed with two objects 1 and min a bin, then sk+sz+sm > sk+a+ﬂ > L

(because i and j are the smallest two objects and k is a Z-piece), which contradicts the
capacity constraint. Hence, k cannot be packed with two other objectsin a bin.

e If there were two (Z, Z)-bins® in an optimal packing, then the objectsin those two bins
can be exchanged such that the two Z-pieces arein the same bin.

Example 2 If a= 27,8 = 30, then Z = (43501. Let k be a Z-piece, then sy > 44 and sy +a+8 >
44+ 27+ 30 = 101 > 100.

Figure 3 shows how the set of I 2 3-pieces are partitioned into disoint subsets. (X*,Y*) is an

optimal matching and Z is the set of Z-pieces. BIG(%) is calculated based on packing each z; € X™
with the corresponding y; € Y*, then packing two Z-pieces together.
4.1 Calculation of BIG

We now calculate an estimate of the number of mutually incompatible objects, BIG = |I4| +
max{m,, my}, as follows

%A (Z,Z)-bin is a bin containing one Z-piece and one Z-piece.

10

X*
Y*

LEFT-X*2 z
R GHT-Y*

Figure 3. The set of I; 2 3-pieces are partitioned into X*,Y*, Z,LEFT — X* —= Z,RIGHT - Y*,
where (X*,Y*) is an optimal matching and Z is the set of 2-pieces.

0 M

L
m-i—— { : ,,,,,._.I

L- miny min,

~~

Figure 4: The region that cannot be absorbed and requires additional bins

1. || bins are needed for I;-pieces.
I't follows directly from corollary 1.
Next, we discuss the extra bins needed in addition to those bins required by I-pieces.

2. mj = max{[ﬁkb-] :2 <k < km}, where

minp= the size of the smallest I-piece and k,, | (e = the smallest expressible

— L
- I-L—mmh+c
number for CBP and ¢ = 1 for DBP). None of the (L — miny, MI-pieces (whosesizes arein
the black section in Figure 4) can be packed with any I;-piece. They must consume extra
bins. Let

Ar=\L|+...+\I|, 2< k< ky,

(|Zx,| = number of I, -pieces with sizes> L —min;). Notethat A, represents the number of
(#, MI-pieces, which require at least [ﬁ,}'l bins because of the capacity constraint. Hence,
at least m, extra bins are needed for the (L — miny, MI-pieces.

Example 3 Suppose min,=80, i.e., the size of each I;-piece > 80, then k., = [L] =
4. None of the (20,501-pieces can be packed with any I;-piece. Assume |I;|=10, |I3|=20,
|I4|=30, then A; = 10, A3 = 30, 44 = 60. Note that there are A; = 10 objects whose size
> 33, A3 = 30 objects whose size > 25, Ay = 60 objects whose size > 20. So, at least

max{[22], [32], []} = max{5, 10, 15} = 15 bins are required for these objects.

11

3. mz = [§] + max{[§],[554]} 4,
where z = |I3|,y = |I2| — | Z| and z = |Z| after absorption. Ignoring objects whose sizes are
< L/4, the problem becomes BP([; 33).

e Absorption
Theorem 1 shows that Absorb(Iz3) finds an optimal matching for BP(I12,3) and it is
optimal to merge (z;,¥:) in the matching by corollary 3.

e Z-pack
Assume i and j are the smallest two I 3-pieces after absorption and s; = a,s; = 8 with
a< f. Let Z=(L—a—ﬂ,M],if%<a§ % a.ndZ:[a,M],ifa)f. By lemma 6,
it is optimal to pack two Z-pieces together, requiring at least [z/2] extra bins where
z=|Z|.

e For the remaining I s-pieces (after absorption and packing of Z-pieces), at most three
of them can be packed together. If there are z I;-pieces and y I3-pieces left, then at
least max{[%], [£3£1} are required for these objects, which is similar to the calculation
of m.

So, at least my extra bins are needed to pack the I ; s-pieces in the set, and mg is a lower
bound for the original set by lemma 4 (the subproblem principle).

BIG is used in the two algorithms we have developed for determining the lower bound for any
instance of bin-packing. Thefirst algorithm is applicable for both CBP and DBP, while the second
assumes the discrete case to achieve faster performance.

