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ABSTRACT 

Pattern recognition technology has had a very important role in many 
fields of application including image processing, computer vision, remote 
sensing, etc. The advent of more powerful sensor systems should enable one to 
extract far more detailed information than ever before from observed data, but to 
realize this goal requires the development of concomitant data analysis 
techniques which can utilize the full potential of the observed data. 

This report investigates classification using spatial and/or temporal 
contextual information. Although contextual information has been an important 
and powerful data analysis clue for the human-analyst, the lack of a good 
contextual classification scheme especially which can both use spatial and 
temporal context has not allowed its usefulness to be put to full use. 

Two different approaches to spatial-temporal contextual classification are 
investigated. One is based on statistical spatial-temporal contextual 
classification, and the other is based on decision fusion of temporal data sets 
which are classified individually with spatial contexts. 

In the first approach, a general form of maximum a posterior spatial- 
temporal contextual classifier is derived after spatial and temporal neighbors 
are defined. Joint prior probabilities of the classes of each pixel and its spatial 
neighbors are modeled by the Gibbs random field. The classification is 
performed in a recursive manner to allow a computationally efficient contextual 
classification. 

In the second approach based on ,the decision fusion, each temporal data 
set is separately fed into the local classifier and a final classification is 
performed by summarizing the local class decisions with an optimum decision 
fusion rule which is derived based on the minimum expected cost. The new 
decision fusion rule is designed to handle not only data set reliabilities but also 
classwise reliabilities of each data set. 

Experimental results with three temporal Landsat Thematic Mapper data 
show significant improvement of classification accuracy over non-contextual 
pixelwise classifier. 'These spatial-temporal contextual classifiers will find their 
use in many real applications of remote sensing, especially when the 
classification accuracy is important. 





CHAPTER 1 

INTRODUCTION 

1 .I Classification with Spatial and Temporal Contextual lnformation 

For decades, 'the technology of remote sensing has been successfully applied 
in many interdisciplinary applications of Earth observational data, and 
multispectral data have been extensively used in the classification. Recent 
development in sensor technology and solid state devices allows spatially and 
spectrally far more rich information-bearing data sets. Note that multispectral 
image data are very complex entities that have not only spectral attributes but 
also rich spatial and temporal attributes as in Fig. 1 .I. 

wavelength 
Variations 

Variations 

1 

and Classification 

1 

Variations 

Figure 1.1 Spectral, Spatial and Temporal Variations in Images. 



1 Introduction 

The a~ail~ability of temporal data sets over the same scene makes it possible to 
extract valuable temporal characteristics of surface covers, which are (of interest 
in applications requiring to detect spectral or spatial characteristic cha~nges over 
time. Proper utilization of this spatial and temporal contextual information, in 
addition to spectral information, can improve the classification performance 
significan'tly in many applications compared to the conventional pixel-wise 
classificaition. 

In part, due to the lack of good framework for using both spatial and temporal 
attributes in addition to spectral features, conventional approaches in the 
analysis of remotely sensed data have been mainly limited to pixel-wise 
classifica1:ion. The objective of this research is development of a cla!;sification 
algorithm which can utilize both spatial and temporal contextual information in 
addition to spectral attributes in an efficient and effective way. 

Although there has been much research (Kittler and ~ b l e i n  84) on the spatial 
contextual classification and temporal contextual classification, there have been 
only a few works utilizing both spatial and temporal contextual information. Two 
different approaches to spatial-temporal contextual clas~ifica~tion are 
investigated. One is based on statistical spatial-temporal contextual 
classification, and the other is based on a decision fusion approach in 
multisour(:e classification. 

1.2 Organization of the Report 

The outline of this report is as follows. 

In Chapter 2, a spatial-temporal contextual classifier which finds the best set of 
class assiignments in the sense of maximum a posteriori probability (MAP) is 
formulatetl. With a few assumptions, this spatial-temporal contextual classifier is 
simplified into a more manageable form consisting of spatial and temporal 
contextual classifier parts. 

The spatial contextual part in the spatial-temporal contextual classifier derived 
in Chapter 2 is applied to spatial classification in Chapter 3. Several models are 



presented which allow computation of the conditional joint probability and prior 
probability in spatial contextual classification, with discussion of their 
computational aspects. Experimental results of this spatial contextual classifier 
are presented. 

Chapter 4 addresses various methodologies in temporal contextual 
classification with an application for the temporal contextual classifier part 
introduced in Chapter 2 in mind. A decision fusion-based approach in temporal 
contextual classification is developed and its performance is compared with that 
of the conventional data fusion-based classifiers. 

The two constituent contextual parts developed in Chapter 3 and 4 are 
combined for spatial-temporal contextual classification in Chapter 5 and 
experimental results on various spatial-temporal classifiers discussed so far are 
compared. The data fusion-based spatial-temporal classifier designed in 
Chapter 2 is modified to be used in the decision fusion-based approach. After 
presenting the experimental results on the spatial-temporal contextual 
classification, there follow conclusions and suggestions for future research 
regarding the spatial-temporal contextual classification. 





CHAPTER 2 

DESIGN OF A SPATIAL-TEMPORAL CONTEXTUAL CLASSIFIER 

2.1 Introduction 

In recent years, considerable research effort has been concentrated on 
extracting more information from a given data set. In pattern classification 
problems, this detailed information enables one to go deeper into the, so called, 
information tree (Landgrebe 78), i-e. the more detailed data now becoming 
available makes it possible to discriminate between classes of greater detail 
than previously possible. For this purpose, sensors with very fine spectral and 
spatial resolution are being put to use. Besides the development of new 
sensors, research is being carried out to find more accurate and powerful data 
analysis techniques. Most information extraction techniques rely on features 
pertaining to only one pixel location at a time. Although the spectral variability of 
a pixel can provide substantial discriminating power due to the increasingly fine 
spectral resolution now becoming available, confining analysis methods to only 
a single pixel at a time surely doesn't exploit the full information potential of 
newly emerging data. 

Additional information is available from the relationship between pixels. 'This is 
called as "contextualw information. Context as used here is intended to mean 
spatial, temporal and/or spatial-temporal relationships between pixels. A 
contextual pattern classifier refers to a classifier which can utilize information 
from this interpixel relationship. 'The informative nature of this information 
source in human perception has such this contextual information an 
indispensable clue which is extensively relied upon in the manual interpretation 
of aerial photography. A simultaneous use of this spatial and/or temporal 
context can push the performance limitation further down so that more accurate 
and detailed classification result can be obtained. 



2 CONTEXTUAL CLASSIFIER DESIGN 

There car1 be basically two different types of information which can be extracted 
from the data (Kittler and ~6glein 84). One is interpixel dependency context 
between class labels, and the other is interpixel correlation context between 
pixel values. Both contexts exist spatially and temporally. Though contextual 
information is not restricted to only these two types (for example, contextual 
information can be obtained from shape, size, or direction, etc.), a main focus of 
this research will be so confined. 

Spalial Correlation Context Spatial Contextual 
between Pixel Values I I Information 

Spatial Dependency Context 
between Class Labels r I 
I I 

Spatial and Temporal 
I I 

Contextual Informiation 

Temporal Correlation Context I between Pixel Values I I T 

Figure 2.1 Sources of Spatial and Temporal Contextual Information. 

Temporal Dependency Context I between Class Labels 

The reason for the class label dependency correlation contexts being existent 
between class labels can be understood in following way. There are certain 
classes which are more likely to be found adjacently than others. In the same 
token, some classes are seldom found in proximity. Therefore, n~on-trivial 
information can be drawn from the relative assignments of neighboring class 
labels. Also, in many remotely sensed images, objects on the ground iare much 
larger than the pixel size so that neighboring pixels are very likely to come from 
the same class and form a homogeneous region. This means that a pixel may 
be expectled to be from the same class as its neighboring pixels. This property is 
successfully exploited in ECHO (Extraction and classification of Homogeneous 
Qbjects) classifier (Kettig and Landgre be 76, Landgrebe 80) which !first finds 
homogeneous regions to perform classification o per object basis. Though this 

I 

J Temporal Contextual 
Information 
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class label dependency context might not provide more detailed information in 
a discriminating process, in most of cases1 a proper treatment of this contextual 
information can produce a classification result with far fewer errors. 

Depending on the purpose of the usage, this interpixel class label dependency 
context can be divided further into two different types. One type of inter-pixel 
class label dependency context can be used to impose a local homogeneity of 
class labels in spatial or temporal proximity. In this case, the class label 
dependency context will be used for a sort of smoothing of the class label 
variability inside a local window. In other applications, one can use this class 
dependency context to impose on classifiers, the statistical likelihood of co- 
occurrence of the class labels in spatial or temporal proximity*. A good example 
of this type of usage can be found in a land cover discrimination application in 
an agricultural area where (temporal) class transition probabilities are used to 
model the known land use pattern over time and fed into a multi-temporal 
classification process as the temporal interpixel class dependency context. 

In many cases, pixel values (or, feature vectors) exhibit significantly high spatial 
correlation between spatially adjacent pixels. Spatial correlation coefficients 
between pixels generally differ according to the distance between pixels and 
the spectral bands. Proper exploitation of spatial correlation context can make it 
possible to differentiate classes in more detail than would be possible without 
additional spatial correlation contextual information, however, the inclusion of 
spatial correlation factors in classifiers requires paying the price of increased 
computational complexity as compared to pixelwise classification (Khazenie 
and Crawford 90, Yu and Fu 83). It also tends to require a more highly trained 
user. 

The spatial correlation which is class-unconditionally computed has generally a 
higher value and a slower decreasing rate vs. pixel separation than the class- 
conditionally computed quantity. On the other hand, the class-conditional 
spatial correlation decays rather quickly if the spatial distance between pixels is 
increased. This fact was exploited in the ECHO classifier (Kettig and Landgrebe 

1 An exception can be the case when the relative distribution of class labels itself can indicate a 
particular information class. This will be discussed in next section in a review of S. W. Warton's 
work (Warton 82). 

The meaning of spatial or temporal proximity will be formally defined in section 2.3. 
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76, Landgrebe 80) in which pixels inside an object are assumed to be spatially 
independent and the likelihood values of an object are computed as a simple 
product 0'1 the likelihood values of each pixel belonging to that obj(ect. This 
interpixel correlation can also exists temporally. Temporal correlation contexts 
may be u:seful in specific applications. But care must be taken in using this 
temporal correlation context, since there can be potentially silgnificant 
difference!; in .the temporal data sets, such as the difference of the atm~ospheric 
condition. 

In this report, attention will be given only to using the two spatial contexts 
(correlation between class labels and pixel values), and temporal class label 
dependency context. Before going further to develop a spatial-temporal 
classification framework, some of the related works in this direction are 
reviewed. 

2.2 Relaled Works in Spatial and/or Temporal Contextual Classificatio~n 

A tutorial overview of various techniques for using contextual information in 
different pattern recognition problems can be found in (Toussaint 78). Among 
many wo rk  in diverse fields of application, J. Kittler and J. F6glein (K~ittler and 
Fhlein 841), N. L. Hjort and E. Mohn (Hjort and Mohn 87) and R. M. Haralick 
(Haralick 83) specifically dealt with the use of contextual information in image 
classification problems. Especially, J. Kittler and J. Fijglein (Kittler ancl Fijglein 
84) and J. R. G. Townshend (Townshend 83) provide extensive ove~views of 
spatial corltextual classifiers designed primarily for remote sensing applications. 

2.2.1 Reli3ted Works in Spatial Contextual Classification 

Broadly speaking, the methodologies to take spatial context into account can be 
categorized into three different groups (Kittler and F6glein 84) accordinlg to how 
*the conterlual information is used. 

Post-processing approach 
Pre-processing approach 
Sirr~ultaneous processing approach 
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Post-processing type contextual classifiers perform a post-processing such as 
filtering or applying syntactic rule after the pixel-wise classification. One 
example of filters available for post-processing is the majority filter (Drake et a/. 
87) which counts the votes of classification results inside a given-sized window 
and re-assigns to the center pixel of that window, a particular class which most 
of the pixels inside the window choose. Small classes mainly composed of 
scattered noise pixels might be merged to neighboring large classes after the 
majority filtering (Guo and Moore 91). Another approach which can be 
categorized into this group is that of (Warton 82, Zhang et a/. 88) which extracts, 
in the first pass, new feature vectors composed by class labels of pixels in a 
given neighborhood after pixelwise classification and then, in the second pass, 
uses these vectors to obtain final decisions. Contextual information is used in 
the second pass. These classifiers are especially useful in land-cover 
classification of urban areas in which information classes consist of several 
spectrally dissimilar components. For example, a class "residential area" may 
contain spectrally different components of house, road, lawn, etc. By accounting 
for the components' frequency distribution, such classes as "high density 
residential area" and "low density residential area" can be differentiated. 
However, a common handicap of this category is to try to recover the 
information already lost in the pixel-wise classification phase, which inevitably 
confines its success to a certain limit. 

The pre-processing type approaches are based on a region growing or object 
extraction process. A given scene is divided into distinct homogeneous regions 
by using an appropriate homogeneity test and each homogeneous region is 
classified on an object or per-field basis. One procedure of this category is 
ECHO which uses a conjunctive, object-seeking method as the tool for region 
finding (Kettig and Landgrebe 76, Landgrebe 80). Several varieties of 
algorithms have been proposed with different statistical measures of 
homogeneity. In a study of (Kusaka et a/. 89), primitive regions with nearly 
uniform colors (i-e., spectral responses) were found with edge-based 
segmentation. Classification of the primitive regions was obtained using various 
spatial features computed for each regions. S. L. Sclove (Sclove 81) and H. M. 
Kalayeh and D. A. Landgrebe (Kalayeh and Landgrebe 87) developed similar 
object classifiers which could utilize spatial correlation contexts through Markov 
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random field modeling of feature vectors, but under an assumption that the 
objects were already extracted. A common problem of these segnientation- 
based algorithms is that the classification result is heavily dependent on the 
success of the region finding process, which may be as difficullt as the 
classifica1:ion itself. 

Classifiens of the third type of approaches account for the spectral and spatial 
contextuatl information simultaneously to make the most use of the available 
informatic~n. One of the straightfoward way of this is the so-called, stacked 
vector approach, which adds, to the original spectral feature vector, new 
components of features which can carry spatial contexts. Additional 
componerits can be derived, for example, from some texture descriptors such as 
Fourier coefficients or co-occurrence matrices (Haralick et al. 73). The stacked 
vector approach has an inherent problem of excessive dimensionality of 
augmented feature vectors and poor performances at the object boundaries 
since the *texture measures are based on a multipixel sized region. Due to these 
shortcomings of the stacked vector approach, simultaneous utilization of 
contextual information is accomplished often by setting up a probabilistic model 
such as the spatial stochastic model (Yu and Fu 83) which can effectively 
incorporate contextual information in the resulting classifier. Classifiers in this 
category i~sually assume a local dependency of a pixel on its neighbor:; and the 
classification results are obtained in a recursive way. The procedure of the 
contextual classification proposed in this report falls into this category. 

Other well known procedures in this category are those based on rlelaxation 

(Rosenfeld et a/. 76), which is an iterative procedure making fuzzy or 
probabilislic decisions at each iteration and then successively updating those 
decisions, according to a selected compatibility function and previous tlecisions 
(Eklundh eta/. 80, Richards eta/. 81, Kalayeh and Landgrebe 82). 

There are several reports on comparative tests of various spatial clas~~ifiers. G. 
Palubinsk'as (Palubinskas 88) compared performances of various object 
classifiers with images modeled by a second order causal autoregressive 
model ancl observed that the performance of the object classifiers w'as much 
better than1 per-pixel classifier. In a Monte Carlo simulation study in (Mohn et at. 
87), E. Mohn eta/. observed that, compared to non-contextual rules, contextual 
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methods usually reduced error rates considerably and the performance 
increase was particularly significant in homogeneous areas and on borders 
with simple structures. Except for the case with very high spatial correlation, 
however, they found generally no gain in using contextual methods on such 
scenes with little or no structure at all. 

Although there have been many spatial classifiers which can utilize class label 
dependency contextual information, only a few researchers investigated 
seriously the problem of estimating 'the class label dependency contexts. J. C. 
Tilton (Tilton et a/. 82) and G. R. Dattatreya (Dattatreya 91) investigated 

unbiased estimation algorithms for evaluating the class label dependency 
context from the unlabelled samples. 

2.2.2 Related Works in Temporal Contextual Classification 

In the case of the temporal contextual classification problem, there have been a 
stacked vector approach (Fleming and Hoffer 77), the so-called, cascade 
classifier (Swain 78a), a stochastic model based approach (Kalayeh and 
Landgrebe 86), and an approach based on a mathematical model for spectral 
development such as a regression model or growth profile (Crist and Malia 80). 
The stacked vector approach has the same problem as in the spatial 
classification case. Compared to the cascade classifier, which assumes class- 
conditional independence of feature vectors of different temporal data sets, the 
stochastic model based approach (Kalayeh and Landgrebe 86) considers the 
ground cover types as a stochastic system with a non-stationary Gaussian 
process as an input and temporal variations of feature vectors as an output 
under the assumption that the class doesn't change over time; it utilizes the 
temporal interpixel correlation context in the classification. Since it assumes 
same set of classes for each temporal data set and requires classes not to 
change over time, in the training stage, all given temporal data sets must be 
processed together to define spectral classes. This simultaneous treatment of 
all given temporal data sets in the training stage increases the total number of 
necessary spectral classes. This problem is avoided in the cascade classifier by 
allowing class changes over time. 
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2.2.3 Related Works in Spatial-Temporal Contextual Classification 

Compared to the spatial and temporal contextual classifier cases, there have 
been only a few reports on spatial-temporal contextual classific:ation. N. 
Khazenie and M. M. Crawford (Khazenie and Crawford 90) reported a 
procedure based on an extended version of the autocorrelation model 
proposed by N. L. Hjort, E. Mohn and G. Strovik (Hjort eta/. 85, Hjort and Mohn 
85) to actmunt for both spatial and temporal correlation structures. This is based 
on the a!;sumption that the observed process is a sum of two independent 
processers, one having a class dependent structure and the other, being an 
autocorrelated noise process. The noise process accounts for both spatial and 
temporal correlation. Under the assumption of a certain form of lthe noise 
covarianc:e matrix, the conditional joint probability of spatial and temporal 
neighbors; are computed. This approach is very expensive from a com~putational 
standpoin~t. 

Although it is almost impossible to compile a comprehensive and exhaustive list 
of all previous works related to the spatial, temporal and spatial-temporal 
contextual classifiers, some of the previous works are summarized in Table 2.1 
- 2.3. Depending on how the contextual information is incorporatetl into the 
classifiers;, temporal and spatial-temporal classifiers are also categorized into 
the same three types as the spatial contextual classifiers. 
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Table 2.1 Classifiers with Class Label Dependency Context. 

with local frequency distribution 

Majority filtering of pixel-wise 

with template histogram matching, iterative 

(Welch and Salter 73) 

Stochastic relaxation based on Markov 

(Swain et a/. 81 ) 

SP : With spatial contextual information only TP : With temporal contextual information only 
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Table 2.2 Classifiers wlh lnterpixel Correlation Context. 

Classifier I Category I References 

after edge-based segmentation. (Kusaka & Kawata 91 ) 

Object classifier 

(objects assumed to be extracted) 

Region classification using spatial features 

Based 83) 
Based c - 

SP : With spatial contextual information only TP : Wih temporal contextual informatiol'l only 

SP : simul. 

Sp : preproc. 

Table 2.:) Classifiers with Both Class Label Dependency and lnterpixel Correlation Context. 

(Sclove 81 ) 
(Kalayeh & Landgrebe 86) 

(Kusaka et a/. 89) 

Classifier 

Recursive classifier 

Autocorrelation model for spatialhemporal 

Autocorrelation model for spatial correlation 

between pixels. Markov random field model 

for class label dependency 

SP : With spatial contextual information only SPTP : With spatial-temporal contextual information 

Category 

SP : simul. 

References 

(Kiffler & ~ b l e i n  84) 

(Kittler & Pairrnan 85) 

SP : simul. (Hjort et a/. 85) 

(Hjort & Mohrl87) 
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2.3 Design of the Spatial-Temporal Contextual Classifier 

2.3.1 Introduction 

In this section, a general contextual classification framework under which both 
spatial and temporal contextual information can be utilized is investigated. After 
spatial and temporal neighbors are defined, a general form of a maximum a 
posteriori spatial-temporal contextual classifier is derived. This contextual 
classifier is simplified under several assumptions. 

Noting that the spatial-temporal contextual classification can be thought as a 
specific application of the more general problem of how to effectively make the 
most of all available information sources to attain the "best" result. The meaning 
for "best" might differ problem to problem, and in a classification problem, 
classification accuracy can be one of the criterion to claim for being "best." The 
problem of spatial-temporal contextual classification will be considered as a 
special example of multisource classification (Benediktsson etal. 90, Lee 87) in 
which the spatial, temporal and/or spatial-temporal contextual information is 
considered as each being a separate information source. Among many 
possibilities in simultaneously dealing with various information sources, the 
decision fusion approach will be investigated, and it will be addressed in detail 
in Chapter 4. 

I 

2.3.2 Spatial-Temporal Contextual Classification 

Suppose there are p multitemporal remotely sensed data sets {X(1), X(2), ---, 
X(p)} taken over the same location. These multitemporal data sets are assumed 
to be registered to each other. 

X(k), k = 1, ---, p, denotes the km temporal data set. The size of each data set is I 
by J and defined on the lattice L r {r = (i, j) I 1 5 i _< I, 1 sj ,< J). xk(r) refers to the 
feature vector of a pixel at spatial location (or site) r, r E L, on the given km data 
set X(k). Therefore, X(k) can be written as X(k) = {xk(r) I r E L), the set of all 
feature vectors of xk(r) on L. 'The class corresponding to xk(r) is denoted by ck(r). 
ck(r) takes one of the classes in Rk = { w ~ , ~ ,  ---, wk Mk) which is the set of all 

distinguishable classes in the km data set. Mk is the total number of elements in 

a. 
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Figure 2.2 p Multiternporal Data Sets. 

Since each temporal data set is separately analyzed in the training sitage, the 
Qk1s and the Mk8s are not necessarily the same for different k's. C(k) is defined 
similarly as the set of class labels of all the pixels in X(k), i.e., C(k) = {ck(r) ( r E 

Ll. 

Let Ns denote a spatial neighborhood. Examples of Ns are given in Fig. 2.3. At 

the boundary, a spatial neighborhood has a fewer number of pixels. 

Figure 2.3 Examples of Spatial Neighborhood Systems. (a) First order spatial 
neighborhood system : NS = ( ( f l ,  0), (0, f 1)). (b) Second order spatial 

neighborhood system : NS = {(*I, O), (0, *I), (1, &I), (-1, kl)). 

Although it is also possible to use different spatial neighborhoods for each X(k), 
k = 1, ---, p, in this report, the same Ns is used for each temporal data set for 
simplicity's sake. Define XS,k(r), the set of spatial neighbors of xk(r), as, 
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XS,k(r) { xk(r+v) I v E Ns }, r E L and k = 1, ---, p 

It consists of the pixels in the spatial vicinity of xk(r), (that is, under the first order 
spatial neighborhood system, it consists of the adjacent pixels of xk(r) in the 
north, south, east and west). Since XS,k(r) doesn't contain the pixel xk(r), 

another notation, xSVk(r), is introduced to address the set of the pixel xk(r) itself 

and its spatial neighbors as, 

If N; is defined as Ns v ((0, 0)}, then xLqk(r) can be written as {xk(r+v) I v E N;}. 

