
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

5-1-1993

COMPUTING MULTIPLE QUADRATIC
FORMS FOR A MINIMUM VARIANCE
DISTORTIONLESS RESPONSE ADAPTIVE
BEAMFORMER USING PARALLELISM:
ANALYSES AND EXPERIMENTS
Mu-Cheng Wang
Purdue University School of Electrical Engineering

Wayne G. Nation
Purdue University School of Electrical Engineering

James B. Armstrong
Purdue University School of Electrical Engineering

Howard Jay Siegel
Purdue University School of Electrical Engineering

Shin-Dug Kim
Purdue University School of Electrical Engineering

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Wang, Mu-Cheng; Nation, Wayne G.; Armstrong, James B.; Siegel, Howard Jay; Kim, Shin-Dug; Nichols, Mark A.; and Gherrity,
Michael, "COMPUTING MULTIPLE QUADRATIC FORMS FOR A MINIMUM VARIANCE DISTORTIONLESS RESPONSE
ADAPTIVE BEAMFORMER USING PARALLELISM: ANALYSES AND EXPERIMENTS" (1993). ECE Technical Reports. Paper
230.
http://docs.lib.purdue.edu/ecetr/230

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Mu-Cheng Wang, Wayne G. Nation, James B. Armstrong, Howard Jay Siegel, Shin-Dug Kim, Mark A. Nichols,
and Michael Gherrity

This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/ecetr/230

http://docs.lib.purdue.edu/ecetr/230?utm_source=docs.lib.purdue.edu%2Fecetr%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages

COMPUTING MULTIPLE QUADRATIC

FORMS FOR A MINIMUM VARIANCE

DISTORTIONLESS RESPONSE

ADAPTIVE BEAMFORMER USING

PARALLELISM: ANALYSES AND

EXPERIMENTS

TR-EE 93-20
MAY 1993

COMPUTING MULTIPLE QUADRATIC FORMS FOR
A MINIMUM VARIANCE DISTORTIONLESS RESPONSE

ADAPTIVE BEAMFORMER USING PARALLELISM:
ANALYSES AND EXPERIMENTS

Mu-Cheng wang t*
Wayne G . ati ion^*

James B. Annstrongt
~ o w a r d ~ a y siegel t*

Shin-Dug Mmt*
 ark A. ~ i c h o l s t*
Michael ~ h e r r i r ~ *

+parallel Processing Laboratory
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907-1285 USA

*~u~erconcurrenc~ Research Team
Naval Ocean Systems Center, Code 421

Sari Diego, CA 921 52-5000 USA

May 1993

Purdue University
School of Electrical Engineering
Technical Report TR-EE 93-20

This research was supported by Rome Laboratory under confract number F30602-92-C-0150, by the Naval Ocean
Systems Center under the High Performance Computing Block, ONT, by the Office of Naval Research under grant
number N00014-90-J-1937, by the National Science Foundation under grant number CDA-90156%. and by
National Aeronautical and Space Administration under grant number NGT-50%1.

Wayne G. Nation. Shin-Dug Kim, and Mark A. Nichols are currently with IBM Corporation. Rochester. MN.
KwangWoon University, Seoul. Korea, and NCR Corporation, San Diego. CA, respectively.

Abstract

Data-parallel implementations of the computationally intensive task of solving multiple qua-

dratic forms (MQFs) have been examined. Coupled and uncoupled parallel methods are investi-

gated, where coupling relates to the degree of interaction among the processors. Also, the impact of
partitioning a large MQF problem into smaller non-interacting subtasks is studied. Trade-offs

among the implementations for various data-size/machine-size ratios are categorized in terms of

complex arithmetic operation counts, communication overhead, and memory storage require-

ments. Furthermore, the impact on performance of the mode of parallelism used is considered,
specifically, SIMD versus MIMD versus SIMD/MIMD mixed-mode. From the complexity ana-

lyses, it is shown that none of the algorithms presented in this paper is best for all data-
size/machine-size ratios. Thus, to achieve scalability (i.e., good performance as the number of pro-

cessors available in a machine increases), instead of using a single algorithm, the approach pro-

posed is to have a set of algorithms from which the most appropriate algorithm or combination of
algorithms is selected based on the ratio calculated from the scaled machine size. The analytical

results have been verified from experiments on the MasPar MP-1 (SIMD), nCUBE 2 (MIMD), and
PASM (mixed-mode) prototype.

Keywords: data-parallel algorithms, MasPar MP-1, multiple quadratic forms, nCUBE 2,

PASM, scalable algorithms

1. Introduction

The real-time processing of computationally intensive tasks often requires a parallel imple-

mentation. There may be several parallel implementations that can satisfactorily perform the task.

As the size of the problem, the memory space constraints, the execution time constraints, and the

machine architecture are changed, the parallel programmer must reevaluate which approach is the

best [SiS82]. An algorithm is regarded as "scalable" if it continues to perfom effectively the task

for which it was designed as the number of processors increases [ChD92]. Here, the term scalable is

applied to a set of algorithms. In this sense, as the number of processors is varied, the goal is to

select the algorithm or combination of algorithms in the set that most effectively performs the task.

Several data-parallel algorithms are developed and analyzed in this research for computing

the multiple quadratic forms (MOFs) that are part of an adaptive beamformer calculation with

minimum variance distortionless response (MVDR) [Hay86]. The implementations of the MQF

problem for various data-size/machine-size ratios are evaluated in terms of the number of complex

arithmetic operations, communication overhead, and memory storage requirements. Both coupled

and uncoupled parallel methods are investigated, where coupling relates to the degree of interaction

of the processors. The impact on performance of the mode of parallelism used is considered,

specifically, SIMD versus MIMD versus SIMD/MIMD mixed-mode. Then, the effect of partition-

ing a large MQF problem into smaller non-interacting subtasks is studied. The analytical results

show that none of the algorithms presented in this paper is best for all data-sizelmachine-size ratios.

Thus, to achieve scalability (i.e., good performance as the number of processors available in a

machine increases), instead of using a single algorithm, the approach proposed is to have a set of al-

gorithms from which the most appropriate algorithm or combination of algorithms is selected based

on the ratio calculated from the scaled machine size. The importance of using a set of algorithms

also has been recognized by other researchers (e.g., [Pan91]). Experimental results from the

MasPar MP-1 (SIMD), nCUBE 2 (MIMD), and PASM (mixed-mode) parallel processing systems

are shown to support the theoretical results derived herein.

In Section 2, the MQF problem is defined. Parallel processing system models for which the

application is targeted are overviewed in Section 3. Section 4 describes the uncoupled data-parallel

algorithm. Several coupled data-parallel implementations and the impact of problem partitioning

are presented in Section 5. A generalized method, of which the uncoupled and coupled methods are
special cases, is defined in Section 6. In Section 7, the theoretical results of Sections 4,5, and 6 that

are useful for choosing an optimal algorithm are reviewed. Also in Section 7, a combined

coupled/uncoupled approach is presented. Experimental results are discussed in Section 8. Related

work is addressed in Section 9.

2. The MQF Problem

Let s-vector, or steering vector, be an nX1 vector of complex numbers and g be the total

number of s-vectors. Define &f to be an nxn matrix of complex numbers and M (i, j) to be the ele-

ment of M in row i and column j, for 05 i, j < n. The q-th s-vector is denoted by s,, for 0 q < v. -
Element m of the s-vector q is denoted sq(m), for 0 I m < n. Let H denote the Hermitian transposi-

tion, i.e., the complex conjugate transposition of the s-vector (where the complex conjugate of

a + bi is a - bi). Then, the MQF calculation can be formally defined as:
H w,=s,Ms, fo rO<q < v .

For easy reference, Table 1 summarizes most of the parameters used in the paper.

In addition to the MVDR problem, this type of computation also appears in other problems.

For example, if M is a positive definite matrix, the quadratic P (x) = (1/2)xT MX - xTb is minimized

at the point where Mx = b and the minimum value is P (M-' b) = -(1/2)b T ~ - l b. The parallel algo-

rithms proposed here can be easily generalized to compute the equation x T ~ y that appears in the

fundamental variational principles of physics [S t~-861.

If the computation of v quadratic forms is performed on a serial machine, v (n + n) = vn + vn

complex multiplications and v (n (n -1) + (n -1)) = vn2 - v complex additions are required. Also,

the serial machine must have enough memory space to store the entire M matrix and v s-vectors,

with n 2 and vn complex numbers, respectively. It is assumed that each complex number is

represented by two floating point numbers.

Table 1: Summary of notation used throughout the paper.

Notation

M (i, j)
n

v

P

sq(m)

'4

wq

Meaning

the element of matrix M in row i and column j
the number of rows and columns of mamx M

total number of s-vectors

number of PEs in a parallel system

the element m of the s-vector q

S ~ M
H S, Ms, or rqsq

3. Parallel System Model

The model of a parallel system that is assumed here includes p processing elements of

the same computing power, where each PE is a processor and memory module pair. Such a

configuration is often referred to as a physically distributed memory machine, and is used in most

current parallel systems with 64 or more processors, e.g., MasPar [Blam] and nCUBE 2 WaM891,

as well as in the PASM prototype [FiC91, SiS871. The proposed data-parallel algorithms can be im-

plemented on a SIMD, MIMD, or mixed-mode distributed memory machine. These three models

of parallel machines are overviewed below.

An SIMD my661 machine is typically composed of a control unit a, a set of PEs, and an

interconnection network, as shown in Figure 1. In an SIMD machine, the enabled PEs receive and

synchronously execute common instructions that are broadcast from the CU; thus, there is a single

instruction stream. The PEs fetch data from their memory modules; thus, there are multiple data

streams. The interconnection network allows PEs to communicate among themselves and ex-

change data. Examples of SIMD machines that have been constructed include CLIP4 [FouSl],

CM-2 [TuRSS], DAP [Hun89], Illiac IV [BoD72], MasPar [BlagO], MPP [BatSO, Bat821, and

STARAN [Bat74, Bat771.

PE 0 PE 1 PE 2 PEP-1

mem. 0 mem. 1 mem. 2 mem. p-1

I I I

I
I

interconnection network

Figure 1: SIMD machine model with p PEs.