4.2 Algorithm 1

Algorithm 1in Figure 6 follows directly from previous discussions. It classfies objectsinto I-
pieces, sorts I, calculates SUM, and then calculates BIG using the methods discussed in Section 4.1.
Consider the time complexity of algorithm 1. Sorting objects in I; and I; 3 requires O(nlogn).
Additionally, calculation of BIG requires O(nlogn) time because each I, 3-piece needs O(logn)
time to find its largest compatible I;-piece. Hence, the overall time complexity is O(nlogn).

Theorem 2 Algorithm 1 gives a lower bound on the optimal solution of BP.
Proof: The calculation o BIG follows directly from the argumentsin Section 4.1, which is a lower
bound on $*{i € I : s; > £}, and hence, is a lower bound on S*. o

ty —y—1,if zisodd

12

[LB]

1. calculate SUM

2.

calculate m

(a)

L

Let min,= the size of the smallest I1-piece, km = |fomin—

(b) count |Ii|,1 < k<k,

(Ml = number of I -pieces with sizes > L = miny).

(c) calculate Ax = ||+ ...+ |Ix], 2< k< kn
(d) ™ = max{[45]:2< kK < kp}

. ca

lculate m,

(a) Absorb(lz3)
(b) Assume @ and j are the smallest two I;3-pieces left and s

o, M] if a> £k

si=f, a<fB. Let Z=
(L-a=-B,M] if k<a<k

() z=|L), y=|L|-1Z], z=Z|

(@) my = 51+ max([§], [5541) if ziseven
[2] + max([¥52], [28=2)) if 2 is odd
B I G= |I1]| + max{m,,ms}

§. return max{SUM,BIG)

Figure 5. An algorithm for calculating alower bound in O(nlog n) time.

[Algorithm 1]

1. classify objects into appropriate Iy groups
2. sort I
return LBO)

3.

|

«,

Figure 6: Algorithm 1 provides alower bound for DBP and CBP in O(nlogn) time.

13

4.3 Algorithm 2

For Discrete Bin-Packing, the capacity of each bin is L and all sizes are integer numbers in (0,L].
Normally L < n. In this section, we describe algorithm 2, a variation of algorithm 1, which
takes advantage of this property. Its time complexity is O(n¥+ LlogL) which is faster in many
applications. If we partition the set of objects into groups, much search effort can be eliminated
by dealing with groups instead of individual objects. We define a bucket as a maximal subset of
equal-sized® objects. The set of objects | is partitioned into digoint buckets, B;, 1< k < L, and
| B| is the number of objectsin bucket Bg.

We say that a mergeis perfect, if its content is precisely L. A perfect merge with k components
iscalled a perfect-k-way merge. Thefollowing theorem showsthat it isawaysoptimal to do perfect-
two-way merging, if possible. It isconvenient to view a packing P asa partition o the set of objects
I, where members of each subset are assigned to the same bin.

Theor em 3 Optimality is preserved under Perfect-two-way Merges.

Proof: Let P bean optimal packing. Suppose P contains two subsets (bins) (1. ..zx) and (y1. - -¥n)
with sz, +sy, =L. Note that:p

m m
ZS$;SL=>ZS$;.<_L_32:1 (5)
i=1 =2
o5y SL=3 sy; <L-sy (6)
=1 j=2

Let Q be another packing such that Q is the same as P except that Q contains bins (z,y;) and
(2. - -Tm,Y2--.¥n) (Namely, swapping 11 & z2...zm, See Figure 7). Q isvalid because

e InBin 1, sz, +3yl = L.

o INBiN2, T,z T X0, sy; S2L—sz) ~ sy < L.

Hence, Q is another optimal packing since it uses the same number of bins as P. Continuing the

same argument, there exists an optimal packing by doing perfect-two-way merging before packing.
a

Note that the pseudo objects formed by perfect-two-way merging have size L, which are I;-

pieces and are unable to absorb any I, s-pieces. This theoremis used in algorithm 2 to reduce the
problem size whenever applicable.

SWhen L is large, this definition can be modified such that a bucket contains objects with sizes within some

interval.

14

X, Xy Y,

2 Sy, oy, om
é ?;/:’/ el Yo Y,
7 S //Z//é B

X Y //r 2 X SV/{’///’ e

Y Y :
7 T4
i y .
7 ! 7
%,ﬁ’é %/ X, Xp
7% - 2272
Bin1 Bin2 Bin1 Bin2
(i) beforeswap (i) after swap

Figure 7: Swapping the contents of two bins where sz, + sy, = L.