Similarly, CSBk(r) and cSnk(r), the set of classes corresponding to XS,k(r) and 
1 

Xs k(r), respectively, k = 1, ---, p, are defined as, 

Here, Q: denotes the set of all distinguishable classes that XSak(r) can have. In 

the same way, notation related to the temporal neighbors are introduced. 
XT,k(r), the set of temporal neighbors of xk(r) and CT,k(r), the set of 
corresponding classes to XT,k(r) are defined as, 

4 is a set of all distinguishable classes that xSgk(r) can have. XTgk(r) consists of 

all the temporally previous pixels of xk(r) and their spatial neighbors. 
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The elements in the union of spatial and temporal neighbors of xk(r), that is, the 
union of :KS,k(r) and XT,k(r), are called the spatial-temporal neighbors of xk(r). 
tx k(r) which is defined as follows, is then the set of xk(r) and its spatial-temporal 

neighbor:;. 

cc k(r) is Ihe set of classes corresponding to cx k(r). (see Fig. 2.4 for a graphical 

illustratior~ of spatial and temporal neighbors). 

Figure 2.4 Spatial and Temporal Neighbors of xp(r) under the First Order Spatial 
Neighborhood System.; Temporal neighbors of xp(r) : XTPp(r); rn Spatial 
neigbrs of x,(r) : XS,~(~);  +. Spatial-temporal neighbors of xp(r). 

From now on, bold faced symbols will be used for random variables and plain 
symbols \wi l l  be used for specific realizations of the corresponding random 
variables whenever there is a need to so differentiate. Also, for notational 
simplicity, the spatial location argument "(r)" will be dropped in notation where 
no confusion can result. For example, xp means xp(r), r E L. Also the realization 

of the random variables will be omitted in equations whenever there is no 
confusion by doing so. That is, qxk(r)} means P{xk(r) = x} and so on. 
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The pixels in the ph temporal data set X(p), are to be classified to one of the Mp 

classes using the given multitemporal data sets {X(1), X(2), ---, X(p)). The best 
set of class labels of pixels in X(p) in the maximum a posterioriprobability 
(MAP) sense can be obtained using eq. (2.1 ). 

Even though eq. (2.1) is optimal in the sense of maximum a posteriori 
probability, a direct computation and maximization of P{C(p) = C 1 X(1), ---, 
X(p)) is, in most practical applications, too complex to be useful even for a small 
sized scene. For example, with Mp classes in X(p), the total number of possible 
combinations of the classes amounts to M~J. This easily becomes an explosive 
number for an even moderate Mp. One of the plausible remedies to avoid this 

difficulty is to assume that all necessary contextual information can be 
manifested by its spatial and temporal neighbors. An example of spatial- 
temporal neighbors of xp(r) in case of a first order neighborhood is shown in Fig. 

2.3. In many cases, this can be quite reasonable and also a very practical 
assumption since the interactions between pixels decrease rapidly as the 
(spatial and temporal) distances between pixels increase. 

Under this practical assumption, define a spatial-temporal contextual classifier, 
HSPTP(c; r, k), r E L and c E Rkl k = 1, ---, p as in eq. (2.2). In the case of k = 1, 
XTIk is understood as an empty set since there is no temporally previous data. 
'Thus, when k = 1, HSPTP(c; r, k) is P{ck = c I xk = xk, XS,k = XS k}. The spatial- 
temporal contextual classification can be achieved then by finding the class c E 

Rp which maximizes HSPTP(c; r, p), TO simplify eq. (2.2) into a computationally 
more manageable form, several assumptions are made as in eq. (2.3.aIb) and 
eq. (2.4). The first assumption in eq. (2.3.aIb) is about the classes between 
spatial and temporal neighbors. 
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Assumption 1 . 

For any hi, 1 S k sp, and for CA and CB defined below, 

qck+l 1 Ck, C ~ )  = flck+l 1 C d  (2.3.a) 

P{Cs,k 1 Ck* CB} = flCs,k I c d  (2.3.b) 
where, 

CA is ;any non-empty subset of kc k such that CA n {cd = $. $ is the empty set. 
CB is iany non-empty subset of kC,k-l. 

Equation (2.3.a) assumes that irrespective of the classes of the other spatial- 
temporal neighbors of xk, the temporal class dependency context is conveyed 
to ck+l from its temporal neighbors only through ck. This assumption makes it 

possible to model the temporal class dependency with a simple class transition 
probability ( ck). Equation (2.3.b) is the spatial counterpart of the eq. 
(2.3.a), that is, Cs k, the set of classes of the spatial neighbors of xk, is assumed 
to be only dependent on ,the class ck, irrespective of the classes of temporal 
neighbors; of xk. 

For any k,, 1 I k Sp, and for XA, CAI Xothers and Cothers defined below, 

P { X ~  I C ~ ,  Xothers, Cothers) = e X A  1 CA) (2.4) 

where, 

XA is any non-empty subset of x;,~. 
CA is; a set of the classes corresponding to XA. 

I 

Xothen is any subset of SXtp such that Gthers n XSgk = $. 
I 

COthcinr is any subset of SCBp such that Cothers n CS,k = 0. 
(Cothers is not necessarily a set of classes corresponding to Xothers). 

The second assumption is that the pixel values of XA (any non-empty subset of 

XS,k) are affected only by the nature of pixels in XA, that is, correspondling class 
identities in CA, irrespective of the pixels (Xothers) or the classes (Cothers) of 

other temporal data sets. In other words, once the classes of a set of pixels at 
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one particular time are known, the values or classes of pixels at any other times 
do not provide any additional knowledge on the pixel values at that particular 
time. This is a little bit stronger than the conventional class-conditional 
independence assumption of different temporal data sets given below. Though 
eq. (2.4) implies the following relation, but, the reverse is not always true. 

P{XA ,XB I C A ~ C B }  = P ~ X A  ICA}P{XB ICB)  
where, 

XA and XB are any subsets of pixels in different temporal data sets. CA and 
CB are the set of classes corresponding to XA and XBl respectively. 

Due to the implication of the class-conditional independence of temporally 

different data sets, under the assumption in eq. (2.4), temporal correlation 
context is not counted in the classification. With the assumptions in eq. (2.3.aIb) 
and eq. (2.4), the following theorems and lemmas which are useful in 
simplifying eq. (2.2) are derived in Appendix A. A direct consequence of the 
assumptions in eq. (2.3.aIb) is the following theorem which relates to the 
relationship between class labels of temporal neighbors. 

Theorem 1. 

For any tand usuch that 1 StSu_<p, 

4% I qtl Cothers} = 6% I qt) = 6% I 
where, 

if u > t, q, is either {c,} or c;,,. qt is either {c$ or c;,~. 
if u = t, q, = Cs,, and qt = {q}. 
Cothers is any non-empty subset of SC,t such that Cothers n qu = Cothers n qt = 0- 

This theorem states that when u > t, the class c, or the set of classes, c;,,, 1 Su 

i p ,  is dependent only on the nearest temporal neighbors c;,~. or the nearest 

previous pixel, ct. If u = t, the probability of Cs,, given c, and any non-empty 
subset of its temporal neighbors, Sc t, is described as P{Cs , I c,). Therefore, 
the set of class identities, Cothers doesn't provide any supplementary 
information on Cs,, once the class identity c, is available. Using this theorem, 
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the first order Markov dependency property of class labels, i.e., fl c;,~ I 
---, c;,~ } = 4 c;,~ I ~ k , ~ - ~  } can be easily shown. 

Lemma 1. 

For Cothelrs, q, and qt defined as in Theorem 1, 

qcothers 1 7)u , qt) = qCothers 1 qt} = P{Cothers I ~ t }  (2.6.a) 

P{CT,~ I ck, Cs,d = f l C ~ , k  I Ck) (2.6. b) 

Applying the Bayes theorem to eq. (2.5) results in eq. (2.6.a), which shows a 
similar relationship as in eq. (2.5) but in the temporally opposite direction; 
substitutir~g Cothers = CT,k and qt = {ck), qu = CS,k in eq. (2.6.a) yields eq. (2.6.b), 
which shows that the probability of CT k given ck and Cs k will be determined 

only by C:T k and ck. While Theorem 1 and Lemma 1 show the relationship 

between ,Ithe class labels of temporal neighbors, the following theorem shows 
the relationship between feature vectors under the condition of given class 
labels. 

Theorem 2. 

For any t and u such that 1 s t s u ~ p ,  and for XA, qt and q, defined as Ibelow, 

f l X A  1 qt, qu} = ~ X A  I qt) (2.7) 
I 

Especially, if XA n XS = +, 

~ { X A  1 711) = flXA 1 
where, 

if u > t, 
qt is isither {ct} or c;,~. q, is either {c,} or c;,, 
XA is any non-empty subset of Sxtt such that XA n x;,~ is either + or xipt. 

if u = t, 

Tt = { ~ t )  and qu = Cs,, 
XA is any non-empty subset of cx,t-l 

According to Theorem 2 which can be proved by applying the Lemma 1 with the 
, 

assumption 2, when the class identity, ct, or a set of class identities, (ZSnt, at a 
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certain time t (1 5 t 5 p) is known, the class identity, c,, or a set of class 
I 

identities, Cs,,, at a later time u (u > t) doesn't affect the appearance of the 

pixels of time t or prior to the time t. In the case of u = t, knowledge of CsVt will be 
redundant in determining the appearances of the pixels in tx t-l, the pixels 
observed prior to the time t, if the class identity qt = {ct) is available. 

Lemma 2. 

PIX-r,k I ck+i 1 = PIXT,~ I c d  
PIXT,~ I ck, C S , ~  = PIXT,~ I C d  

 PIX^,^ I Ck. ck+i) = ~ ( ~ b , k  I C d  

Substituting the variables XA, qt and qu with non-abstract quantities in Lemma 2 

reveals the meaning of this theorem more clearly. By using assumption 2 and 
Lemma 1, the following lemma can be derived. 

Lemma 3. 

For any k, 1 s k sp, and for Xothe,, which is any non-empty subset of tX,k-l, 

P{x;,~ I Ck, X~thers 1 = ~ { ~ b . k  I ck (2.9) 

This lemma shows that if ck, the class identity of center pixel in x;,~, is known, 

Xothers which is the set of the pixel values of temporally previous data sets, do 

not provide any additional information on the pixel values x:,~. 

Using the results derived in the previous theorems and lemmas, the spatial- 
temporal contextual classifier in eq. (2.2) is simplified. Applying the result of 
Lemma 3 and the Bayes theorem, to HSPTP(*; r, k) in eq. (2.2), for k = 2, ---, p, 

yields, 

where, Ak r f l x , d p { x ~ , k }  I 
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Since Ak is not dependent on the particular class assigned to the pixel xk(r), it 

doesn't nceed to be evaluated. Define the spatial contextual classifier HSP(c; r, k), 
c E &, k = 1, ---, p, as, 

This represents how much the spatial contextual information from Ihe pixels 
xk(r) and Xs k(r) support the class assignment c to the pixel xk(r). In the same 
way, the temporal contextual classifier HTp(c; r, k), c E &, k = 2, ---, pI is defined 

as, 

HTP(c; r, k) shows how much the spatial-temporal contextual information from 
I I 

the tempclral neighbors X T , ~  = {XS,k+ ---, XS,l} advocates the class assignment 
of c to the pixel xk(r). For k = 1, &(c; r, k) is defined as P(ck = c}. For c E &, k = 
2, ---, p, substituting these HSP(*; r, k) and HTP(*; r, k) into eq. (2.1 0) leads to the 
following equation. For c E &, k = 2, ---, p, 

In the case of k = 1, HSPTP(c; r, k) is HSP(c; r, k). Due to the assumptions in eq. 
(2.3.a,b), the temporal contextual classifier HTP(c; r, k) can be computed using 
HSPTP(d; r, k-1), d E Rk-l, and class transition probabilities between temporal 

neighbors in the (k-l)lh data set and the klh data set. That is, by applying 
Theorem :? to eq. (2.1 2) and Bayes theorem, HTp(c; r, k) can be computed as, 
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This result is very similar to the case of cascade classifier (Swain 78a). But eq. 
(2.14) has a quantity reflecting spatial-temporal contexts from the temporal 
neighbors instead a quantity which reflects only the temporal context from the 
previous pixel as in (Swain 78a). The temporal contextual classifier HTP(c; r, k) 

passes the contextual information obtained from the spatial-temporal neighbors 
of xk-l(r) to the classifier HSPTP(c; r, k) as a temporal context. This temporal 

contextual information is then combined with the spatial contextual information 
coming from spatial neighbors of xk(r). The relation in eq. (2.14) is very 

important from the viewpoint of the actual application of this spatial-temporal 
contextual classification rule, since it allows a distribution of computational load 
over different times. In other words, due to the first order Markov property of 
temporal class labels, this classifier doesn't require one to process all the 
temporal data sets at one time. At any specific time, HSPTP(*) for that time can be 

computed using only the current data set and the spatial-temporal classification 
result of the previous data set. Then, this result of HSPTP(*) can be passed to the 

next step using eq. (2.14) when the next temporal data set is available. This 
allows the computational load to be distributed over different times. Spatial- 
temporal contextual classification with p temporal data sets can be obtained by 
applying HSPTP(*; r, p) to each pixel in X(p). 

[Spatio-TsmporBI] 
Classification of X(p) 

Spatio-Temporal 

[ Spatial $l,i!cation ] 
Figure 2.5 Spatial-Temporal Classification with HSPTP('). 

The flowchart of spatial-temporal contextual classification is provided in Fig. 2.5. 

The result of spatial-temporal classification of the klh temporal data set is fed 
into the classification process of the (k+l)th temporal data set as spatial- 
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temporal contextual information. Therefore the classification of a current 
temporal data set requires only the classification results of previous data set. 

This spadial-temporal contextual classifier can be easily generalized to 
accommodate different spatial neighborhoods for each different temporal data 
set. This generalization may be quite useful when sensors with different spatial 
resolutiorls are used to acquire each temporal data set. In this rleport, for 
simplicity's sake, only first order spatial neighborhood system is considered for 
all the given rnultitemporal data sets. 



CHAPTER 3 

SPATIAL CONTEXTUAL CLASSIFICATION 

3.1 Introduction 

In this chapter, the problem of spatial contextual classification with HSP(.) in eq. 

(2.1 1) is addressed. Several models and approaches which allow one to 
compute HSP(.) will be discussed. Since only the spatial contextual 

classification is considered and the result in this chapter is applicable to any 
temporal data set X(k), k = 1, ---, p, the time index will be dropped for a 
notational simplicity. The spatial location parameter "(r)" will be also dropped 
whenever possible without causing confusion as in the previous chapter. 

Spatial contextual classification can be carried out by applying HSP(.) defined in 
eq. (2.1 1) to each pixel in the given data set. HSP(.) can be computed as, 

where, P{X;IC}P{C)= P { x ~ = x ~  I c = c ,  Cs=C)P{c=c, Cs=C)  
C E  Q' 

Spatial classifiers rely on the fact that the statistical dependence between 
spectral responses of adjacent pixels, and subsequently the dependence 
between their class labels, can provide discriminating information in addition to 
spectral responses on which pixelwise classifiers depend. As discussed in 
Chapter 1, there are two different sources of spatial contextual information. One 
is the contextual information coming from spatial correlation between adjacent 
pixel feature vectors, and the other is the spatial class label dependency context 
between adjacent pixels. While the joint probability of class labels, P(c, C) in eq. 
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(3.1), accounts for the spatial class label dependency context, the joint class- 

conditional probability P{X; (c, C}, manifests the spatial interpixel correlation 
contextual information between feature vectors in x;. 

3.2 Spatial Interpixel Correlation Context 

The interpixel correlation contextual information, in general, is a usefull attribute 
to utilize in the classification and has been successfully used in several cases, 
for example, see (Yu and Fu 83), but, its inclusion generally requires extensive 

computation. For this reason, it is often assumed that the feature vectors in X; 
are class-conditionally independent. That is, 

However, as might often be seen in real data, there does exist spatial 
correlation between adjacent feature vectors, and the spatial correlation 
coefficients generally vary over the spectral wavelengths and over the classes. 
It is also dependent on the direction of the spatial lag between pi:cels. The 
degree of spatial correlation is also closely related to the spatia.1 resolution of 
the employed sensor. Spatial correlation coefficients which are class- 
unconditionally computed have generally higher values and a slower 
decreasing rate than the class-conditionally computed ones. R. Kettig and D. A. 

Landgrebe (Kettig and Landgrebe 76) used this fact in the ECHO c;lassifier, 
which as!;umes independence of feature vectors in homogeneous; regions 
since the class-conditionally computed spatial correlation coefficient usually 
decreases; very quickly as the spatial distance between pixels increases. 

Whether the independence assumption in eq. (3.2) is appropriate or not 
depends on the particular problem under consideration. There are various 
reasons for spatial correlation to exist between spectral measureinents of 
spatially adjacent pixels. It can arise due to an inherent property of specific 
ground cover types being observed by the sensor. For example, the spacing of 
row crops, the plant size in an agricultural scene, or the relative vegetation and 
soil mixture, etc., could cause spatial variation in spectral responses. This is 
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generally referred to as the "texture," which can be described as a repeated 
variation in spectral responses over relatively small areas (Hoffer 78). 'This 
textural context would be able to provide valuable information, for example, in 
identifying forest cover against agricultural crops, but, unfortunately, this textural 
context may not be so conspicuous in some remotely sensed image data mainly 
due to a relatively low spatial resolution. Since this textural context is a local 
spatial characteristic belonging to each different scene cover type and therefore 
generally spatially variant, its utilization often involves an object extraction step. 

Other than the spatial characteristic of scene cover types which causes the 
texture, there are also other sources such as the so called, "adjacent reflection," 
- the reflection of spectral energy of adjacent pixels to the sensor, the non-ideal 
spatial cut-off characteristic of sensor, or the spatial overlaps of pixel elements. 
Spatial correlation due to these effects seem to be not so directly related to 
specific cover types in the scene being observed as in textural contexts. Again, 
whether the spatial correlation should be considered as a property of each 
different class or not, is solely dependent on the problem at hand and a spatial 
characteristic of the selected data set. Even though the spatial correlation 
context may not be a distinguishable characteristics of the classes, its inclusion 
can help in improving classification performance by allowing more accurate 
class-conditional joint probability estimates as illustrated in following. 

v 

Assurr~e a simple two class problem in one dimensional feature space as, 

Class ol - N(ml, 0:) with prior probability 0.5 

Class o2 - N(mp, 0:) with prior probability 0.5 

Data are to be classified using the spatial interpixel correlation context. To make 
the analysis simple, assume only one neighbor, denoted by x(r+v) to x(r). v 
indicates a spatial displacement of the neighbor x(r+v) from the pixel x(r). Data 
are spatially correlated as, 
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Assume .that a, = o2 = a, and pi, = p, -1 r p r 1. Assuming pij = p for all i, j 
combinations means that the spatial correlation coefficient is independent of 
classes. lnclusion of this interpixel spatial correlation context will alllow more 
accurate estimate of joint probability of x(r) and x(r+v). An extended feature 
vector is defined as, 

With this extended feature vector, XeH, the pixel corresponding to the feature 

x(r) is to be classified not only using x(r) but also x(r+v). Suppose x(r+v) belongs 
to 9. If ~(1') belongs to o, where k = 1, 2, then, XeH is distributed as, 

where, Mk= [; ]andI:=d[: e ]  
The deci!;ion rule based on minimum Bayes error with "0-1" loss function with 

XeH is, 

Suppose m1 = -m, m2 = +m, m > 0, then, after algebraic simplification, the 
decision n~ le  is reduced to following linear classifier. 

This defines a linear decision boundary and its slope is determined by the 
spatial cor.relation coefficient p between x(r) and x(r+v). 
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Figure 3.1 Decision Boundary of Spatial Classifier. 

A decision rule corresponding to a pixelwise non-contextual classifier can be 
obtained from eq. (3.3) by setting p = 0, that is, 

if x(r) < 0, classify x(r) to ol 
if x(r) > 0, classify x(r) to 02 

The decision boundary of the spatial classifier in eq. (3.3) is shown in Fig. 3.1 
with that of pixelwise classifier without taking account of the interpixel spatial 
correlation context for comparison. With @(x), the cumulative distribution 

function for the standard normal density function defined as, 

the Bayes errors corresponding to the spatial contextual classifier and the 
pixelwise classifier can be written respectively as, 
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Figure 3.2 Difference in Bayes Errors with and without Spatial Correlation Comtext. 

The differonce between these two Bayes errors, denoted as AE, is comlputed as, 

Since AE iis always non-negative for Ipl 5 1 with minimum value zero at p = 0, as 

shown in Fig. 3.2, the classifier designed with spatial correlation context in 
consideration always reduces the Bayes error compared to the pixelwise 
classifier. However, the amount of reduction in Bayes error depends on the 
degree 01 spatial correlation and also on the separability between the two 
classes, which is represented by m/o in this example. If the two classes are well 
separatedl, that is, if m is large relative to o ,  then, there are very small 
differences between the two Bayes errors in eq. (3;4.a,b). Therefore, there 
would not be so significant an improvement in classification accuracy by using 
the spatial interpixel correlation context. Note that the individual Bayres errors 
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are also very small in this case. However, if mla is not large enough, there can 
be significant differences between the two Bayes errors especially when Ipl is 
near one. Figure 3.3 shows the Bayes error differences when the ratio mlo is 

increased from 0.2 to 1.8. 

Spatial Correlation Coefficient 

Figure 3.3 Samples of Bayes Errors Differences with and without Spatial Correlation Context. 

The value on the vertical axis when the spatial correlation coefficient p is one, is 
the Bayes error in eq. (3.4.b) of the pixelwise classifier. When mla = 0.2, there is 
a significant Bayes error of about 0.4 for the pixelwise classifier. When IpJ 2 0.8, 

this Bayes error can be reduced by 0.05 - 0.4 by employing the spatial 
contextual classifier in eq. (3.3). As the ratio mla increases, the amount of 

possible Bayes error decrease obtainable by using the spatial correlation 
context becomes less significant. When the Bayes error of the pixelwise 
classifier is moderate, for example, about 0.1 5 for the case mla = 1 .0, it can be 
reduced by 0.05 - 0.15 when Ipl 2 0.6 by using spatial interpixel correlation 

context as in eq. (3.3). 

3.3 Modeling of Class-Conditional Joint Probability 

According to the property of a jointly Gaussian distribution, non-zero spatial 
correlation between x(r) and Xs(r) means that they are not statistically 

independent of each other. Therefore, appropriate modeling of joint conditional 
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pro babili1:y can improve classification performance by incorporatirlg spatial 
correlation into the decision making process. This incorporation of spatial 
correlation into the classification rule might be expected to become more 
importanl as the spatial resolution becomes finer. Since the observations x(r) 
and Xs(r) are assumed to be jointly Gaussian, one straightforward approach is 

computing the conditional joint probability using the stacked vector or extended 
feature vector defined as, 

This stacked vector approach requires estimates of the mean and clovariance 
matrix of ,the extended feature vector, which requires increased nu~m bers of 
training slamples due to the increased dimensionality of the feature vector. Also 
the concadenation of feature vectors makes it necessary to define more spectral 
sub-class,es. In most remote sensing applications, it would be very hard to 
obtain a large enough number of training samples, and ,this stacked vector 
approach may be inappropriate in many cases due to this i~ncreased 
dimensionality. 

