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Abst rac t  

For NP-complete problems, it may not be possible to find an optimal solution in polynomial 

time. However, efficient approximation algorithms for many NP-complete problems do exist. A 

good approach is to  find tighter upper and lower bounds on the optimal solutions. As the gap 

between these two bounds approaches zero, optimality is reached. For minimization problems, 

any feasible solution serves as an upper bound. In general, researchers attempt to find heuristic 

algorithms to  narrow the gap by decreasing the upper bound. Another approach is to narrow 

the gap by increasing the lower bound. To determine a good lower bound on a problem requires 

careful examination of the problem's characteristics. 

In this paper, we present an efficient algorithm for calculating a lower bound on the number 

of bins needed in a bin-packing problem. It is obvious that the sum of the sizes of all objects is 

a lower bound. In addition to this, we consider objects that cannot share their bins with other 

objects. We consider a subproblem class which contains only objects whose sizes are greater 

than $, where L is the size of a bin, given the harmonic partition. An O(n1ogn) algorithm 

finds a lower bound for the subproblem, which in turn is a lower bound for the original problem. 

Notably, our approach also leads to a polynomial time algorithm for finding optimal solutions 

of some special cases of bin-packing. 

Simulation data show that our lower bound provides an estimate of the optimal number of 

bins required which is equal to or better than the sum. The approximate error rate is normally 

less than 1% if our bound is used. The improvement can be as high as 79% when compared to 

the sum. 

Key words: Heuristic Performance Ratio, Bin-Packing, Lower Bound, BestrFit Decreasing, 

Harmonic Partition, Perfect-k-Way Merge, Matching. 



Figure 1: Upper and lower bounds on the optimal solution. 

1 INTRODUCTION 

For NP-complete problems, it may not be possible to  find optimal solutions in polynomial time. 

However, efficient approximation algorithms for many NP-complete problems do exist. The quality 

of approximation algorithms is often measured by guaranteed worst-case performance ratios. With- 

out loss of generality, we consider only minimization problems. Given instance I for a minimization 

problem P, let S A ( ~ )  denote (the cost of) the solution obtained by using algorithm A and S*(I) 

be the optimal (minimum) solution. Note that S A ( ~ )  2 S*(I).  The worst-case performance ratio 

of a minimization problem P using algorithm A is defined as: 

SA(I )  R(A)  = *lim sup- s (Z)+oo s* (1) 

which is an upper bound on the performance ratio for all instances of problem P using 

algorithm A. 

However, this bound has the following deficiencies: 

1. The R(A) ratio may misjudge the quality of a heuristic. Comparing two algorithms solely 

using the R(A) ratio bounds can be misleading because the average case performance may 

differ significantly from the worst case performance. The R(A) ratio for an algorithm is more 
difficult to calculate as the complexity of the heuristic algorithm increases. 

2. In most practical applications, a solution is acceptable, if the error is guaranteed to  be within 

some range (say 5%). However, for many optimization problem algorithms, the R(A) ratio 
bound often overestimates the error. Clearly, more precise error measurement is important 

for selecting an appropriate algorithm. 

For any problem instance 11, lb is a lower bound and ub is an upper bound on the optimal 

'In this paper, unless specified, all quantities are implicitly dependent on the problem instance I. Hence, I is 

dropped from the notation in situations where there is no ambiguity, e.g., So means S0(I). 



solution, if lb 5 S* 5 ub. Note that no solution less than lb can be found, and there exists a 

solution equal to ub which can be found in polynomial time. It is clear that Ib should be as large 

as possible, and ub should be as s m d  as possible, with the goal of Ib = ub = S*. Note that any 

existing heuristic algorithm provides an upper bound on the optimal solution. We call the range 

between the maximum Ib and the minimum ub, the uncertainty region (e.g., the shaded region in 

Figure 1) because no known polynomial time algorithm provides a solution within that region. 

Because of the deficiencies of R(A) ratios and the following reasons, we believe a tight lower 
bound is important for approximation algorithms: 

1. Clearly, a solution which equals the lower bound is optimal. Often, researchers attempt to 
find a new heuristic A' that provides a less costly solution than the solution given by some 
other well known heuristic A, moving the upper bound down (see Figure 1, SA \, SA/). 

Another approach is to  determine a tight lower bound on the optimal solution, moving the 
lower bound up (see Figure 1, Ib /" Ib'). 

2. Usually researchers simulate their algorithms and other heuristics on randomly generated 
samples or benchmarks, and then compare the solutions to see their relative performance. 
On the other hand, a lower bound is an attribute of the problem instance itself and hence, 
provides an absolute, universal performance measurement for all heuristics in a problem class. 

3. A lower bound serves as a termination condition in exhaustive search methods. 

4. A tight lower bound is useful for finding a better solution efficiently. It can help to  focus on 
a search path that leads to an optimal or near optimal solution. 

5. To determine a tighter lower bound requires careful examination of the problem characteris- 
tics, which may lead to a better heuristic. 

In this paper, we present a technique for finding a tighter lower bound for bin-packing problems, 

which may be extended to other NP-complete problems. 

1.1 The Bin-Packing Problem 

The 1-D bin-packing (BP) problem [GJ79] is the problem of packing a set of n objects into a 
minimum number of bins of fixed capacity, L. Let I be the set of objects to be packed and s; be 
the size of object i .  The BP problem is formalized as: 

[ Continuous Bin-Packing ( C B P )  ] 

Given: a se t  of objects I={l.. .n) , s; E (0, 11, si E R, v i  E I .  

Objective: assign each object t o  a unique bin, and minimize the to ta l  number 
of bins used. 



Constraint: The sum of the s i z e s  of a l l  objects assigned t o  a bin ( i . e . ,  its 

content) does not exceed 1 .  

[ Discrete Bin-Packing (DBP) ] 

Given: a s e t  of objects  I={l.. .n) ,  Si E (0, L], s; E N ,  Vi  E I. 