[Algorithm 2]

1. classify objects into appropriate buckets
2. do all possible Perfect-Tuo-Way merges
3. return LBO

Figure 8: Algorithm 2 provides alower bound for DBP in O(n + Llog L) time.

15

ey

Algorithm | Classification| Sorting | CalculateSUM | CalculateB G| Overdl Time | Memory
1 O(n) O(nlogn) O(n) O(nlogn) O(nlogn) O(n)
2 O(n) O(n) O(LlogL) O(n+ LlogL) | O(n+ L)

Table 22 Comparison of Algorithms 1 and 2

Algorithm 2 in Figure 8 further partitions the set of objects into L buckets. Although both
algorithms call the same procedure LB, the implementation of LB can be quite different for CBP
and DBP. Consider merging two buckets B, and By, if | Bs| = a,|B:| = b, a < b before merging, then
|Bs| = 0,|B:| = b — &, | Byyt| = | Boye| T a after merging. Because we are only concerned about the
number of objectsin buckets, algorithm 2 does not require truly merging objects. Consider the time
complexity of algorithm 2. The I, 3-pieces are partitioned into % buckets. For each s € (% - %],
it requires O(logL) time to find thelargest t < L —s. Hence, the time complexity of calculating
BIG for DBP in algorithm 2 is reduced to O(L logL) which is independent of n.

Qorol lary 5 Algorithm 2 gives a lower bound on the optimal solution of DBP.

Proof: Algorithm 2is equivalent toalgorithm 1except that we deal with bucketsin decreasing order.
The algorithm also employs perfect-two-way merging to help reduce the problem size. Optimality
is preserved by doing perfect-two-way merges by theorem 3. .

A comparison of time and space complexities of these two algorithms is shown in table 2.
Asymptotically, they have the same performance when L = O(n). Algorithm 1 has the advantage
that it is not sensitive to the precision of L and requires less memory. Algorithm 2 is linear, if
n = O(LlogL), which holds for many applications.

SIMULATION ANALYSS

We demonstrate the impact of this lower bound technique by simulating BFD algorithm on sets
of n objects with sizes uniformly distributed over intervals (u,v] of (0,L] for 0 < u<v < L. Four
typical (u,v]-intervals are shown in Figure 9. The centerline isdepicted ass = M = % The shaded
regions represent the portion that cannot undergo perfect two-way merging. The objects in this
region cause SUM to fail asa good estimate of the optimal solution.

We examine the number of bins used (designated as SOL in the figures) and the approximate
error rates of BFD algorithm using SUM and LB as estimates of the optimal solution. Recall the

16

u |L-u v
M

() u<M, v>M, u+v>L (d) uw>M, v>M

Figure 9: Four typical (u,v]-intervals. () u< M,v<M; (b)u<M,v>M, utv<i; (c)
u<M,v>M,u+v>L;and (d)u>M,v> M.

approximate error rate using b as an estimate of the optimal solution is:

SOL-1y SOL
r(lb) = T (T 1) *100%

where SOL is the number of bins used by the algorithm.

Simulations were done on a SUN/4 SPARC workstation, using random, the random number
generator provided by UNIX, with n = 30000 and L = 100. Ten random instances are packed for
each parameter under consideration. We consider the following three cases:

1 fixed length : I = £,k = 2...8. (results shown in Figures 11-14)
2. fixed left bound : =0 and %, k =2...8. (results shown in Figures 15-18)
3. fixed right bound v =L and (1 -)L,k = 2.. .8. (results shown in Figures 19-22)

5.1 Simulation Results

Because the sizes of objects are numbers drawn from a uniform distribution in (u,v], SUM increases
linearly as we move right on the horizontal axis. SUM is a good estimate of S* only when there are
many small objects that can fill in the empty space of bins consumed by large objects. The curve
of LB, though not shown, is easily constructed by taking the maximum o the two curves. SUM
is the dominant component in LB when there are more small objects, while BIG is the dominant

component when there are fewer small objects. For graphs in Figures 11, 12, 19, and 20, SUM

17

ul u2 u3

(a) fixed length 1=v-u

u vl v2 v3

(b) fixed left bound u

ul u2 u3 v

(c) fixed right bound v

Figure 10: (u,v]-intervals consdered in our simulation. (a) fixed length I, (b) fixed left bound u
and (c) fixed right bound v.