An MIMD machine consists of a set of PEs and an interconnection network, as shown in Fig-

ure 2. In contrast to the SIMD machine, where all processors are performing the same instruction in

lock-step on their own data, in an MIMD machine, each processor executes instructions from its lo-

cal memory, asynchronously with respect to each other [Fly66]. As with the SIMD model, the in-

terconnection network provides communication links among the PEs. Examples of large MIMD

systems that have been constructed are BBN Butterfly [CrG85], CM-5 [PaS92], IBM RP3 [PfS85],

Intel iPSC Cube [ArlSS], and nCUBE WaM891.

mem. 0 E?
I interconnection network I

Figure 2: MIMD machine model with p PEs.

In a mixed-mode parallel processing system, processors are capable of executing in either

SIMD or MIMD mode of parallelism. The ability to switch between the two modes at instruction-

level granularity with very little overhead allows the parallelism mode to vary for each portion of an

algorithm. There have been at least three mixed-mode parallel prototypes built. TRAC [LiM87],

designed and built at the University of Texas at Austin, implemented mixed-mode switching at the

subtask level, rather than at the instruction level. OPSILA [DuB88], from Laboratoire de Signaux

et Systems in Nice, France, has the capability of executing instructions in either SIMD or SPMD

(single program - multiple data stream) mode, a subclass of MIMD. PASM [ArW93, SiN90, SiS81,

SiS871 can dynamically switch between SIMD and full MIMD modes of parallelism at instruction-

level granularity with negligible overhead. Tritodl [PhW93] is capable of mixed-mode parallel-

ism at the instruction-level. Unlike PASM and TRAC, Tritodl is not partitionable. The design can

support up to 4096 processors.

PASM is reconfigurable along three dimensions: modes of parallelism (SIMDIMIMD) as

described above, partitionability, and inter-processor connections. It can be dynamically parti-

tioned into independent or communicating submachines of various sizes, each having the same

characteristics as the original machine. PASM uses a flexible multistage cube type network

[SieW], which allows the connection patterns among the processors to be varied. Extrapolation

techniques can be used to study the potential performance of larger PASM systems with the small-

scale prototype, as done, for example, in [BrC90].

Experimental results for the MQF problem were obtained from SIMD (MasPar MP- I), MIMD

(nCUBE 2), and mixed-mode (PASM) machines. There are many trade-offs among these modes of

parallelism [BeK91, BeS91, FiC91, SiA921. Computational characteristics of algorithms affect the

choice of the best mode for executing each section of code [Jam87]. A general discussion of these

trade-offs is beyond the scope of this paper.

Furthermore, no particular interconnection network is assumed for the proposed algorithms,

but the multistage cube and hypercube (single-stage cube) networks [SieW] are shown to be flexi-

ble interconnection networks that can perform the PE-to-PE permutations required by the MQF im-

plementations without any conflicts (i.e., without twocommunication paths needing a common net-

work link). The multistage cube network has been used or proposed for use in systems, such as the

Goodyear Aerospace Corporation ASPRO [Bat82], BBN Butterfly [CffiSS], Cedar [KuD86], IBM

RP3 [PfBSS], Goodyear Aerospace Corporation STARAN [Bat77], PASM [SiN90, SiS871, and

NYU Ultracomputer [GoG83]. The class of multistage cube topologies includes: baseline
[WUF~O], flip [Bat76], generalized cube [SieW], indirect binary n-cube [Pea771 multistage

shuffle-exchange [ThNS 11, omega &aw75], and SW-banyan (S =F =2, L =n) &iM87] networks

[SieW, WuF801. The hypercube interconnection topology has been implemented in the CM-2

[TuR88], Intel iPSC cube [Ar188], and nCUBE [HaM89].

The following sections describe the data-parallel implementations of the MQF algorithms. In-

cluded is a discussion of the impact of the mode of parallelism and the network topology used.

4. The Uncoupled Data-Parallel Method

The uncoupled method uses the obvious approach to parallelizing the MQF problem. Assume

that p divides v, i.e., v = c*p where c is an integer. By distributing v s-vectors evenly arnongp PEs,

each PE can compute c quadratic forms in parallel without having to communicate with any other

PE. I f p does not divide v, i.e., v # c*p, rv lp1 s-vectors will be assigned to each of v modp PEs, and
lv lpj s-vectors will be assigned to each of the remaining PEs. However, in this case some PEs will

do more work than others. If v c p, only v PEs will actually be utilized. Thus, for the uncoupled
method, utilization is good when eitherp divides v or v wp.

Solving a quadratic form can be decomposed into two phases. Letting * denote scalar multi-
n-1

plication, the phase (1) calculation is rq(y)= x s~(x)*M (x , ~) , and the phase (2) calculation is
x=O

n -1
wq = C rq(y)*sq(y). The number of complex multiplications and additions required for each s-

Y=O

vector during phase (1) is n 2 and n (n - I), respectively. For phase (2), n complex multiplications

and (n - 1) complex additions are performed for each s-vector. Thus, the total number of complex
multiplications and additions performed for each s-vector is n + n and n - 1, respectively . Be-

cause some PEs are assigned [v lpl s-vectors, the maximum number of parallel complex multipli-

cations and additions is r v lpl (n + n) and r vlpl (n2 - I), respectively.

For the uncoupled method, the maximum storage requirement per PE is n complex elements

for the M matrix and v lpl n complex elements for the s-vectors. This assumes that as each element

of rq is computed, it is used to calculate wq and is not stored (i.e., phases (1) and (2) are temporally

interleaved).

The uncoupled data-parallel method described above can be implemented in either SIMD
(synchronous) or MIMD (asynchronous) mode. If all PEs are operating synchronously, the compu-

tations being performed by the PEs can be overlapped with the CU's execution of control-flow in-

structions and/or any instruction common to all PEs. This is called CUPE overlap [E N 9 11. Also,

during phase (I), each element of mamx M can be embedded as an immediate operand of an SIMD

instruction broadcast fiom the control unit to the PEs. Thus, each PE need not store the M matrix.

One disadvantage of the implicit synchronization of the SIMD mode of parallelism is that it can
cause some PEs toremain idle because of data-dependent variable-time instructions (e.g., a floating

point addition instruction) [BeS9 1, FiC881.

If all PEs are operating asynchronously, the data-dependent variable-time instructions are

better performed in MIMD mode than in SIMD mode PiC881. However, CUPE overlap is not

possible in MIMD mode. Because both the SIMD and MIMD modes of parallelism have their ad-

vantages and disadvantages, the right choice of execution mode depends on the machine design &-

tails and the characteristics of the data being processed.

5. The Coupled Data-Parallel Method

5.1. Overview

This section describes how to map the MQF problem ontop PEs configured as an axb (=p)

logical grid (not necessarily a physical grid or mesh), where 1 5 a, b < n, and a, b, andp are powers of

two. Furthermore, the impact of partitioning the problem is discussed. The special cases of p = n

(a = 1, b = n) andp = n (a = b = n) are studied first to help explain the general case.

There are two common data layouts of the M matrix and s vectors in memory, referred to in

[FoJ88] as the block and scattered decompositions. For the MQF problem, the block decomposi-
tion method has contiguous enmes of the M matrix and s-vectors assigned to PEs in blocks. The

scattered decomposition method has consecutive entries in the M mamx and s-vectors assigned to

different PEs. For this case study the block decomposition method is used.

For ease of presentation, n is assumed to be a power of two initially. Based on the description

of the coupled implementation, the proposed method can be readily extended to cover the case

when nis not a power of two. This case will be briefly discussed in Subsection 5.6.

5.2. Whenp = n

Consider the case when the number of PEs is equal to the number of elements in a s-vector,

i.e.,p = n. As shown in Figure 3, PE j stores the j-th column of the M matrix and the Hermitians of v

s-vectors (sy 's, 0 5 p < v). Given v = 6 andp = n = 4, Figure 4 illustrates how M is distributed across

the PEs.

s,H ti)

o s q < v

PE 1 memory

M(i, 1)
O s i < n

s,H ti)
O l j < n
O l q < v n PE p -1 memory

W,p-1)
O l i < n

s,Hti)
O s j < n
o s q < v

Figure 3: Distribution of data onto p = n PEs for v steering vectors.

As in the uncoupled data-parallel method, the calculation of the MQF problem can be decom-
n-1

posed into two phases: the phase (1) calculation is rq(r)= $(x)*M (x , ~) , and the phase (2) cal-
x=O

n-1
culation is wq= Coq(r), w h e ~ oq(r)=rq(r)*sq(r). TO form the intermediate result rqU), for

y = o

0 5 q < v, PE j will execute vn complex multiplications and v (n - 1) complex additions. All PEs in-

volved can perform these computations in parallel (with PE j calculating rq(j)). As shown in Figure

4, the resulting element in PE j is rqU) for 0 5 q < v.

In the second phase, PE j first computes rqU)*squ) for all q. Thus, v complex multiplications

are performed, as shown in Figure 5. Similar to phase (I) , all PEs involved can perform these
n-1

multiplications at the same time. Next, the summation isperfmed, i.e., wq = 2 oq(j). However,
j=o

in this case, the elements to be totaled are stored in distinct PEs. Recursive doubling can be used to

compute the sums [Sto80]. Performing interleaved cursive doubling procedures [SiA92, SiS811

to find simultaneously the sum of the elements of p distinct vectors is referred to here as a

D-recursive doubling.

To help clarify the operations involved in the p-recursive doubling technique, Figure 6 illus-

trates how N = 4 PEs would sum the elements for an arbitrary set of vectors. In this example, there
are p = 6 vectors, a,, for 0 l q < 6, each having N elements. If ah is the j-th element of vector q with - -

3
a{ initially s t o d in PEW, then the sum that is sought is C a{ for each q, 0 Sq < 6. In Figure 6,

j=o

the arrows denote the transfer of data from one PE to another followed by an addition; together
these form a transfer-add operation. Five transfer-adds are required: three for the first step and two

for the second step.

v v v v v v
" P W N I - 0 ,
0 0 0 0 0 0
w w w w w w

v v v v v v
" P W N I - 0 ,
C L C L C L C L C L C L
w w w w w w

v v v v v v
VI W N
% n n %
W W W W W W
w w w w w w

v v v v v v
U P W N - 0
n n n n n n
W W W W W W
w w w w w w

b b b b b b
" X * x W x N X -x O X
n n n n n n
0 0 0 0 0 0 w w w w w w

b b b b b b
" X * x WX N X -x O X
n n n n n n
C L C L C L C L C L C L
w w w w w w

Zx Zx Zx sx ZX sx
n n n n n n
W W W W W W
w w w w w w

b b Zx Zx Zx N X -x sx
n n n n n n
W W W W W W
w w w w w w

% % % %
n n n n
"W "W r
0 0 0 0 w w w w

% % % %
n n n n
"W "W r
C L C L C L C L
w w w w

% % % %
n n n n
"W "W s " 0
W W W W
w w w w

% % % %
n n n n
W , W r P
W W W W
w w w w

PE 0 PE 1 PE 2 PE 3 PEO PE1 PE2 PE3 PEO PE1 PE2 PE3

Figure 5: Distribution of rqu) * squ) onto PEs for v = 6 andp = n = 4 (* represents element-wise scalar multiplication).