Objective: assign each object t o  a unique b in ,  and minimize the t o t a l  number 
of bins used. 

Constraint: the content of each bin  does not exceed L .  

The constraint that the content in each bin cannot exceed the bin's capacity is referred as the 

capacity constraint. For continuous bin-packing, the capacity of each bin is 1, and all sizes are real 

numbers in (0,1]. For discrete bin-packing, the capacity of each bin is L, and all sizes are integer 

numbers in (O,L], with L << n normally. In this paper, we consider both continuous and discrete 

bin-packing, though the primary emphasis is on discrete bin-packing. Without loss of generality, 

we assume L is even (i.e., L=2M) and L=100. We say that two objects i and j are compatible, 

if they can be assigned to  the same bin, i.e. s; + s j  5 L. We indicate that i 5 j e s; 5 sj ,  

i 4 j e si < sj .  Objects assigned t o  the same bin form a pseudo object. 

Because the bin-packing problem is NP-complete, heuristic algorithms have been studied ex- 

tensively [Joh74, GJ79, Baa88, CLRSO]. Several of the basic algorithms are shown in table 1. 

Garey and Johnson's work [Joh73, Joh74, GJ791 provides worst-case performance ratios for two 

well-known bin-packing algorithms: R(FF)=17/10, R(FFD)=11/9. Note that BF and BFD algo- 

rithms have essentially the same worst-case performance as the FF  and FFD algorithms [GJ79]. 

However, BFD performs better than the others in practice. 

1.2 A Lower Bound for the Bin-Packing Problem 

Let SUM be the sum of the sizes of all objects in the set. Obviously, SUM is a lower bound on 

S* for CBP. Bentley and Johnson's experimental study [BJ83] used empty space to  measure the 

average performance of FF, FFD algorithms, where samples are numbers drawn uniformly on the 

range [O,v], 0 < v 5 1. They define the empty space (error) as "the number of bins used 

-ELl s; " . Though the worst case performance ratios of BF and BFD algorithms are essentially 

the same as FF  and FFD algorithms [GJ79], in practice, the BFD algorithm provides much better 

solutions because it tends to eliminate the empty space in bins. The empty space obtained by 

performing BFD on samples uniformly distributed over the entire interval are normally less than 

2% [GJ79, BJ831. Though the error is quite small, it grows when v reaches 0.8 (a similar result is 

shown in Figures 16 and 18), an effect that the authors provided no explanation for. 



Table 1: Basic Bin-Packing Heuristics 

First-Fit(FF) 

Next-Fit(NF) 

Best-Fit(BF) 

Worst-Fit(WF) 

FFD, BFD, WFD 

We believe that the reason for the increased error in [BJ83] results from the fact that empty 

space is not the only important factor for measuring performance. In fact, our study reveals that 

the distribution of the sizes of objects also affects the error. In this paper, we develop an O(n log n) 

lower bound algorithm for CBP and DBP, and an O(n + L log L) lower bound algorithm for DBP. 

Our work considers s; E (u,v], where 0 < u 5 v 5 L. Simulation data using BFD algorithm 

shows that our method provides an equal or better estimate of the optimal solution than the sum. 

Additionally, our approach leads to a polynomial time algorithm that finds an optimal solution 

for some special non-trivial bin-packing problems, and BFD provides an optimal solution for these 

special problems. 

Assign each object sequentially to the first bin into which it fits. 

The bins are filled one at  a time and a new bin is started when the current object 

does not fit in the bin being packed. 

Assign each object sequentially to the bin into which it fits such that the remaining 

empty space is minimized. 

Assign each object sequentially to the bin into which it fits such that the remaining 

empty space is maximized. 

exactly the same as the FF, BF and WF algorithms respectively, except that the 

data is sorted in decreasing (or non-increasing) order before they are packed. 

The rest of this paper is organized as follows. In Section 2, we introduce the basic terminology 

and theorems used in this paper. In Section 3, we introduce a special class of the bin-packing 

problem and provide a greedy lower bound for that subproblem. In Section 4, algorithms for 

calculating a tighter lower bound are presented. In Section 5, we demonstrate the impact of this 

lower bound technique by simulating the BFD algorithm on sets of objects with sizes distributed 

over different intervals (u,v] of (O,L] for 0 < u < v 5 L. Finally we draw conclusions in Section 6. 

Frequently used symbols in this paper are listed in Appendix A for convenience. 

2 BASIC TERMINOLOGY AND THEOREMS 

In this section, we describe some basic terminology that is used in this paper. All definitions and 

theorems also apply to  CBP, if L=l  with the sizes of objects being real number in (0,1]. First, we 



Figure 2: Harmonic Partition 

introduce terminology for categorizing objects into classes based on sub-intervals of (O,L]. Second, 

we introduce the definition for approximate error rate. Finally, we define our new lower bound for 

the bin-packing problem. 

2.1 Partitioning the Set of Objects 

Many researchers have utilized subintervals to study the bin-packing problem. Yao [Yao80] classified 

objects and bins into four classes, (0, $1, (i, 21, ( i ,  31, (+,I].  Each object was first examined to 

determine its class and then assigned to  a bin corresponding to the same class in a First-Fit fashion. 

C.C. Lee and D.T. Lee [LL85] proposed a Harmonic algorithm which partitions the interval (0,1] 

into M subintervals, Ik = (&, i], if 1 5 k < M and Inn = (0, $1. An object i is called an Ik-piece, 

if s; E Ik. A bin designated to pack Ik-pieces exclusively is called an Ik-bin. For each incoming 

object i, if it is an Ik-piece, then the algorithm places it in a non-full Ik-bin. Hence, typically k 

Ik-pieces are packed in an Ik-bin. We have modified Lee's definition of harmonic partition slightly 

to  accommodate DBP: 

Definition 1 (Harmonic Part i t ion)  A harmonic partition is the partition of the interval (O,L] 

into harmonic intervals Ik, k = 1,2,. . ., where 

is called the k-th harmonic interval. For Ii Af, 

Example  1 If L=100, then the harmonic intervals are Il=(50..100], 12=(33..50], 13=(25..33], and 

12,3=(25,50] is the union of I2 and 13. 