18

and BIG intersect at critical points where BIG becomes the dominant component in LB as we
move to the right on the horizontal axis in the graphs. Observe that r(SUM) reaches its (global)
minimum, when the (u,v]-interval is symmetric with respect to the center line, because of the
uniform distribution.

Notice, in Figure 17, that BFD appears optimal when the left bound u > %, and we prove this
in the following corollary.

Corollary 6 BFD provides an optimal solution for BP(1;2).

Proof: BFD sorts all objects by size in nonincreasing order into a queue Q. For each object i in Q,
it then searches the used binstofind a bin whose empty space is closest to s;. If thereis not such
a bin, a new bin is created and i is assigned to that bin. Note that placing an object i in a bin
with content sis equivalent to merging i with a (pseudo) object j with s; = s. Thus, BFD finds
the largest compatible (pseudo) object j (abin | with content s;) for each object i in Q and merge
(i,j) (place i in bin 1). If we divide Q into two sub-queues R and L such that R contains all the
I;-pieces and L contains the remaining I,-pieces, it is easy to see, from previous discussion, that
BFD gives an optimal packing. O

Corollary 7 BFD provides an optimal solution for BP(I 3).

In the following sections, we describe the behavior of r(SUM) and r(LB) for various cases and

give intuitive explanations of the phenomena.

5.1.1 Intervalswith Fixed Lengt h

In case 1, depicted in Figure 10(a), we consider intervals (u,v] of fixed length, ! = %,2 <k <o
The simulation results are shown in Figures 11-14. For small u, SUM is the dominant component
in LB, while BIG is the dominant component for large u. The gap between the two curves for

small uis narrowed when [decreases. For | = %, the mean r(LB) drops to zero when u > % (see

Figure 13), which corresponds to the casein Figure 9(c), where (u,M)-pieces are aimost completely
absorbed by I;-pieces; hence, S*~ LB.

As we move the interval to the right on the graph, r(SUM) changes as follows (see Figures 13
and 14):

e r(SUM)is small for small u, where most of the empty space caused by large objectsis filled
by small objects.

e Asuincreases, r(SUM) increases to alocal maxima when most objects are medium sized.

19

¢ Then r(SUM) starts to decrease because SUM increases and SOL remains almost unchanged
(as can be seen by the middle "flat" portion of SOL in Figures 11 and 12).

¢ 1(SUM) reaches its minimum value with SOL = SUM,r(SUM) = 0, when the interval is
symmetric with respect to the center line.

¢ Passing this global minima, r(SUM) again increases because more I-pieces cannot be per-
fectly merged with other pieces, causing the empty space to increase. r(SUM) reaches the
(global) maximum when « = M. At this point, all objects are I1-pieces and the empty space
is at a maximum.

¢ r(SUM) decreases as we continue to move the interval to the right along the s axis, because

SUM . increases while SOL = n remains unchanged.

The maximum and minimum values of r(SUM) and their corresponding u values for fixed length
intervals aresummarized in table 3. Weform two conjectures about r{SUM) by examining the table
and the figures. Conjecture 1 follows from the fact that r(SUM) is minimum when the interval is
symmetric with respect to the center line, and conjecture 2 results because the maximum r(SUM)
increases as the length of the interval decreases.

Conjecture 1 (Maximum and Minimum r(SUM)) If the length | of (u,v/-interval is fized,

then the mazimum r(SUM) occurs at = M and the minimum r(SUM) occurs at u = &L,

Conjecture 2 The maximum r(SUM) increases as the length of the interval decreases.

Notice that when v = M, 1(SUM) is maximum and SOL = n. As the length of the interval
decreases, SUM decreases and r(SUM) = g7 — 1 increases.

512 Intervalswith Fixed Left Bound

In case 2, depicted in Figure 10(b), we consider intervals with a fixed left bound, u = 0 and
L,2 <k <8. Thesimulation results are shown in Figures 15-18. For v = £ and £, BFD is optimal
by lemma 6, so r(LB)=0.

Before summarizing the results, we discuss the simulation, results for various values of u:

1. 1f = %, all objects are I -pieces; hence, SOL=n and r(LB)=0. However, SUM increases
linearly as v increases; hence, r(SUM) decreases linearly as v increases.