Instead of estimating directly the covariance matrix using feature vectors, 
model-based approaches can be taken to loosen the requirement of ;additional 
training samples by defining and estimating a few parameters which can 
adequately model the spatial correlation structure. Proper choice of a flexible 
model which can adequately fit various multispectral images in a give!n remote 
sensing application will be very important. One available model is the 
autocorrellation model proposed by Hjort etal. (Hjort etal. 85). It is based on the 
assumptic~n that an observed feature vector, x(r), r E L, is a sum of two 

independlent processes, one being a class dependent spatially independent 
process and the other being a spatially correlated noise process, i-e, for r E L, 

If x(r) is q dimensionally multiva,riate Gaussian, that is, MVN[M(r), C,], then, y(r) 

is assumed to be a spatially independent Gaussian process with MVNI[M(r), (1- 
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8)Xo]. M(r) denotes a mean vector of the class to which x(r) belongs. X0 is a 
common covariance matrix of all classes. The noise, ~ ( r ) ,  is a multivariate 
Gaussian process with MVNIOq, 8Co], (Oq is a q by 1 matrix with all zeros), but it 

is assumed to be spatially correlated as, 

The y(r)'s are considered as bearing information directly about the pixel class 
label, whereas the noise process, ~(r) 's are assumed to be due to measurement 

errors and possibly other sources of "extra variations" (Yu and Fu 83) and 
consequently class-independent. From the relation in eq. (3.7 and 3.8), the 
covariance matrix between x(r) and x(r+v) is computed as, 

= p[lOX~, where v + Oq (3.9) 

Spatial correlation parameter ps and common covariance matrix Xo are 

estimated in the training stage (Hjort eta/. 85). Using the relation in eq. (3.9), the 
covariance niatrix of {x(r), Xs(r)} can be computed as, 

where, @ is the Kronecker Product 
a  = D  Correlation of first or&r neighbors m 

Covariance matrix of {x(r), Xs(r)} = & GO 

- 
fi p = ps 0 Correlation of diagonal neighbors % @ - 

y = p i  0 Correlation of second order neighbors 

- - 
1 a a a a  

a l P r P  

a  p 1 p y 

a r P 1 P  

- a P r  P I -  

(3.10) 
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A few comments are deserved here about this model. One of its limita.tions lies 
in the fadt that it cannot adopt non-identical spatial correlation structure over 
different slpectral wavelengths. It is conceivable to have a different degree of 
spatial calrrelation over different spectral wavelengths especially vvhen the 
spatial resolution is dissimilar for different bands. In this case, this model cannot 
be easily generalized to the case of non-identical spatial resolution over 
different vvavelengths such as in thermal band of Landsat Thematic: Mapper 
data whicli has 120m resolution compared to the others of 30m. Probably the 
most important notice about this model may be its assumption of the same 
covariancl~ matrix for all the classes. Note that the second order statistical 
characteristics which are generally represented by the covariance matrix 
provide crucial and indispensable information in classification. This limitation 
occurs since x(r) is decomposed into two different processes and the spatial 
correlatior~ of the noise process, which is class-independent, is assurried to be 
directly related to the covariance of x(r). 

Before further considering models for the spatial correlation structure, it will be 
worthwhiltr to scrutinize a remote sensing system model, especially the scene 
model, to have a better understanding of spatial correlation. According to the 
taxonomis~s of (Kerkes and Landgrebe 89), a remote sensing systenn can be 
described as a cascade of three components, namely, a scene model, a sensor 
model and a processing model. The scene model describes the mechanism 
that input!; spectral radiance to a sensor, and is affected by all spectral a.nd 
spatial sources and variations of the scene. The sensor model explains the 
effect of transforming the incident spectral radiance into a both spaltially and 
spectrally sampled discrete image. The processing model account!s for the 
processing applied to the remotely sensed image data. If the sensor is assumed 
not to malke significant changes in the reflectance values coming from the 
scene, then, the pixels will vary similarly to the reflectance of the scene in both a 
spatial and spectral sense. According to the scene model and with this 
assumptialn, the formation of multispectral image data can be model'ed in the 
following two steps. 

Step 1 : Generation of a spatially correlated but spectrally uncorrelated zero 
mean signal. 
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Step 2 : Transformation of this signal to have the appropriate class mean and 
covariance matrix. 

The Markov random field (MRF) model is a good candidate for describing the 
first step. The second step is the inverse of the so called, the whitening process 
(Fukunaga 90) or a decorrelation process. The Markov random field model has 
been well-suited for many problems in statistical image processing, such as 
restoration and segmentation. It has been also very useful to characterize given 
spatially correlated or textured images with a few parameters. Therefore in this 
report, the Markov random field will be used to model the spatial correlation 
structure. Although many varieties of this model are available (Besag 74, 
Kashyap 81, Derin and Kelly 89, Derin and Elliot 87), only the conditional 
Markov (CM) model (Kashyap 81) is considered. This conditional Markov model 
is used to estimate spatial correlation between neighboring pixels using its 
parameters which can best fit the given multispectral image data. 

Applying the random field model requires the image to be stationary. 
Stationarity is defined as follows. Feature vectors x(r)'s are called covariance 
stationary if the covariance matrix of {x(r), x(r+v)) is dependent only on Ivl. If x(r) 
is covariance stationary and additionally satisfies E[x(r)] = M for all r, then, it is 
called weakly stationary. Note that, in most of images in remote sensing 
applications, the mean and covariance matrix of each pixel is generally different 
at each location with respect to its corresponding class. To normalize this effect 
of class statistics, the normalized feature vector, y(r), is defined as, 

M(r) is the mean of the class to which x(s) belongs and C(r) is the covariance 

matrix of the class of x(r). The whitening matrix W(r) in eq. (3.1 l.a) which 
decorrelates the interband correlation is computed as, 

1 - 
W(r) = p-2 yT 

where, C(r)Y = Yp 
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Y is the eigenvector matrix of X(r) and p is the corresponding eigenvalue matrix 
which has eigenvalues, XI, ---, Xq, at its diagonal. Since x(r) is assumed to 
follow a multivariate normal distribution with M(r) and X(r), y(r) has also a 

multivarial!e normal distribution as, 

where lqx,q is a q by q identity matrix. These normalized feature vecto~rs can be 

considered as the spatially correlated but spectrally uncorrelated zero mean 
signal in the step 1. There can be two modes of stationarity. If spatial correlation 
context is different for each class, modeling with the Markov random field can be 
performecl for each class separately. This is called "locally" stationary since *the 
stationarity holds for only that class. If the spatial correlation is assunied to be 
the same for all classes, then, the modeling with the Markov random field is 
performeal over the whole image, and it is called "globally" stationary. 

The normalized feature vector y(r)'s, r E L, are assumed to be (globally) 

stationary and follow the conditional Markov(CM) model. Although the following 
derivation is based on the globally stationary case, the result can be easily 
modified to the "locally" stationary case. Since there is no interband correlation 
in y(r), each band is assumed to follow the conditional Markov(CM) model 
separately with generally different parameters. According to the model, y(r) 
satisfies, 

Ns is the spatial neighborhood defining set. Even though any order neighbor 
system is possible, for simplicity, only the first order neighbor system, I\ls = {(f 1, 

O), (0, f 1 )) is considered. 0, and A are diagonal matrices. According to the CM 

e v . 1  

where, 0. =[ . and A =  

-G 

0 6 O 1 
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model, 0, is symmetric, that is, 0, = em,, and stationary noise field e(r) is 
distributed as MVNIOq, Iqxq] with following properties. 

- if v E NS 

E {e(r) eT(r+v)} = lqXq, if v = (0.0) (3.14.a) 

0, otherwise 

Pr{e(r) ( all y(v)'s, v # r} = Pr{e(r) ( y(r+v), v E NS } (3.14.b) 

Unknown parameter matrices 0, and A are estimated using training samples. 

Since no interband correlation in y(r) is assumed, the unknown parameters 
eVli1s and Xi's are estimated separately for each band i, i = 1, ---, 9. 

There are three different methods of estimating evli and Xi, maximum likelihood 

estimation (MLE), the coding method and the least squared error (LS) method. 
Although maximum likelihood estimation can give estimates with desirable 
properties, like asymptotic consistency and efficiency, it is computationally very 
complex due to a difficulty in deriving an explicit log-likelihood function 
expression because of an evaluation of the Jacobian of the transforming matrix. 
Although the coding method (Besag 74) succeeds in avoiding this complex 
calculation by dividing the pixels into disjoint subsets and estimating unknown 
parameters over each subset, one of its drawback, especially significant in 
remote sensing application is its low efficiency in data utilization since it can use 
the data only partially in estimating unknown parameters. A least squared error 
(LS) approach is computationally simple, asymptotically consistent and also 
efficient in the utilization of the training data (Chellappa 81). 'Therefore in this 
report, the least squared error (LS) approach is taken. For each band i, i = 1, ---, 
9, the iu component (band) of y(r) is written as, 
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Note that 8, is symmetric, therefore, e(l,o),i = e(-l,o),i and d(o,,),i = ~(o,.l),i Denote 
Ov,i as a rnatrix of unknowns as, 

and, ci(r) ;as, 

then, the estimate based on the least square approach is obtained as, 

The sumniation in eq. (3.17) is performed over all training samples. If i!;otropy is 
assumed for the spatial correlation, that is, if spatial correlation is assurned to be 
independent of the direction of the spatial lag between pixels, then., O(l,o),i = 

O(~,~),i = e(o,l),i = O(~.-l).i. Therefore, it is sufficient to estimate only one parameter 

0(, for each band by using eq. (3.1 7) with, 

( r )  [ ( r  + (1 0 )  + ( - (1 0)) + ( + ( 0 , )  + Y ( 0  1) I (3-18.b) 

Using the properties given in eq. (3.14.b,c) and the estimated parameters eVBi's, 
spectral dlensity function of yi(r)'s can be derived as, 

The covariance of {yi(r), Yi(r+v)} is then obtained by inverse Fourier transforming 

the spectral density function in eq. (3.1 9) as in, 
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where, u =["I, v =["I and u v = ulvl + u2v2 
u2 v2 

Using eq. (3.20), 'the covariance matrix of {y(r), Ys(r)), which is denoted as XY, 

can be computed. For each band i, i =  1, ---, q, define the following covariances 
which comprise the 5q by 5q symmetric joint covariance matrix of XY. 

Using these components, -the covariance matrix Xy is written as, 

where, for k = l ,2 ,  

and, 
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In an isotropic case, A, = A2 and C1 = C2. If the spatial corr'elation is 
independent of wavelength, then with a k  = ak,, = --- = ak,q, p1 = =: --- = P l  .q 

and yk = lk,, = --- = x , ~ ,  the matrices, Ak, Ck, and B, can be further simplified as, 

Since y(r) is obtained from x(r) by performing the linear transformation of eq. 
(3.1 1 .a), the joint covariance matrix of {x(r), Xs(r)} given their classes {c(r), Cs(r)} 
can be cc~mputed by using the transformation matrix W,,(r) as, 

I 
W( r) 0 0 0 0 

0 W(r+(O,l)) 0 0 0 
where, We,(r) = 0 0 W( (10) )  0 0 

0 0 0 W((O1)) 0 
0 0 0 0 W(r+(l,O)) I 

Notice that the joint covariance matrix in the form of eq. (3.22) and consequently 
the covariance matrix in the form of eq. (3.25) is not limited only to th~e Markov 
random Ifield model but, in fact, is quite general. For example, the joint 
covariance matrix in eq. (3.1 0) which is derived under the autocorrelat~~on model 
in eq. (3.7) can be written in the form of eq. (3.25) with appropriate val~ues of ak, 

pl and yk, and assuming the covariance matrices are the same for all classes. 

More generally, the form of eq. (3.22) and eq. (3.25) can be assumed to be 
valid, ancl the constituent unknown parameters can be directly e~tim~ated From 
the availa~ble training samples without explicit modeling of the given irnage with 

such modlels as the conditional Markov model, or the autocorrelation model. 

Since {x(r), Xs(r)} given their classes is assumed to be multivariate Gaussian, its 
joint class-conditional probability is computed by using Me,&) defined as, 
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and the covariance matrix ZeXt(r) in eq. (3.25). Classification is then, performed 
by finding a class, c E R which maximizes, 

Note that evaluation of HSP(*) requires summations over all possible 
combinations of C E R4 as shown in eq. (3.1). The number of these class 

combinations would be very large since it grows exponentially with respect to 
the number of classes. This can be avoided by taking a recursive scheme as a 
sub-optimal approach, instead of its direct maximization over all combinations 
in one pass. Under the recursive scheme, HSP(*) reduces to the following 

equation, which needs only the knowledge of the class identities of spatial 
neighbors. 

The denominator of eq. (3.28) does not depends on the class c and it need not 
be evaluated. Since the class identities of spatial neighbors are not available, 
intermediate classification results are used instead as estimates. This process is 
recursively applied to the pixels over all x-sites and .-sites in Fig. 3.4 at each 

recursion until negligible changes of class assignments are attained. 
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X . X . X . X . X . X  
X . X . X . X . X .  

X . X . X . X . X . X  
. X . X . X . X . X .  
X . X . X . X . X . X  

Figure 3.4 x-Sites and .-Sites of First Order Spatial Neighborhood System. 

This recursive approach precludes not only the necessity of considering all the 
combinations of classes but also the need of evaluating exponential function to 
obtain probabilities from log-likelihood values. 

In many multispectral images, however, especially in such scenes of 
agricultural areas, there are many homogeneous fields which are relatively 
large corr~pared to the pixel size. For those pixels in homogeneous regions, it 
will be ulinecessary to check all the possible combinations of {Cls(r) = C). 

Therefore, if M classes are present, it will be sufficient to check only those M 
cases assuming all Xs(r) have the same class as x(r). This will save 
computation time significantly. Furthermore, pixels {x(r), Xs(r)) are all classified 

simultaneously to one of the M classes. This simultaneous classification of all 
pixels in {(x(r), Xs(r)) will remove any isolated errors in the classification map 

which may be present otherwise. To avoid any blurring of the classificiation map 
near fielcl boundaries, a careful choice of homogeneity test woulcl be very 
important, 

'There are many measures of homogeneity of a set of pixels. The log-likelihood 
value of <the conditional joint probability is one of the possible honiogeneity 
measures. 'The ECHO classifier (Kettig and Landgrebe 76), for example, used 
this log-likelihood value to check the homogeneity of cells. 

Log[ P{x(r), Xs(r) I c(r) and Cs(r) are of same class)] > THD (3.29) 

If the log-likelihood value is greater than a certain pre-defined threshold value, 
denoted t ~ y  THD, then the pixels {x(r), Xs(r)) are considered as hom~~geneous. 
In this case, instead of checking all combinations of {Cs(r) = C), pi:wels {x(r), 
Xs(r)) are classified simultaneously to one of the M classes. If the pixels {x(r), 
Xs(r)) do not pass the homogeneity test of eq. (3.29), then those pixels are not 
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homogeneous. Therefore those pixels are subject to either the usual recursive 
operation or simple pixel-wise classification. 

3.4 Modeling of Prior Probability 

In eq. (3.1 ), spatial interpixel class dependency context is conveyed by the 
conditional prior probability P{c(r) = c I Cs(r) = C). This conditional prior 

probability can impose a constraint reflecting the global property on each class 
assignment of the pixels and can produce a more homogeneous classification 
map. On the other hand, the class-conditional joint probability of the feature 
vectors P{x(r), Xs(r) 1 c(r), C(r)) may only reflect the local characteristics of the 

pixels in terms of appropriate distance measures, such as the Euclidean or the 
Mahalanobis distance measures. In many applications of remotely sensed data, 
the pixel size is much less than that of the real object or field on the ground.; 
therefore, classification results consisting of homogeneous regions with less 
isolated spots would be expected. This inherent tendency of coherent class 
labels of spatially adjacent pixels can be accounted for in classification by using 
conditional prior probabilities which can impose some constraints on the 
configurations of the class labels of spatially adjacent pixels. 

The most straightforward way of obtaining conditional prior probabilities is to 
estimate 'the probabilities directly from training samples, or the class map after 
each iteration in case of a recursive approach. Although simple in concept and 
computation, this has several drawbacks in practice. First of all, there may not 
be enough training samples, in many real situations, to adequately estimate the 
prior probabilities of so many different configurations of classes. Furthermore, it 
will be very hard, and in some times, almost impossible, to gather a 
representative set of training samples containing all the meaningful 
configurations of classes in adequate amounts. Estimation using the 
intermediate result of classification is also another possibility, but this method is 
known to result in biased estimates (Tilton et at. 82, Dattatreya 91). Instead of 
estimating the prior probability itself, transition probabilities can be estimated 
under a simplifying assumption such as, 

gc(r+v) I c(r), c(r+t), v and t E NS, t # v) = P(c(r+v) I ~ ( r )  ) 
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This ass~imption implies that the probability of a class of a certain neighboring 
pixel of :~c(r) given all the other neighboring classes and the class of x(r) 
depends only on the class of the center pixel x(r). With this assumption, the 
conditional joint prior probability is simplified as, 

If enough prior information is available, all the transition probabilities can be set 
up using prior information in advance. Otherwise, the transition probabilities can 
be estimated and iteratively updated after each iteration using the class map in 
a recursive way. 

It is also possible to assume a certain form of distribution function for the joint 
prior probabilities and deduce conditional prior probabilities from the 
distribution function. This is analogous to assuming a multivariat~e normal 
distribution for feature vectors to compute the class-conditional joint probability 
of the feature vectors. The justification for assuming a certain form of dilstribution 
function for the joint prior probability might not be easily attainable. 
Neverthelless, among other possibilities, (for example, the geometric probability 
model (Owen 84), the Gibbs random field model (GRF) (Derin and Kelly 87, 
Besag 86, Derin and Elliot 87) is taken as a model of priors in this report, since it 
can exploit the inherent tendency of coherent class labels of spatially adjacent 
pixels in ia very straightforward and efficient way. Also the Markov property of 
Gibbs random field model allows the conditional prior probability P{c(I-)ICs(r)}'s 

relatively in a very simple form. 

The class labels c(r)'s, r E L, are assumed to be modeled by the Gibbs random 
field, then the conditional prior probabilities are given as, for c E R and C E R4, 
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Vw(c, C) is a potential function of a class configuration {c(r) = c, Cs(r) = C) on a 
clique w E NCL, and U(c, C) is an energy function. A clique is a set of sites 

(including single sites) such that any two elements in the set are neighbors of 
each other. Types of cliques of first order spatial neighborhood system are 
shown in Fig. 3.5. 

Type 0 Type 1 Type2 

Fgure 3.5 Clique Types of First Order Spatial Neighborhood System. 

NCL in eq. (3.32) denotes a set of cliques consisting of only the sites of pixels in 
{x(r), Xs(r)). Z is a normalizing factor and called as partition function. Since this 
is not dependent on the particular realization of {c(r) = c, Cs(r) = C), it needs not 

be evaluated. It is very important to have a proper potential function to be able 
to exploit the class label coherence in a classification. The clique potential 
function Vw(c, C) is defined as Vw(c, C) = %, c E R in the case of type 0. For 

type i, i =  1, 2, Vw(c, C) is defined as, 

-bi, if all classes of pixels in the clique w are the same 
+b, otherwise 

While {ac I c E R} determines the relative likelihood of each class c, c E R, {bl, 

b2} determines the emphasis of interactions between classes of adjacent pixels. 

As the bls become large, more homogeneous regions will be favored in the 
classification. If the bls are set to zero, this model of priors will be converted 
back to a classification with no interaction between class labels of adjacent 
pixels. Therefore, it is possible to control the preferred sizes and directions of 
homogeneous regions with appropriate values of {bl, b2}. Assuming % = a, for 

all c in R, ie., equal prior probabilities of the classes and b = b1 = b2, then the 

class-conditional probability is given as, 
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where, rrl is the number of occurrences of the class c in C, the classes of 
neighbors. This simplifies the log likelihood value computation of eq. (3.28) as 
in, 

= Log [qx(r), Xs(r) I c(r) = c, Cs (r) = C)] + 2b(m-2) + const. (3.34) 

where "const." doesn't depend on the particular class assignment c to the pixel 
x(r). If thsl pixels {x(r), Xs(r)} are assumed to be independent of each other given 

their classes, then, eq. (3.34) is modified to much simpler form, 

Log [HSP(c; r 1 CS (r) = C)] = Log [P{x(r) I c(r) = c}] + 2b(m-2) + const. (3.35) 

3.5 Experiments of Spatial Contextual Classification 

3.5.1 Derxription of Experiments 

To test the spatial contextual classification rule HSP(*) proposed in this chapter, 
two Landsat Thematic Mapper (TM) data sets, which were acquired over the 
same agricultural areas in Tippecanoe County, Indiana during July and 
September, 1986, were used in an experiment. 

All 7 bands were used in the classification. Four information clas!ses were 
determined from the available ground truth data and several spectral sub- 
classes were defined for each information class separately for each diata set to 
satisfy the multivariate normal assumption. Training and test samples were 
chosen as; in Table 3.1. 
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Table 3.1 Training and Test Samples. 

July Data September Data 
Information 

Class number number 
of of 

Sub- Test Sub- Test 
classes Training classes Training 

Corn 1 286 5559 2 376 5559 

Soybeans 3 495 4773 1 408 -4773 

Wheat 2 208 1215 2 330 1215 

AlfalfaJOat 3 321 1366 2 21 9 1366 

Total 9 1310 12998 7 1333 12998 

A portion of image, 128 by 128 pixels, is chosen as a test data set. Since there 
are pixels with unknown identities in the test portion of the data, only 12998 

pixels which have known ground truth labels, were counted when assessing 
classification performance. Classification performance is computed in terms of 
overall classification accuracy (OVA) and class averaged classification 
accuracy (CAG) and compared with that of a pixelwise maximum likelihood 
classifier. 

To see the effectiveness of spatial contextual information, three different 
experiments were carried out. The first experiment was performed only with the 
spatial interpixel correlation context. Secondly, only the spatial class label 
dependency context was used and in the last experiment, both were used 
simultaneously in the classification. Figure 3.6 and 3.7 show the July and 
September data sets and Fig. 3.8 is the associated ground truth map. 
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Band 1 (0.45 - 0.52 pm) Band 2 (0.52 - 0.60 pm) Band 3 (0.63 -. 0.69 pm) 

Band 4 (0.76 - 0.90 pm) Band 5 (1.55 - 1.75 pm) Band 6 (2.08 .- 2.35 pm) 

Band 7 (1 0.4 - 12.5 pm) 

Figure 3.6 July Thematic Mapper (TM) Data Set.; The white tmx 
shows the 128 by 128 pixel portion of selected test fiekd. 
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Band 1 (0.45 - 0.52 pm) Band 2 (0.52 - 0.60 pm) Band 3 (0.63 - 0.69 pm) 

Band 4 (0.76 - 0.90 pm) Band 5 (1.55 - 1.75 pm) Band 6 (2.08 - 2.35 pm) 

Figure 3.7 

Band 7 (1 0.4 - 12.5 pm) 

September Thematic Mapper (TM) Data Set.; The whiie box 
shows the 128 by 128 portion of selected test field. 
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Figure 3.8 

[ corn 

(. Soybeans 

Wheat 

(. AlfalfalOats 

0 Unknowns 

Associated Ground Truth Map.; The white box shows the 
128 by 128 portion of selected test field. 
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3.5.2 Spatial Contextual Classification with lnterpixel Correlation Context 

To test how much increase of classification accuracy can be attained by 
incorporating spatial correlation context into classification, the following 4 
different classifiers in Table 3.2 with only spatial interpixel correlation context, 
were applied to the July and September data. 

Table 3.2 Description of Spatial Contextual Classifiers with 
lnterpixel Correlation Context Only. 