Note that x E Ik e k = LL/xJ. The concept of harmonic partition is attractive because of 

the fact that exactly k Ik-pieces can be packed into a single bin. 



Lemma 1 Ezactly k Ik-pieces can be placed in the same bin. 

Proof: It follows directly from the definition. 

Corol lary 1 Each 11-piece has to be assigned to an individual bin. 

Corol lary 2 If the set of objects to be packed consists of only Ik-pieces, then it is optimal to pack 

k objects together. 

Proof: Lemma 1 implies that k and at  most k objects can be packed together. If there are n 

Ik-pieces, then packing every k Ik-pieces in a bin requires bins, which is a lower bound on the 

optimal solution; hence, it is optimal. 0 

In this paper, we subdivide objects into several classes in order to  calculate a tighter lower 

bound for the bin-packing problem. The harmonic partition is extremely useful, but is not general 

enough for our purposes. Let X and Y be arbitrary subintervals of (O,L]. An object i is called an 

X-piece, if s; E X (a Y-piece is defined similarly). The complement of a subinterval X is defined as 

X = (0, L] - X. 1x1 indicates the number of X-pieces. A bin is called an (X,Y)-bin if it is composed 

of an X-piece and a Y-piece. This notation can be extended to arbitrary tuples. A bin-packing 

problem is denoted as BP(X), if all objects are X-pieces. Another useful fact for calculating tighter 

lower bound follows: 

Lemma 2 A t  most one object in 12,3 can be packed with an 11-piece. 

Proof: Suppose i and j are Izg-pieces that can be packed with an Il-piece k, then si + Sj  + s k  > 

4 + h + t = 1, which contradicts the capacity constraint. 

2.2 Approximate Error Rate 

Let SA(I) be the number of bins used by algorithm A and S*(I) be the minimal number of bins 

needed for packing a set of objects I. The approzimate error rate for an algorithm A using lb as 

an estimate of the optimal solution is defined as: 

We define the approximate error rate to  evaluate the optimality of the solutions provided by BFD 

(see Section 5). 

Lemma 3 rA(lb) is an upper bound on the actual error rate. 

SA-S* - SA S A Proof: The actual error rate = 7 - - 1 5 - 1 = rA(lb) 



2.3 Lower Bound Calculation 

The following lemma is useful for determining a tight lower bound for optimization problems and 

plays a central role in our development of a new lower bound for bin-packing problems. For a 

bin-packing problem instance, I, a subset I' of I is called a subproblem of I, and I is referred as the 

original problem. 

L e m m a  4 (Subproblem Principle) The optimal solution of a subproblem is a lower bound for 

the original problem. The lower bound of a subproblem is a lower bound for the original problem. 

That is, I' C_ I 1b(I1) 5 S*(I1) 5 S*(I). 

Proof: By definition, 1b(I1) 5 S*(I1). S*(I1) 5 S*(I) because I' C_ I. 0 

Obviously, I' = ( i  E I : L/4 < s; 5 L) E I ;  hence, 1b(I1) _< S*(I) and provides a lower 

bound on S*(I). A greedy algorithm is given in the next section to determine a lower bound for the 

subproblem that contains only Il,2,3-pieces of the original problem. This lower bound, in turn, is a 

lower bound for the original problem. 

Next, we introduce our lower bound for a bin-packing problem. 

Definition 2 (Lower Bound)  LB(u) is defined as max{SUM, BIG(u)), where S U M  = s;/Ll 

and BIG(u) is a lower bound on S*(i E I : s; > u). 

Note that our lower bound, LB(u), is defined to be the maximum of two terms, which are themselves 

lower bounds. The definition of SUM is modified slightly to accommodate DBP. By corollary 1, 

each 11-piece needs an individual bin. Hence, a good initial lower bound is max{SUM, BIG(M)), 

where BIG(M) = 1111. LB(u) is more precise, if u is small; however, it is more difficult to determine 

for u < $. LB(u) is a lower bound on S* as the following lemma shows: 

L e m m a  5 S* 2 LB(u). 

Proof: Each bin has a capacity of L. Hence, 

S* * L 2 C s ;  a S* 2 CS;/L a S* 2 [C s;/Ll = S U M  

S* 2 BIG(u) by the subproblem principle. It follows that S* 2 max(SUM, BIG(u)), which is 

used as our lower bound, LB(u). 

3 BP(Il I >  2 3) and OPTIMAL MATCHING 

We know that 111 1 provides a good lower bound. However, if we consider I2 and I3 pieces, a tighter 

lower bound is obtained. To calculate BIG($), we consider a special class of bin-packing problems, 



BP(Il,2,3) which contains only 11, 1 2 ,  and I3 pieces. 

An object i is said to be absorbed by an 11-piece, j, if i and j are assigned to the same bin. We 

say that a set of objects X = {zl . . . zm)  is absorbable, if there exist distinct 11-pieces Y={yl.. . ym) 

such that Vi, xi can be absorbed by y;, and M r (X, Y) = {(z;, yi) : 1 5 i 5 m) forms a matching. 