2. If u= &, then

o if v < 2L, 1(SUM) decreases as v increases.

20

length (1) || maximum.r(SUM) | u position || minimum r(SUM) | u position
L 33% 50 0% 24
L 50% 50 0% 33
L 58% 50 0% 37
L 65% 50 0% 39
= 70% 50 0% 41
b 73% 50 0% 42
L 77% 50 0% 43
L 79% 50 0% 44

Table 3: Maximum and minimum values o r(SUM) and their corresponding u positionsfor intervals
with fixed length.

o if v="L-u=2L (SUM) reachesits minimum value.

o if v> %, more I,-pieces cannot be packed perfectly, so r(SUM) increases as v increases.
Note that r(SUM) increases more dowly when v becomes large because the objects that
waste space in the bins become large, and the empty space is small.

3. The curvesfor u = %,4 < k € 9 basically have the same shape except that the approximate
error rate is small for small ». This happens because there are more small objects to fill
the empty spaces in bins used by large objects. Hence, we consider only the case when
u=4%. r(SUM) reaches a minimum at v=L — u = %{'— Also observe that r(LB) = 0 when
L <y < 3 and v > 3£ Hence, we make the following conjecture:

Conjecture 3 BFD isoptimal for BP(¥,3k).

For BP(%,%), |Is] = 2|I,|. Hence, when BFD first packs two I,-pieces together and then
fills the empty space with an Iz-piece (e.g., two objects with size 34 are packed first, then an
object with size 32 is added), empty space is minimized.

4. If u =0, both r(SUM) (< 0.35%) and 1(LB) (< 0.04%) are small; an effect similar to the
experimental study in [BJ83]. When v < 92, there are more small objects than empty space;
hence, bins are full and SUM provides a good estimate. When v > 92, there are more large
objects, and there are not enough small objects to fill the empty space, causing the error to
increase.

From these simulation results, depending on the relative position of v and L — u, we draw the
following conclusions:

e v < L — u (corresponding to the case in Figure 9(b)): As v increases, more (u,M]-pieces
perfectly absorbed by I;-pieces, the shaded region decreases; hence, r(SUM) decreases.

21

eV = L —u: Theinterval is symmetric with respect to the center line; hence, r(SUM) = O.
The global minimum of rf(SUM) occurs when v=1L - u.

e v > L—u (corresponding to the casein Figure 9(c)): Most (u,M]-pieces are perfectly absorbed
by I -pieces; hence, SOL = LB and #(LB) = 0.

513 Intervals with Fixed Right Bound

In case 3, depicted in Figure 10(c), we consider intervals with a fixed right bound, v = L and

(1-})L,k=2...8. Thesimulation results are shown in Figures 19-22.

Below we summarize the simulation results for various values of v:

1 vs= % When u = 0, theinterval is symmetric with respect to the line % An object ¢ can
be packed with an object j,s; = % - s;, toform a pseudo object with size % Then two
of these pseudo objects can be packed perfectly. As u increases, more (%,%]-pieces cannot
be packed perfectly; hence, r(SUM) increases and reaches its maximum value at v = %,

where $*=[n/2]. Passing this maxima, r(SUM) decreases because SUM increases while SOL

remains unchanged (see Figure 19 for v= % and u > L).

2. The curves are similar for v = (1- 1)L,k > 2, except that the maximum r(SUM) and the
minimaare different. Hence, we consider only v = %’4 r(SUM) remains small and reaches the
minimum at v = L —v = % Passing this minima, the empty space startsincreasing because

more I;-pieces cannot be packed perfectly. It reaches the maximum at u = -ff Again r(SUM)
decreases as u increases because SUM increases while SOL = n remains unchanged.

From the simulation results, depending on the relative position of v and L — u, we draw the
following conclusions:

e U< L — v (corresponding to the case in Figure 9(b)): Most [L — v, M)-pieces are absorbed
perfectly by the I -pieces. Theremaining (u,L — v)-pieces are small objects that are typically
packed perfectly; hence, r(SUM) = 0.

e U=L-vVv: Theinterval is symmetric with respect to the center line; hence, r(SUM) = 0.
Theminimum r(SUM) occurs at « = L — v.

e u > L — v (corresponding to the case in Figure 9(c)): In this case, most (u,M]-pieces are
perfectly absorbed by I;-pieces; hence, SOL =~ LB and r(LB) = 0.