In general, the final sums for all p vectors, each with N elements, are computed in log2N steps,

where rp12~1 transfer-add operations occur at step i for 1 S i S log2N. Thus, the total number of
log2N

transfer-adds required in the p-recursive doubling procedure is rp121. Figure 7 gives an algo-
i =l

rithm to perform the p-recursive doubling procedure. With the multistage cube network, each of

these parallel transfers can be done in a single pass through the network without any conflicts

[SieW]. With the hypercube network, because each of these parallel transfers involves pairs of PEs

that are directly connected, no conflict will occur for any inter-PE transfer [SieW].

I* The following procedure will be performed on PEV), 0 I j c N. */
for i = 1 to log2N do (I* step i */

(i - 1) . k = j @ 2 , I* the destination PE number */
for P = 0 to (~3129 - 1) do (

q = (k mad 2') + ~ 2 ' ;

transfer local partial sum of vector q to PE(k);

perform the complex addition with the received data and the

corresponding local partial sum in PEV);

1
if (~12' # lp129)

p = lp12'1;

q = (k mad 2j) + ~ 2 ~ ;

if (j & 2('-') # 0)

transfer local partial sum of vector q to PE(k);

) else (

perform the complex addition with the received data and the

corresponding local partial sum in PEO?;

1

Figure 7: An algorithm to perform the p-recursive doubling procedure.

In the coupled data-parallel methad forp = n, oq(j) is equivalent to ah in the example above. -
5

Let wq be the final sum of vector q, i.e., wq = oqV). Then, as shown in Figure 8, for the example
j=o

above w 0 and w 4 are placed in PE 0, w 1 and w 5 are placed in PE 1, and w 2 and w 3 are placed in PE

2 and PE 3, respectively.

ElzTI
Figure 8: Distribution of wq's onto p PEs for v = 6 and p = n = 4.

In summary, there are vn complex multiplications and v (n - 1) complex additions during the
log2n

f i n + nhav and the vrnnd nhacp rpniiirpc I , rnmnlpu miiltinliratinnc fnllnrupd hrr K' rI,17~1

transfer-adds. Thus, the computational complexity of the coupled implementation in this case is
log2"

v (n + 1) complex multiplications, v (n - 1) complex additions, and z [v12~1 h-ansfer-adds. If
i =l

log2n log2n log2n z [v I2q transfer-adds can be decomposed into z rv 121 inter-PE transfers and z rv12~1 com-
i=l i=l i=l

plex additions, the computational complexity becomes v (n + 1) complex multiplications,
log2n l o h n

v (n - 1) + z [v 121 complex additions, and z [v 121 inter-PE transfers.
i=l i=l

log2n log2n
If n divides v (i.e., v = cn and c is an integer), 2 rv 127 = z (v 12') = (v /n)(n - 1). Then, the

i=l i =l

coupled method requires v (n + 1) complex multiplications, v (n - 1) + (v ln)(n - 1) = v (n - l ln)

complex additions, and (v ln)(n - 1) transfer-adds. Comparing the parallel complexity to the serial

complexity given in Section 2 shows that a speedup of n = p is achieved on the number of complex

multiplications and additions. This multiplicative factor of n = p speedup on calculations comes

with an overhead cost that is only an additive term of less than v inter-PE transfers.

log,"
Because (v 12') 5 [v 127 5 (v 12') + 1 and z (v 12') = (v ln)(n - I) ,

Consequently, the number of complex additions and inter-PE transfers are bounded by
v (n - 1 \ + (~ l n \ (n - 1 \ + l n ~ ~ n = v n - (v l n \ + l n ~ ~ n a n d (v /n \ (n- l \+ ln~ .rn . resnectivelv. Tfv2n. . ,.- - / . ,. ..-/,.- - / . --DL.- . .- ,. . .-/ . --DL.- --- ,. ..-/,.- - / . --DL.-, - --r----. --J - - . . - 7

log2n
as with the case for the MVDR application, this implies that z (v R') = (v /n)(n - 1) > logzn.

i =l
w 2 n

Hence, z rv 127 = (v ln)(n - 1) . Therefore, a speedup of approximately n = p on the number of

complex multiplications and additions is achievable even when n does not divide v.

As an example, let v = c*p = c*n and assume that the time to do a complex multiplication is ten

times that required by a complex addition, and, on the average, the time to do an inter-PE transfer is

the same as a complex multiplication. Then, the total speedup attained is:

serial- time - - vn2 - v + 10(vn2 + vn)
Spe*up = parallel-time (vn - v In) + 1O(vn + v) + IO(v - v In)

- - (1 In2 + 10n - 1)
(l l n + 20- l l ln) '

If p = n = 2' = 256, then the speedup is approximately 255. The total speedup in this example is

only a function of n and is independent of v.

The memory storage requirement for the coupled implementation is n complex numbers for a

column of M, vn complex numbers for v s-vector Hermitians sy, and v complex numbers for the v

single components of s-vector sq used in the second phase of the computation. If the v single s-

vector components can be obtained by negating the imaginary part of the corresponding SF stored

in each PE local memory initially, the memory storage requirement can be reduced to n + vn com-

plex numbers. If an SIMD or mixed-mode machine is used, each element of the v s-vector Hermi-

tians can be stored on the CU and can be embedded as an immediate operand of an SIMD instruc-

tion broadcast from the CU to the PEs. By doing this, the memory storage local to each PE can be

further reduced to just n complex numbers. Because in an MIMD machine each PE executes in-

structions from its local memory asynchronously, this saving in PE memory storage is not possible.

This subsection considers the case when p = n 2. This analysis assumes that n andp must be a

power of two. Let PE(i,j) be the PE in row i and column j in an n X n logical PE grid, where

0 5 i, j < n. As shown in Figwe 9, the data initially stored in PE(i, j) is M(i, j), s y (i) for 0 5 q < v, and

s,,,(j) formmodn =i ,OIm < v,andOIi,j <n.

Similar to Subsection 5.2, the calculations of the quadratic foxms can be decomposed into two
n-1 n -1

phases: i.e.. to compute (1) r q u) = c s y (i) * ~ (i , j), and (2) wq = o q u) , where

0, u) = rq u) * sq (j). In phase (I), PE(i, J> first perfoxms the v complex multiplications to compute

sy(i) * M(i, j), for all q. All PEs can perform these multiplications simultaneously. Then, because

the result of sF(i) * M (i, j) is stored on PE(i. J>, the v-recursive doubling procedure is used to foxm

rq (j) for 0 5 q < v. In this case, all the PEs in column j (i.e., PE(i, J) for 0 I i < n and j fixed) are parti-

cipating in the same v-recursive doubling procedure to foxm rqu). Therefore, there are n indepen-

dent v-recursive doubling procedures executing at the same time, as shown in Figure 10.

The number of transfer-add operations required to perform the v-recursive doubling is
logzn x [v 121. The final sums rqU) are placed in PE(i, j), where q mod n = i for 0 5 q < v. For v = 10 and
i=l

n =4, Figure 11 shows how rqO), for all q and j, is calculated and distributed across the logical grid

of PEs.

Assume logical PE(i, j] corresponds to physical PE (i*n) + j, for 0 I i, j < n. Because all n logi-

cal columns of PEs perform the n v-recursive doublings simultaneously, each transfer may involve

all n PEs sending data. Both the multistage cube and hypercube networks can support the required

inter-PE communications for all n PEs without any conflicts. That is because, each of the required

parallel transfers can be done in a single pass through the multistage cube network without any

conflicts [Sie90]. With the hypercube network, no conflicts will occur during each inter-PE transfer

[Sie90] because each of these transfers involves pairs of PEs directly connected.
n -1

The second phase computes wq = x oqU), where oqO) = rq(j)*sq(j). After the phase (1)
i=o

computation, PE(i,j] holds [vlnl distinct rqu) elements and the corresponding components of

squ) initially resident in its local memory, where q mod n = i for 0 5 q < v. Thus, to foxm oqO), the

number of complex multiplications required is [v /nl and all PEs can perform these operations in-
n-1

dependently (see Figure 12). To total v vectors, each with n elements (i.e., wq = x oqO) for
j=o

0 S q <v), all PEs in the same row will participate in a [v lnl -recursive doubling procedure, as shown

in Figure 13. Because there are n rows of PEs, n independent [v lnl -recursive doubling procedures

will be performed in parallel. The number of transfer-add operations required to total the com-
logzn logzn

ponents of w, is x [[v /n1/21 = x [v /(n 2')l. As a result, each PE will get at most [v lP1 com-
i=l i=l

ponents of wq. More precisely, PE(i, j) gets wq, for q =fp + jn + i, 0 5 f < [v lpl, and 0 5 q < v. Fig-

ure 14 shows the distribution of wq across the n2 PEs for v = 10 and n = 4 at the end of computation.