Note that each 11-piece consumes one bin (at a cost of 1) and at most one Iz,3-piece can be absorbed 

by an 11-piece without requiring a new bin (at a cost of 0). A greedy algorithm matches 12,3-pieces 

to some 11-piece, if possible, such that the remaining 12,3-pieces consume a minimum number of 

bins (which are referred as extra bins) in addition to those required by 11-pieces. Let LEFT contain 

all 12,3-pieces and RIGHT contain all 11-pieces. For each i E LEFT,  N(i) denotes the set of II- 

pieces that are compatible with i .  For any absorbable set X, f (X)  S*(L E F T  - X )  is called the 

cost of X .  Note that f(X) represents the minimum extra bins required by the remaining Iz13-pieces 

after absorption. The total number of bins used by an optimal packing is given by the following 

equation: 

S8(I) = lRIGHTl+ min{S8(LEFT - X )  : X is an absorbable subset of LEFT) (2) 

= lRIGHTl+ S8(LEFT - X*) 

= lRIGHTl+ f(X*) 

where X *  is an absorbable subset that achieves minimum cost. Note that X *  is maximal, otherwise 

it can be enlarged to eliminate more objects in LEFT. If X *  is absorbed by Y*, then M* (X*, Y*) 
is said to be an optimal matching for BP(IlP2j). An algorithm that finds an optimal matching is 
given as follows: 

1. s o r t  K i n t o  nonincreasing order by s i z e  

2. X , Y  + 0 

3. f o r  each objec t  i i n  K 

(a> if N ( i ) # 0 ,  
l e t  j be t h e  l a r g e s t  object  i n  N(i) 

X + X + i ,  Y + Y + j ,  Il.+Il-j. 

Theorem 1 (Optimal  Matching)  A b ~ o r b ( I ~ , ~ )  finds an optimal matching for BP(I1,2,3) in O(n log n) 

time. 
Proof: Let M* = (X8,Y*) be an optimal matching (hence, it must be maximal). Consider the 
currently largest object i in LEFT. 

1. If N(i) = 0, then there is no compatible 11-piece for i; hence, i 6 X*. 



2. If N (i) # 0 and j is the largest element in N (i), we claim that (i, j )  E M*. It is proven by 
contradiction and by swapping objects in bins without increasing the cost. 

(a) First we prove that i belongs to an optimal matching. Suppose i @ X*. 

If j $ Y*, then (i, j )  can be added to M*, which contradicts the fact that M* is 
maximal. 

If j E Y*, then 3k E X* absorbed by j (i.e. ( I ,  j )  E M*). Then M = M* - (k, j )  + 
(i, j )  is also optimal. 

(b) Next we show that i is absorbed by j. Assume i is absorbed by 1 # j (i.e., (i, 1) E M*). 
Note that 1 5 j because j was the largest in N(i). 

If j $ Y*, Then M = M* - (i, I) + (i, j )  is also optimal. 

If j E Y*, then 3k E X* absorbed by j. Then M = M*-(i, l)  -(k, j ) + ( i ,  j )+(k , l )  

is also optimal2. 

Hence, there exists an optimal matching that contains (i, j ) .  

By continuing the above argument for the currently largest object in LEFT, we can decide whether 

it should be included in an optimal matching or not and which 11-piece it should be matched to. 

It follows that Absorb(LEFT) finds an optimal matching for BP(I1,2,3). Because each 12,3-piece 

requires O(1og n) time to find the largest compatible .Il-piece, the time complexity for Absorb(12,s) 

is 0 (n  log n) . 

Corollary 3 If(X*,Y8) is an optimal matching for BP(Il,2,3), it is optimal to pack each x; E X* 

with the corresponding y; E Y*. 

Proof: Because (X*, Y*) is an optimal matching, f (X*) f ( X )  for any absorbable set X 5 

LEFT.  Suppose X 5 L E F T  is absorbed by Y 2 RIGHT in an optimal packing P. Then S* = 

(RIGHT(  + f (X)  by equation 4. Let Q be a packing with X *  absorbed by Y*, then f (X*) 5 

f (X)  =+ 1 RIGHT1 + f (X*) 5 I RIGHT1 + f (X)  = S*. So, Q is also an optimal packing. 0 

Corollary 4 An optimal solution is obtained in O(n1og n) for BP(IIT2). 

Proof: Note that the problem is a special case of BP(I1,2,3). Hence, Absorb(LEFT) finds an optimal 

matching (X*, Y*) for the problem in O(n log n) time by theorem 1. By corollary 3, it is optimal 

to pack each x; E X *  with the corresponding y; E Y*. Because the sizes of ad objects are greater 

than L/3, the objects remaining in LEFT are all 12-pieces after absorption. Packing any two of the 

objects remaining in LEFT is optimal by corollary 2. 0 

A similar result holds for BP(I1,3), except that three of the remaining 13-pieces should be packed 

in a bin after absorption. 

'k, I are compatible because s k  + s i  < s k  + sj < L. 



4 A NEW LOWER BOUND 

In Section 3, we have given an algorithm for absorbing a maximal subset of IzP3-pieces such that the 

remaining Iz13-pieces require a minimum number of extra bins in addition to  those bins consumed 

by 11-pieces. The following lemma is used for calculating a lower bound on the minimum number 

of bins required by the remaining Iz13-pieces. 

L e m m a  6 Consider BP(12,3), which contains only 12,3-pieces. Assume i and j are the smallest 

[ a 7  MI i f a > $  two objects and s; = a, sj = P, a 5 P. Let 2 = 
( L - a - p , M ]  if $ < a < $  

Then it is optimal to pack two 2-pieces together. 

Proof: For BP(12,3), at most three objects can be packed together because the size of each object 

is greater than i. However, 

1. if a > 5, then all objects are 12-pieces; hence, it is optimal to pack two objects together by 
corollary 2. 

2. if < a 5 $, then 2 = ( L  - a - p, MI. Hence 

Each 2-piece can be packed with at most one object in a bin. Assume that k is a 2-piece 
that can be packed with two objects 1 and m in a bin, then sk +st  + s ,  2 sk +a  + P > L 
(because i and j are the smallest two objects and k is a 2-piece), which contradicts the 
capacity constraint. Hence, k cannot be packed with two other objects in a bin. 

If there were two ( 2 ,  2)-bins3 in an optimal packing, then the objects in those two bins 
can be exchanged such that the two 2-pieces are in the same bin. 

Example  2 If a = 27, P = 30, then Z = (43,501. Let k be a 2-piece, then sk 2 44 and sk + a + P  2 

44 + 27 + 30 = 101 > 100. 