22

6 CONCLUSIONS

In this paper, we present an efficient technique for calculating a new lower bound, LB, on the
minimum number of bins to pack aset of objects whose sizes range over (0,L]. It is tighter than the
traditional lower bound, SUM When more large and medium size objects exist, it givesa very good
estimate on the optimal solution. As the approximate error rate becomes small, the uncertainty
region of the decision problem becomes negligible. In many cases, the solution equals the lower
bound, which means that the solution is optimal. It shows that a better estimate on the optimal
solution of NP complete problems is important for assessing the quality of heuristic algorithms.
In practical applications, we are satisfied with a solution which differs from the optimal solution

within a small range of error.

Further improvements can be achieved by considering 14 s-pieces or determining an even tighter
lower bound for packing Iy 2 3-pieces. It isalso possible to use thislower bound technique to obtain

asmaller worst case R(A) ratio.

23

A LIST OF SYMBOLS

N natural numbers

&

real numbers
number of objects

the set of objects

L capacity of a bin
L/2
S; size of object i
S* number of bins used by an optimal packing
sS4 number of bins used by heuristic algorithm A

SUM [Ciersi/L]

BIG(u) alower bound on §*{i €| : 5 > u}
LB(u) max{SUM,BIG(u)}

b lower bound on $*

T4(1b) -iu;é- _ 1, approximate error rate

Bx bucket k

| B | number of objects in bucket k
(¢,7) pseudo-object composed of objectsi and j
VA any sub-interval of (0,L]

Z-piece anobject i withs € Z

|Z| number of 2-pieces

BP(Z) bin-packing problemsin which all objects are 2-pieces

I {zlgr<e<kzenN)
[Tx | number of Ix-pieces

Ik Uker Ix, K SN

| Ix| number of Igx-pieces

N(i) set of I;-pieces that are compatible with i

Q

approximately

24

X 10‘ BFD(lixed lengthwl /2) x 10' BFD(fixed langihwl/6)

-
25} so 2.5p so e]
P
- _J .-~ sum)
Phd ’—
£y _--"Bum W -~
S .- - p
1.5F = 4
g » ¥ L
,&*"’
1" ,,»'*" Bl J
Cad 4
ft
0.5 — - v
() 10 20 30 40 50 50 60 70 80 20
jeft bound u left bound u
x 10° BFD(lixed tengih=L/3) X 10% BFD(tlixed lengthel/7)

° K s 70 80 80

30 40 30 40 50
{ett bound u left bound u

x 104 BFOD(fixed lengihwl/4) 104 BFD(lixed lengthwl/B)

o . . . e
) 10 20 30 %0 50) 70 80) 0 - 20 3 40 SO 80 70 80 80
leit bound u left bound u
x 10° BFO(fixed lengihal /5) BFD(lixed length=L/B)
.
.
.
-
.- J
” -

.- sum 4

o 0 20 30 20 50 50 70 B0 % 30 20 30 40 S0 60 70 86 90

left bound v left bound u

Figure 11 Solution vs lower bounds for fixed Figure 12: Solution vs lower bounds for fixed

lengthi=v —u = %,%,%7‘?‘,3:’ € (u,v] lengthl=v —u = %—,%,%,%, $; € (u,v]

25

BFD(tixed lengthml/2) BFD(lixed lengthal /)

80,
a0 4 oF e
R T~ wsumy
SUM) - €0 -
wast s y »
2 & 50f
5% ' 1 :
= 2 4o}
_s 1s} 4 g
B Sol-
. I
5| 10}
20 30 % € 70 80 90
left bound u

BFD(fixed lengih=Lr3) BFD(fixed length=L/7)
sc[- — 80
.
. ' 7o
4o fsumy S 1 i (SUM)
i 60 P
* asn- b 4 * H -
2 sl] | =50
5 6
s2st - 'é 40
'E 20r ; 1 830
Bus| i - B
20"
10F 4
5 { - 10 You™, ..,n. =
«LB) ; - «e)
10 20 30) =) 0 70 30 4 50 60 70 80 90
left bound u lon bound u
BFD(tixed length=L/4) BFD(lixed length=L/8)
80 v . v - 80 - — -
sof 1 °r %, HSUM) 1
eol k 1
- ®
2 Ssof 1
5 =
5 5
=30}] %ot .
s £
B aol - J
7 1 g
20} 4
10} -
10} 4
«LB)
] =) 70 80 % 10 S o Te B "0
tett bound u
BFD(fixed length=L/5) BFD(lixed length=1/0)
70 . v 80 v
sof] 700 .
H(SUM) ; h, HSUM)
H &0} kY 4
» 50 - P 3
=
= Esob 1
B 40 4]
5 . 5
2 s %of |
P 1o
& 301 L
g &
20f 4 o
20+
10} [7 10}
...ngf'hh’ e
% 10 %