RECU - 1 I Recursive spatial contextual classifier as in eq. (3.28) 

RECU - 2 

C M - 1  

RECU stands for a recursive spatial contextual classifier in eq. (3.28). Since this 
recursive classifier is very time-consuming, in the classifiers of CM - 1 and 2, the 
homogeneity test in eq. (3.29) was first carried out to find homogeneous group 
of pixels. If the pixels {x(r), Xs(r)) were homogeneous according to the test in eq. 

(With isotropy assumption) 

Recursive spatial contextual classifier as in eq. (3.28) 

(Without isotropy assumption) 

Spatial correlation context only for homogeneous pixels 

CM - 2 

(3.29), then one of the M classes which maximized the joint conditional 
probability in eq. (3.28) was assigned to all pixels in {x(r), Xs(r)) without 
checking every combinations of {c(r), Cs(r)). If the pixels {x(r), Xs(r)) failed the 

with eq. (3.29) (With isotropy assumption) 

Spatial correlation context only for homogeneous pixels 

homogeneity test, those pixels were classified by a pixelwise maximum 
likelihood classification. These classifiers are denoted by CM. In both the RECU 
and CM classifiers, two conditions, that is, with and without isotropy 
assumptions in eq. (3.1 6.a) and eq. (3.18.a), were tested. 
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For comparisons, a pixelwise maximum likelihood classifier (ML) was used to 
classify the July and September data sets. Classification accuracies are 
summariz:ed in Table 3.3 and 3.4. 

Table 3.3 Percent Classification Accuracy of July Data by Spatial Contrsxtual 
Classifier wlh lnterpixel Correlation Context Only. 

Classifier Corn Soybeans Wheat AlfalfaIOats CAG OVA - 
ML 90.18 57.72 68.72 77.89 73.63 74.37 

RECU - 1 93.70 56.00 73.33 80.97 76.00 76 .OO 

RECU - 2 94.10 56.04 72.67 81.26 76.02 76.1 6 

Table 3.4 Percent Classification Accuracy of September Data by Slpatial 
Contextual Classifier with lnterpixel Correlation Context Only. 

Classifierr Corn Soybeans Wheat AlfalfaIOats CAG OVA 

ML 82.59 55.06 51.28 47.07 59.00 65.28 

RECU - 1 83.07 61.85 57.1 2 46.93 62.24 68.51 

RECU - 2 82.96 62.46 56.38 46.63 62.1 1 (68.59 

In the July data set, for all classifiers tested above, there was considerable 
confusion of soybeans and wheat into alfalfaJoats. The spatial classifiers 
increased the classification accuracies compared to the maximum likelihood 
classifier (ML) as much as 5% for all classes except soybeans. The recursive 
classifiers (RECU-1, 2) were better than the pixelwise ML classifier by 1.63% 
and 1.79% in overall classification accuracy. CM-1 and CM-2 were better than 
the ML cliassifier by 3.6% and 3.59% in overall classification accuracy, The CM 
classifiers gave better results than the recursive (RECU) classifier for the class 
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soybeans, and the overall and class average classification accuracies were 
both better than the totally recursive cases (RECU-1, 2). Note that the CM 
classifiers are implicitly relying on the spatial class dependency context since a 
homogeneous group of pixels, {x(r), Xs(r)), are assigned the same class 

simultaneously. When there are many homogeneous fields, the approach of first 
testing homogeneity and classifying homogeneous pixels, would give better 
performance than a totally recursive approach. It can also reduce the 
computational time. There were not significant differences between the isotropic 
and non-isotropic cases. The estimated values of 8(1,0),i and 8(o,l),i in eq. 

(3.1 6.a) were very similar to each other and this caused similar classification 
results. 

In the case of the September data, soybeans and wheat were also confused 
mostly as alfalfaloats. Generally, the spatial classifiers increased the 
classification accuracy as much as 10% for all classes but alfalfaloats. There 
were 3.23% - 5.06% of increase in overall classification accuracy compared to 
the ML classifier. Again, there were not noticeable differences between isotropic 
and non-isotropic assumptions. 

Several threshold values for the homogeneity criterion in eq. (3.29) were tested 
in the CM classifiers. Classification accuracy of CM -1 and CM -2 were 
observed not so sensitive to a small change of threshold value as seen in Fig. 
3.9. 

.- * 76 
C) CAG 3 - OVA ,= 75 1 ~ 1 . 1 ' 1 .  

5 Homogeneity Test Threshold 

- 
3 75 .- 

-200 -180 -160 -140 -120 -100 1 z Homogeneity Test Threshold 

Figure 3.9 Classification Accuracies of July Data with Various Thresholds for the 
Homogeneity Test. (a) CM-1 Classifier. (b) CM-2 Classifier. 
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In the Ckl-classifiers, if the threshold value is set up too high, then only a small 
number of pixels will be classified with spatial correlation contextual 
information. But if it is too small, then many pixels will be considered as 
homogeneous with their neighbors and will result in undesirable blurs near field 
boundaries. In the experiments with July and September data, threshold values 
between -1 40 - -170 were generally satisfactory. 

For visual1 assessment of classification performance, the classification maps of 
the spatial classifiers considered here and the maximum likelihood classifier 
are also shown in Fig. 3.10 - 3.12. The classification maps of pixelwise 
maximum likelihood classifiers shown in Fig. 3.10 have many isolated spots 
and most of them were erroneous classifications (For the locations of errors, see 
Fig. 3.16). The spatial classifiers provided much cleaner class maps iaS shown 
in Fig. 3:11 and 3.12. The totally recursive classifiers (RECU-1, 2) resulted in 
less spatiially small isolated classes than 'the classifiers CM-1, 2 which1 checked 
homogeneity first. 

Since the recursive classifiers utilize spatial correlation context for all pixels in 
the given image, classification errors tend to be blocky. That is, when a small 
group of pixels are incorrectly classified, this error region tends to grow by 
encroaching into its neighbors through the recursive process. In the CM 
classifiers, this growing of error regions is prevented by the homogerleity test. 
This gives a slightly higher classification accuracy for CM classifiers although 
the class [naps of the totally recursive classifiers look cleaner. 
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Figure 3.10 

0 
Soybeans Alfalfaloats 

Classification Maps Obtained by the Pixelwise Maximum 
Likelihood Classifier. (a) July Data. (b) September Data. 
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CI 
Soybeans (. ALfalfalOats 

Figure 3.11 Classification Maps of July Data Obtained by the Spatial Classifier with 
Interpixel Correlation Context Only. (a) Isotropic Recursive (RECU-1) 
Classifier. (b) Non-isotropic Recursive (RECU-2) Classifier. (c) 
Isotropic CM (CM-1) Classifier. (d) Non-isotropic CM (CM-2) Classifier. 
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Soybeans AlfalfalOats 

Figure 3.12 Classification Maps of September Data Obtained by the Spatial Classifier 
with Interpixel Correlation Context Only. (a) Isotropic Recursive (RECU-1) 
Classifier. (b) Non-isotropic Recursive (RECU-2) Classifier. (c) Isotropic 
CM (CM-1) Classifier. (d) Non-isotropic CM (CM-2) Classifier. 
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3.5.3 Sp~dial Contextual Classification with Class Label Dependency Context 

In the second experiment, only the class label dependency context, Pr{Cs(r), 
c(r)), was used in spatial classification. That is, the feature vectors were 
assumed to be class-conditionally independent as in eq. (3.2) and the classifier 
in eq. (3.35) was used. Classification results are shown in Table 3.!5. In this 
experiment, only the GRF prior model was considered. 

Table 3.5 Percent Classification Accuracy of Spatial Contextual Classifier 
with Class Label Dependency Context Only. 

Data Set Corn Soybeans Wheat AlfalfalOats CAG OVA 

July Data 94.51 57.28 73.50 80.82 76.53 76.82 

Se~tember Data 83.79 59.52 52.5 1 50.07 61.47 67.86 

When the spatial class dependency context was used via Hsp with the prior 

probabilities based on the Gibbs random field, the classification accuracy was 
increased by 2 - 3% over the pixelwise maximum likelihood classific:ation. In 
the case of the July data, there were significant increases in clas:sification 
accuracy of the classes corn and wheat. In September data, there was about a 
4% increase of classification accuracy for the class soybeans and the other 
classes al!jo showed classification accuracy increases. 

Although some algorithms which can estimate parameter b in eq. (3.35) are 
available ~(Dattatreya 91), in modeling the conditional prior probabilities in eq. 

(3.33), several different values of b were tested as shown in Fig. 3.1 3 i:o see its 
effect on the GRF prior model. The classification performance was observed to 
increase as b became larger to a certain value and to level off thereafter. When 
b was sm,all, there were no significant changes of classification accuracy 
compared to the case without spatial priors. As b increased, classification 
accuracy was observed to increase to a certain extent and then start to 
decrease. Larger values of b means more emphasis given to spatial class 
homogene~ity. The result in Table 3.5 were obtained with the best result for 
various b's as shown in Fig. 3.13. 'The classification result was not so sensitive 

to the value of b if it was large enough. 
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Figure 3.13 Percent Overall Classification Accuracy (OVA) Versus 
b in the Spatial Contextual Classification Using IfSp in 
Eq. (3.35). (a) July Data Set. (b) September Data Set. 

Figure 3.14 shows a histogram of the differences of the first and second largest 
log-likelihood values of each pixel in July data set. Approximately 45% of the 
pixels have differences of first and second largest log-likelihood values larger 
than 20. 

Figure 3.14 

Difference of Log-Likelihood Values 

Histogram (Hist) and Accumulated Histogram (A.Hisl) of Differences 
Between First Largest And Second Largest Log-Likelihood Values 
Of Pixels in July Data Set. 

Therefore if the spatial prior term in eq. (3.35) is too small compared to the 
differences of log-likelihood values, the inclusion of spatial priors won't change 
the classification performance much. 
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Figure 3.15 shows classification maps of July and September data when only 
the class label dependency context was used in spatial classification. Imposing 
class label coherence for spatially neighboring pixels with the Gibbs random 
field in eq. (3.35) was very effective in removing scattered ancl isolated 
classification errors as shown in Fig. 3.15. Field boundaries were more regular. 
Figure 3.16 and 3.1 7 show error maps which identify the locations where error 
occur. 

(II Soybeans (I AlfalfalOats 0 
Figure 3.1 5 Classification Maps Obtained by the Spatial Classifier with Class Label 

Dependency Context Only. (a) July Data Set. (b) September Data Set. 
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Figure 3.16 Error Maps of the July Data Set without Spatial Class Dependency Context. 
(a) Pixelwise maximum likelihood classifier. (b) Isotropic Recursive (RECU-1) 
Classifier. (c) Non-isotropic Recursive (RECU2) Classifier. (d) Isotropic CM 
(CM-1) Classifier. (e) Non-isotropic CM (CM-2) Classifier. (f) with Only Spatial 
Class Dependency Context in eq. (3.35). 
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0 .:::::i:;:::;:. Correctly classified pixels 
. . . . . . . . 

Incans tly classified pixels 

Figure 3.17 Error Maps of the September Data Set without Spatial Class Dependency 
Context. (a) Pixelwise maximum likelihood classifier. (b) Isotropic Recursive 
(RECU-1) Classifier. (c) Non-isotropic Recursive (RECUQ) Cla~ssifier. (d) 
Isotropic CM (CM-1) Classifier. (e) Non-isotropic CM (CM-2) Classifier. (f) with 
Only Spatial Class Dependency Context in eq. (3.35). 
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3.5.4 Spatial Contextual Classification with Both lnterpixel Correlation Context 
and Class Label Dependency Context 

In the third experiment, spatial class dependency context in the form of spatial 
prior probability, Pr{Cs(r), c(r)}, is also included in the classification addition to 

the spatial interpixel correlation context. The same value of b in the GRF prior 
model is used as with the case of spatial class dependency context o111y in 
previous section. 

When pixels are classified with CM classifiers which check the homogeneity of 
a given group of pixels {x(r), Xs(r)), the class of homogeneous groups of pixels 

is not changed by additionally incorporating spatial prior probability since the 
pixels are classified simultaneously to the same class. However, those pixels 
which fail the homogeneity test are subjected to pixelwise maximum likelihood 
classification with the spatial priors. Therefore, only those inhomogeneous 
pixels undergo the recursive procedure for class label dependency context. 
This procedure is capable of utilizing the spatial interpixel correlation context 
where it is most suitable, namely in homogeneous regions and to use only the 
class label dependency context for inhomogeneous pixels. This will significantly 
reduce erroneous pixels near homogenous pixels or field boundaries. 

Table 3.6 and 3.7 summarize classification accuracies obtained by usiog both 
of the spatial contexts simultaneously. CM classifiers which first test 
homogeneity of the pixels and then selectively apply the spatial contextual rule 
were observed to perform better than the totally recursive cases (RECU-1, 2). 

Table 3.6 Percent Classification Accuracy of the July Data using the Spatial 
Contextual Classifier with Both lnterpixel Correlation and Class Label 
Dependency Context. 

Classifier Corn Soybeans Wheat AlfalfafOats CAG OVA 

RECU - 1 94.84 57.95 74.49 81.92 77.30 77.41 

RECU - 2 95.02 57.97 74.1 6 81.84 77.25 77.46 

CM-1 94.53 63.06 73.83 80.97 78.1 0 79.00 

C M - 2  94.50 63.1 0 73.91 81.33 78.21 79.04 
CM -1 : THD = -150, CM-2 : THD = -150, b :  30 
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Table 3.7' Percent Classification Accuracy of the September Data using tlhe Spatial 
Contextual Classifier with Both Interpixel Correlation and Clinss Label 
Dependency Context. 

Classifier Corn Soybeans Wheat AlfalfdOats CAG - OVA - 
RECU - 1 83.74 61.05 55.72 49.63 62.54 68.66 

RECU - 2 83.92 61.41 56.13 49.85 62.83 68.93 

Compared with the pixelwise maximum likelihood classifier results in Table 3.3, 
all classes were classified much better except the class wheat in Sleptember 
data with CM-2. As with the results in Table 3.3 and 3.4 which were obtained by 
using only the interpixel correlation context, the results in Table 3.6 an 3.7 were 
generally better. As for July data, simultaneous incorporation of both spatial 
contexts increased classification accuracies for all classes comparedl with the 
previous cases of using only one type of spatial contextual information. 
However, in the September data, although both the overall and class (averaged 
classificalion accuracies showed improvement over the previous results in 
Table 3.4 and 3.5, some classes such as soybeans and wheat, hald slightly 
worse c1ar;sification accuracy. 

Figure 3.1 8 and 3.19 show the classification maps obtained with the spatial 
classifiers with both spatial contexts. The corresponding error maps are 
presented in Fig. 3.20 and 3.21. For a comparison, the error maps of the 
pixelwise maximum likelihood classifier and the spatial classifier in eq. (3.35) 
with only spatial class dependency context are also included in Fig. :3.20 and 
3.21. 
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Soybeans AlfalfalOats 

Figure 3.18 Classification Maps of the July Data Obtained by Spatial Contextual 
Classifier with Both Interpixel Correlation and Class Label Dependency 
Contexts. (a) Isotropic Recursive (RECU-1) Classifier. (b) Non-isotropic 
Recursive (RECU-2) Classlier. (c) lsotropic CM (CM-1) Classifier. (d) Non- 
isotropic CM (CM-2) Classifier. 
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Soybeans AlfalfalOats 0 
Figure 3.1'9 Classification Maps of the September Data Obtained by Spatial 

Contextual Classifier with Both Interpixel Correlation and Class Label 
Dependency Contexts. (a) Isotropic Recursive (RECU-1) Cla~ssifier. (b) 
Non-isotropic Recursive (RECU-2) Classifier. (c) Isotropic C:M (CM-1) 
Chsslier. (d) Non-isotropic CM (CM-2) Classifier. 
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Figure 3.20 Error Maps of the July Data Set with Spatial Class Dependency Context. 
(a) Pixelwise Maximum likelihood classifier (without Spatial Class 
Dependency context). (b) with Only Spatial Class Dependency context. 
(c) lsotropic Recursive (RECU-1) Classifier. (d) Non-isotropic Recursive 
(RECU-2) Classlier. (e) lsotropic CM (CM-1) Classifier. (1) Non-isotropic 
CM (CM-2) Classifier. 
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Figure 3.21 Error Maps of the September Data Set with Spatial Class Dependency 
Context. (a) Pixelwise maximum likelihood classifier (without Spatial Class 
Dependency context). (b) with Only Spatial Class Dependency context. 
(c) Isotropic Recursive (RECU-1) Classifier. (d) Non-isotropic Recursive 
(RECU-2) Classifier. (e) Isotropic CM (CM-1) Classifier. (f) Non-isotropic 
CM (CM-2) Classifier. 
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As shown in Figure 3.1 8 and 3.1 9, the spatial classifiers accounting for both 
spatial contexts simultaneously resulted classification maps with many fewer 
isolated errors. These clean class maps would be very useful in applying the 
classification results since they show field boundaries very clearly. 

In summary, Fig. 3.22 and 3.23 show the classification accuracy increases over 
the pixelwise maximum likelihood classifier obtained by incorporating spatial 
contextual information. 

c 
2 1 
5 
r O  
'P 
a 

1 2 3 4 5 6 7 8 9 

B Spatial Classifiers 

Class Label dependency Context only - classifier 1 
Interpixel Cmlation Context Only Both of Spatial Contexts 

RECU - 1 : classifier 2 RECU - 1 : classifier 6 
RECU - 2 : classifier 3 RECU - 2 : classifier 7 
CM - 1 : classifier 4 CM - 1 : classifier 8 
CM - 2 : classifier 5 CM - 2 : classifier 9 

Figure 3.22 Classification Accuracy Improvement by Spatial Contextual 
Information over Pixelwise Maximum Likelihood Classifier (July Data). 
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Class-Averaged Accuracy ( C A ~  
ovetaUAccuracy(0VA) 

U Spatial Classifiers 

r c l G ~ a b e 1  dependency conte% only -classif% 1 1 
Interpixel Correlation Context Only Both of Spatial Contexts 

RECU - 1 : classifier 2 RECU - 1 : classifier 6. 
RECU - 2 : classifier 3 RECU - 2 : classifier 7 
CM - 1 : classifier 4 CM - 1 : classifier 8 
CM - 2 : classifier 5 CM - 2 : classifier 91 

Figure 3.23 Classification Accuracy Improvement by Spalial 
Contextual Information over Pixelwise Maximum 
Likelihood Classifier (September Data). 

As seen in Fig. 3.22 and 3.23, there were about 2 - 6% classification accuracy 
increases. It is very difficult to judge which contextual information is more useful 
in improvi~ig classification results. While the answer should be dependent on 
each particular data set classified, from a computational viewpoint, however, the 
interpixel (:orrelation context is much more complex to properly account for due 
to calculating joint class conditional probabilities of augmented feature vectors. 
An incorporation of the class label dependency context is relatively siimple. In 
the case of the Gibbs random field (GRF) model, it only requires to count the 
number of neighboring pixels which have the same class as the center pixel 
under cor~sideration. The parameter b in eq. (3.33) decides the relative 
importanco of homogeneity of *the class labels compared to the differences in 
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likelihood values. Since the degree of this class label coherence represented 
by the value b in eq. (3.33) is not necessarily all the same over the given image, 
- for example, larger weights on this class label coherence might be beneficial 
inside homogeneous fields and lesser weights in inhomogeneous fields or near 
boundaries-, spatially different values of b could be useful in classifying given 
image data. However, this is left unsolved for future research. 

3.6 Conclusion 

In this chapter, the spatial contextual part HSP(-) in the spatio-temporal 
contextual classifier derived in Chapter 2, was applied to a problem of spatial 
classification. Spatial interpixel correlation context was represented by the joint 
class-conditional probabilities and, class label dependency context was 
accounted for by the joint prior probability which was modeled by a Gibbs 
random field. 

Experiments were carried out with two Landsat Thematic Mapper data sets with 
these two spatial contexts. In incorporating spatial interpixel correlation context, 
the procedure of first testing homogeneity of a given group of pixels and then 
selectively utilizing contextual information was very useful both in improving 
classification performance and reducing computational complexity. The class 
label dependency context was relatively simple and computationally less 
demanding, and it was very useful in improving classification accuracy by 
removing spatially small isolated classes. The Gibbs random field model was 
effective in implementing class dependency context. 

The spatial classifiers discussed in this chapter not only increased classification 
accuracies over the pixelwise maximum likelihood classifier and but also 
resulted in classification maps with far less isolated errors and clean field 
boundaries. 
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CHAPTER 4 

'TEMPORAL CONTEXTUAL CLASSIFICATION : 
A DECISION FUSION APPROACH 

4.1 Introduction 

This chapter addresses the temporal contextual classification problem. A few 
desirable properties of the temporal classifier to be developed are as follows. 

1. Since there are usually only a limited number of training samples 
available for each temporal data set, employing a temporal contextual 
classifier should not require extra training samples additional to those 
already available for pixelwise non-temporal contextual classification. 

2. Thus, it should be possible to train a temporal classifier separately for 
each temporal data set. For this requirement, it is quite common to 
assume class-conditional independence of features of different temporal 
data sets. 

3. It will be also very desirable if a temporal contextual classifier can 
facilitate distribution of computation required for classification over 
different times. In other words, as new temporal data sets becomes 
available, the intermediate results already computed with previous 
temporal data sets should be able to be updated so that they can be 
again used when the next temporal data set becomes available. 

4.. Different temporal data sets can have distinct properties and varying 
discriminating power, therefore, one should be able to associate a 
"reliability factor." A temporal classifier would be very useful if it can 
accommodate different reliability factors associated with each temporal 
data sets. 



4 DECISION FUSION APPROACH 

Noting that a temporal contextual classification can be thought as a special 
example of the multisource classification problem with temporal data sets being 
considered as separate information sources, focus is brought on a more general 
problem of multisource classification and the term "temporal contextual" 
classifica1:ion and "multisource classification" will be interchangeably used in this 
chapter. 

Unlike those customary data combination approaches in mi~ltisource 
classifical:ion, this chapter is addressing a totally new multisource classifier which 
is based on a fusion of "class decisions" of each separate data set. Eac~h data set 
is separately fed into a local classifier and a final classification is performed by 
summarizing these local class decisions. An optimum decision fusion nule based 
on a mirlimum expected cost is derived. This new decision fusicln rule is 
developed to be capable of handling not only data set reliabilities but also 
classwise reliabilities of each data set. 

'The temporal contextual classification algorithms discussed in this chapter will be 
used in spatial-temporal classification in Chapter 5 in conjunction with the spatial 
contextual parts developed in Chapter 3. When they are comple!te as is, 
experimelital results with multiternporal data are included in this chapter. 

4.2 Multisource Data Classification 

With remarkable advances in sensor technology in many applicatior~ fields, it 
becomes quite common to employ several sensors and to extract desirable 
informaticln from the amassed set of all available data sets. This approach allows 
more reliable and improved results. One application of this, for example, can be 
found in an analysis of multisource data which deals with data sets ob4ained by 
multiple sensors possibly with different characteristics. Other than digital image 
data sets, non-image data sets such as geophysical measurernenl data or, 
cartographic data sets, etc., are also often available for analysis, for example, in 
a geogra~,hic information system (GIs). These disparate information sources are 
utilized simultaneously to improve the results of data analysis. There have been 
many efflorts to effectively employ multisource data sets; for example, see 
(Benediktsson and Swain 92, Benediktsson et a/. 90, Lee et a/. 87). These can 
be categc~rized in terms of how the disparate information sources are combined 



4 DECISION FUSION APPROACH 

to attain a desired objective. In this chapter, we address a multisource 
classification algorithm based on an optimal fusion of decisions of each data set. 