Figure 3 shows how the set of Il,2,3-pieces are partitioned into disjoint subsets. (X*, Y*) is an 

optimal matching and Z is the set of 2-pieces. BIG(:) is calculated based on packing each xi E X* 

with the corresponding yi E Y*, then packing two 2-pieces together. 

4.1 C a l c u l a t i o n  of  BIG 

We now calculate an estimate of the number of mutually incompatible objects, B I G  = 111) + 
max{ml, m2), as follows: 

3A (Z, 2)-bin is a bin containing one Z-piece and one Z-piece. 

10 



Figure 3: The set of Il,2,3-pieces are partitioned into X*, Y*, 2, L E F T  - X *  - 2, R I G H T  - Y*, 

where (X*, Y*) is an optimal matching and Z is the set of 2-pieces. 

Figure 4: The region that cannot be absorbed and requires additional bins 

Y* 

RIGHT-Y * 

X* 

1. 1111 bins are needed for 11-pieces. 
I t  follows directly from corollary 1. 

Next, we discuss the extra bins needed in addition to those bins required by 11-pieces. 

LEFT-X* -Z 

2. r n l =  max{[+l : 2 5 k 5 km}, where 

minh= the size of the smallest 11-piece and k, = LL-mmh+r  J (E  = the smallest expressible 

number for CBP and E = 1 for DBP). None of the (L - minh, MI-pieces (whose sizes are in 
the black section in Figure 4) can be packed with any 11-piece. They must consume extra 
bins. Let 

Ak = (121+ ...+ I I k l ,  2 5 k I k m  

Z 

(IIk, I = number of Ik,-pieces with sizes > L - minh). Note that Ak represents the number of 

(&, MI-pieces, which require at least [el bins because of the capacity constraint. Hence, 

at least ml extra bins are needed for the (L - minh, MI-pieces. 

Example  3 Suppose minh=80, i.e., the size of each 11-piece 2 80, then k, = = 

4. None of the (20,501-pieces can be packed with any 11-piece. Assume 112(=10, 1131=20, 
1141=30, then A2 = 10, A3 = 30, A4 = 60. Note that there are A2 = 10 objects whose size 
> 33, A3 = 30 objects whose size > 25, A4 = 60 objects whose size > 20. So, at least 

max{[?l, [%I, [TI } = max{5,10,15} = 15 bins are required for these objects. 



3. m2 = r:1 + m a {  ry , rF11 4, 

where z = (131, y = 1121 - 121 and z = 121 after absorption. Ignoring objects whose sizes are 
5 L/4, the problem becomes BP(11,2,3). 

Absorption 
Theorem 1 shows that A b ~ o r b ( I ~ , ~ )  finds an optimal matching for BP(Il,g,3) and it is 
optimal to merge (z;,y;) in the matching by corollary 3. 

Z-pack 
Assume i and j are the smallest two 12,3-pieces after absorption and s; = a, sj = p with 

a s p .  Let Z = ( L - a - p , M ] , i f $ < a <  f a n d ~ = [ a , M ] , i f a >  f .  Bylemma6, 

it is optimal to pack two 2-pieces together, requiring at least rt.121 extra bins where 
z = 121. 

For the remaining IzT3-pieces (after absorption and packing of 2-pieces), at  most three 
of them can be packed together. If there are z 12-pieces and y 13-pieces left, then at 

least rnax{r:], r q l )  are required for these objects, which is similar to the calculation 
of ml. 

So, a t  least m2 extra bins are needed to pack the Il,2,3-pieces in the set, and mg is a lower 
bound for the original set by lemma 4 (the subproblem principle). 

BIG is used in the two algorithms we have developed for determining the lower bound for any 

instance of bin-packing. The first algorithm is applicable for both CBP and DBP, while the second 

assumes the discrete case to achieve faster performance. 

4.2 Algorithm 1 

Algorithm 1 in Figure 6 follows directly from previous discussions. It classifies objects into Ik- 

pieces, sorts 11, calculates SUM, and then calculates BIG using the methods discussed in Section 4.1. 

Consider the time complexity of algorithm 1. Sorting objects in Il and 12,3 requires O(n1ogn). 

Additionally, calculation of BIG requires O(n1ogn) time because each IZa-piece needs O(1ogn) 

time to find its largest compatible 11-piece. Hence, the overall time complexity is O(n1og n). 

Theorem 2 Algorithm 1 gives a lower bound on the optimal solution of BP. 

Proof: The calculation of BIG follows directly from the arguments in Section 4.1, which is a lower 

bound on S*{ i  E I : s; > $1, and hence, is a lower bound on S*. 0 

4 y  + y -  1, if z is odd 



1. c a l c u l a t e  SUM 

2. ca l cu la t e  ml 

(a) Let minh= t h e  s i z e  of t h e  smallest  11-piece, k, = LL-mznh+E L J 
(b) count lIk(,l 5 k 5 k, 

((Ik,l = number of Ikm-pieces with s i z e s  > L - minh) . 
(c) ca l cu la t e  Ak = )I2(+ ...+ lIkl, 2 5 k 5 km 

(dl ml  = rnax{r+l : 2 5 k 5 Rm)  

(a) Absorb(Iz,3) 

(b) Assume i and j a r e  t h e  smallest  two 12,3-pieces l e f t  and s; = a, 

r;1 + m u (  rfl , r T l )  i f  z i s  even 
(dl m2 = 

151 + mu([?], r-1) i f  z is  odd 

4. B I G =  1111+max{ml,m2) 

5 .  r e t u r n  max{SUM, BIG)  

Figure 5: An algorithm for calculating a lower bound in O(n1og n) time. 

[ Algorithm 1 ] 

1. c l a s s i f y  objec ts  i n t o  appropriate  Ik groups 

2. s o r t  Il 

3. r e t u r n  L B O  

Figure 6: Algorithm 1 provides a lower bound for DBP and CBP in O(n1ogn) time. 