Figure 13: r(SUM) vs r(LB) for fixed length { = Figure 14: r(SUM) vs r(LB) for fixed length | =

=L L L L L LLL
V%= 2,3 4050 8 € (u,] V- U= G, 7,590 i € (u,v)

26

10* BFD(ixed left bound u=L/2) *

BFD({ixed lett bound uml/A6)

X
2
SOL=BIG
2.8 4 1.8}
2.6 4 1.8
2.4 - 1.4}
5 B
- =]
S22 =T B1.2F
§ 2 " - g 1t
_-==""8UM
1.8 T g 0.8
16 _--"" - 0.6
. 0.4
%6 60 70 80 80 100 10 20 30 40 50 60 70 80 80 100
right bound v right bound v
x 10* BFD(fixed left bound u=L/3) x 10* BFD(lixed loft bound uslL/7)
2.4 1.8 v v - -
22| 1.6
2 . 1.4F
2 L
S E2
g 1.6+ SOL=BIG _g 1t
1.4 o.8f
f"
12 P 0.6
- .EfF
*_" -
b RN Q. - —— - —_— = — [S—
40 50 80 70 80 80 foo 1o 20 30 0 50 €0 70 80 80 100
right bound v right bound v
x 10 BF D(fixed lott bound uwl/4) x 10* BFD(fixed loft bound uslL/8)
22 T 1.8 -
2r 1.6p - 4
1.8} 1.4 E
1.6 1.2f g
g SOL
=
S 1.4F S 1F -
13
1.2 E o.a[E
1 0.6 g’ Sum Bia b
I s
(Y] 0.4 L
_ A — - - " o . s R . .
%% 36 A o 0 75 6 30 300 0% 20 3 50 60 70 83 86 100
right bound v right bound v
x 10* BFD(fxed lett bound u=t/5) BFO(lixed left bound u=0)
2 16000
14000
12000
10000
2
=
S 8000
g €000
4000
2000
0.6 — - . - - o
20 30 0 50 €0 70 80 90 100 (9

right bound v

Figure15: Solution vslower bounds for fixed left

L L L L
bound U = 39328757

Figure 16:

s; € (u,v] bound u = £, &

27

£ %%

&0
right bound v

Solution vslower bounds for fixed |eft

L 0, si € (u,v]

appioximale emor rate %
8 8 8583

BFD(tixed letl bound u=L/2)

3

~
(-]

—

BFD(lixed left bound uelA3)

10F

\J

(SUM)

«e)

40 %0 60 70
right bound v

BFD(tixed lett bound u=Ls/4)

90 100

3 %

-
K

apptoximale emmor rale %

-
[<]
T

r(SUm)

rigt bound v

BFD(jixed lefi bound u=l/5)

-
>
T

-
]
2

approxmate eor rale %
°

N?QO

r(SUM)

e

30 40 50 60 70
right bound v

Figure 17: 1(SUM) vsr(LB) for fixed left bound

u

L

L L L

2132325 54 € (‘U,,'U]

28

BFD(fxed keft bound v=LA)

approximale esror rate %

40 50 €0 70
right bound v

BFD(fixed lett bound u=L/7)

appraximale emmor rale %
o

r(SUM)

40 60 70

50
right bound v

BFD(tixed et bound uslL/A)

8

8
*® 7
=
[
gs
2 5
E
E

N »

r(LB)
9 20 40 5 60 70
right bound v
BFD(tixed left bound ue0)
0.4
0.35 b

0.3
®
=

2025
g

2 02
r
£

;0.15

0.1

0.0

r(L8)
[} —e s————
(] 20

60
right bound v

Figure 18: r(SUM) vs r(LB) for fixed left bound

U= %"1?7%707 s € (u,v]

x 10* BFD(fixed right bound val/2)