The idea of the decision fusion is to let each local classifier make a (local) 
decision based only on its own data set and forward the decision to the central 
classifier which finalizes a decision based on a set of local decisions and any 
available prior knowledge, such as the reliabilities of the respective local 
decisions. Since each data set is separately fed into its own classifier and only 
the decision of the local classifier is required by the fusion rule, this approach can 
significantly ease a requirement at the training stage and subsequently 
computational complexity. 

Different information sources can have different degrees of reliability. One data 
set might be more reliable than another data set in the analysis of specific data. 
This is to be expected since the conditions or characteristics of the various 
sensors or data sets are not necessarily all the same. In classification problems, 
for example, one set of data might be able to provide more discriminating power 
than another data set if the classes are more separable from each other using 
that data set. It is also very likely that a certain class or a subset of classes may 
be discriminated more successfully than others, and it is clear that a less reliable 
data set should have less effect on the overall classification procedure, thus a 
classification algorithm should be able to appropriately deal with data set 
reliabilities. It will ,therefore be very useful to associate a reliability factor not only 
to the data set but also to the classes which the local classifier defines. 

In this chapter, the reliability factor associated with each class will be called the 
"classwise reliability." A simplest use of this "classwise reliability" can be found 
where decision fusion is based on selecting the particular local decision which 
has the largest classwise reliability among other local decisions. Although data 
set reliabilities have been successfully utilized in combining disparate information 
sources, for example, in the approaches proposed by (Benediktsson and Swain 
92, Benediktsson et at. 90, Lee et at. 87), few examples of considering classwise 
reliability can be found. One of the objectives of this research is the effective 
utilization of classwise reliabilities as well as data set reliabilities in classification. 

The fusion of the decisions of different data sets can be formulated in a manner 
similar to M-ary distributed hypothesis testing problems, which have been a 
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subject of considerable research attention (Tenny and Sandell 86, Chair and 
Varshney 86, Reibman and Nolte 87, Hoballa and Varshney 89, Tang et al. 89) in 
such fielcls as radar systems and military surveillance systems. We apply the 
maximum likelihood decision fusion rule as in (Tang et al. 89) in a multisource 
classificaltion problem and extend the result in (Tang etal. 89) by adopting a 
modified cmst function to find the optimum fusion rule which can handle both data 
set and classwise reliabilities. 

Applying a decision fusion approach in multisource classification has several 
advantages over conventional algorithms based on the conventional delta fusion. 
Since the algorithm based on a decision fusion requires only classes assigned 
dsing each data sets and doesn't need to keep the class-conditional probabilities, 
it. is very simple not only from the computational viewpoint but a1s.o from a 
memory requirement. It can also deal with several disparate data sets which 
have significantly different underlying distributions. For example, there can be a 
data set which cannot be successfully modeled by a set of statistical diistribution 
functions on which the conventional data fusion multisource clas.sification 
algorithm!; are formulated. However, forwarding only the classes assigned with 
each data set forfeits information of data fusion, although the prior information 
required in decision fusion can supplement the loss to some extent. Much simpler 
computation and reduced memory requirements would be able to re!duce the 
performar~ce degradation due to the loss. In many practical applications in which 
the inforrriation carried by posterior probabilities is inaccurate to some extent, 
however, if properly estimated, the prior information, supplied for the decision 
fusion process, can surpasses the information loss and result in better 
performance. 

The organization of this chapter is as follows. In section 4.3, a brief review of 
multisourc:e classification and its previous research is presented. In section 4.4, 
an optimal decision fusion algorithm based on minimum expected cost is derived. 
The problem of selecting data set and classwise reliabilities is addressed in 
section 4.5. Some comments on information combination struc:tures in 
multisourc:e classification are given in section 4.6. Experimental results with three 
remotely sensed multitemporal Thematic Mapper (TM) data sets are presented in 
section 4.'7. Finally, section 4.8 concludes this chapter. 
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4.3 Review of Previous Works 

Suppose there are p different data (or information) sources which produce a set 
of features (or, feature vectors) {x,, ---, xp} where xkl k = 1 , ---, p ,  is a 9- 
dimensional feature vector of the kfh information source (note that the dimension 
need not be the same for different data sets). The objective with these amassed 
multisource data sets is to make the best decision on the nature of the object 
observed as {x,, ---, xp}. 

A decision is to be made among the classes in n o ,  a set of user-defined 

information classes. In temporal contextual classification with these p 
multitemporal data sets, the set no, is typically the set of classes in the data 
set, that is, Q,. However, in this chapter, no can be any set of user-defined 
information classes. Mo is the number of information classes in no. The term 

"information class" means a class which is directly of informational value to user 
according to the specific purpose of data analysis. If the purpose is for finding 
classes of objects on *the ground via remotely sensed data, then, the list of 
information classes might include the names of objects on the ground, e.g., 
specific plant species. If it is for detecting a particular target, then, the information 
classes could be {target, non-target}. Since information classes are defined 
ordinarily based solely on the user's interests, they may not be separable in the 
feature space. Thus, in the classifier training stage, the given data sets might be 
analyzed, for example, through a clustering, to find a mutually exclusive and 
exhaustive set of sub-classes or "data classes" each of which can be modeled by 
an appropriate probability density function. Due to the computational complexity 
and a practical limitation on the requirement for training samples etc., the data 
sets are assumed, in general, to be class-conditionally independent of each other 
(see (Lee et a/. 87) for a discussions of this assumption), and each data set is 
separately analyzed in the training stage. Therefore different data sets can have 
generally a distinct set of data classes with a different number of data classes. As 
defined in Chapter 2, Qk, k = 1, ---, p, is a set of data classes in the kfh data set 
with Mk elements. 

The problem of multisource classification is to determine the optimum decision 
rule given the multisource data {x,, ---, xp), a priori information such as no, nk 
and the estimated probability density functions of the data classes in each nk, k = 
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1, ---, p. lrhe optimal decision rule in a Bayesian approach, is to find the class Uj 

E i2, which maximizes the probability P{oi I xl, ---, $1. Under the independence 
assumption mentioned above, this is equivalent to finding a class q m~aximizing 
P(q)P(xl 1 a$=== P(xp I q). Note that, in this Bayesian approach, each data set has 
the same effect on the final decision of q. 

Classifcation 

Classify 1 4 & Data Fusion 1 Decision 

Figure 4.1 Multisource Classification Structures. (a) Fusion 
of Features. (b) Fusion of Decisions. 

- - I - and 
Classifca tion 

Generally, there are two different approaches to multisource data set 
classificalion as shown in Fig. 4.1. 

- " 0  

The featu~re vectors of each data source (or sensor) can be fed into a central 
decision procedure as in Fig. 4.1 .(a) to draw a final decision which is denoted by 
uo E %. [=or a detailed review on works in this category, refer to (Benecliktsson et 

a/. 90). In this decision procedure, a subset of original features might ble used by 
applying i1 suitable feature extraction algorithm. A simple straightforwarcj example 
of this approach might be the so called, extended vector approach in which all 
given fealure vectors are used simultaneously to form a single compound feature 
vector for classification. The cascade classifier (Swain 78a) belongs allso to this 
category. Another example might be the layer-based classifier where a different 
subset of features are used in each different level (Hoffer et al. 79). Lee et a/. 
(Lee et ;?I. 87) developed a statistical multisource classifier which was later 
extended by Benediktsson et a/. (Benediktsson et al. 90) to be capable of having 

"P q Classify 
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reliability factors associated with data sets. In (Benediktsson et at. go), a global 
membership function 5.) which is defined for q E i&, j = 1, ---, M,, as, 

is used to perform data fusion and classification. Equation (4.1) shows how the 
individual weighted posterior probabilities affect the global membership function. 
a k  is a reliability factor associated with the klh data set. The decision is made by 
selecting a class among R, which gives a maximum membership function value. 

The reliabilities associated with the data sets, {a,, ---, up} in eq. (4.1) are set 

considering such factors as class separabilities, classification accuracies, and/or 
equivocation in such a way that the percentage change in the posterior 
probability of one data set is proportional to the percentage change in the global 
membership function multiplied by the reliability factor of that data set as, 

The evidential reasoning approach based on interval-valued probabilities has 
been also used to perform multisource classification with data set reliabilities 
(Kim and Swain 90). However, neither of these approaches handle classwise 
reliabilities. 

If the conditional probability of feature vector xk given both the data class and 
information class is assumed to be the same as that of feature vector xk given 

only the data class, then, the source-specific posterior probability is computed as, 
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The problability P(oi I uk), called the "class transition probability," shows a 

relationship between the data class and the information class. As discussed in 
Chapter i!, in multitemporal classification, this class transition probability provides 
temporal contextual information between temporal data sets. 

Define a class transition matrix, T(Q,J&) which consists of class transition 
probabilities, P(q 1 uk), ~j E Q, and uk E Ilk, as, 

Since there are Mo and Mk elements respectively in Ro and Ilk, T(QO I Rk) is Mo 
by Mk. In the case of the cascade classifier (Swain 78a) which was developed for 
bi-tempor'al contextual classification, final classification is performed anlong R0 = 

Ilp, p = 2, and the matrix, T(R2 I Ill) provides information about class transitions 

between 1:wo temporal data sets. With this class transition matrix, the relation in 
eq. (4.2) can be equivalently written in a vector form as, 

Only one component is may be dominant over the others in F(xh., Ilk); for 
example, suppose P(xk I uj)P(uj) is dominantly larger than other conlponents, 

then, eq. (4.3.b) is approximated by, 
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Since the term P(xkJuj)P(uj) is common for all classes in no, the relative 
differences between terms in {P(olluj), ---, P(qO(uj)} determine an actual 

contribution of temporal contextual information. If these relative differences are 
much smaller than those between terms in {P(xklol)P(ol), ---, P(xk(qO)P(qO)}, 

then the information of F(x~, nk) won't contribute much discriminating information 
in the global membership function in eq. (4.1). 

Frequently, a certain class in one data set strongly indicates a particular class in 
Ro and only one component in each row of T(Ro ( Rk) is dominant over others in 
that row. Suppose comparing two classes, oi and q in R0 and class urn and u, in 
the klh data set, strongly indicates those oi and o, classes, respectively. In this 

case, the ratio of information class-conditional probabilities is, 

The ratio of data class-conditional probabilities is shown to be directly related to 
the ratio of the corresponding information class-conditional probabilities. Note 
that the relative values of the data class-conditional probabilities are generally 
widely variant for different data sets. If any data set happens to have data class- 
conditional probabilities which have very large differences among them, the 
information class-conditional probabilities corresponding to this data set are very 
likely to dominate the global membership function in eq. (4.1) unless its data set 
reliability factor is very small. 

In the approach of Fig. 4.1 .(b), a final class decision is made by summarizing 
only the classification result of each data source. J. Tubbs and W. Alltop (Tubbs 
and Alltop 91) considered a problem of integrating classification results from 
multiple sensors and suggested a decision process based on a ranked lists of 
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class dec:isions. The local decision of each data source is denoted by U I ~ ,  k = 1, - 
-, p. The decision rule of each data source is assumed to be already determined. 
In generad, the key problem of the approach in Fig. 4.1 .(b) is how to determine an 
optimum decision uo E Ro given the local decisions {ul, ---, up}. This problem is 

very similar to that of M-ary distributed hypothesis testing. 

There arc) two issues in distributed hypothesis testing, or the distributecl detection 
problem, one being the design of the local classifiers and the other being the 
fusion rule of local decisions. R. R. Tenny and N. R. Sandell (Tenny arid Sandell 
86) propc~sed first a distributed detection algorithm in the case of two sensors. 2. 
Chair antl P. K. Varshney (Chair and Varshney 86) derived an optimum fusion 
rule when binary local decisions were given in a multiple sensor detection 
problem. Later, A. R. Reibman and L. W. Nolte (Reibman and Nolte 87) reported 
a system-wide optimum solution for a restricted case when $the statistics and 
thresholds of the local detectors are assumed to be identical. 2. Tang et al. (Tang 
89) preslented a solution of the more general case of a distributed M-ary 
detection problem with multiple sensors which will be extended in this chapter by 
adopting a modified cost function to find an optimum fusion of local decisions. 

4.4 Decision Fusion Approach in Multisource Classification 

Suppose we have the problem of finding an optimum decision uo E Qo given the 
local decisions {u,, ---, up}. The decision rule of each data source is assumed to 

be already determined. This problem of decision fusion is analogalus to the 
decision-making of a main expert to whom the decisions of local experts are 
forwardetl. The main expert has a priori information about the reliabilities of the 
decisions which the local experts make. We denote the classwise reliability, 
rel(k,uk), IJ, E a, k = 1, ---, p, as a reliability of a decision on uk using th~e kfh data 

set (or by kth expert). In the same way, REL(k), k = 1, ---, p, is denoted as the 
reliability of the kth data set. 

To find an optimal decision fusion rule based on the Bayesian miniimum cost 
approach, a cost function is defined as follows. A cost J(uo, Oi) is given to the 
decision uo, uo E Ro when the true class is 9, E Qo. Then, given a set of local 
decisions {ul, ---, up}, an optimal fusion rule in the sense of minimum expected 

cost can be derived (Tang et al. 89) as in, 
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where, u = arg J(UO = C, y )  flul, --, up, q) 
C€& q 

Consider the "0-1 " cost function given as, 

J(u0, q) [ 1 - ~ ( u o ,  9) I 

where, 6(x, y) = 1, if x = y, and, 6(x, y) = 0, otherwise 

With this "0-1" cost function, an optimal fusion rule in eq. (4.4.a) will choose a 
class uo = u E % having a maximum joint probability of flul, ---, up, 9 = U} which 
shows the likelihood of joint occurrence of {ul , ---, up) and {a, = u). 

choose uo = u E % (4.5.a) 

where, u = arg max Wl, - - I  up, y = c} 
c~ rro 

In other words, this fusion rule will find a class uo = u which is most likely to occur 
jointly with the local decisions {ul, ---, up}. If the conditional independence of ukls 
given uo is assumed as, 

then, the joint probability flul ,---,up, u0} is simplified as, 

For each data set, a set of conditional probabilities, {P(uk I u0) I uk E no,  uO E no} ,  

is required. Note that this straightforward result cannot support a disparate 
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degree of data set reliabilities nor classwise reliabilities. This is becausie the cost 
function in eq. (4.4.b) is determined only on a basis of (uo, q). 

Among tlhe local decisions {ul, ---, up}, some of the decisions could be more 
dependable in terms of data set and classwise reliabilities than others. In this 
case, it would be more desirable to have a final decision as consistent as 
possible lwith those reliable local decisions. This consistency, or consensus over 
the local decisions will also be as important as the maximum likelihood of joint 
occurrenc:e which is pursued by eq. (4.5.a). 

To acconimodate this idea, a slightly modified cost function is considered so .that 
an optimirm decision fusion algorithm selects a decision uo which is not only most 
likely to occur jointly with local decisions but also as consistent as possible to the 
reliable lc~cal decisions among {ul, ---, up). 

Let's consider a new cost function which is dependent not only on (uo, a,) but 
also on ( IJ~,  ---, up). This cost function will be designed to allow a final decision 
maximally consistent with the local decisions (ul, ---, up). The degree of 

con~isten~cy to each local decision will be based on the classwise and data set 
reliability. Specifically, a cost function J(uo, ul, ---, up, oj) in the followi~ng form is 

examinecl. 

J(uo, uk, q), called a local cost function associated with kfh data set, determines a 
cost given to an action of selecting uo based on the klh local decision h. A 

summed value of all the local costs is then, the actual cost assigned to the action 
of selectirig uo based on {ul, ---, up} and J(uo, ul, ---, up, 9) is called a global cost 

function. 

To determine the proper local cost function, consider assigning Co!jtS to the 
following %five possible actions in Table 4.1. 
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Table 4.1 Cost Assignments to Courses of Actions. 

- - - 

Conditions J(uo, uk, q )  cases 
1. uk=fqanduo=uk 0 Uo = Oj 

2. uk = 9 and uo # uk 1 U, # Oj 

3. uk#$anduo=uk A' UO # Oj 

4. uk#  9, B' uo = Oj 

5. uk $ 9 ,  u0#ukand u,#q 1 u0 z q 
0 <A', B' s 1 ; A', B' are not both 1 

The idea in assigning cost values to the courses of action is to give lower cost to 
those desirable actions and higher costs to less desirable actions. As in case 1 in 
Table 4.1, if a decision uo matches the local decision uk and if it is a correct 

decision (i.e., u, = wj), then, the lowest cost, which is selected as zero in this 
case, is assigned. On the other hand, if a decision u, doesn't match the local 
decision uk and if the selected decision is also wrong (i.e., u, # q), then the 

highest cost, which is selected as one, is assigned. 

Since it is desirable for a fusion rule to choose a decision uo which is as 
consistent as possible to the local decisions {ul, ---, up}, a cost A' which is not 

-- necessarily the largest cost of one is assigned to the case 3 in Table 4.1. Even if 
the decision uo is erroneous, the cost value A' can be less than the largest cost, 
since the decision of uo follows the decision of the kth data set, uk. Similarly, a 

cost value B' which can be larger than the smallest cost value of zero is given to 
case 4 since the decision uo doesn't follow uk, even if the decision of u, may be 
true. When uo doesn't follow uk and uk is not correct either, the largest cost value 

is assigned. 

If the costs A' and B' are not both 1, then the cost assignments in Table 4.1 can 
be expressed in terms of two separate components, one being a function of (u,, 
9) and the other, a function of (u,, uk), in two different ways as, 
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K1 and K, are constants which are independent of the class decisions. The cost 
function component J(uo, uk) imposes a consistent relationship with1 the local 
decision uk on the decision uo. On the other hand, the component J(uo, q) 
imposes a constraint of maximum likelihood of co-occurrence as in eq. (4.4.b). 
These two cost function components can be expressed as, 

J(uo, uk) ' 1 - A G(uO, uk), O 5 A 5 1 

J(u0, q) 1 - B 6(uo, 9, 0 S B S 1 

where, A and B are not both 0. 

With a cost function in a form of eq. (4.7.a), the parameters A, B, and K1 are 

related to the costs A' and B' in Table 4.1 as, 

A ' = l  -KIA and B'=1 -KIB 

where, K1 = 1 I [I - (1 -A) (1 -B)] 

Since coristant K1 in eq. (4.7.a) does not affect a selection of uo, without loss of 

generality, the cost function in eq. (4.7.a) can be redefined as, 

In the case of a cost function in an additive form in eq. (4.7.b), the constant K, is 

not related to the value of A and B, and it can be set arbitrarily since it doesn't 
affect the global decision. For simplicity, it is set to 112. The relationship between 
A, B and ,A', B' is, 

A ' = l  - A  and B'=1 - B  (4.1 0) 

With appropriate values of A and B (or equivalently, A' and B'), it is possible to 
control the relative importance between selecting a decision maintaining maximal 
consistency with the local decisions {ul, ---, up) and selecting a class of  highest 

joint occurrence likelihood with the local decisions. The cost function defined in 
eq. (4.6) with eq. (4.7.a,b) is quite general in its scope of application since it can 
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define various cases of cost function by choosing different values of A and B. For 
example, the cost function J(uo, mi) in eq. (4.4.b) which is based on maximum 

likelihood fusion, is achieved with A' = 1 and B' = 0. If parameters of A' = 0 and B' 
= 1 are used, the resulting fusion rule will be selecting a majority decision among 
the local decisions. 

Employing this new cost function in eq. (4.6), an expected cost of choosing uo 
given {ul, ---, up) is computed as, 

Expected Cost = E {J (uo, ul, ---, up, 9)) 

= C C J(u0, 4 '  ---9 up, y) flu1, ---, Up, y) 
u1, ", Up q~ Qo 

Define the inner summation term in the above equation as a function H, as, 

An optimum decision which minimizes the expected cost can be found by 
minimizing H with respect to uo E Rg. Note that a choice of A in the cost function 
in (4.8.a) controls the relative importance of consistency between uo and local 
decision uk, therefore it should be dependent on the particular data set employed 
and a local decision uk, according to the data set and classwise reliabilities. Thus, 
the notation "Ak(uk)" would be more appropriate to explicitly show the 
dependence of "A" on the particular data set and the local decision uk. That is, 
according to the data set and classwise reliabilities, REL(k)'s and rel(k,uk)'s, 
appropriate values of Ak(uk)'s can be determined in such a way that a less 
reliable local decision has less effect on making a final decision uo through a 

selected fusion rule. Substituting the cost function in eq. (4.9.b) into H results in, 
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The first term in eq. (4.1 1) which is rewritten as in eq. (4.12.a) amlunts for a 
consisterlcy constraint between the local decisions {u,, ---, up} and uo. 

To understand the role of this term a bit more clearly, suppose weight factors, 
&(*)IS are all the same. Then the cost function with only this term w o ~ ~ l d  choose 
the class u, which is a majority class among ukls. Therefore it is a majority rule. 
With the distinct reliabilities associated with uk1s, the "vote" of each local decision 
is weightlsd according to Ak(*)'s. Then the fusion rule in eq. (4.12.a) will select a 
class u, attaining most of weights. For this reason, this fusion rule will be called a 

"weighteld majority decision fusion rule." On the other hand, thle second 
component of eq. (4.1 1)' which may be re-written as, 

is dependent only on uo and 9. If the cost function J(uo, mi) was employed for 
itself alone (that is, if all &(uk)'s are zero), it would choose u, based on a relative 
likelihood of the joint occurrence of {u,, ---, up, u,} as in eq. (4.5.a). The relative 
magnitude of #the Ak(uk)'s and B will determine the actual degree of balance 

between emphasizing the importance of the term in eq. (4.12.a) and lhat in eq. 
(4.12.b) irr deciding a class u, under the eq. (4.1 1). 

In the same manner, if the cost function in eq. (4.7.b) is employed, then the 
following H is obtained. 
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As before, the first term in eq. (4.13), which is rewritten as, 

is related to emphasizing the consistency of a global decision with the local 
decisions. The second term in eq. (4.1 3) which is simplified as, 

P(ul, ---, up) [% - BML quo I UI,---, Up)] (4.1 4. b) 

where, BML = f 1 - Ak(uk) 
k= 1 

is based on the maximum likelihood decision fusion and this is equivalent to eq. 
(4.5.a). The parameter BML accounts for the total weight given to the maximum 
likelihood based fusion. The posterior probability P(uoJul,---, up) can be computed 

as in eq. (4.5.c). 

4.5 Data Set and Classwise Reliability 

In eq. (4.12.a and 4.14.a), the data set and classwise reliability factors are 
reflected in the Ak(uk)'s. It would be very logical to assign a large cost to the case 

when the fusion rule fails to follow a local decision which has high reliability. In 
the report in (Benediktsson et a/. go), several different measures of data set 
reliability were introduced. Statistical separabilities between classes are a 
possible candidate for assessing data set reliability. The computation involved in 
evaluating separabilities could be non-trivial if the multivariate normality 
assumption about the data set cannot not be satisfied. Furthermore, in the case 
of a data set where the data values are not changing enough, e.g., in digital 
elevation data, the covariance matrix may be ill-conditioned. Another measure of 
reliability based on equivocation is introduced in (Benediktsson et a/. go), and in 
this approach, the data set reliability is related to the degree that the data classes 
indicate specific information classes. If the data classes in one data set strongly 
indicate the corresponding information classes, then this data set is considered to 
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be reliable. Since the purpose of multisource data analysis in this chapter lies in a 
classifimtion, classification accuracy could be a logical choice for the reliability 
measure. Any data set which has higher classification accuracy may be assumed 
more reli(able than the others. Note that classification accuracy can be easily 
obtained irrespective of assumptions about underlining probability density 
functions'. Data set reliability REL(K) can be determined sinnilarly to 
(BenediMsson eta/. 90) based on these criteria. 