4.3 Algorithm 2 

For Discrete Bin-Packing, the capacity of each bin is L and all sizes are integer numbers in (O,L]. 

Normally L << n. In this section, we describe algorithm 2, a variation of algorithm 1, which 

takes advantage of this property. Its time complexity is O ( n  + L log L) which is faster in many 

applications. If we partition the set of objects into groups, much search effort can be eliminated 

by dealing with groups instead of individual objects. We define a bucket as a maximal subset of 

equal-sized5 objects. The set of objects I is partitioned into disjoint buckets, Bk, 1 5 k 5 L, and 

I Bk( is the number of objects in bucket Bk. 

We say that a merge is perfect, if its content is precisely L. A perfect merge with k components 

is called a perfect-k-way merge. The following theorem shows that it is always optimal to do perfect- 

two-way merging, if possible. It is convenient to view a packing P as a partition of the set of objects 

I, where members of each subset are assigned to the same bin. 

Theorem 3 Optimality is preserved under Perfect-two-way Merges. 
Proof: Let P be an optimal packing. Suppose P contains two subsets (bins) (XI.. . x,) and (yl.. -yn) 
with sx1 +sY1 =L. Note that:p 

Let Q be another packing such that Q is the same as P except that Q contains bins (xl,yl) and 

(22.- .xm,y2.. .y,) (namely, swapping yl & x2.. .xm, see Figure 7). Q is valid because 

In Bin 1, sxl + sy l  = L. 

In Bin 2, Cz2 sxi + Cy=2 Syj 5 - s ~ l  - 5 L. 

Hence, Q is another optimal packing since it uses the same number of bins as P. Continuing the 

same argument, there exists an optimal packing by doing perfect-two-way merging before packing. 

a 

Note that the pseudo objects formed by perfect-two-way merging have size L, which are Il-  

pieces and are unable to absorb any 12,s-pieces. This theorem is used in algorithm 2 to reduce the 

problem size whenever applicable. 

5When L is large, this definition can be modified such that a bucket contains objects with sizes within some 

interval. 



Bin 1 Bin 2 Bin 1 Bin 2 

(i) before swap (ii) after swap 

Figure 7: Swapping the contents of two bins where sz1 + syI = L. 

[ Algorithm 2 ] 

1 .  c l a s s i f y  objects  into appropriate buckets 

2 .  do a l l  possible  Perf ect-Tuo-Way merges 

3 .  return L B O  

Figure 8: Algorithm 2 provides a lower bound for DBP in O(n  + Llog L) time. 



Table 2: Comparison of Algorithms 1 and 2 

Algorithm 

1 

2 

Algorithm 2 in Figure 8 further partitions the set of objects into L buckets. Although both 

algorithms call the same procedure LB, the implementation of LB can be quite different for CBP 

and DBP. Consider merging two buckets B, and Bt, if JB,I = a ,  lBtl = b,  a < b before merging, then 

1 B, 1 = 0, 1 Bt 1 = b - a,  I Bs+t 1 = I Bs+* ( + a after merging. Because we are only concerned about the 

number of objects in buckets, algorithm 2 does not require truly merging objects. Consider the time 

complexity of algorithm 2. The 12,3-pieces are partitioned into $ buckets. For each s E ($ - $1, 
it requires O(1og L) time to find the largest t < L - s. Hence, the time complexity of calculating 

BIG for DBP in algorithm 2 is reduced to O(L log L) which is independent of n. 

Corollary 5 Algorithm 2 gives a lower bound on the optimal solution of DBP. 

Proof: Algorithm 2 is equivalent to  algorithm 1 except that we deal with buckets in decreasing order. 

The algorithm also employs perfect-two-way merging to  help reduce the problem size. Optimality 

is preserved by doing perfect-two-way merges by theorem 3. • 

A comparison of time and space complexities of these two algorithms is shown in table 2. 

Asymptotically, they have the same performance when L = O(n). Algorithm 1 has the advantage 

that it is not sensitive to  the precision of L and requires less memory. Algorithm 2 is linear, if 

n = O(L log L), which holds for many applications. 

Classification 

O(n) 

O(n) 

SIMULATION ANALYSIS 

Overall Time 

O(n log n) 

O(n+LlogL) 

We demonstrate the impact of this lower bound technique by simulating BFD algorithm on sets 

of n objects with sizes uniformly distributed over intervals (u,v] of (O,L] for 0 < u 5 v 5 L. Four 

typical (u,v]-intervals are shown in Figure 9. The centerline is depicted as s = M = $. The shaded 

regions represent the portion that cannot undergo perfect two-way merging. The objects in this 

region cause SUM to fail as a good estimate of the optimal solution. 

Memory 

O(n) 

O(n+L) 

We examine the number of bins used (designated as SOL in the figures) and the approximate 

error rates of BFD algorithm using SUM and LB as estimates of the optimal solution. Recall the 

Calculate BIG 

O(n log n) 

O(LlogL) 

Sorting 

0 (n log n) 

Calculate SUM 

o(n) 

o(n)  



(a) u d ,  v d  (b) ucM. DM. u + v d  

Figure 9: Four typical (u,v]-intervals. (a) u < M ,  v < M ;  (b) u < M ,  v > M ,  u + v < L; (c) 

u < M , v > M , u + v > L ; a n d ( d ) u > M , v > M .  

approximate error rate using lb as an estimate of the optimal solution is: 

~ ( l b )  = - l b  = (SOL - I) * 100% 
lb lb 

where SOL is the number of bins used by the algorithm. 