Analogous to the case discussed for the first phase, both the multistage cube and hypercube net-

works can support the necessary inter-PE transfers without any conflicts.

logzn
In summary, there are v complex multiplications followed by x [v12~1 transfer-adds per-

i = l

formed during the first phase of computation and the second phase requires [v /nl complex multipli-
logzn

cations followed by C [v /(n 2')] transfer-adds. Thus, the computational complexity of the cou-

logzn
pled implementation in this case is v+[v/nl complex multiplications and x [v12~1

logzn
+ x [v l(n2')l transfer-adds. By regarding each transfer-add as an inter-PE transfer followed by a

- -
2 1 W

- - - W Z J
n n % n n - v o s s e e - -
2 1 W

'I - -
01 N - 2 2

n n h h h h h
C I C I C I C I u C I u
w w w w w w w - 3
2 1 W

3 - -
01 N w 2 3

n n
N N g s w w - - - -

W
- w Z 3

n n % n n -
W W W W W W W
w w w w w w w

- - 3
W P O
n n n e e s
- - 3

W P O
n n n
CI CI u
w w w

- - 3
W P O

s s s
- - 3

W P O
n n n
W W W
w w w

Y Y Y
\ D m -
h h h
C C C
w w w + + +

C C C
w w w + + +

- - - - -
I z E I & I \ D U r h h h I 0 0 P - A % ‘ I

C C C C C C C C C C
w w w w w w w w w w

Y Y Y Y Y Y Y Y Y Y
4 W 01 h) \D Cn r 0 0 P O

h h h h h N N I N N N I S S G I

h h h

N e e ; f I t t h W W h h h h 1 " : A h %

w w
W W W
w w w

W W W
w w w

b b b b b b b b
01 h) \ D m - 00 P
h h h h h h - 0 ,
W W
w w

W W W
w w w

W W W
w w w

I I

Y Y , 2 2 2 Y Y Y
01 h) 00 P

^ ^ C C 1 3 3 3 1 A - 0 , C C C 1
w w w w w w w w

cell(i, j) represents

contents of PE(i, j) memory

Figure 14: Final distribution of scalar wq for v = 10 and n = 4.

complex addition, the computational complexity becomes v +rvlnl complex multiplications,
lof42n lof42n lof42n lof42n x [v 127 + x rv l(n2')l complex additions, and x rv12'1 + x rv l(n2')l inter-PE transfers.

log2n lof42n
Because x v12'+ x v l (n 2 i) = v (l - l / n) + v (l / n - l / n 2) = v - (v l n 2) ,

i=l i=l

Consequently, both the number of complex additions and inter-PE transfers are bounded by

v - (v In 2 , + 210g2n. If the time to do a complex multiplication and the time to do an inter-PE

transfer are ten times that required by a complex addition, as used in the previous subsection, then

the total speedup is serial-time/parallel-time, or,

(vn2 - v) + 10(vn2 + vn)
speedup =

log,n log,n l"f41n log,n
(x rv 121 + x rv l(n2')l) + l0(v +[v lnl) + lo(x rv /2q + x [v l(n2')l)

i =l i=l i=l i=l

2
v (l l n 2 + 10n - 1)

(V - (v /n2) +210g2n) + 10(v + (vln) + 1) + 10(v - (vln2) + 210g2n)

logzn log2n
If v a n, then v - (v In 2, w 210g2n and, consequently, I: rv 12'1 + I: rv l(n 2'1 = v - (v In2).

i=l i=l

Comparing the number of complex multiplications and additions to the corresponding operations

required in the serial algorithm shows that an approximate speedup of n2 =p is achieved. This mul-

tiplicative factor of n2 =p speedup on calculations incurs an overhead cost that is an additive term

of approximately v inter-PE transfers.

The memory storage requirements per PE for this method is 1 + v +[v lnl ; i.e., one location for

M (i, j), v locations for the s-vector components of sy(i) for 0 5 q < v, and rv In1 locations for the s-

vector components sm(j) for m =fi, 0 5 f < [v 14, and 0 S m < v. Unlike the p = n case discussed in

Subsection 5.2, because there is no common data stored on all PEs, the possibility of broadcasting

common data to the PEs as immediate operands in SIMD mode does not exist. Consequently, the

memory storage requirements per PE are the same for both SIMD and MIMD machines.

5.4. Coupled Data-Parallel Algorithm: General Description and Evaluation

The previous two subsections introduced the coupled method via two special case examples,

p =n (subsection 5.2) andp =n2 (subsection 5.3). This subsection formalizes the presentation of

the coupled method: i.e., the mapping of the MQF problem onto an axb (=p) logical grid of p PEs,

where 1 5a,b -<n, anda, b, andparepowersof two.

Let PE(i, j) denote the PE in row i and column j in an a b logical PE grid, where 0 5 i c a and

0 5 j c b. Figure 15 illustrates how M, s r , and sq are distributed across the PEs of the a b grid. Ini-

tially, the s-vectors are loaded into the PE memories such that an (nla)-element part of the Hermi-

tian of each s-vector, s t , and an (n1b)-element part of at most [vlal s-vectors, sq, are stored in each

PE memory. Each PE also holds an (n la) (n lb) portion of M. The exact elements stored in each
PE are defined for general PE(i, j] in Figure 15. For example, if v = 6, n = 4, a = 2, and b = 4, PE(1,2)

contains M (2,2), M (3,2), s r (2) and sr(3) for 0 5 q c 6, s (2), s (2), and s 5(2), as shown in the

boxes in Figure 16.

As in the previous cases, the calculation can be decomposed into two phases: the phase (I) cal-
n-l n- l

culation is rqb')= c ~ : (X) * M (x ,~) , and the phase (2) calculation is wq = C oq(y), where

oq@) = rqO))*sq(Y). Assuming v = 6, n = 4, a = 2, and b =4, Figure 17 illustrates the complex mul-
tiplications and subsequent complex additions performed by PE(1,2). For each s-vector s t , each

(i+lXn/a)-1
PE calculates (n la) products for each of (n lb) rq(y)'s. PE(i, j) calculates s r (x) * ~ (x,y),

x=i(nla)

for j(nlb)Sy < (j + l)(nlb) and Olq < v. Thus, each PE v(nlb)(n/a)=vn21p complex

multiplications followed by v (nlb)(n la - 1) = (vnlp)(n-a) complex additions. Allp PEs do these

calculations simultaneously.

Figure 16: Data elements in boxes are stored in PE(1,2) local memory.

Next, the summation in phase (1) is performed. The elements to be totaled to calculate rq(y)

are resident in the a PEs of a given column. In the coupled algorithm, because each of the a PEs in a

given column contributes ton lb different rq(y)'s for each of the v s-vectors, a (vn 1b)-recursive dou-
log2a

bling procedun, utilizing z [(vn lb)l2l transfer-add operations, on the a PEs of each column can
i= l

be used. All b logical columns of PEs simultaneously perform the b (vn 1b)-recursive doublings

(one per column). Both the multistage cube and hypercube networks can perform the needed inter-

PE communications for all PEs with no conflicts. As a result, PE(i,j) will hold rq(y), where

j(n1b)sy c (j+l)(nlb) and for all q, Osq cv, where q moda =i. As an example for v =6, n=4,

a = 2, and b = 4, the calculation of rq(j) (for all q, j') is illustrated in Figure 18.
n-1

Phase (2) of the coupled algorithm involves the formation of wq= z oq(y), where

oq@) = rq@) * sqCy). After the first phase of computation, each PE holds at most r v la1 (n 16) dis-

tinct rq@) components and the corresponding elements of the s-vectors, sq@), required to form
(i + l) (n / b t l - .. .

oq@). PE(i,j) forms the local partial sums of the products Z oq@), for all q, Olq c v,
y = j (n l b)

where q mad a = i. This is shown in Figure 19 for v = 6, n = 4, a = 2, and b = 4. To do this,

[v la1 (n lb) complex multiplications and r v la1 (n lb - 1) complex additions are needed. Then,

similar to that of the first phase, a r v la1 -recursive doubling procedure is employed in each row of b

PEs to combine the partial sums above to form wq for all q. All PEs in row i, i.e., PE(i, j) for 0 5 j < b

and i fixed, participate in the same r v la1 -recursive doubling procedure to form at most r v la1 wq

values, for all q, 0 5 q < v, where q mod a = i. To compute all v values of wq in parallel, a indepen-

dent r v la1 -recursive doubling procedures are performed simultaneously (one per row). Both the
multistage cube and hypercube networks can perform the required inter-PE transfers with no

b b b b 2= 2= w x m x +x a=
n n n n n n
N N N N N N
V V V V W V * * * * * +
% % % % % %
n n n n n n

,N "N ,N .!! . ! ,N
h) h) h) N h) N
V V V V V V + + + + + +

b b b b 2= 2= WX N X -x O X
n n n n n n
W W W W W W
V V V V V V * * * * * *
% % % % % %
n n n n n n
.!! .!w .!W .!W ,PJ "W
N N N N t 4 N
V V V V V V

h h h LEx ZX ZX *x -x O X
n n n n , o , o , o , o
h h h h LEx ZX wx *x -x O X

n n n n n n
C C C C C C
V V V V V V

h h h h LEx ZX wx N X ' X ox
n n n n n n
N N N N N N
V V V W V V

h h h c c l h h
"'x A X WX *x -x O X
n n n n n n
W W W W W W
V V V W V V

Y Y Y
" ' w -
n n n
0 0 0
V V V

Y " ' 2 2
n n n
C C C
V V V

Y " ' 2 2
n n n
N U N
V U V

Y Y Y
"' W r
n n n
W W W
V V w

Y Y Y
Pn W 0

n n
0 0 0
V V V

Y Y Y
P W O
n n n
C C C
V V V

Y Y Y
P W O
n n n
N U N
V V V

Y Y Y
P W O
n n n

, W , W v W

Y Y Y
Vl W r
h h h

0 0 0 w w w * * *
c ? c ? c ?
~ l w r
h h h
0 0 0
w w w

Y Y Y
~ l w r
h h h
C C C
w w w * * *
c? c? c?
Vl W r
h h h
C C C
w w w

Y Y Y
V l W r
h h h w w w
w w w * * *
c ? b b
~ l w r
h h h w w w
w w w

Y - 2 :
h h h
W W W
w w w * * *
c ? c ? c ?
u w r
h h h
W W W
w w w

Y Y Y

P, 0,
0 0 0
w w w * * *
c ? c ? c ?

P W O
h h h
0 0 0
w w w

Y Y Y
P W 0
h h h
C C C
w w w * * *
c ? c ? c ?
P W 0
h h h
C C C
w w w

Y Y Y
P W O
h h h w w w
w w w * * *
c? c? c?