However, these measures are not directly applicable to the classwise reliability 
which is a1 measure of reliability of a particular local decision selected biased on a 
given (lolcal) data source. Two different measures based on classification 
accuracy can be examined as follows. For uk E Rl, and q E R,, k = 1, ---, p, and j 
= 1, --- Mu, 

Equation ((4.1 5) is the probability of correctly classifying xk as belonging to a class 
sification 9, and it is the detection probability of class a,. Any class with high cla.; 

accuracy should be associated with large classwise reliability. However, there 
can be a problem in using this measure as manifested in following hylpothetical 
example. Suppose a local classifier is very poorly designed or, feature vectors of 
a certain data set are of very bad quality, and it assigns a particular class to all 
pixels. In .this case, the measure of eq. (4.15) will assign the highest reliability of 
1 to that particular class, although the decision to this class is meaningless. 

On the other hand, the measure in (4.16) doesn't have this problem, and it is the 
probability that a pixel xk is truly from the same class as the local decision uk. 
Since this reliability measure is one minus the probability that the local decision is 
incorrect, if the probability of eq. (4.16) is high, then, statistically speaking, the 
knowledgo of a local decision uk will be able to indicate the class of xk with a high 
probability. These classwise reliabilities can be estimated from the classification 
results of representative training samples. 
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There still remains a problem in associating the data set and classwise reliability 
measures to actual values of weights Ak(a)'s. Since it appears difficult to do 

optimally, at least for now, the seemingly simple way of eq. (4.17) is used. 

4.6 lnformation Combination Structures in Multisource and Temporal Contextual 
Classification 

The multisource classifiers discussed so far can be straightfowardly used for 
temporal contextual classification. One difference between these two applications 
may be distinguishing the order of data sets in temporal classifiers. Generally, 
there can be two different structures in combining multiple data sets as shown in 
Fig. 4.2. 

Global decision among Ro Global decision among Ro 

Figure 4.2 Information Combination Structures. (a) Serial Structure. (b) Parallel Structure. 

The serial structure of Fig. 4.2.(a) may best fit the temporal contextual 
classification since the temporal information up to t = k can be conveyed as 
temporal information to the next classification process of the (k+l)th data set. As 
a new temporal data set becomes available, likelihood values are updated to be 
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used with next temporal data set. An intermediate classification result can be 
obtained at each temporal stage. In this serial structure, the differend order of 
data sets;, which is mostly likely to be chronological, generally give, different 
results. 

The parallel structure shown in Fig. 4.2.(b) is what the rnultisource classifier in 
eq. (4.1) is based on, and there is no distinction in the order of data sets, since 
information from each data set is independently fed into the (global) classifier 
which makes decisions among Q,. There are no intermediate cla!;sification 

results. 'This structure is more straightfotward to accommodate data set 
reliabilities than the serial one. The decision fusion algorithms previously 
discussed are based on this structure. Note that this parallel cornbination 
structure is based on an assumption of class-conditional independence! between 
data sets. Note that since the class transition matrix to Q, is required only at the 
final temporal data set in the serial structure, selecting a different class set, R,, 
affects o~ily the last temporal stage. However, in *the parallel structure, this 
flexibility tannot be attained. 

4.7 Experiments and Discussion on Temporal Contextual Classification 

4.7.1 De:jcription of Experiment 

To test the multisource (or, temporal contextual) classification algorithms 
discussecl in this chapter, three Landsat 'Thematic Mapper (TM) data :sets were 
used. In a,dditional to the July and September data sets which were introduced in 
previous chapter, Thematic Mapper data acquired in April was used for temporal 
classification among the same four information classes {corn, soybean~s, wheat, 
alfalfaloats) as in previous chapter. 

In the April data set, there was not much difference between these four 
information classes except wheat. In fact, the information class "wheat" was the 
only green crop type which could be observed in the given agricultura.1 fields at 
that time, and the information class, wheat, was identifiable from the others with 
high accuracy using this April image. The April data set is shown in Fig. 4.3, in 
which the darker regions in band 6 matches well with the location of the class 
wheat in the truth map shown in Fig. 3.8. Note that in band 6, green vegetation 
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has relatively lower spectral reflectance than soil (Swain 78b). 'Thus, the regions 
corresponding to green vegetation would look darker than those corresponding to 
soils. 

Band 1 (0.45 - 0.52 pm) Band 2 (0.52 - 0.60 pm) Band 3 (0.63 - 0.69 pm) 

Band 4 (0.76 - 0.90 pm) Band 5 (1.55 - 1.75 pm) Band 6 (2.08 - 2.35 pm) 

Band 7 (1 0.4 - 12.5 pm) 

Figure 4.3 April Thematic Mapper (TM) Data Set.; The white box 
shows the 128 by 128 portion of selected test field. 
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Only two information classes (wheat and "others") were defined in the April data 
set, and several sub-classes of these two information classes were (defined to 
meet the multivariate normality assumption. The number of samples ill the April 
data selected for training and test are summarized in Table 4.2. 

Table 4.2. Training and Test Samples of April Thematic Mapper Data. 

In.formation April Data - 
class number of 

Subclasses Training Samples Test Samples 

Others 2 960 1 1 698 

- Wheat 1 376 1215 - 
Total 3 1336 12998 

Experiments were carried out with the several classifiers discussed in this 
chapter. Final (global) decisions were made among the user-defined information 
classes of R o  = {corn, soybean, wheat, alfalfaIoat} and classification 

performances were compared in terms of the overall classification accuracy 
(OVA) an'd the class-averaged classification accuracy (CAG). 

Applying fusion rules requires a class transition matrix in eq. (4.3.ia). In the 
experiments, class transition probabilities were selected heuristically in such a 
way that i3  transition between the same information class had a higher probability 
than other cases. To implement this idea, following relationship was used. For uk 
E Rk, Wj E G, k = 1 , ---, p, 

q u k  I WJ = PO I n, if uk and 9 belong to the same information class 
(4.1 8) 

fluk I w,) = (1 - PO) I (Mk - n), otherwise 

n is the nrlmber of total sub-classes of the information class to which sub-class uk 
belongs. Po is a user defined number between zero and one. Po being one 
means nal allowance of class transition to another information class. If 1% is zero, 

class transition is permitted only to different information classes. Severall different 
values of Po were tested as in Table 4.3 and the values of Po which gave the best 
performalice was chosen for comparison with other classifiers. (Po =: 0.99 for 
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class corn and soybean, Po = 0.8 for class wheat, Po = 1 for class alfalfa/oats). In 

the case of classifying July data with April data or September data with April data, 
Po was set to one. 

Table 4.3 Bi-temporal Classification of July Data with September Data with 
Different Class Transition Probabilities. (Equal Data set reliability). 

Po in eq.(4.18) Corn Soybeans Wheat AlfatfdOats CAG OVA 

0.80 91.02 59.42 66.34 78.55 73.83 75.20 

0.99 92.03 60.28 64.1 2 78.92 73.84 75.78 

1 .OO 89.84 60.03 61.40 79.43 72.68 74.55 
~ e s t '  91.80 63.08 69.88 73.35 74.53 76.67 

Po = 0.99 for corn and soybeans. Po = 0.8 for wheat, Po = 1 for alfalfdoats 

4.7.2 Temporal Classification with Data Fusion 

The multisource classifier based on data fusion in eq. (4.1) was applied to the 
classification of July data with April and September data, and classification 
results are shown in Table 4.4 - 4.6. Since the ground truth was gathered in July 
and it matches best with July data, all comparisons were made with respect to 
the July data set. Non-contextual maxi mum likelihood classification results of 
each temporal data set separately are also included in the tables. In the 
classification of single data sets, the July data set gave better classification 
performance than the September data set for all classes. But some of the classes 
(soybeans, wheat in July data or soybeans, wheat and alfalfaloats in September 
data) had very poor classification accuracy. Note that the class, wheat and others 
in the April data set were discriminated very successfully from each other. 

Several different data set reliability factors were tested to see their effect on 
classification accuracies. As seen in the Table 4.4 - 4.6, temporal contextual 
classification based on data fusion with eq. (4.1) generally gave better results 
than any of the single pixelwise maximum likelihood classification. 

Inclusion of April data improved the classification accuracy of wheat and 
alfalfa./oats significantly. Although this improvement couldn't increase the overall 
classification accuracy (OVA) much due to a relatively small portion of sample 
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numbers belonging to those classes, the class-averaged classification a.ccuracies 
(CAG) were increased by as much as 5% (July data) or 14% (September data). 
The September data set was helpful in classifying the class soybea~is in July 
data as seen in Table 4.5, but there was a slight degradation in classification 
accuracy for the class, alfalfaloats. The classification accuracies in September 
data were generally very low except corn and the improvement due to including 
Septembctr data in classifying July data was not significant. 

Tatlle 4.4 Classification Accuracy Comparison of the Statistical 
Multisource Classifier with Different Data Set Reliabili1:ies 
(Classification of July and September Data with April Data). 

Percent Classification Accuracv 

Data Sot Weights Corn Soybeans Wheat AlfalfalOats CAG - OVA - 
Separate Maximum Likelihood Classification of Each Data Set 

April 89.59' 90.29 89.94 89.65 
July 90.18 57.72 68.72 77.89 73.63 74.37 

September 82.59 55.06 51.28 47.07 59.00 65.28 - 
April July Classification of July Data with April Data 

April Sept. Classification of September Data with April Dat'a 

'In classifying April data with a maximum likelihood classifier, there were only 2 
information classes {wheat, others}. Classification accuracy of "others" is given1 under 
corn. (see Table 4.2). 
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Table 4.5 Classification Accuracy comparison of the Statistical Muhisource 
Classifier with Different Data Set Reliabilities (Classification of 
July Data with September Data and vice versa). 

Percent Classification Accuracy 

Data Set Weights Corn Soybeans Wheat AlfalfaIOats CAG OVA 

Separate Maximum Likelihood Classification of Each Data Set 
July 90.18 57.72 68.72 77.89 73.63 74.37 

September 82.59 55.06 51.28 47.07 59.00 65.28 

Sept. July Classification of July Data with September Data 
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Table 4.6 Classification Accuracy Comparison of the Statistical Muttisiource 
Classifier with Different Data Set Reliabilities (Classification olf July 
and September Data with April Data). 

Percent Classification Accuracy 

Data Set Weights Corn Soybeans Wheat AlfalfaIOats CAG OVA 

Separate Maximum Likelihood Classification of Each Data Set 
April 89.59 90.29 89.94 89.65 
July 90.18 57.72 68.72 77.89 73.63 74.37 

Sepltember 82.59 55.06 51.28 47.07 59.00 65.28 

April Slept. July Classification of July Data with September and April Data 

1.00 0.90 0.90 92.01 63.61 87.33 81.70 81.16 79.46 
1.00 0.80 0.80 91.98 63.63 87.65 82.06 81.33 79.52 
1.00 0.70 0.70 91.96 63.67 87.90 81.63 81 -29 79.50 
1.00 0.60 0.60 91.87 63.61 81.77 81.31 79.47 -- 87.98 

- ~ - 
In classifying April data with a maximum likelihood classifier, there were only 2 
infomiation classes {wheat, others). Classification accuracy of "others" is given under 
corn. (see Table 4.2). 
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When all three temporal data sets were used all together, classification results 
were much improved for all 4 information classes as seen in Table 4.6. Especially 
the classes, soybeans and wheat had major classification accuracy 
improvements. Notice that improvement for both the class wheat in Table 4.4 and 
for the class soybeans in Table 4.5 were achieved in the results in Table 4.6. 
Classification error maps of the best multisource classification results in Table 4.4 

- 4.6 are shown in Fig. 4.4. 

Figure 4.4 Classification Error Maps of Multisource Classifier. (a) April Data set. 
(b) September Data set. (c) July Data set. (d) July Data with April 
Data. (e) July Data with September Data. (f) July Data with 
September and April Data. 
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4.7.3 Temporal Classification with Decision Fusion 

The multilsource classifiers based on decision fusion were applied in c:lassifying 
July data with April and September data sets. The maximum likelihood decision 
fusion rul'e in eq. (4.5.a) requires prior knowledge of the joint probability, P{ul, ---, 
up, u0}. Under the conditional independence assumption of eq. (41.5.b), the 
amount clf prior information required can be reduced substantially by using the 
relationship in eq. (4.5.c). If there are Mk classes in the kfh data set and Mo 
different uots, then, Mk times Mo conditional probabilities of P{uk ( u0} are 

required. This a priori information would not be necessary in data fusion-based 
multisource classification since information is combined in terms of posterior 
probabilities. In the decision fusion-based approaches where information is 
combined in a level of decisions, only limited information (that is, that of 
decisions) is transferred for global decision making. However, the additional a 
priori information about conditional probabilities of P{uk I uO}Is provides 

information needed in making a global decision. As for the weighted majority 
fusion rule in eq. (4.1 2.a), note that only Mk different classwise reliability factors 

are sufficient for decision fusion. 

Table 4.7 shows classification accuracy comparisons between the data fusion- 
based algorithm with eq. (4.1) and the maximum likelihood decision fusion 
scheme in eq. (4.5.a). The best results in terms of overall classification accuracy 
(OVA) in 'Table 4.4 - 4.6 are also included in Table 4.7 for easy compari~son. 

The max~imum likelihood decision fusion rule in eq. (4.5.a) compares very 
favorably to the data fusion based multisource classifier in eq. (4.1), although 
only limited information of local class decisions were combined. A priori 
information about conditional probabilities, P(uklu0)'s were found tc~ be very 

effective in combining information for classification. Especially in classifying July 
data with September data, the maximum likelihood decision fusion rule resulted 
in about 5.4% of overall classification accuracy increase over the best diata fusion 
multisourc:e classification result in Table 4.5. The classification performance 
increase was significant for the classes corn and soybeans. Compared to the 
maximum likelihood classification of July data only (that is, non-contextual), this 
amounts to a 7.9% of increase. 
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Table 4.7 Classification Accuracy Comparison of the 
Maximum Likelihood Decision Fusion. 

Percent Classification Accuracv 

Data Set Weights Corn Soybeans Wheat AlfalfaIOats CAG OVA 

Separate Maximum Likelihood Classification of Each Data Set 
April 89.59' 90.29 89.94 89.65 

September 82.59 55.06 51.28 47.07 59.00 65.28 
July 90.18 57.72 68.72 77.89 73.63 74.37 

Data Fusion Based Classifier in eq. (4.1)2 

Maximum Likelihood Decision Fusion Rule in eq. (4.5.a) 

JUL+APR 90.18 57.72 89.96 80.82 79.67 76.67 
JUL+SEP 94.19 75.63 68.72 73.79 78.08 82.24 

JUL+APR+SEP 95.79 77.08 88.89 71.52 83.32 85.10 

' In classifying April data with a maximum likelihood classifier, there were only 2 information 
classes {wheat, others). Classification accuracy of "others" is given under corn. (see Table 
4.2). 

'~hese are the best results in Table 4.4 - 4.6. 
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Classificxrtion error maps of this maximum likelihood decision fusion rule are 
shown in Fig. 4.5. Combining local decisions of September data to those of July 
were very effective as seen in Fig. 4.5 where many corn and soybeans pixels 
were cor~ectly classified as in Fig. 4.5.(c). The April data set was effective in 
improving classification accuracy of wheat. Notice that both of the improvements 
in Fig. 4.fi.(b) and (c) are visible in Fig. 4.5.(d), which shows the error rnap when 
all three clata sets are used. 

Classification Error Maps of July Data with the Maxiimum 
Likelihood Decision Fusion. (a) July Data only (non-temporal). 
(b) July Data with April Data. (c) July Data with September 
Data. (d) July Data with April and September Data. 
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Classification results with the weighted majority decision fusion are presented in 
Table 4.8 - 4.10. Under the weighted majority decision fusion, different data set 
reliability factors can be assigned to each data set. In the experiment, several 
different data set reliabilities were tested as seen in the tables. Both of the two 
different classwise reliabilities in eq. (4.15) and (4.16) were tested to see their 
effectiveness. Note that the weighted majority decision fusion requires much less 
prior information than the maximum likelihood decision fusion. For comparison 
purposes, the results of data fusion and maximum likelihood decision fusion are 
also included in Table 4.8 - 4.1 0. 

Table 4.8 Classification Accuracy Comparison for Weighted Majority 
Decision Fusion (Classification of July Data with April Data). 

Percent Classification Accuracy 

Data Set Weights Corn Soybeans Wheat Alfalfa/Oats CAG OVA 

see below1 
90.29 56.42 86.50 83.1 6 79.09 76.16 

April July with Classwise reliability in eq. (4.1 5) 

April July with Classwise reliability in eq. (4.16) 

> 

Wiih data fusion-based multisource classifier of eq. (4.1) and data set reliability April = 0.9, 
July = 1. 
'with Maximum Likelihood Fusion Rule in eq. (4.5.a). 
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Table 4.9 Classification Accuracy Comparison for Weighted Majority 
Decision Fusion (Classification of July Data with September Data). 

Percent Classification Accuracy 

Data Set Weights Corn Soybeans Wheat AIfalfafOats CAG - OVA - 
see below1 92.30 64.63 69.22 67.72 73.47 76.80 

See below2 94.19 75.63 68.72 73.79 78.08 82.24 

Sept. July with Classwise reliability in eq. (4.1 5) 

Sept. July with Classwise reliability in eq. (4.16) 

'withda(a fusion-based multisource classifier of eq. (4.1) and data set reliabilly Sept. = 1. 
July = 0.6. 
2 ~ i l h  Ma~imum Likelihood Fusion Rule in eq. (4.5.a). 
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Table 4.1 0 Classification Accuracy Comparison for Weighted Majority Decision 
Fusion (Classification of July Data with April and September Data). 

Percent Classification Accuracy 

Data Set Weights Corn Soybeans Wheat AlfalfafOats CAG OVA 

see below1 92.52 65.56 88.07 79.50 81.41 80.23 

see below2 95.79 77.08 88.89 71.52 83.32 85.10 

April Sept. July with Classwise reliability in eq. (4.1 5) 

April Sept. July with Classwise reliability in eq. (4.1 6) 

1 .OO 0.90 0.90 96.85 77.10 73.42 66.62 78.50 83.60 
1 .OO 0.80 0.80 96.85 77.23 73.99 70.35 79.61 84.09 
1 .OO 0.70 0.70 96.85 77.23 74.07 72.04 80.05 84.27 
1.00 0.60 0.60 92.50 78.11 74.49 72.04 79.28 82.77 

d 

With the data fusion-based rnultisource classifier of eq. (4.1) and data set reliability 
April=July=O.6, Sept. = 1. 

'with Maximum Likelihood Fusion Rule in eq. (4.5.a). 
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'The classlwise reliabilities in eq. (4.16) were observed far better in performance 
than those in eq. (4.1 5). This can be easily understood since the classwise 
reliability in eq.(4.16) indicates more directly the possibility of a locall decision 
being true. Figure 4.6 shows locations of classification occurrences; with the 

weighted majority rule. 

0 .,. (,..:... . C d Y  c lass i f i~  pixels 

Incarectly classified pixels 1 
Figure 4..6 Classification Error Maps of July Data with Weighted Majority Dsecision 

Fusion with Classwise Reliability in eq. (4.15). (a) With April Diata set. 
(b) Wih September Data set. (c) Wih April and September Data sets.; 
With Classwise reliability in eq. (4.16). (d) Wih April Data set. (e) With 
September Data set. (1) With April and September Data sets. 
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With eq. (4.16), the weighted majority fusion rule performed much better than the 
data fusion based rule in eq. (4.1). However, it could not surpass the 
performance of the maximum likelihood based fusion rule, although it followed 
very closely the performance. Note that the weighted majority fusion rule requires 
much less a priori information than the maximum likelihood decision fusion. 

Decision fusion rules with cost functions in eq. (4.7.a,b) in a hybrid of maximum 
likelihood and weighted majority fusion were also tested and showed no 
significant advantages over the maximum likelihood fusion rule. In the case of the 
cost function in eq. (4.7.a), the relative magnitude between Ak(uk)'s and the 

parameter B in (4.12.b) determines a balance of importance between the two 
decision fusion rules in the global decision. Several different B values were 
tested. As B became small (near 0), classification performance was dorr~inated 
by those of the weighted majority fusion rule, and the opposite happened when B 
became closer to 1. In case of the cost function in eq. (4.7.b), the parameter BML 
in eq. (4.14.b) which is essentially a sum of 1 - Ak(uk)'s and the classwise 
reliabilities Ak(uk), decides a balance between the two decision fusion rules. Both 

of the hybrids in eq. (4.7.a,b) performed less successfully compared to the 
maximum likelihood decision fusion rule. 

Although there is further need for research on an optimum selection of data set 
and classwise reliabilities, multisource classification based on various decision 
fusion rules discussed in this chapter were observed to perform quite 
successfully compared to the non-contextual maximum likelihood classifier, or 
the multisource classifier with feature level fusion. Note that decision fusion 
approaches are computationally very simple and always applicable to classifying 
multisource data sets whenever the class decisions of the data sets are 
available. In contrast, the data fusion-based multisource classifiers combine 
posterior probabilities of each data set and therefore, all data sets rrlust be 
describable with statistical probabilities. If data sets are very diverse in terms of 
their statistical properties, a combination of the posterior probabilities might not 
be able to produce desirable results since one data set with large ranges of 
probability values can easily dominate the global decision process. The decision 
fusion-based approach can be applied, on the contrary, whenever local decisions 
for each data set can be obtained. With data set and classwise reliability, or the 
information about conditional probability fluk I uo)'s, it is very straightforward to 
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control the relative importance of a specific data set, or particular class decisions 
on the final global decision. 

In this ch'apter, the problem of multisource classification based on decision fusion 
was addressed and an optimum decision fusion rule based on Bayesian 
minimum cost was derived. Three different decision fusion rules were considered 
with application to multisource data classification. 

A maximum likelihood fusion rule was found to be most effective, and it also 
performed much better than the data fusion based multisource classifier. 
Although having a limited a priori information requirement compared to the 
maximum likelihood decision fusion rule, the weighted majority fi~sion rule 
performed better than the data fusion-based multisource classifier. Note that both 
classwise and data set reliabilities can be accommodated in weighteld majority 
decision lusion. 

Two different methods were considered in determining classwise reliablilities, and 
the classwise reliability based on eq. (4.16) was found, as expected, to be far 
more effective than the other. 

This decision fusion-based approach in multisource classification or temporal 
classification is very attractive since it can be always applied to the multisource 
classification problem irrespective of the diverse nature of data sets whenever 
local class decisions are provided. This also enables independent processing of 
each data setseparately both in training and actual classification steps. 



CHAPTER 5 

SPATIAL-TE MPORAL CONTEXTUAL CLASS l FlCATlON 

5.1 Introduction 

In this chapter, the spatial contextual classifiers discussed in Chapter 3 and the 
temporal contextual classifiers in Chapter 4 are combined as suggested in 
Chapter 2. The cascade classifier (Swain 78a) which was originally developed for 
bi-temporal data sets can be easily extended for a general multitemporal 
classification which has more than two temporal data sets, but, as discussed in 
the previous chapter, the extension req~~ires one to decide on a structure by 
which temporal information is combined. The spatial-temporal contextual 
classifier HspTp in eq. (2.1 3) is based on an extension of the bi-temporal cascade 

dassifier under the serial structure with which information of each temporal data 
set is combined in a serial way as shown in Fig. 4.2.(a). 