Simulations were done on a SUN/4 SPARC workstation, using random, the random number 
generator provided by UNIX, with n = 30000 and L = 100. Ten random instances are packed for 
each parameter under consideration. We consider the following three cases: 

1. fixed length : I = f , k = 2 . . .8. (results shown in Figures 11-14) 

2. fixed left bound : u = 0 and f , k = 2 . . .8. (results shown in Figures 15-18) 

3. fixed right bound v = L and (1  - B)L, k = 2 . .  .8. (results shown in Figures 19-22) 

5.1 Simulation Results 

Because the sizes of objects are numbers drawn from a uniform distribution in (u,v], SUM increases 

linearly as we move right on the horizontal axis. SUM is a good estimate of S* only when there are 

many small objects that can fill in the empty space of bins consumed by large objects. The curve 

of LB, though not shown, is easily constructed by taking the maximum of the two curves. SUM 

is the dominant component in LB when there are more small objects, while BIG is the dominant 

component when there are fewer small objects. For graphs in Figures 11, 12, 19, and 20, SUM 



u l  u2 u3 

(a) fixed length l=v-u 

v 1 v2 v3 

(b) fixed left bound u 

u2 u3 

(c) fixed right bound v 

Figure 10: (u,v]-intervals considered in our simulation. (a) fixed length 1 ,  (b) fixed left bound u 

and (c) fixed right bound v .  



and BIG intersect at critical points where BIG becomes the dominant component in LB as we 

move to  the right on the horizontal axis in the graphs. Observe that r(SUM) reaches its (global) 

minimum, when the (u,v]-interval is symmetric with respect to  the center line, because of the 

uniform distribution. 

Notice, in Figure 17, that BFD appears optimal when the left bound u > 5, and we prove this 

in the following corollary. 

Corollary 6 BFD provides an optimal solution for BP(IlV2). 

Proof: BFD sorts all objects by size in nonincreasing order into a queue Q. For each object i in Q, 

it then searches the used bins t o  find a bin whose empty space is closest t o  s; .  If there is not such 

a bin, a new bin is created and i is assigned to  that bin. Note that placing an object i in a bin 

with content s is equivalent to  merging i with a (pseudo) object j with sj = s .  Thus, BFD finds 

the largest compatible (pseudo) object j (a bin I with content s j )  for each object i in Q and merge 

(i, j )  (place i in bin I). If we divide Q into two sub-queues R and L such that R contains all the 

11-pieces and L contains the remaining 12-pieces, it is easy to  see, from previous discussion, that 

BFD gives an optimal packing. 

Corollary 7 BFD provides an optimal solution for BP(IIl3). 

In the following sections, we describe the behavior of r(SUM) and r(LB) for various cases and 

give intuitive explanations of the phenomena. 

5.1.1 Intervals with Fixed Length 

In case 1, depicted in Figure 10(a), we consider intervals (u,v] of fixed length, 1 = i ,  2 5 k 5 9. 

The simulation results are shown in Figures 11-14. For small u, SUM is the dominant component 

in LB, while BIG is the dominant component for large u. The gap between the two curves for 

s m d  u is narrowed when 1 decreases. For 1 = $, the mean r(LB) drops to  zero when u > $ (see 

Figure 13), which corresponds t o  the case in Figure 9(c), where (u,M)-pieces are almost completely 

absorbed by 11-pieces; hence, S* = LB. 

As we move the interval to the right on the graph, r(SUM) changes as follows (see Figures 13 

and 14): 

r(SUM) is small for small u, where most of the empty space caused by large objects is filled 

by small objects. 

As u increases, r(SUM) increases to  a local maxima when most objects are medium sized. 



r Then r(SUM) starts to decrease because SUM increases and SOL remains almost unchanged 

(as can be seen by the middle "flat" portion of SOL in Figures 11 and 12). 

r r(SUM) reaches its minimum value with SOL z SUM,r(SUM) z 0, when the interval is 

symmetric with respect to the center line. 

r Passing this global minima, r(SUM) again increases because more 11-pieces cannot be per- 

fectly merged with other pieces, causing the empty space to increase. r(SUM) reaches the 

(global) maximum when u = M. At this point, all objects are 11-pieces and the empty space 

is a t  a maximum. 

r r(SUM) decreases as we continue to move the interval to the right along the s axis, because 

SUM.increases while SOL = n remains unchanged. 

The maximum and minimum values of r(SUM) and their corresponding u values for fixed length 

intervals are summarized in table 3. We form two conjectures about r(SUM) by examining the table 

and the figures. Conjecture 1 follows from the fact that r(SUM) is minimum when the interval is 

symmetric with respect to the center line, and conjecture 2 results because the maximum r(SUM) 

increases as the length of the interval decreases. 

Conjec ture  1 (Max imum a n d  Min imum r(SUM)) If the length 1 of (u,v]-interval is  fixed, 

then the mazimum r(SUM) occurs at u = M and the minimum r(SUM) occurs at u = y. 
Conjec ture  2 The maximum r(SUM) increases as the length of the interval decreases. 

Notice that when u = M ,  r(SUM) is maximum and SOL = n. As the length of the interval 

decreases, SUM decreases and r(SUM) = & - 1 increases. 

5.1.2 Intervals  wi th  Fixed Left Bound  

In case 2, depicted in Figure 10(b), we consider intervals with a fixed left bound, u = 0 and 

f , 2  5 k 5 8. The simulation results are shown in Figures 15-18. For u = $ and 5, BFD is optimal 

by lemma 6, so r(LB)=O. 

Before summarizing the results, we discuss the simulation, results for various values of u: 

1. If u = 5,  all objects are 11-pieces; hence, SOL=n and r(LB)=O. However, SUM increases 

linearly as v increases; hence, r(SUM) decreases linearly as v increases. 

2. If u = 5, then 

r if v < F, r(SUM) decreases as v increases. 



Table 3: Maximum and minimum values of r(SUM) and their corresponding u positions for intervals 

with fixed length. 

length (1) 
L - 
2 

L - 
3 

L - 
4 

L - 
5 

L - 
6 

L - 
7 

L - 
8 

L - 
9 

if v = L - u = r(SUM) reaches its minimum value. 3 '  

if v > F, more 11-pieces cannot be packed perfectly, so r(SUM) increases as v increases. 