P , " , " ,
w w w
w w w

Y Y Y
P W O
h h h
W W W
w w w * * *
c? c? c?
A h 2 0
h h h
W W W
w w w

Y Y Y
V l W r
h h h
0 0 0
w w w

Y Y Y
V l w r
h h h
C C C
w w w

Y Y Y
Vl W r
h h h w w w
w w w

Y
V l 2 :
h h h
W W W
w w w

Y Y Y
P W O
h h h
0 0 0
w w w

Y Y Y
P h) 0
h h h
F C C
w w w

Y Y Y
0 P , % h w w w

w w w

Y Y Y
P W O
h h h
W W W
w w w

c ? c ? c ?
V l W r
h h h
0 0 0 w w w

c ? c ? c ?
r n w r
h h h
C C C
w w w

c ? c ? c ?
m w r
h h h N w w
V W W

c ? c ? c ?
V l W r
h h h
W W W
w w w

c ? c ? c ?

P, !% "̂
0 0 0 w w w

c ? c ? c ?

P , " ^
C C C
w w w

c ? c ? c ?

P , " , 0 , w w w
w w w

c? c? c?
P W O
h h h
W W W
w w w

conflicts.

After the rv la1 -recursive doubling pmcedures, each PE stores at most [vlpl elements of wq.

Specifically, the results placed in PE(i, j) are wq, for all q, 0 s q < v, where q = ja + i + fab, for

0 5 f < r v lpl . This is illustrated in Figure 20 for v = 6, n = 4, a = 2, and b = 4. To form w,,
log2b x [v l(2'a)l transfer-add operations are performed in this phase.

Figure 20: Distribution of wq's at conclusion of procedure for v = 6, n = 4, a = 2, and b = 4.

In summary, the fist phase requires vn21p complex multiplications followed by (vn lp)(n - a)
log2a

complex additions and rvnl(2'b)l transfer-adds. The second phase requires rvlal (n lb) com-
i=l

log2b
plex multiplications followed by r v la1 (n lb - 1) complex additions and x [v1(2~a)l transfer-

adds. Table 2 summarizes the computational complexity of the uncoupled algorithm from Section

4 and the coupled algorithm of this subsection.

Table 2: Computational complexity for the uncoupled and coupled parallel algorithms.
Recall that p is the total number of PEs in the logical PE grid (p = a * b).

complex multiplications

complex additions

transfer-adds

By regarding a transfer-add as an inter-PE transfer and a complex addition, the complex addi-
logza

tions r e q u h d in the coupled scheme becomes (vn lp)(n - a) +rv la1 (n lb - 1) + [vn l(2'b)l
i=l

logzb
+ x r v l(2'a)l. Fixing v, p, and n and varying a and b, the lower bounds for the number of complex

Uncoupled complexity

r v l p ~ (n 2 + n)

rv lpl (n2 - 1)

-

operations can be &rived as follows.

Coupled complexity

vn21p + [v la l (n lb)

(vn lp)(n - a) + rv la1 (n lb - 1)

logza logzb
rvnl(2'b)l + x rv12'al

i =l i=l

Multiplications: vn21p + r v la1 (n lb) 2 vn 2/p + (v /a)(n Ib) = (v lp)(n + n)

bgza log&
Additions: (vnlp)(n -a)+rvlal(nlb - 1)+ z rvnl(2'b)l+ rvl(2'a)l

logla logzb logza logzb
Inter-PE Transfers: z rvn 1(2'b)l+ z r v 12'al2 z vn l(2'b) + z v l(2'a)

i=l i=l i=l i =l

= (vn lp)(a - 1) + (v lp)(b - 1) (4)

The lower bounds are attainable when v lp is an integer.

Recall that with the coupled method, p = a*b, for 0 < a,b 5 n, and a, b, and n are assumed to be

powers of two. As shown in Equations (2) and (3), the lower bounds for the number of complex

multiplications and additions are independent of a and b, and there is a factor ofp speedup on the re-

quired number of serial arithmetic operations. However, to minimize the number of inter-PE

transfers, a should be set as small as possible while remaining a power of two (and b should not be

greater than n due to the structure of the algorithm). Thus, ifp 5 n, a 1xp logical grid of PEs should

be chosen to compute the problem and consequently, the recursive doubling procedure is involved

only in the second phase of computation. If n < p S n2, a logical (p In)% grid of PEs is the optimal

choice and the recursive doubling procedure is required to total the partial sums stored on different

PEs during both the first and second phases of computation. If p > n2, according to the computa-

tional characteristics of the coupled method, only n PEs can be utilized and the remaining PEs are

idle.

The data memory storage requirements for this method are n21p + vn la +r v la1 (n lb) complex

numbers. The n21p term is for the (n la) (n lb) subamay of M, the vn la tern is for the (n la)-

element part of each of the v s-vector Hermitians, s t , and the [v la1 (n lb) tern is for the (n 1b)-

element part of r v la1 s-vectors, s,, stored in each PE memory.

In terms of computational effectiveness, consider the trade-offs between the SIMD and

MIMD modes of parallelism for the coupled method. The trade-offs for the local computations,

i.e., the sequences of complex multiplications and additions executed within each PE, are similar to

those discussed in Section 4. For the transfer-add operations, in general, they are executed moreef-

fectively in SIMD mode [BeSgl]. Typically, in MIMD mode, explicit synchronization primitives

and identification protocols are required for inter-PE communications. However, due to the impli-

cit synchronization in SIMD mode, these are not necessary. The choice between a pure SIMD and a

pure MIMD mode implementation will depend upon characteristics of the data being processed,

machine architecture, and the resulting relative impact of effects discussed above. For PASM, if

MIMD mode is better for the local computations, then the optimal implementation of the coupled

data-parallel method would be mixed-mode, i.e., MIMD for local computations and SIMD for the

transfer-add operations; otherwise, the optimal implementation would be SIMD mode.

55. Comparison of the Single and Multiple Groups Coupled Data-Parallel Methods

When employing the coupled data-parallel method, it is assumed that all active PEs are work-

ing together as a single group at execution time. However, some machines (e.g., nCUBE, PASM)

allow another possibility. For the n < p S n2 case, ifp PEs are partitioned into a = p In independent

groups of lxn PEs, r v la1 s-vectors are assigned to each of v mod a groups, and. lv 14 s-vectors are

assigned to each of the remaining groups. Then the recursive doubling becomes unnecessary dur-

ing the first phase of computation. This may reduce overall execution time. Assuming n < p S n2

and a = p In, Table 3 shows the computational complexity of the single group coupled method (i.e.,

one group of axn PEs) and the multiple groups coupled method (i.e., ' 'a" groups of 1 xn PEs). More

storage is required for the multiple groups coupled method, however, computational complexity is

the performance metric stressed here.

Table 3: Computational complexity for the one group axn PEs and "a" groups of lXn PEs
coupled methods, where n < p 5 n2 and M, A, and T represent multiplications,
additions, and inter-PE transfers, respectively.

M

A

T

L: one group of a Xn

PEs, where a = p In

vnla+rvlal

log20
(v la) (n-a)+Zrv12~1

i =l
log2n

+ r v 1(2~ajl
i=l

log20 z rvl27
i=l

log2n

+ Z r v l(2'a)l
i=l

R: "a" groups

of (lxn) PEs

rvlal(n + 1)

rvlal(n-1)

logzn

+ Z [vl(2'a)l
i=l

log2n z r ~ 4 ~ ~) 1
i=l

A=L-R

v = ca

L=R

L=R

L > R

(A>v-(vla))

v + ca

L I R
(OIAIn)

L I R

(OSAIn-1)

L > R

(A>v-(vla))

As shown in Table 3, if a divides v (i.e., v = ca and c is an integer), the multiple groups coupled

method is always better than the single group coupled method. When v + ca, although the number

of inter-PE transfers is reduced by partitioning all PEs into "a" groups of 1% PEs (consequently,

the communication overhead is reduced), the number of complex additions and multiplications is

increased. Thus, if the reduction in communication time is greater than the increase in computation

time, the multiple groups coupled method will outperform the single group coupled method; other-

wise the single group coupled method will be at least as good.

5.6. Coupled Data-Parallel Method When n is Not a Power of 2

This subsection extends the discussion of the coupled method to include the case when n is not

a power of 2. The data allocation among the PEs is slightly modified, but the algorithm for the cou-

pled method described earlier is still valid. Consequently, it will not be discussed in great detail.

The dismbution of the M matrix and the Hermitians of v s-vectors across axb PEs are

described below. Initially, a rv la l -element part of the Hermitian of each s-vector, sy , a [n lb1)-

element part of r v la1 s-vectors, sq, and a (n la]) (n lbl) portion of M are stored in each PE's lo-

cal memory. Stated precisely, the memory of PE(i,l) is loaded with s r (m) for

i (n / a l) < m < (i + l) (n / a l) , O I r n < n , and O I q < v and st(*), where t = f a + i for

j [n lb l) l z < (j+ l)[nlbl), O I z < n , and 0s f <rv /a l . PE(i,j) holds M(x,y) for

i (n / a l) s x < (i+l)[n/al), j (n lb1)Iy < (j + l > [n l b l) , a n d ~ ~ x , y <n.

Similar to the previous case, the calculation of MQF is decomposed into two phases, i.e., to
n-1 n-1

compute (1) rqQ)= z s~(x)*M (xYy), and (2) wq = x oq@), where oq@)=rq@)tsq@). Because
x=o Y=O

of the data dismbution described above, phase (1) requires at most: v r n lblr n la1 complex multipli-
log2a

cations followed by v r n lb1 [n la1 - 1) complex additions and [(v r n lbl)12'1 transfer-adds.
i=l

After the first phase, each PE holds at most r v la l rn lbl distinct rq@) components and the

corresponding elements of the s-vectors sq@) required to form oq@). Thus, in phase (2),

rv la l rn lbl complex multiplications followed by rv la] (n lbl - 1) complex additions and
log2b x r v 1(2'a)] transfer-adds are performed. Table 4 compares the computational complexity of the
i= l

coupled algorithm when n is and is not a power of 2.

The data memory storage requirements of the coupled method for this case is

r n la1 r n lbl + v [n la1 + [v la1 r n lbl complex numbers, i.e., r n lair n lbl for the r n la1 x r n lbl

subarray of M, vrn la1 for the r n la1 -element part of each of the v s t vectors, and rv lalrn lb] for

the r n lbl clement part of rv la1 sq vectors stored in each PE memory. The analyses in Subsections

5.4 and 5.5 can be used here. Depending on the trade-off between the increase in communication

Table 4: Comparison of computational complexity of the coupled algorithm when n is and is
not a power of 2. Recall that p is the total number of PEs in the logical PE grid
@ = a * b).

complex multiplications

complex additions

, trans fer-adcis

time and the decrease in computation time, the optimal implementation can be either the (single or

multiple groups) coupled or uncoupled method.