It is also possible to formulate a similar spatial-temporal classifier under the 

parallel structure of Fig. 4.2.(b) with additional assumptions about class- 
conditional independence between different temporal sets. A modified spatial- 
temporal contextual classifier of HspTP in eq. (2.13) is derived in this chapter, to 

be suitable for the parallel structure in Fig. 4.2.(b). The decision fusion approach 
discussed in the previous chapter is also extended for spatial-temporal 
classification. The local decisions of each temporal data set obtained with a 
spatial classifier are combined, according to the decision fusion rules discussed 
previously, for the best global decision. 

Experimental results with three temporal Landsat 'Thematic Mapper (TM) data 
sets are presented with discussions. Suggestions for future research in the field 
of the spatial-temporal contextual classification conclude this chapter. 
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5.2 Spirtial-Temporal Contextual Classification Under a Parallel lr~formation 
Cornbination Structure 

Given p temporal data sets, spatial-temporal contextual classification which is 
optimal in the sense of maximum a posterion' (MAP) probability can be performed 
with the classifier, HSPTP(c; r, p) presented in eq. (2.1 3). This can be easily 

computed using the relations in eq. (2.1 2) and eq. (2.1 4). As depicted iln Fig. 2.5, 
this classification scheme is based on a temporal classification scenario, that is, 
as a new temporal data set becomes available, its spatial contextual ir~formation 
extracted by HSP(-) in eq. (2.1 1) is combined according to the rule in eq. (2.13) 

with the spatial-temporal contextual information available up to that time in a form 
of HspTp~(-) in eq. (2.14) so that the updated contextual information can be 

conveyed to the next classification process of incoming temporal data. 

It is also possible to formulate a spatial-temporal contextual classifier in a parallel 
structure with additional assumptions about class-conditional independence 
between temporally different data sets. Note that this parallel structure is 
generally used for multisource classification. 

Suppose a classification decision is made among a user-defined set of classes, 
Qo. In the serial structure on which eq. (2.13) is established, Ro is frequently 
selected ias the set of classes in the final temporal data set, Rp. However, under 
the paralllel structure, Ro need not be restricted to Rp; it can be an arbitrary user- 
defined set of classes. Denote a random field co(r) which indicates a class 
assigned to a pixel which is spatially located at r on the lattice L. co(r) takes a 
value among the set Ro. Two additional assumptions on which the modified 
spatial-temporal contextual classifier is based, are stated as follow. (For an 
explanation of notation, refer to Chapter 2). 

For any k,, 1 S k Sp, any class c, E Q,, and for Cothers which is a subset of h,k-l, 
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The assumption in eq. (5.1 .a) is an extension of eq. (2.3.a) when a class c, = c, 
among the user defined set Ro is involved. The relation in eq. (5.1.b) is of the 
same nature as eq. (2.3.b) in that, once the class of pixel xk(r) is available, no 
additional information comes from the class c,, or the classes of its temporal 

neighbors. Note that eq. (5.1.a) is very crucial in allowing modification of eq. 
(2.13) into the parallel structure since it states that the class information of the 
temporal neighbors, Cothers, is irrelevant to evaluating the conditional probability 
of ck once the identity of c, is available. Based on this assumption, a useful 

relationship can be derived as follows. 

Suppose Cothers is a subset of k,k-,, and qk  takes either ck, or c&,~. Then, 

From the assumption in eq. (5.1 .a,b), the first term is P{qk(cO, Cothers) = Rqk(co), 

therefore, the following relation holds. 

A direct application of eq. (5.2) shows that, (data) classes cu and ct of temporally 

different data sets, u 7t t, are class-conditionally independent as, 

The following is another slightly extended class-conditional independence 
assumption of eq. (2.14) when co is involved. 

Assumption 4. 

For any k, 1 I k s p ,  and for any class co E Q,, 

RXA 1 CA, Xothers9 Cothers, Co) = RXA I CA) 
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where, 

XA ir; an any non-empty subset of x;,~. 
CA is a set of classes corresponding to XA. 

1 

is an any subset of SXap such that Gthers n XS,k = t). 

Cothers is an any subset of cCep such that cothers n c;,~ = O. 
(Cotl,ers is not necessarily a set of classes corresponding to Xotherr;). 

This assu mes class-conditional independence of temporal data sets, irrespective 
of whether the class co is conditioned or not. The validity of the assumption in eq. 

(5.3) may be hard to prove, but as suggested in (Lee et a/. 87), without further a 
priori correlation information between temporal data sets, this can be a practical 
assumption to keep classifier complexity and the prior knowledge requirement 
within a manageable limit. 

Suppose XB is either xk, or x;,~ and CB is its corresponding set of classes. Then, 

from the zlssumption in eq. (5.3), the following relationship can be established. 

Since the probability SGthers I CBs co} is computed as, 

Its first term may be written, from the assumption in eq. (5.3), as, 

YGthers I Cothers = Cothers, CAI Co} = RGthers I Cot hers = Cothe~ps} 

From eq. (5.2), the second term is given as P{Cothers = Cothers I co}. Sirbstituting 

these in eq. (5.5) proves the relationship in eq. (5.4). 
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Under the two assumptions in eq. (5.l.a,b) and eq. (5.3), a theorem which is 
useful for deriving a modified spatial-temporal contextual classifier, can be 
established as, 

Theorem 3. 

For any t, 1 I t S p, and for XA, co, and XotheB defined below, 

I 

where XA is either q, or XsPt. Xothers is any subset of 

This can easily be proved using the results in eq. (5.2) and eq. (5.4). Note that 
the probability P(XA I co, Xothers) in eq. (5.6) can be written as, 

From the classconditional independence assumption of eq. (5.3), 

Using Bayes theorem and eq. (5.4), the second term of eq. (5.7) may be 
expressed as, 

Since P(XA I CA = CA) in eq. (5.8.a) is equal to P(XA I CA = CA, co); substituting 

this and eq. (5.8.b) in eq. (5.7) proves eq. (5.6). Note that a direct application of 
eq. (5.6) establishes, 
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which is frequently assumed in multisource data classification. xl, ---, x, are the 

feature vcxtors corresponding to a same spatial location. 

With the lwo additional assumptions 3 and 4 for the case when c, is involved, it is 

straightforward to derive a modified spatial-temporal contextual classif~ier. Under 
the parallel information combination structure in Fig. 4.2, decisio~ns with p 
multitemporal data sets are made among a user-defined set of classes, R,. In a 
manner similar to eq. (2.2), HSPTP(cO; r, k), 1 I k I p, is defined as, 

When k =: 1, HSPTP(c; r, k) is understood as P{ck = c I xk = xk, XSlk = XS,k} since 
there are no temporally previous sets, that is, XT,k is empty. Note that, under the 
parallel sltructure, a class decision is made among the set, R,. Spatial-temporal 
classification is performed by choosing a class c,(r) = c, which rr~aximizes 

HSPTP(cO; r, p) among R,. By applying Bayes theorem and the results in eq. (5.6), 
HSPTP(cO; r, k) can be expressed, for 2 I k S p, as, 

'The term Ak which is defined in eq. (2.1 O), is irrelevant to making a clas!; decision 
c,, and therefore, it needs not be evaluated. For the case k = 1, HSPTP(~~O; r, k=l ) 
= Hsp(co; r, k=l). Hsp(6 ; r, k) in eq. (5.1 1) is a spatial contextual part of the kfh 

data set and is defined, for 1 I k I p, as, 
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This is the same spatial contextual classifier part as eq. (2.1 1) but formulated in 
terms of a class in QO. This can be computed, using the class transition matrix 
T(Ro I Qk), from the spatial contextual part in terms of classes among Qk in eq. 

(2.1 1 ) as, 

where c is a class among 4, the set of classes for the kth data set. HsP(c; r, k) is 
the spatial contextual classifier in terms of data classes in Qk and computed using 

eq. (3.1). 

In the same way, the temporal contextual classifier part, for 2 < k I p, which is 
defined as, 

can expressed, for 2 r; k I p, as, 

This is different from its serial counterpart in eq. (2.14). The assumption in eq. 
(5.1 .a) is indispensable in establishing this relationship. From eq. (5.1 1) and eq. 
(5.15), the spatial-temporal contextual classifier, with p temporal data sets, under 
a parallel information combination structure, HSPTP(cO; r, p) can be expressed as, 

'The terms, Akls are dropped from HSPTP(cO; r, p) in eq. (5.16) since they are 
irrelevant in making the decision of co. Note that it is in the same form of eq. (4.1) 
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which is (a data fusion-based multisource. A flowchart of the spatial-temporal 
contextual classifier under the parallel structure is shown in Fig. 5.1. 

Spatial-Temporal Classification : H s m  (c,; r, p) 

E l a t i d  classfica-I f 1 1 1 
1 Sp~tid Classification : H~~ (c,; r, P-l) 1-1 I I 

b a t i d  Classification : H s p  (c, ; r, 1) 1 
Figure 5.1 Spatial-Temporal Classification Under Parallel Information Combination Structure. 

One impo~rtant difference of the spatial-temporal contextual classifier in ceq. (5.1 6) 
from that iin eq. (2.1 4) is that there is no interaction between the class co(r) and 
the classes of its spatial neighbors, that is, c,(r+v), v E Ns. Under the serial 

structure in eq. (2.14), at each temporal stage, spatial information of that 
temporal set is combined with its temporal information to execute spatial- 
temporal contextual classification. But in eq. (5.1 6), only the spatial contextual 
inforrnatio~n of each temporal data set is combined to make a decision among Qo, 

and there is no interaction between the global decisions of spatially adjacent 
pixels. 

In the same manner as in Chapter 4, the decision fusion approach can be taken 
for the classifier of eq. (5.16). The class decisions obtained with the spatial 
contextual classifiers HSP(q, ; r, k), k = 1, ---, p, are combined together to find a 
global decision among R,. 

The spatial-temporal contextual classifiers in eq. (2.13) and eq. (5.16) are quite 
general in their scope of application in that, the spatial contextual clas;sification 
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parts, HSP(m)'s can be independently defined according to the particular 
properties of the data sets. For example, different spatial neighborhoods can be 
assumed for different temporal data sets. This generalization might be quite 
useful when sensors with different spatial resolutions are used to acquire 
temporal data sets. In experiments in this report, for simplicity's sake, only a first 
order spatial neighborhood system is considered for all given multitemporal data 
sets. 

5.3 Experiments on Spatial-Temporal Contextual Classification 

To test the spatio-temporal contextual classifiers in eq. (2.1 3), or in eq. (5.1 6) and 
their modification based on decision fusion, experiments were carried out with the 
three Landsat Thematic Mapper data sets introduced in previous chapters. Data 
set descriptions can be found in Chapter 3 and 4. Since the ground truth 
information shown in Fig. 3.8 was gathered in July and therefore matches best 
with July data, classification performances were evaluated by comparing 
classification results of July data with the ground truth map in terms of class- 
averaged classification accuracy (CAG) and overall classification accuracy 
(OVA). Classification results with only spatial contexts, or only temporal contexts 
were presented in previous chapters and, in this chapter, only the results with 
spatial-temporal contexts are shown. 

Table 5.1 Description of Spatial Contextual Part HSp(-) in eq. (2.13). 

Classifier I Descri~tion of Classifiers 

RECU - 1 

RECU - 2 

CM- 1 

CM - 2 

With the recursive spatial contextual classifier as in eq. (3.28) 
(With isotropy assumption) 

With the recursive spatial contextual classifier as in eq. (3.28) 
(Without isotropy assumption) 

Spatial correlation context only for homogeneous pixels with eq. (3.29) 
(With isotropy assumption) 

Spatial correlation context only for homogeneous pixels with eq. (3.29) 
(Without isotropy assumption) 
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In the first experiment, the July data set was classified with September data as a 
temporal neighbor set, therefore, the number of temporal data sets, p, was two. 
The July data set was used as X(2) and the September data set was used as 
X(1). First, the spatial-temporal classifier in eq. (2.1 3) was tested. Four different 
spatial cllassification schemes, which were introduced in Chapter' 3, were 
employeal for HSP(a) in eq. (2.1 3) as shown in Table 5.1. 

All four spatial classifiers are able to utilize spatial interpixel correlation contexts. 
In additialn, a spatial classifier which utilizes only the spatial interp~ixel class 
dependency context in eq. (3.35) was also examined in the experinient. The 
same class transition matrix as in Chapter 4 was used. For details of spatial and 
temporal classification, refer to Chapter 3 and 4. Spatial-temporal cla!;sification 
results ar~e shown in Table 5.2. in which the result of a non-contextual  maximum 
likelihood classifier is also included for comparison. 

To classily the July data set with the September data set using Hspm,(*) in eq. 
(2.1 3), the selected spatial classifier, HSP(m) was applied first to the pixels in the 
September data set; its classification result was then used in eq. (2.1 4) to 
compute rYyp(a); and finally eq. (2.1 3) was used to classify pixels in July data set. 
Both of the classifications were performed recursively over x-sites and *-sites in 

Fig. 3.7 u~itll negligible changes of class assignments were attained. 

As seen in Table 5.2, in the case of using spatial interpixel correlation contexts, 
there were 3 - 6% overall classification accuracy increases over the non- 
contextual maximum likelihood classification. Compared to the 8.40% increase 
over the non-contextual scheme with only spatial interpixel class dependency 
context, tlie spatial correlation contexts were not so effective. Considering the 
additional computational complexity due by including spatial correlation contexts 
and their relatively low effectiveness compared to the spatial class dependency 
context Case, in the following experiments, only the spatial class dependency 
context wias used in spatial-temporal classification. 

The improvement with HSPTP(*) of eq. (2.1 3) over the non-contextual classifier 

was very significant for either the temporal, or spatial contexts only classification. 
The improved classification results of the September data set using spatial 
context with HSP(a) was very helpful as temporal contextual information in 
classifying the July data. 
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Table 5.2 Percent Accuracy Comparison of Classifying July Data with September 
Data using the Serial Spatial-Temporal Contextual Classifier in eq. (2.13). 

Classifier Corn Soybeans Wheat AlfalfaJOats CAG OVA 

~ u l y ,  ML' 90.18 57.72 68.72 77.89 73.63 74.37 

July, Spatial only2 94.51 57.28 73.50 80.82 76.53 76.82 

With only spatial class label dependency context in eq. (3.35) 

95.92 75.01 81.32 62.88 78.78 82.77 

With interpixel correlation context, without spatial class label dependency context 

RECU - 1 94.33 59.19 73.50 77.38 76.10 77.08 

RECU - 2 94.59 58.77 73.00 77.09 75.86 76.96 

C M - 1  92.93 68.93 71.19 69.40 75.61 79.00 

C M - 2  92.88 68.80 71.03 69.55 75.59 78.98 

With interpixel correlation and spatial class label dependency contexts 

RECU - 1 95.65 60.30 73.83 81.41 77.80 78.50 

RECU - 2 95.66 59.90 73.17 81.55 77.57 78.32 

CM - 1 94.50 69.87 72.18 71.16 76.93 80.30 

C M - 2  94.62 69.85 72.02 71.45 76.99 80.36 

)Non-mntextual maximum likelihood classification of July data. 
- i 

* ~ f l h  only spatial interpixel class dependency context. 
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The sarnle July data set was classified with the parallel spatial-temporal 
contextual1 classifier of eq. (5.1 6), and the results are presented in Table 5.3. 

Table 5.11 Percent Accuracy Comparison of Classifying July Data with September 
Data using the Parallel Spatial-Temporal Contextual Classifier in eq. (5.16). 

Classifier Corn Soybeans Wheat AlfalfaiOats CAG OVA - 
Data Fusion 6ased1 

Without Spatial contexts3 91.80 63.08 69.88 73.35 74.53 76.67 

With Spatial Contexts 95.20 61.81 76.46 76.65 77.53 78.61 

Decision Fusion 6ased2 
without !spatial contexts3 94.19 75.63 68.72 73.79 78.08 82.24 

With Spatial Contexts 95.88 79.1 1 72.67 77.89 81.39 85.04 

'With eq. (5.16). 
2~axirnurn Likelihood Decision Fusion rule. 
3~hese are obtained without spatial contexts and are copied from Table 4.5 ancl 4.7 for 

comparison. 

As discussed in Chapter 4, the data fusion-based and the decision fusion- based 
approaches were taken. To see the effectiveness of applying spatial cla!;si.fication 
to each temporal data set, the classification results without partial contexts in 
Table 4.7 are also included in Table 5.3. 

To classify the July data set with the September data set using the data fusion- 
based HSPTP(*) in eq. (5.1 6), the spatial classifier with only spatial interpixel class 

dependenlcy contexts in eq. (3.35) was applied to the September data; the results 
of September data, HSP(c; r, k=l)'s were translated into Hsp(q, ; r, k=l)'s to be 
used as bfTP(*); finally, according to eq. (5.16), Hyp(a) and b P ( %  ; r, k=2) was 

combined to classify pixels in the July data set. In the decision fusion approach, 
the class decisions of July and September data with the spatial classifier in eq. 
(3.35) are corr~bined according to the maximum likelihood decision fusion rule in 
eq. (4.5.a~). Note that in making decisions among R,, there is no spatial 
interaction between co at r and its spatial neighbors, co(r+v), v E NS. 
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Compared to the case of temporal classification without spatial contexts in Table 
5.3, there were only about 2 - 3% overall classification accuracy increase by 
incorporating spatial contexts in the temporal contextual classification. The data 
fusion-based classifier in eq. (5.16) was about 4% worse than the serial 
counterpart in eq. (2.13). This is because there is no consideration of spatial 
interactions between co at rand its spatial neighbors in eq. (5.16). However, in 

the case of decision fusion-based the information combination of eq. (5.1 6), there 
was a 2.3% classification accuracy increase (OVA) over the result with eq. (2.13). 
Compared to the non-contextual maximum likelihood classification of the July 
data, this amounts to a 10.7%, a significant increase (OVA). The class-averaged 
accuracy was also increased by 7.8%. Better classification results of each 
temporal data set by using the spatial contextual classifier brought significant 
accuracy increases when decision fusion took place. 

Figure 5.2 shows the locations where pixels were incorrectly classified. The error 
map of spatial classification of the July data with only class dependency context 
in eq. (3.35) is also included for visual comparison. 

Compared to the error map of the non-contextual maximum likelihood classifier in 
Fig. 5.2.(a), the other error maps in Fig. 5.2 look much cleaner with far fewer 
isolated errors. This is due to utilizing the spatial-temporal interpixel dependency 
class context. This cleaner classification result will be much more meaningful in 
real applications of classification. Also some regions in the July data set which 
were incorrectly classified with spatial contexts only were correctly classified by 
utilizing additional spatio-temporal contextual information from the temporal 
neighbors in the September data set. Therefore we can say that it is very 
effective to incorporate contextual information from the spatio-temporal neighbors 
into classification. In the error maps Fig. 5.2.(a) and (b), there were large 
incorrectly classified fields in the middle of scene, and they were of the class 
soybeans, but mostly classified to the class alfalfdoats. When temporal 
contextual information was incorporated, as shown in Fig. 5.2.(c) and (d), a 
considerable number of pixels in those incorrect fields were correctly classified. 
Note that, there was significant increase in classification accuracy of soybeans in 
Table 5.3. Figure 5.3 shows corresponding classification maps. 
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0 ... ... . , . C m t l y  classifred pixels 

Incorrectly classitied pixels 

Error Maps of Spatial-Temporal Contextual Classification of July 
Data with September Data. (a) With pixelwise maximum 
likelihood classifier (no spatial, temporal contexts). (b) Witlh eq. 
(3.35) (no temporal contexts). (c) With eq. (2.13). (d) With eq. 
(5.1 6), maximum likelihood decision fusion based. 
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I Soybeans I Alfalfa/Oats 

Classification Maps of Spatial-Temporal Contextual Classification 
of July Data with September Data. (a) With a Non-Contextual 
Maximum Likelihood Classifier. (b) With a Spatial Classifier using 
eq. (3.35). (c) With Data fusion using eq. (2.13). (d) With 
maximum likelihood decision fusion using eq. (5.16). 
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Classificiation accuracy increases, over non-contextual pixelwise maximum 
likelihootl classifier, by incorporating spatial andlor temporal c:ontextual 
information are summarized in Fig. 5.4. 

14 -. 
h - H Class-Averaged Classification Accuracy (CAG) 
5 12 - H Overall Classification Accuracy (OVA) 

Temporal Context 0nlg Spatial Context Spatial-Temporal Context 
1 2 m y  1 2 

Figure 5.4 Improvement of Classification Accuracy, over a Pixelwise hdaximum 
Likelihood Classifier, by Incorporating Contextual Information in Classifying 
July Data with September Data as a Temporal Neighbor. 1. Data fusion- 
based temporal contextual classification (cascade classifier) with q. (4.1) - 
serial combination structure.; 2. Maximum likelihood decision fusion-based 
temporal contextual classification with eq. (4.5.a) - parallel connbination 
structure.; In spatial classification, only the spatial class dep~endency 
context was used with eq. (3.35). - 
In the case of data fusion-based classification with temporal context only, 
the improvements shown here are based on the result in Table 4.5, with 
the data set weights (Sept=July=l). Compared with the best resuH: in terms 
of overall classification accuracy, which is shown in Table 4.7, the 
improvements are OVA = 2.43%, CAG- - 0.16%. 

In the second experiment, the April data set was also included in classifying July 
data. with September data. All three temporal data sets were used to examine 
the effectiveness of the spatial-temporal classifiers discussed in this chapter. 
Under the serial spatial-temporal contextual classifier in eq. (2.13), the posterior 
probabiliticts obtained with spatial classification of April data were combined with 
those of :September data according to eq. (2.14). These results were then 
combined with H S P ( m )  of July data to make class decisions. In the pariallel data 
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fusion case of eq. (5.16), the HSP(*) of each data set were combined using eq. 

(5.1 6). 

Spatial classification results of April data with the classifier of eq. (3.35) are 
shown in Table 5.4. 

Table 5.4 Percent Accuracy Comparison of Spatial Classification of April Data. 

b in eq. (3.35) Wheat Others CAG OVA 

0 90.29 89.59 89.94 89.65 

2 91.19 90.17 90.68 90.27 

4 91.03 90.02 90.52 90.1 1 

6 91.28 90.02 90.65 90.14 

8 91.28 89.90 90.59 90.03 

10 91.28 89.89 90.58 90.02 

12 91.28 89.84 90.56 89.98 

14 91.28 89.77 90.52 89.91 

16 91.28 89.74 90.51 89.88 

18 91.28 89.69 90.48 89.84 

20 91.28 89.70 90.49 89.84 

Spatial classification of April data with eq. (3.35) didn't make significant 
differences compared to the pixelwise classification (b = 0 case in Table 5.4). 
Note that there were defined only 2 classes {wheat, others) for April data. In the 
data fusion based spatial-temporal classification procedures, the parameter b in 
eq. (3.35) decides the relative emphasis on spatial class homogeneity compared 
to the class-conditional likelihood values. If different b values are used for 
different data sets, then, the data set with the largest b will dominantly affect the 
classification decisions as discussed in Chapter 4, since that data set is most 
likely to have the largest range of HSP(*) values. Therefore, the parameter b's 

must be decided for each data set carefully. With the decision fusion-based 
classifier, on the contrary, proper values of b's can be independently selected for 
each data set to best fit each data set. 
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Table 5.5 Percent Accuracy Comparison of Classifying July Data with April 
and September using the Spatial-Temporal Contextual Info~mation. 