0.8 4
Q.7 E
0.86] 4
0'50 10 20 3o 40 50
teft bound v
x10° BFO(tixed right bound va2Ls3)

S SOL
2s /
BIG

0.55 16 20 30 40 50 &0 70
left bound u
Ax10* BFD(lixed right bound vm3L/4)

x 10* BFD(fixed right bound ve4L/5)

26
2.4

o 10 20 30 40
left bound v

70 80

fumber of bins

x 10‘ BF D{fixed right bound va5L/6)

+

o 10 20

BFD(ixed right bound v=6L/7)

% 6 20 36 40 S0 60 70 8 90
lett bound v
x 10° BFD{lixed right bound vw7L/8)

Q 10 20 30 40 50 &0 70 80 20
left bound u
x 10* BFD(fixed right bound vaL)

40 60
left bound u

Figure 19: Solution vs lower bounds for fixed Figure 20: Solution vs lower bounds for fixed

L 2L 3L 4L

right bound v = %, 4%, 5%, %, s € (u,]

SL 6L 7L

right bound v = %2, 5%, 5% L, i € (u,v]

BFD{{ixed right bound vmlL/2)

20; i
18| g
16| 4
® 14 4
3 -
g 12] !.i' <
= 10 ;“ L) N
g L
B ® e -
‘ -
%o '
4| = - -
.-‘-
2 - e - .
e N - a
10 20 30 40 S0
teft bound u
BFD(fixed right bound ve2l/3)
70} p
60 J
n r(8UM) -,
= i
[3-0¢ H 4
B _
gw. .
20 .
101 4
_‘,a" r(LB)
o e aemasan . g -
10 20 30 40 50 60 70
lett boundw
BFD(fixed right bound v=3L/4)
(-] —r v v
sor (SUM) . 1
» h .
= 40
: 1
:
g il 1
;20 3 J
10 B
rLB)
10 20 30 40 $0 60 70 80
lett bound u
BFD(tixed right bwnd v=4/5}
60|
SO D .
: 40F (SUM)
[
§
230F
g
3
2T
19-
i «we)
- — — —
10 20 40 60 70 0
feft bound u

8

BFD(fixed right bound veSL/E)

8

3

approximate emor rale %
8 8

nsumy

g

i
€0 70 80

BFD(ied right bound v=&L/7)

¢

x 30]

ool fale

2325

'§20

g

10|

oo 30 40 {1 90

nsumy F

n(LB)

left bound u

BFD(lixed right bound ve7L/8)

T R e h 848

approximale emof rale %

-
(4]

10|

nsumy]

(LB)
St

() 10

20 oo e 90

40 50
left bound v

BFD(lixed right bound v=L)

appcaximale emor rale %
5 o 8 B 8

L4]

(SUM)

(LB)

100

s §

20 40 60
lett bound u

Figure21: 1(SUM) vs r(LB)for fixed right bound Figure22: r(SUM) vst(LB)for fixed right bound
sL 6L 7L

3L 4L

_ L 2L
v=3, y 75

$; € (u,v]

v =

30

5 7 8o Ly 8i € (u,7]

Refer ences

[Baa88] Sara Baase. Computer Algorithms. Addison-Wesley Publishing Company, San Diego, CA,
1988.

[BJ83] Jon Louis Bentley and David S. Johnson. An experimental study of bin packing. In Pro-
ceedings d the 21st Annual Allerton Conference on Communication Control and Com-
puting, 1983.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. McGraw-Hill Book Company, New York, NY, 1990.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. W.H. freeman
and Company, San Francisco, CA, 1979.

[Joh73] D.S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, MIT, 1973.

[Joh74] David S. Johnson. Fast algorithms for bin packing. Journal d Computers and System
Sciences, 8:272-314, 1974.

[LL85] C.C.Leeand D.T. Lee. A simpleon-line bin packing algorithm. Journal d the Association
for Computing Machiney, 32:562-572, 1985.

[Yao80] Andrew Chi-Chik Yao. New algorithmsfor bin packing. Journal d the Association for
Computing Machiney, 27:207-227, 1980.

31

	Purdue University
	Purdue e-Pubs
	7-22-1993

	A Tighter Lower Bound for 1-D Bin-Packing
	Heng-Yi Chao
	Mary P. Harper,
	Russell Quong