6. Generalizing the MQF Algorithm

n is not a power of 2

v$-ir;i +rxlr;l a

v r ~] [~ 1 - 1) ~ ~ 1 [; 1 - 1) a

l0JI2' ,,rn /bl b l 2 b y

1+xr--1
i=l i =l 2 ' ~

Given p PEs where p =a*n I n2, the multiple groups coupled method described in the previ-

ous subsection partitions all p PEs into a independent groups of lxn PEs. This idea can be general-

ized to allow different methods of solving the MQF problem; three of which are the uncoupled

method (Section 4), the single group coupled method (Subsection 5.4), and the multiple group cou-

n is a power of 2

vn2 v n -+[-I-
P a b

(E) (n - a) + r x 1 (t - l)
P a

logla vn log26 y

xrz1+crTl
i=l i=l 2 a

pled method (Subsection 5.5). Let p = y * a * p, where a , p, and y are powers of two and 1 5 y l p

and 1 5 a, p 5 n. Given p PEs where p < n 2, if all p PEs can be partitioned into y groups of axp PEs,

then the problem is to compute the MQF for r v /A s-vectors on axp PEs. It can be seen that the sin-

gle group coupled and uncoupled methods represent two extreme cases of the generalized method,

i.e., for y= 1, a= a, p = b, and y =p, a= fl = 1, respectively.

Let v, a, and b in Table 2 be replaced by r v /A, a , and P, respectively. Then, the computational

complexity of the generalized method is: r v /j (n2/(ap)) +rv /(p)1 (n Ip) complex multiplications,
log2B

1 v 14 (n /(ap))(n -a) + r v /(w)l (n /P - 1) complex additions, and x rvn / (r ~ 2 ~) 1 + r v /(@)I
i=l i=l

transfer-adds. By regarding a transfer-add as an inter-PE transfer and a complex addition, the

number of complex additions required in the generalized method becomes [v /A (n l(ap))(n -a)
loJ32a log2 $

+rvl(wll(nlp-l)+ x r~n l (f l2~ ; f l+ rv/()azi)l.
i=l i=l

Similar to the single group coupled method, given v, p, and n values, the actual number of

complex operations and inter-PE transfers are dependent on the values of y, a , and P. By fixing v,p,

and n, the lower bounds for those operations are derived as follows:

logza logzB
Inter-PE Transfer: z r vn /($2')l+ z r v l(p2')l

i=l i=l

Multiplications: [v Id (n 2/(ap)) + [v l(yal1 (n Ip)

Additions: r v l i (n l(ap))(n - a)+rvl(ya)l (nib- 1)

The lower bounds are attainable when v lp is an integer.

The lower bounds for Equations (6) and (7) are independent of a and P. When the number of

PE groups (y) is decided, to minimize Equation (5), a should be set as small as possible while

remaining a power of two and p should not be greater than n, which is identical to the results ob-

tained for the single group coupled method.

When p > n 2, not all of the PEs can be utilized by the single group coupled method. However,

by partitioning p PEs into y groups, where y is a power of two and 1 <p lys n 2, the resources can be

fully utilized. This is done by assigning r v l j s-vectors to each of v mod y groups, and [vld s-
vectors to each of the remaining groups. Within each group, whether the single group or multiple

groups optimal coupled method should be used can be determined based on their relative perfor-

mance. Thus, the computational complexity required for this problem is equal to the complexity of

computing the MQF problem for r v l j s-vectors onp IyPEs. The optimal value of y is dependent on

v, n, and the communication overhead. Table 5 summarizes the computational complexity of the

uncoupled, single group, and generalized methods.

Table 6 shows the comparison of the computational complexity between the single group cou-
pled and uncoupled methods (the two extreme cases of y in the generalize method). If p divides v,

rvlpl =vlp and

Table 5: Computational complexity for the coupled and uncoupled methods when p 5 n2

and M, A, and T represent the number of multiplications, additions, and inter-PE

transfers, respectively.

M

A

T

= (vn lp)(n -a) + (v lp)(n -b) + (vn lb) (l - (l la)) + (v la)(l-(llb)) =(v lp)(n2-1) .

Thus, both uncoupled and single group coupled methods require the same number of complex

additions and multiplications. However, because there are inter-PE transfers associated with the

single group coupled method, the uncoupled method will outperform the single group coupled

method when v = cp.

Ifp does not divide v, rv lpl = (v Ip) + 1 and

vn21p +rv /a l (n lb) < (vlp)(n2 + n) + (nlb) < ((v lp) + l) (n2 + n)

< (vlP)(n2 - 1) + ((n lb) - 1) + log2a + log26 < ((v lp) + l) (n2 - 1) .

Uncoupled

Method

r Ll (n2+n)
P

[L1(n2-1)
P

-

Coupled Method where p = a*b = y* a* fl

Although the single group coupled method takes less time to perform the needed complex addi-

tions and multiplications than the uncoupled method, the single group coupled method has the

overhead of inter-PE transfers. Thus, if the reduction in communication time is greater than the

increase in computation time, the uncoupled method will outperfom the single group coupled

One group of (axb) PEs

vn2 v n -+[-I-
P a b

vn v n
-(n-a)+r-l(F-l)
P a
log20 vn log26 ,,

+ zr-I+ xrTi
i=l 2'b i=l 2 a

'og2a V n log2b xrz i+xr -~
i=I iZl 2'a

y groups of (a x p) PEs

v n 2 v n [-]-+[-I
Y a p W F

v n v n
[-I(-)(n+x)+[-](--I)

Y aP P P
logza yn log2P ,,

+ zr71+ zr-1
i=l 11p2 i=1 @'

l o g ~ a yn log2P V x r,i+ z r-1
i=l 'yp2 i=1 @'

Table 6: Computational complexity for the uncoupled and single group coupled methods,

where 0 < p I n2 and M, A, and T represent the number of multiplications,

additions, and inter-PE transfers, respectively.

M

A

T

method, otherwise the single group coupled method will be at least as good.

It can be seen from Table 5 that, in general, if a andp are kept constant and y is doubled (P is

halved), the number of transfers decreases. However, if the number of vectors, v, is not a multiple

of 2y, then more computation per PE is required when y is doubled, otherwise, the same amount of

computation takes place. In the former case, the y value that can provide the best performance is

dependent on the trade-off between the increase in computation time and the reduction in commun-

ication time. In the latter case, it would be preferable to double the number of groups (i.e., double

Y).

7. Choosing an Optimal Algorithm

L: single group coupled

method with p = a*b PEs

vn 2/p + [v la1 (n lb)

(v n l p) (n - a) + r v / a l ((n l b j l)
l"g2a log2b

+ 2 rvnl(2'b)l + z rv/(2'a)l
i=l i= l

log20 iog2b
2 r vn l(2'b)l+ z r v l(2'a)l
i =l i=l

Results from the previous sections that relate different algorithm data-parallel approaches in-

clude the following. Section 6 presents the complexity of the algorithm proposed in this paper in

terms of v, n, y, a, and p. The parameters v and n are input data parameters and y, a , and P are logical

system configuration parameters used by the generalized method. Section 4 and Subsection 5.4

describe the structure of the algorithm when certain restrictions are placed on y, a , and P. The un-

coupled method applies when ap = 1. When y= 1, ap = p and P I n, the coupled method is used.

Subsection 5.4 showed that, when using the coupled method and y is fixed, it is best to make a as

small as possible, but keep P less than or equal to n. Subsection 5.5 made a strong argument for par-

titioning the problem in certain situations. It demonstrated that if y= a, a = 1, and P = n, when

v = ca, it is better to use a groups of 1 n PEs then 1 group of a n PEs. Finally, Section 6concludes

R: uncoupled

method

rvlp1(n2+n)

rvlpl(n2-1)

-

v = cp

L=R

L = R

L > R

v + cp

L < R

L < R

L > R

that the logical configuration 2yxax p/2 (when PI2 is an integer) will outperform the logical

configuration yX a P when 2ydivides v: another argument for partitioning the problem.

Now consider the many possible ways to solve the MQF problem by the algorithms presented

in this paper, given v, n, andp. One can use any variant of the generalized method (e-g., the uncou-

pled method, the single group coupled method, the multiple group method), or a combined ap-

proach. A combined approach may use a different method to compute the MQF problem for each

different subset of steering vectors. For example, if v > p, then the best algorithm may use the un-

coupled method for v - (v modp) vectors and the single group coupled method for v modp vectors.

The combined approach permits any combination of methods, each being used to compute the

MQF problem for a different subset of steering vectors. The total number of complex multiplica-

tions, complex additions, and inter-PE transfers for any algorithm can be computed from Table 5.

The relative cost of a complex multiplication, complex addition, and inter-PE transfer for a given

system can be obtained by experimentation and used to determine the optimal algorithm. Trade-

offs involved in changing the logical system configuration, such as those mentioned earlier in this

section, can be used to limit the number of possible algorithm choices to solve the MQF problem for
a given v, n, and p.

8. Experimental Studies

The goal of this section is to validate experimentally many of the theoretical results found ear-

lier. Both the uncoupled and coupled methods for solving MQFs have been implemented on the

16-PE small-scale PASM prototype, the 64-PE nCUBE 2, and the 16K-PE MasPar MP- 1. The im-

plementations assume that a, b, andp are powers of 2.

Figure 21 shows that for a logical a b machine configuration when using the single group

coupled method, the communication overhead for both the PASM prototype (Figure 21a) and the

nCUBE (Figure 21 b) decreases as b increases. The same is true for the MasPar (not shown), where
communication time nearly doubled when the logical configuration was changed from 64 128 to

128 64. These experimental results confirm the conclusion presented in Subsection 5.4 that com-

munication overhead is minimized when a is chosen as small as possible (i.e., a and b being a power

of 2 andp = a * b). Consequently, all the following experiments using the coupled method chose a

to be as small as possible.