Percent Classification Accuracy 
Selec:ted Classifier Corn Soybeans Wheat Alfalfa/Oats CAG OVA 

Classification of July Data with April Data 
Data Fusion : eq. (2.1 3) 94.32 56.69 84.36 82.43 79.45 77.70 

Data Fusion : eq. (5.16) 94.64 57.07 77.28 81.70 77.67 77.24 

Decision Fusion : eq. (4.5.a) 94.51 57.28 90.12 81.63 80.89 78.46 

Classification of September Data with April Data 
Data Fusion : eq. (2.13) 83.67 60.00 82.22 54.25 70.03 71.20 
Data Fusion : eq. (5.16) 83.76 59.71 59.59 53.00 64.01 68.89 

Decision Fusion : eq. (4.5.a) 83.79 59.52 87.24 73.57 76.03 73.58 
- 

Classification of July Data with April and September Data 
DataFu,sion: eq.(2.13) 95.90 72.60 81.65 63.98 78.53 82.03 
Data Fusion : eq. (5.1 6) 95.29 61.66 80.58 78.04 78.89 79.1 3 

I 
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Table 5.5 shows classification results for July data when both September and 
April data were used as temporally previous data sets. The parameter b was 
chosen as 0 for April data. The result of the July data classification with temporal 
context from April data is also included in the table. 

As observed in Chapter 4, due to its relative small number of classes, "wheat" 
compared to others, April data was only marginally effective in improving the 
overall classification (OVA) as shown in Table 5.5. However, there was a 
considerable accuracy increase for the class wheat. Compared to the temporal 
classification case (CAG=79.07, OVA=76.16) in Table 4.4, and the spatial 
context only case (CAG=76.53, OVA=76.82) in Table 3.5, the spatial-temporal 
information in classifying July data with April data was useful as shown in Table 
5.5. 

Decision fusion-based spatial-temporal classification outperformed the others as 
seen in the previous bi-temporal classification case of July data with September 
data in Table 5.3. When the Septerr~ber data was classified with the April data, 
the performances with spatial-temporal information was better than that of the 
spatial context only (CAG=61.47, OVA=67.86) in Table 3.5. Compared with the 
temporal context only case (CAG=73.17, OVA=71.06) in Table 4.4, the results 
with eq. (2.1 3) were not much different. 

Due to the relatively large differences of b values between April (b=O) and 
September data (b=30), the classes wheat and alfalfa/oats in Table 5.5 were not 
as accurately classified as with the data fusion-based temporal classifier in Table 
4.4. In a separate experiment of classifying September data with April data, it 
was observed that there were differences in the overall classification accuracy of 
3% (a maximum was 73.13%, and a minimum was 69.89%), and in the class- 
averaged classification accuracy of 5% (a maximum was 75.44%, and a 
minimum was 70.03%) for various combination of b values for the two temporal 
data sets. As the b value for the April data set increased, the class-averaged 
accuracy was seen to increase due to better classification for the classes, wheat 
and alfalfdoats. 

This effect was also visible in the classification with all three data set together 
using eq. (2.13). There were differences in the overall classification accuracy of 
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4.6% (a maximum was 83.82%, and a minimum was 79.18%), and in the class- 
averaged classification accuracy of 5.6% (a maximum was 81.59%, and a 
minimum was 76.02%) in the separate experiment of classifying with all three 
data sets and with various combination of b values for September and April data. 
The classification result with eq. (2.13) in Table 5.5 turned out to be slightly 
worse than the result of .the spatial context only case (OVA=82.77, CA[G=78.78). 
Due to the relatively low emphasis on April data (b=O), the classes wheat and 
alfalfatoats had low classification accuracies, and so did the class-averaged 
classifica1:ion accuracy (CAG). However, the decision fusion-based classifier was 
very succ:essful even in this case. For all four classes, classification accuracies 
were incr~eased significantly over the non-contextual, and the spatial cantextual 
only c1ass;ification of July and September data sets. This insensitivity is a direct 
consequence of dealing with only the class decisions. Notice that it also attained 
better pe~~formances for all classes compared with the same classifier but with 
only temporal contexts in Table 4.7. 

Figure 5.5 shows the locations of classification errors. Ftor visual 
comparison, the error maps of the non-contextual maximum likelihood classifier 
and of tho spatial classifier in eq. (3.35) are also presented. When spatial class 
dependericy context was used, many isolated errors in Fig. 5.5.(a) were 
removed. But, the large incorrectly classified soybean fields in the middle of 
scene were considerably corrected by using temporal contexts as seen in Fig. 
5.2. Significant portions of the wheat fields in upper right portion of image which 
were incorrectly classified without April data set, were mostly correctly classified 
as seen i11 Fig. 5.5.(d). In Fig. 5.5.(c), wheat fields were still in errors since the 
ranges 01 class-conditional likelihood values of April data set were relatively 
smaller than for the other data set due to its low b parameter value (b:=O) in eq. 
(3.35). Most of the classification errors left in Fig. 5.5.(d) were along field 
boundaries, in which the problem of mixed pixels might most likely exist. Figure 
5.6 sho~ ls  corresponding classification maps which clearly exhibit the 
effectiveness of spatial and temporal contextual information 
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Figure 5.5 Error Maps of Spatial-Temporal Contextual 
Classification of July Data with April and September 
Data. (a) With pixelwise maximum likelihood 
classifier (no spatial, temporal contexts). (b) Wih 
eq. (3.35) (no temporal contexts). (c) With eq. 
(2.13). (d) With eq. (5.16), maximum likelihood 
decision fusion based. 
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Soybeans AlfalfafOats 0 
Figure 5.6 Classification Maps of Spatial-Temporal Contextual Cla~sific~ation of 

July Data with April and September Data. (a) Wih Non-Contextual 
Maximum Likelihood Classifier. (b) Wih Spatial Classifier using eq. 
(3.35). (c) With Data fusion using eq. (2.13). (d) With maotimum 
likelihood decision fusion using eq. (5.16). 
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A summary of classification accuracy improvement over the non-contextual 
maximum likelihood classification of July data by incorporating the spatial- 
temporal contextual information is given in Fig. 5.7. 

Temporal Context only' Spatial Context Spatial-Temporal Context 
1 2 MY 1 2 

Figure 5.7 Improvement of Classification Accuracy, over a Pixelwise Maximum 
Likelihood Classifier, by Incorporating Contextual Information for 
Classifying July Data wlh April and September data as temporal neighbor 
sets). 1. Data fusion-based temporal contextual classification (cascade 
classifier) with eq. (4.1) - serial combination structure.; 2. Maximum 
likelihood decision fusion-based temporal contextual classification with eq. 
(4.5.a) - parallel combination structure.; In spatial classification, only 
spatial class dependency context was used with eq. (3.35). 
In case of data fusion-based classification with the temporal context only, 
the improvements shown here are based on the best result in terms of 
overall classification accuracy, which is shown in Table 4.7. 

By utilizing both spatial and temporal contextual information, there were 
classification accuracy improvements as much as 12% over the non-contextual 
case. The improvements were both for the class-averaged and overall 
classification accuracies. Spatial context only classification resulted in 2 - 3% 

increase. As seen in previous error maps, the spatial contextual information 
produced much cleaner classification maps with spatially isolated errors 
considerably reduced. The classification maps with good delineation of fields will 
be very useful in may practical application. Temporal contextual information 
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modeled in term of class transition probabilities was observed to be especially 
useful in classification. The decision fusion-based combination of m~~ltiple data 
sets was found to perform much better than the data fusion based. It was seen to 
be insensitive to the inter-relationship of classifiers used for different data sets. 
This property is expected to be one of the most important requirement for 
information combination algorithms since it allows independent d(esign and 
classification of each data set. 

In this chapter, experimental results of the spatial-temporal classifier formulated 
in Chapter 2 were presented. In addition, with a slight modification, a spatial- 
temporal contextual classifier under a parallel information combinatiorl structure 
was derived. 

The proposed spatial-temporal contextual classifiers exploit the spatial-temporal 
interpixel class dependency context through spatial prior probabilities and 
temporal   class transition probabilities. The Gibbs random field was used to model 
the inherlent coherence of class labels of spatially adjacent pixels in terms of 
spatial prior probabilities. Class transition probabilities convey temporal interpixel 
class dependency context into the classification process. 

By allowirig the changes of classes over time, it is not necessary to consider the 
given teniporal data sets simultaneously in the training stage and to define 
additional spectral classes. The number of classes need not be increased even 
though the number of feature vectors is increased by adding feature vectors of 
spatio-temporal neighbors. Since this classifier doesnY require processing all the 
temporal data sets simultaneously, the computational load can be distributed 
over diffelPent times. This classifier is applied to the pixels in a recursive way to 
yield a co~nputationally efficient contextual classification. 

The experiments with three temporal Landsat Thematic Mapper (TM) clata sets, 
taken at April, July, and September, showed significant improvements of 
classification accuracy over the maximum likelihood non-contextual clas:sification. 

In the case of bi-temporal classification of July data with September data, the 
maximum likelihood decision fusion-based spatial-temporal classifier achieved 
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classification accuracy increases of about 1 0.7% in the overall accuracy (OVA) 
and about 7.8% in the class-averaged classification accuracy (CAG) over the 
non-contextual maximum likelihood classification of July data. 

In experiments with all three temporal data sets, the spatial-temporal contextual 
information achieved classification accuracy increases as much as 12% for the 
overall accuracy (OVA) and 1 1 O/O for the class-averaged classification accuracy 
(CAG) over the non-contextual maximum likelihood classification of July data. 
Maximum likelihood decision fusion-based spatial-temporal contextual classifier 
was found again to be most effective in utilizing spatial-temporal contexts. The 
resulting classification maps were more meaningful since they had much fewer 
isolated errors. Classifiers which can utilize potentially important contextual 
information from spatial, temporal or spatial-temporal neighbors should be quite 
useful in many real applications, especially where classification accuracy is 
important. 

The degree of usefulness of spatial, temporal or both contextual information in 
classification may be dependent on data set properties. The spatial class 
dependency context modeled by a Gibbs random field was found to be very 
effective in obtaining a more homogeneous class map with much reduced 
isolated errors. It was not exceptionally computationally demanding under the 
coding-based recursive approach. 

The temporal contextual information based on class transition probabilities was 
also very useful in improving classification accuracies. When a certain data set is 
especially effective in extracting a subset of classes, for example, the class 
wheat in the April data set, its inclusion in the classification process, if properly 
combined, usually leads to classification accuracy increases. In the experiments, 
the temporal contextual classification based on decision fusion was observed to 
have several advantages over the data fusion based counterpart. For example, it 
would be particularly useful in such cases when the range for posterior probability 
values are quite different from data set to data set, or when some data sets can 
not be adequately modeled with statistical probabilities so that posterior 
probabilities can be computed. 
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Although all derivations and discussions have been focused on the spatial- 
temporal contextual classification, as seen in Chapter 4, the contextual classifiers 
derived in this report can be directly applied to general multisource classification 
problems. Depending on data set properties, an appropriate classifier, whether it 
is a spatial classifier or not, can be employed to best utilize the selected data set. 
The inforimation extracted from each data set can be combined either in a serial 
or parallel fashion according to the need of application. 

5.5 Suggestions for Future Research 

The spat~ial class dependency context was seen to be very effective, but the 
spatial classifier in eq. (3.35) is based only on local homogeneity of class labels. 
This spalial class dependency context might not be equally effective in such 
scenes with relatively small homogeneous fields. In such cases, it needs to be 
extended to model the general spatial dependency relationship between adjacent 
class labels. An unsupervised procedure is also necessary for estimating 
parameters used for such model. 

There must be some systematic procedure to decide the data set and lclasswise 
reliability or weight factors used for the temporal classifiers in Clhapter 4. 

Although there are ideas about measuring data set or classwise reliability, 
assigning specific values for weight factors to be used in classifi~~ation still 
remains for further research attention. 

When several data sets are combined in classification at the level of data fusion, 
large differences in the posterior probability ranges often obscure the effect of 
data set weight factors. Therefore, for the data set weight factors to be fully 
functional, there must be better way to combine multiple information at the data 
fusion level. 

In temporal classification, the temporal contextual information is conveyed to 
different data sets using the class transition probabilities, however, there is no 
estimating procedure available for those. If there are a lot of transition between 
classes, r~ot only between *the same information classes, an unsupervised 
estimation procedure should be essential. 
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Appendix A Proofs of Theorems and Lemmas in Chapter 2 

The purpose of this appendix is to present formal derivations and proofs of the 
theorems, lemmas and the spatio-temporal contextual classifier addressed in 
Chapter 2. For an explanation of the notation used, refer to the first part of 
Chapter 2. 

A.l Proofs of Theorems and Lemmas 

Since the two assumptions addressed in Chapter 2 are frequently referred in 
the process of proofs, they are repeated here for easy reference as follows. 

Assumption 1. 

For any k, 1 k s p ,  and for CA and CB defined below, 

P{Cs,k I Ck, CB) = RCs,k I ck) (A. 1 . b) 

where, 
CA is any non-empty subset of k , k  such that CA n {ck) = @. @ is an empty set. 
CB is any non-empty subset of cC,k-l. 

Assumption 2. 

For any k, 1 I k Sp,  and for XA, CAI Xothers and dothers defined below, 

where, 
* 

XA is any non-empty subset of XS,k. 

CA is a set of the classes corresponding to XA. 
9 

xothen is any subset of cXSp such that xothers n XSVk = @. 
9 

Cothers is any subset of cCPp S U C ~  that Cothers n CSVk = @. 

(Cothers is not necessarily a set of classes corresponding to Xothers). 
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Based on these assumptions, the theorems and lemmas introduced in Chapter 
2 can be proved as follows. 

For any t and u such that 1 I t  5 u Sp, 

where, 
t 

if u >I:, q, is either {c,} or c;,,. qt is either {q} or CsPt. 

if u = I:, qu = Cs,, and qt = {q}. 
Cothers is any non-empty subset of kCet such that Cothers ~ V U  = Cothers n t l t  

Proof of Theorem 1 : 

W h e n u = t :  
In this case, qu = Cslu and qt = {q}. Since Cothers n CS,, = Cothers (7 {ct} = $, 
note tlhat Cothers is a non-empty subset of kc,t-l and P{qu I qt, (=others} = 

R C s ,  I ct, Cothers) From the assumption 1 in eq. (A.1 .b). 

case: 
Suppose ~ I J  = {cu} = {ct+l), i-e.9 P{TU 1 1111 Cothers} = P{ct+l 1 (It. Cothers}- 
Sinco Cothem nqt = Cothers r\ {Q = $, from the assumption 1 in ecl. (A.1 .a), 

case: 
S U P P ' ~ ~ ~  11, = cs,u = cb,t+1 , P{TU I qtt Cothers} = p{cs,t+l I I t .  Cothers}, 

~ ( ~ s , t + l  I qt* Cothers} = P{Cs,t+l I ct+1, qtl cotherdflct+l I 1111 cothers}. 
Since Cothen u qt is a subset of kc t, from the assumption 1 in eq. (A.1 .b), 
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In the same way, since Cothers u [qt -{ct)] is a subset of 5c,t without {Ct), 

from the assumption 1 of eq. (A.1 .a), 

Therefore, 

When  u> t+ l  : 
Note that I qt, Cothers) can be written as, 

Suppose eq. (A.3) hold for U = t + k, k 2 1, i.e., P{rlt+k I qts Cothers) = P { T ~ + ~  1 
qt). Then, from this assumption for u = t + k, 

case: 
Suppose qt+k+l = {q+k+l}. From the assumption 1 in eq. (A.1 .a), 

Therefore, P(qt+k+l 1 qt, Cothers) is computed as, 

case: 
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Frolm the assumption 1 in eq. (A.1 .b), P{Cs,t+k+l ) q+k+l, q+k, qt, Cothers) is 

equal to P{C~,t+k+l I q+k+l) = flCs,t+k+l 1 q+k+l l  qd and qct+k+l I Ct+k, qt*  

Cottwrs) = q%+k+l I Ct+d = flCt+k+i I Vd- Therefore, 

From case 1, 2, it is proved that if eq. (A.3) holds for u = t + k, k 2 l, then it 
also h~olds for u = t + k + 1. Since eq. (A.3) holds when k = 1, by in~duction, it 
holds for every t and u such that 1 5 t 5 u 5 p. 

Proof of second part : flqu ( qt) = qqu I cd 

When qt = {q) : It is trivial to show qqu 1 qd = qqu ( q). 
1 I 

When qt = Cs,t : In this case u # t, P{qu I qt) = P{qu I Cs,t) = P{qu 1 ct, Cs,t). 

Since Cs,t n qu = CS,t n q = $, from the result of the first part of Theorem 1, 

Lemma 1. 

For Cothers, qu and qt defined as in the Theorem 1, 

Proof of ecq. (A.4.a) : 

Applying Elayes Theorem to the left side of eq. (A.4.a) gives, 

From the l'heorem 1, flqu 1 qt, Cothers ) = qqu I qt), therefore, 

(A.4.a) 

(A. 4. b) 
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1 

If q t  is {ct), it is trivial to show P{Cothers I qt ) = P{CotheE I ~t ). If qt is CS,t, then, 

P{cothers I Ct } = P{Cothers ( Ct , CS,~}. Applying the result in eq. (A.5) gives, 

RCothers 1 q I CS,~) = P(Cothers 1 Ct 1. Therefore, P{Cothers 1 qu 9 qt) = P{Cothers I 
~3 = P{Cothers I q )  

Proof of eq(A.4.b) : 

Substitute Cothers = CT,k, qt = {q} and qu = Csat in eq. (A.4.a) proves eq. (A.4.b). 

Theorem 2. 

For any t and u such that 1 I t  I u I p ,  and for XA, qt and qu defined as below, 

1 

Especially, when XA n Xs,t = @, 

~ { X A  I qt) = RXA I Ct) (A.6.b) 

where, 
if u > t, 

qt is either {ct) or c;,~. qu is either {cu) or c&. 
XA is any non-empty subset of kxVt such that XA n x;,~ is either @ or xi,,. 

if u = t, 
1 

rlt = {ct) and qu = Cs,u. 
XA is any non-empty subset of kx,t. 
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Proof of 'Theorem 2 : 

Define q,d,t = CA n qt where CA is a set of classes corresponding to the pixels in 

XA. 

1 :when VA = $. 
I 

This implies XA n XSmt = $. 

Since CA n (qt u qu ) = $, from eq. (A.2), P{XA ( CA, qt, q,} = P{XA ( CA) and 
from tire lemma 1, q C A  ( qt, qu) = P(CA ( qt}. 

case 2 : when q~ , t  t $. 
This implies u t t and q~ , t  = qt. Let's define EA = CA - q~ , t  = CA - 91. 

when cA # $, 

Fronn the assumption 2, P{XA I EA, qt, TU} = P{XA I EA, tit} and from the 
lemma 1, ~ E A  I qt, qu) = P { ~ A  I qt}. Therefore, P(XA 1 qt, q,} = ~ X A  1 qt}. 

when cA = $, it implies XA = and qt = ~ 4 , ~ .  In this case, P{XA I qt, qu} 

= RX;,, I c;,~, q,} and since u t t, from the assumption 2, P { x ~ , ~  I c;,~, 
qu} ;= gxb,t I ~ 4 . d  = 9xb.t l qt}. Therefore, 



Appendix A Proofs of Theorems and Lemmas 

With eq. (A.7.a) and (A.7. b), eq. (A.6.a) is proved. 

proof of eq. (A.6.b) : 

When qt = {ct), it is trivial to show q X A  I qt) = P{XA 1 ct). 

. When qt = c;,~, q X A  1 qt) = ~ X A  I q, Cs,~} and from eq. (A.7.a), P{XA I q ,  Cs,J 

= P(XA I q). Therefore, ~ X A  I rlt) = ~ X A  I q). 

- Q.E. D. - 

Lemma 2. 

P{XT,k I Ckl Ck+l = P{X~,k I Ck) 

P{X~,k 1 Ck, C S , ~  = q X ~ , k  I Ck) 

p{xsPk I ckI c ~ + ~ )  = R x S . ~  I ck) 

(A.8.a) 

(A. 8. b) 

proof of Lemma 2 : 

Substituting XA = XT,k, qt = {ck) and q, = { c ~ + ~ )  in eq. (A.6.a) proves eq. (A.8.a). 
substituting XA = XT,k, qt = {ck) and q, = Cs,k in eq. (A.6.a) proves eq. (A.8.b). 

1 

Substituting XA = XS,k, qt = {ck) and q, = { c ~ + ~ )  in eq. (A.6.a) proves eq. (A.8.a). 

Lemma 3. 

For any k, 1 I k I p  and for Xothers which is any non-empty subset of tx k-1, 

proof of Lemma 3: 

Note that the left -hand side of eq. (A.9) can be written as, 
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From thd3 assumption 2. flxkBk I c;,~, Xother3 = P { x ~ , ~  I c;,~}. By the Bayes rule, 

Note that, 

and from1 the assumption 2, P{Xothers I Cothers* CS,~. ck} = P{Xothers I Cothers} = 

P{Xothers 1 Cothers, Ck). According to the lemma PICothers I C~,k ,  Ck) ' qCothers 1 
ck). Therefore, P(Cs,k 1 Xothers, ck) = P{CS,~ 1 Ck) and, 

From these results, eq. (A.lO) is 

A.2 Derivation of Spatio-Temporal Contextual Classifier 

In this section, the spatio-temporal contextual classifier given below will be 
simplified using the properties derived in the previous section. For k := 2, ---, p 
and c E Rk, the spatio-temporal contextual classifier is defined as, 

Specially, if k = 1, HSPTP(*) is defined as, 
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HSPTP(c; r, k) = Rck = C I Xk = Xk, = XS,k), C E nk (A. 1 1 . b) 

Applying .the Bayes rule when k = 2, ---, p, results in, 

1 

The probability P(ck I XS k ) can be written as, 

Notice, from the lemma 3, ( ie., = in eq. (A.9)), 

By using the Bayes theorem, 

(A. 1 2) 
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Let's define HSp(c; r, k), &(c; r, k), and Ak , for c E Rk and k  = 2, ---, p as follows. 

Then, HSpTP(c; r, k) can be written for c E Rk, k =  2, ---, p, as, 

(A. 1 3) 

The temporal contextual classifier, HTp(c; r, k) can be computed using its 
previous spatio-temporal contextual part. According to Bayes theorem, 

P{c = C) 

= p{x~, k I  
R X T , ~  l Ck = C. Ck-11 RCk-I l Ck = C1 (A. 1 4) 

Ck-l 

From the t'heorem 2 (i.e., substituting, XA = XT,)( = qt = c ~ - ~  and q, := ck), the 
probability P(XT k 1 ck , ck-,) is equal to P{XT ) c ~ - ~ )  which can be computed as, 



Notice also that p{cbl I XT,k-l) can be written as HSPTP(~k-l; r, k-I) and 
I 

k); substituting 'these yields, 

'The temporal contextual classifier part, HTp(c; r, k) in eq. (A.14) is now written 

as, 

Applying the Bayes theorem yields, 

therefore, hp(c ;  r, k) can be computed as, 

In a summary of previous results, for k = 2, ---, p, and c E Rk, 

where, 

and, 
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In case k =  1, 

hPTP(c; rl k) = P(ck = C I Xk = Xkl XS,k = XS,k) = h p ( c ;  r, k) 

This conc:ludes the derivation of the spatio-temporal contextual classifier. 



Appendix B Program List for Spatial-Temporal Classification 

Program list for the spatial and temporal classifiers discussed in this report is 
available upon request. 
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