Note that r(SUM) increases more slowly when v becomes large because the objects that 
waste space in the bins become large, and the empty space is small. 

3. The curves for u = i ,  4 5 k 5 9 basically have the same shape except that the approximate 
error rate is small for small u. This happens because there are more small objects to  fill 
the empty spaces in bins used by large objects. Hence, we consider only the case when 

u = L. 4 r(SUM) reaches a minimum at v = L - u = y. Also observe that r(LB) z 0 when 

4 < v 5 and v 2 T .  Hence, we make the following conjecture: 
L 3L Conjecture 3 BFD is optimal for BP(a, T ) .  

L 3L For BP(a, T), 1131 = 21121. Hence, when BFD first packs two 12-pieces together and then 

fdls the empty space with an 13-piece (e.g., two objects with size 34 are packed first, then an 
object with size 32 is added), empty space is minimized. 

maximum. r (SUM) 

33% 

50% 

58% 

65% 

70% 

73% 

77% 

79% 

4. If u = 0, both r(SUM) (< 0.35%) and r(LB) (< 0.04%) are small; an effect similar to the 
experimental study in [BJS3]. When v 5 92, there are more small objects than empty space; 

hence, bins are full and SUM provides a good estimate. When v > 92, there are more large 

objects, and there are not enough small objects to fill the empty space, causing the error to 
increase. 

minimum r (SUM) 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

u position 

50 

50 

50 

50 

50 

50 

50 

50 

From these simulation results, depending on the relative position of v and L - u, we draw the 

following conclusions: 

u position 

24 

33 

3 7 

39 

4 1 

42 

43 

44 

v < L - u (corresponding to the case in Figure 9(b)): As v increases, more (u,M]-pieces 

perfectly absorbed by 11-pieces, the shaded region decreases; hence, r(SUM) decreases. 



v = L - u: The interval is symmetric with respect to  the center line; hence, r (SUM) x 0. 

The global minimum of r(SUM) occurs when v = L - u. 

v > L-u (corresponding to the case in Figure 9(c)): Most (u,M]-pieces are perfectly absorbed 

by 11-pieces; hence, SOL x L B  and T(LB) x 0. 

5.1.3 Intervals w i th  Fixed Right  Bound  

In case 3, depicted in Figure 10(c), we consider intervals with a fixed right bound, v = L and 

(1 - $)L, k = 2 .  . .8. The simulation results are shown in Figures 19-22. 

Below we summarize the simulation results for various values of v: 

1. v = 5. When u = 0, the interval is symmetric with respect t o  the line 5. An object i can 

be packed with an object j, sj = 5 - s;, t o  form a pseudo object with size *. Then two 

of these pseudo objects can be packed perfectly. As u increases, more (i, $]-pieces cannot 

be packed perfectly; hence, r(SUM) increases and reaches its maximum value at  u = $, 
where S*= b/21. Passing this maxima, r(SUM) decreases because SUM increases while SOL 

remains unchanged (see Figure 19 for v = $ and u 2 5 ) .  

2. The curves are similar for v = (1 - $)L, k > 2, except that the maximum r(SUM) and the 

minima are different. Hence, we consider only v = $. r(SUM) remains small and reaches the 

minimum at  u = L - v = 5. Passing this minima, the empty space starts increasing because 

more 11-pieces cannot be packed perfectly. It reaches the maximum at u = 5. Again r(SUM) 
decreases as u increases because SUM increases while SOL = n remains unchanged. 

F'rom the simulation results, depending on the relative position of v and L - u, we draw the 

following conclusions: 

u < L - v (corresponding to the case in Figure 9(b)): Most [L - v, M)-pieces are absorbed 

perfectly by the 11-pieces. The remaining (u, L - v)-pieces are small objects that are typically 

packed perfectly; hence, r (SUM) x 0. 

u = L - v: The interval is symmetric with respect to the center line; hence, r(SUM) x 0. 

The minimum r(SUM) occurs at u = L - v. 

u > L - v (corresponding to the case in Figure 9(c)): In this case, most (u,M]-pieces are 

perfectly absorbed by 11-pieces; hence, SOL z L B  and T(LB) z 0. 



6 CONCLUSIONS 

In this paper, we present an efficient technique for calculating a new lower bound, LB, on the 

minimum number of bins to  pack a set of objects whose sizes range over (O,L]. I t  is tighter than the 

traditional lower bound, SUM. When more large and medium size objects exist, it gives a very good 

estimate on the optimal solution. As the approximate error rate becomes small, the uncertainty 

region of the decision problem becomes negligible. In many cases, the solution equals the lower 

bound, which means that the solution is optimal. It shows that a better estimate on the optimal 

solution of N P  complete problems is important for assessing the quality of heuristic algorithms. 

In practical applications, we are satisfied with a solution which differs from the optimal solution 

within a small range of error. 

Further improvements can be achieved by considering Idt5-pieces or determining an even tighter 

lower bound for packing Il,2,s-pieces. It is also possible to use this lower bound technique to  obtain 

a smaller worst case R(A) ratio. 



A LIST OF SYMBOLS 

SUM 

BIG(u) 

natural numbers 

real numbers 

number of objects 

the set of objects 

capacity of a bin 

L/2 

size of object i 

number of bins used by an optimal packing 

number of bins used by heuristic algorithm A 

~ C ; € I  s;IL1 

a lower bound on S*{i E I : s; > u) 

max{SUM,BIG(u)) 

lower bound on S' 

-- 7; 11, approximate error rate 

bucket k 

number of objects in bucket k 

pseudo-object composed of objects i and j 

any sub-interval of (O,L] 

an object i with s; E 2 

number of 2-pieces 

bin-packing problems in which all objects are 2-pieces 

{ X I &  < z 5 i 7 z  E N) 

number of Ik-pieces 

U k E ~ I k 7 1 c  S N 
number of IK-pieces 

set of 11-pieces that are compatible with i 

approximately 
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