The results of executing the uncoupled and coupled methods on the PASM prototype when

transfer costs are minimal compared to computation costs are shown in Figure (22a). The algo-

rithms were executed in mixed-mode: the floating-point computation was executed in MIMD mode

and all other computation was done in SIMD mode. As one can see, the difference between the per-

formance of the uncoupled and coupled methods on the PASM prototype when p divides v is not

significant. This is because the current implementation of the PASM prototype does floating-point

Time
1.5 -

(seconds)

Time

(seconds)

Value of b

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 6 8 101214161820222426283032

Value of b

Figure 21: Communication cost for various p =a * b logical configurations for (a) the PASM
prototype for n = 128, p = 16, and v = 2, 5, and (b) the nCUBE 2 for n = 16, p = 32,
and v =32.

420 -
coupled

360 - uncoupled - - - - - -

300 -
Time 240 -

(seconds)

1 1 1 1 1 1 1 1 1 1 1 1
0 8 16 24 32 40 48 56 64 72 80 88 96

Number of steering vectors, v

0.02 1
Time

(seconds)
0.014

Number of steering vectors, v

Figure 22: Execution time of the uncoupled and coupled data-parallel methods for (a) the
PASM prototype for n = 128 and p = 16, and (b) the nCUBE 2 for n = 16 and
p = 16, 32, 64.

operations by software emulation, so the total execution time is dominated by the complex opera-

tion computation time. The execution time for transfer-add operations represents only a very small

portion (0.1 % for v = 96, n = 128 on 16 PEs) of the entire execution time. These results corroborate

the mathematical derivations in Table 5 showing that the uncoupled method outperforms the cou-

pled method whenever v = cp, even when communication costs are low. The reduction in commun-

ication time by partitioning 16 PEs into several independent p u p s (e.g., two groups of 1x8 PEs, 4

groups of 1 4 PEs) is relatively insignificant when compared to the complex operations computa-

tion time. Consequently, only results from the single group coupled methods are reported for

PASM for the performance of the coupled method.

Figure 22(b) shows the results of executing the uncoupled and single p u p coupled methods

on the nCUBE 2, using 16, 32, and 64 PEs for a varying number (v) of steering vectors of size

n = 16. The logical system configuration (a xb) used to generate the graph for 16PEs was 1 16, for

32 PEs was 2 16, and for 64 PEs was 4 16 (recall that b should be less than or equal ton).

The experimental results validate the theoretical conclusions summarized in Table 3 and

Table 5. Table 5 says that whenever v = cp the uncoupled method outperforms the single group cou-

pled method. Figure 22(b) verifies this forp = 16,32, and 64. Furthermore, when p does not divide

v, the choice of method depends on the relationship between communication and computation

costs. For example, as shown in Figure 22(b), when p = 32, the uncoupled method outperforms the

single group coupled method for v = 24,32,48,56,64,80,88,96. The exact points of intersection

depend on the communication and computation cost relationship.

Now consider the computational complexities shown in Table 3. When v = ca, the table shows

that "a" groups of (1 n) PEs will outperform one group of p =a * n PEs. Let v = 80, a = 4, and

n = 16. From Figure 22(b), one group of 64 = 4 * 16 PEs takes .O1 seconds. To compute v = 80, it

would take four groups of (1 16) PEs as long as it takes one group of (1 16) PEs to compute 20

steering vectors. By looking at the graph for the single p u p coupled method using p = 16 PEs for

v = 20 vectors, one can deduce that four p u p s of (1 16) PEs take .0077 seconds for v = 80, which

is less than .O1 seconds. Thus, in this case, the multiple p u p method outperforms the single group

method, as predicted by Table 3.

The combined approach, discussed in Section 7, can be used to compute the MQF problem for
v steering vectors. For instance, the combined approach may consist of the following two steps: (1)

use the uncoupled method for the first tv ld * p) vectors, and (2) compute the remaining

(v - LvIpJ * p) vectors by the single p u p coupled method. For example, if v = 80 and p = 64, then

step 1 would compute 64 vectors by the uncoupled method (.0049 seconds), and step 2 would com-

pute 16 vectors by the coupled method (.0032 seconds). By this combined method, the MQF prob-

lem for v = 80 takes .008 1 seconds on the nCUBE 2. The coupled and uncoupled methods take .O1

seconds and .0097 seconds, respectively. Therefore, the combined method outperforms the single

group coupled and uncoupled methods. Consequently, when choosing an optimal algorithm for a

particular set of v, n, andp values, different combined approaches may need to be considered.

6 coupled -1 1 uncoupled - - - - - - -
5 communication 1

Time
4 -

(seconds)

3-

2-

1 -

I I I I I I I I I I I I I I 1
16 32 48 64 80 96 112128144160176192208224240256

Number of steering vectors, v

Figure 23: Execution time of the uncoupled and coupled data-parallel methods for the MasPar

MP-1 for n = 128 andp = 16,381.

The MasPar MP-1 results in Figure 23 show the number of steering vectors versus execution

time for the single group coupled and uncoupled methods. It also graphs the time spent doing com-

munication for the coupled method. Because the data is distributed across a large number of PEs

(p = n2 = 128 * 128), the computation per PE is negligible compared to the communication time.

Despite this fact, the coupled method greatly outperfoms the uncoupled method for the number of

vectors tested. If the coupled method line (solid line) was extrapolated until it intersected the uncou-

pled method line (dashed line), the value of v would be approximately 5 16 at the point of intersec-

tion. For v < 5 16, the added computation cost of the uncoupled method outweighs the communica-

tion cost of the coupled method. This shows that when massive parallelism is available to imple-

ment the MQF problem (p w v), the more sophisticated coupled method is needed to exploit the

available parallelism, &spite incurring high communication overhead. In contrast, when

5 16 < v 5 16,384, the uncoupled method using only v PEs will outperform the single group coupled

method using 16,384 PEs. This is the communication overhead price that is paid for the "fine grain

parallelism" that characterizes the coupled method.

9. Related Work

Adaptive filter theory M y 8 6 1 provides a theoretical background for implementing an adap-

tive beamformer with MVDR and a serial algorithm for implementing this problem can be found in

[Sch86]. To date, no related work has been found that examines the problem of determining paral-

lel implementations for computing multiple quadratic forms for the same mamx (the type of com-

putation in the MVDR problem). However, many publications exist that examine the more general

problem of parallel implementations of matrix multiplication (e.g., [Ber89, ChS88, DeN81,

Fo087, Mod881).

In [Mod88], different parallel algorithms for mamx multiplication are discussed. Its treat-

ment covers data layout on a logical mesh of processors (including the p = n and p = a*b general

case). However, time complexities and arithmetic operation counts are not provided.

An overview of parallel matrix multiplication algorithms based on different processor inter-

connection topologies, such as the hypercube, mesh, and perfect shuffle networks, is given in

[DeN81]. Concerning the hypercube topology, that paper presents some parallel matrix multiplica-

tion algorithms for p = n 3 and p = n 2 cases. The computational complexity of the parallel algo-

rithmis0(log2 n)whenp = n 3 andO(n)whenp =n2.

Several papers (e.g., [Ber89, ChS88, FoO871) have been published that discuss performing

matrix multiplication on hypercube machines by using a logical mesh of processors. These papers

differ fmm m N 8 1] , [Mod88], and the discussion in this paper in that the analyses are specifically

for hypercube machines. [Fo087] shows that the optimal performance of matrix multiplication on

the Cosmic Cube [Sei85] is achieved (in terms of communication overhead and load balancing) by

decomposing the problem into square sub-blocks. Similarly, [ChS88] discusses partitioning the

matrix and the impact of communication overhead when performing mamx multiplication problem

on an nCUBE [HaM89]. The work present d i n [Berg91 is an extension of Po0871 in that it consid-

ers the restrictive condition of only having nearest-neighbor one-to-one communication.

The publications described above address the problem of multiplying together two- or three-

dimensional mamces. Unlike previous work, this paper deals with the computation of multiple

quadratic forms and discusses the impact of the two primary aspects of system configuration on the

computation: interprocessor communication and partitionability. Trade-offs among various paral-

lel implementations are also addressed in this paper. Furthermore, it is presented that, for a given

problem, a combined uncoupled/coupled approach could achieve the optimal scalability for this

computation. Consequently, the results set forth in the above publications are not directly applica-

ble to the MQFproblem discussed here.

10. Summary

Several parallel data-parallel implementations of the computationally intensive task of com-

puting the MQF problem have been examined. Trade-offs among the implementations for various

data-sizelmachine-size ratios are categorized in terms of complex arithmetic operation counts,

communication overhead, and memory storage requirements. The results showed that when p (the

number of PEs) divi&s v (the number of steering vectors), the uncoupled data-parallel method is

the optimal parallel implementation and a speedup of p on the number of complex multiplications

and complex additions can be achieved. However, when v is not a multiple of p, a combined ap-

proach using both the uncoupled and coupled data-parallel methods should be considered. For both

the uncoupled and coupled data-parallel methods, the advantages and disadvantages of executing

the different sections of the algorithms in SIMD, MIMD, and mixed-mode were discussed. In addi-

tion, trade-offs between the "single-group" and L'multiple-group" decomposition for the coupled

method were presented.

This research can be directly applied to SIMD, MIMD, and mixed-mode parallel machines in-

terconnected with either the multistage cube or the hypercube interconnection network topology.

This work can be extended to other topologies (e.g., mesh-connected). The experiments performed

on the MasPar MP-1 (SIMD), nCUBE 2 (MIMD), and PASM (mixed-mode) prototype were used

to validate some of the analytically derived relationships among input data and logical system

parameters.

Both analytical and experimental results kmonstrated that a combined approach may be

better than any one method. Choosing an optimal algorithm for an MQF problem with a given n
(the size of a steering vector) and v is machine andp &pen&nt. Therefore, by having a set of algo-

rithms that perform the MQF problem efficiently for various input data parameters (e.g., n, v) and

system parameters (e.g., p, communication time, complex addition time, complex multiplication

time, mode of parallelism supported), an automatic algorithm selection methodology that may

combine several approaches can be implemented using the analysis established. This analysis of

the MQF problem that has been presented and experimentally explored supports the viability of

such an automatic method that can be developed for a variety of applications.

Acknowledgment: The authors thank Professor Michael Zoltowski of Purdue University for his as-

sistance.

References

R. Arlauskas, "iPSCi2 system: a second generation hypercube," Third Conference on
Hypercube Computers andApplications, January 1988, pp. 38-42.
J. B. Armstrong, D. W. Watson, and H. J. Siegel, "Software issues for the PASM
parallel processing system," in Sofrware for Parallel Computation, Janusz S.
Kowalik, Springer-Verlag, Berlin, 1993, to appear.
K. E. Batcher, "STARAN parallel processor system hardware," AFIPS 1974 National
Computer Conference, May 1974, pp. 405-4 10.
K. E. Batcher, "The flip network in STARAN," 1976 International Conference on
Parallel Processing, August 1976, pp. 65-7 1.
K. E. Batcher, "STARAN series E," 1977 International Conference on Parallel Pro-
cessing, August 1977, pp. 140- 143.
K. E. Batcher, "Design of a massively parallel processor," IEEE Transactions on
Computers, Vol. C-29, No. 9, September 1980, pp. 836-844.
K. E. Batcher, "Bit serial parallel processing systems," IEEE Transactions on Com-
puters, Vol. C-31, No. 5, May 1982, pp. 377-384.
T. B. Berg, S. D. Kim, and H. J, Siegel, "Limitations imposed on mixed-mode perfor-
mance of optimized phases due to temporal juxtaposition," Journal of Parallel and
Distributed Computing, Vol. 13, No. 2, October 1991, pp. 154-169.
J. Berntsen, "Communication efficient matrix multiplication on hypercubes," Paral-
lel Computing, Vol. 12, No. 3,1989, pp. 335-342.
T. B. Berg and H. J. Siegel, "Instruction execution trade-offs for SIMD vs. MIMD vs.
mixed-mode parallelism," Fifrh International Parallel Processing Symposium, May
199 1, pp. 301 -308.
T. Blank, "The MasPar MP- 1 architecture," IEEE Compcon, February 1990, pp. 20-
24.

W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Randall, A. H. Sameh, and D.
L. Slotnick, "The Illiac IV system," Proceedings of the IEEE, Vol. 60, No. 4, April
1972, pp. 369-388.
E. C. Bronson, T. L. Casavant, and L. H. Jamieson, "Experimental application-driven
architecture analysis of an SIMD/MIMD parallel processing system,'' IEEE Transac-
tions on Parallel and Distributed System, Vol. 1, No. 2, April 1990, pp. 195-205.
J. Choi, J. J. Dongma, R. Pozo, and D. W. Walker, "ScaLAPACK: a scalable linear'
algebra library for distributed memory concurrent computers,'' Fourth Symposium on
the Frontiers of Massively Parallel Computation, October 1992, pp. 120- 127.
V. Cherkassky and R. Smith, "Efficient mapping and implementation of matrix algo-
rithms on a hypercube," Journal of Supercomputing, Vol. 2,1988, pp. 7-27.
W. Crowther, J. Goodhue, R. Thomas, W. Milliken, and T. Blackadar, "Performance
measurements on a 128-node butterfly parallel processor," I985 International
Conference on Parallel Processing, August 1985, pp. 53 1-540.

E. Dekel, E. Nassimi, and S. Sahni, "Parallel matrix and graph algorithms," SIAM
Journal of Computing, Vol. 10, No. 4,198 1, pp. 657-675.
P. Duclos, F. Boeri, M. Auguin, and G. Giraudon, "Image processing on a
SIMDISPMD architecture: OPSILA," International Conference on Pattern Recogni-
tion, November 1988, pp. 430-433.
S. A. Fineberg, T. L. Casavant, T. Schwederski, and H. J. Siegel, "Non-deterministic
instruction time experiments on the PASM s ys tem prototype,' ' 1988 International
Conference on Parallel Processing, August 1988, pp. 444-45 1.
S. A. Fineberg, T. L. Casavant, and H. J. Siegel, "Experimental analysis of a mixed-
mode parallel architecture using bitonic sequence sorting," Journal of Parallel and
Distributed Computing, Vol. 1 1, No. 3, March 1991, pp. 239-25 1.
M. J. Flynn, "Very high-speed computing systems," Proceedings of the IEEE, Vol.
54, No. 12, December 1966, pp. 1901-1909.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker,
Solving Problems on Concurrent Processors, Volume 1, Prentice Hall, Englewood
Cliffs, NJ, 1988.
G. C. Fox, S. W. Otto, and A. J. G. Hey, "Matrix algorithms on a hypercube I: matrix
multiplication," Parallel Computing, Vol. 4, No. 1,1987, pp. 17-3 1.
T. J. Fountain, "CLIP4: progress report," in Languages and Architectures for Image
Processing, M . J. B. Dufland S. Levialdi, eds., Academic Press, London, England,
1981, pp. 281-291.
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir,
"The NYU Ultracomputer - designing an MIMD shared-memory parallel comput-
er," IEEE Transactions on Computers, Vol. C-32, No. 2, February 1983, pp. 175- 189.
J. P. Hayes and T. Mudge, "Hypercube supercomputers," Proceedings of the IEEE,
Vol. 77, No. 12, December 1989, pp. 1829-1841.
S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ, 1986.
D. J. Hunt, "AMT DAP - a processor array in a workstation environment," Computer
Systems Science and Engineering, Vol. 4, No. 2, April 1989, pp. 107- 1 14.
L. H. Jamieson, "Characterizing parallel algorithms," in The Characreristics of
Parallel Algorithms, L. H. Jarnieson, D. B. Gannon, and R. J. Douglass, MIT Press,
Cambridge, MA, pp. 65-100,1987.
S. D. Kim, M. A, Nichols, and H. J, Siegel, "Modeling overlapped operation between
the control unit and processing elements in an SIMD machine," Journal of Parallel
and Distributed Computing, Special Issue on Modeling of Parallel Computers, Vol.
12, No. 4,August 1991, pp. 329-342.
D. J. Kuck, E. S. Davidson, D. H. Lawrie, and E. H. Sameh, "Parallel supercomputing
today and the Cedar approach,'' Science, Vol. 23 1, February 1986, pp. 967-974.
D. H. Lawrie, "Access and alignment of data in an array processor," IEEE Transac-
tions on Computers, Vol. C-24, No, 12, December 1975, pp. 1145-1 155.

G. J. Lipovski and M. Malek, Parallel Computing: Theory and Comparisons, John
Wiley and Sons, Inc., New York, NY, 1987.
J. J. Modi, Parallel Algorithms and Matrix Computations, Oxford University Press,
New York, NY, 1988.

C. M. Pancake, "Software support for parallel computing: where are we headed?,"
Communications of the ACM, Vol. 34, No. 11, November 1986, pp. 53-64.
M. C. Pease 111, "The indirect binary n-cube microprocessor array," IEEE Transac-
tions on Computers, Vol. C-26, No. 5 , May 1977,pp. 458-473.
G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
Mc Auliffe, E. A. Melton, V. A. Nurton, and J. Weiss, "The IBM Research Parallel
Processor Prototype (RP3): introduction and architecture," 1985 International
Conference on Parallel Processing, August 1985, pp. 764-771.
M. Philippsen, T. Warschko, W. Tichy, and C. Herter, "Project Triton: towards im-
proved programmability of parallel machines," 26th Hawaii International Confer-
ence on System Sciences, January 1993, pp. 192-201.
R. Schreiber, "Implementation of adaptive array algorithms," IEEE Transactions on
Acoustics, Speech, andSignal Processing, Vol. ASSP-34, No. 5,1986, pp. 1038-1045.
C. L. Seitz, "The Cosmic Cube," Communications of the ACM, Vol. 28, No. 1, Janu-
ary 1985, pp. 22-33.
H. J. Siegel, J. B. Armstrong, and D. W. Watson, "Mapping computer-vision-related
tasks onto reconfigurable parallel-processing systems," Computer, Vol. 25, No. 2,
February 1992, pp. 54-63.
H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing: Theory
and Case Studies, Second Edition, McGraw-Hill, New York, NY, 1990.
H. J. Siegel, W. G. Nation, and M. D. Allemang, "The organization of the PASM
parallel processing system," 1990 Parallel Computing Workshop, sponsored by the
Department of Computer and Information Science at The Ohio State University, 1990,
pp. 1-12.

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E. Smalley, Jr., and S.
D. Smith, ' 'PASM: a partitionable SIMD/MIMD system for image processing and pat-
tern recognition," IEEE Transactions on Computers, Vol. C-30, No. 12, December
198 1, pp. 934-947.
L. J. Siegel, H. J. Siegel, andP. H. Swain, "Performance measures for evaluating algo-
rithms for SIMD machines," IEEE Transactions on Software Engineering, Vol. SE-8,
No. 4, July 1982, pp. 319-33 1.
H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, "An overview of the
PASM parallel processing system," in Computer Architecture, D. D. Gajski, V. M.
Milutinovic, H. J. Siegel, and B. P. Furht, eds., IEEE Computer Society Press, Wash-
ington, DC, 1987, pp. 387-407.
H. S. Stone, "Parallel computers," in Introduction to Computer Architecture, Second
Edition, H. S. Stone, ed., Science Research Associates, Inc., Chicago, IL, 1980, pp.
363-425.

[Str86] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Welles-
ley, MA, 1986.

[ThNSI.] S. Thanawastien and V. P. Nelson, "Interference analysis of shufflelexchange net-
works," IEEE Transactions on Computers, Vol. C-30, No. 8, August 198 1, pp. 545-
556.

[TuR88] L. W. Tucker and G. G. Robertson, "Architecture and applications of the Connection
Machine," Computer, Vol. 21, No. 8, August 1988, pp. 26-38.

[WuF80] C.-L. Wu and T. Y. Feng, "On a class of multistage interconnection networks,'' IEEE
Transactions on Computers, Vol. C-29, No. 8, August 1980, pp. 694-702.

	Purdue University
	Purdue e-Pubs
	5-1-1993

	COMPUTING MULTIPLE QUADRATIC FORMS FOR A MINIMUM VARIANCE DISTORTIONLESS RESPONSE ADAPTIVE BEAMFORMER USING PARALLELISM: ANALYSES AND EXPERIMENTS
	Mu-Cheng Wang
	Wayne G. Nation
	James B. Armstrong
	Howard Jay Siegel
	Shin-Dug Kim
	See next page for additional authors
	Authors

