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ABSTRACT

Pattern recognition technology has had a very important role in many
fields of application including image processing, computer vision, remote
sensing, etc. The advent of more powerful sensor systems should enable one to
extract far more detailed information than ever before from observed data, but to
realize this goal requires the development of concomitant data analysis
techniques which can utilize the full potential of the observed data.

This report investigates classification using spatial and/or temporal
contextual information. Although contextual information has been an important
and powerful data analysis clue for the human-analyst, the lack of a good
contextual classification scheme especially which can both use spatial and
temporal context has not allowed its usefulnessto be put to full use.

Two different approaches to spatial-temporal contextual classification are
investigated. One is based on statistical spatial-temporal contextual
classification, and the other is based on decision fusion of temporal data sets
which are classified individually with spatial contexts.

In the first approach, a general form of maximum a posterior spatial-
temporal contextual classifier is derived after spatial and temporal neighbors
are defined. Joint prior probabilities of the classes of each pixel and its spatial
neighbors are modeled by the Gibbs random field. The classification is
performed in a recursive manner to allow a computationally efficient contextual
classification.

In the second approach based on the decision fusion, each temporal data
set is separately fed into the local classifier and a final classification is
performed by summarizing the local class decisions with an optimum decision
fusion rule which is derived based on the minimum expected cost. The new
decision fusion rule is designed to handle not only data set reliabilities but also
classwise reliabilities of each data set.

Experimental results with three temporal Landsat Thematic Mapper data
show significant improvement of classification accuracy over non-contextual
pixelwise classifier. These spatial-temporal contextual classifiers will find their
use in many real applications of remote sensing, especially when the
classification accuracy is important.







CHAPTER 1
INTRODUCTION

1.1 Classification with Spatial and Temporal Contextual Information

For decades, 'the technology of remote sensing has been successfully applied
in many interdisciplinary applications of Earth observational data, and
multispectral data have been extensively used in the classification. Recent
development in sensor technology and solid state devices allows spatially and
spectrally far more rich information-bearing data sets. Note that multispectral
image data are very complex entities that have not only spectral attributes but
also rich spatial and temporal attributes as in Fig. 1.1.

Spectral
Variations

wavelength

information Extraction
and Classification

Spatial —

Variations

Temporal
Variations

Figure 1.1 Spectral, Spatial and Temporal Variations in Images.



1 Introduction

The availability of temporal data sets over the same scene makes it possible to
extract valuable temporal characteristics of surface covers, which are of interest
in applications requiring to detect spectral or spatial characteristic changes over
time. Proper utilization of this spatial and temporal contextual information, in
addition to spectral information, can improve the classification performance
significantly in many applications compared to the conventional pixel-wise
classification.

In part, due to the lack of good framework for using both spatial and temporal
attributes in addition to spectral features, conventional approaches in the
analysis of remotely sensed data have been mainly limited to pixel-wise
classification. The objective of this research is development of a classification
algorithm which can utilize both spatial and temporal contextual information in
addition to spectral attributes in an efficient and effective way.

Although there has been much research (Kittler and Foglein 84) on the spatial
contextual classification and temporal contextual classification, there have been
only a few works utilizing both spatial and temporal contextual information. Two
different approaches to spatial-temporal contextual classification are
investigated. One is based on statistical spatial-temporal contextual
classification, and the other is based on a decision fusion approach in
multisource classification.

1.2 Organization of the Report
The outline of this report is as follows.

In Chapter 2, a spatial-temporal contextual classifier which finds the best set of
class assiignments in the sense of maximum a posteriori probability (MAP) is
formulated. With a few assumptions, this spatial-temporal contextual classifier is
simplified into a more manageable form consisting of spatial and temporal
contextual classifier parts.

The spatial contextual part in the spatial-temporal contextual classifier derived
in Chapter 2 is applied to spatial classificationin Chapter 3. Several models are




1 Introduction

presented which allow computation of the conditional joint probability and prior
probability in spatial contextual classification, with discussion of their
computational aspects. Experimental results of this spatial contextual classifier
are presented.

Chapter 4 addresses various methodologies in temporal contextual
classification with an application for the temporal contextual classifier part
introduced in Chapter 2 in mind. A decision fusion-based approach in temporal
contextual classification is developed and its performance is compared with that
of the conventional data fusion-based classifiers.

The two constituent contextual parts developed in Chapter 3 and 4 are
combined for spatial-temporal contextual classification in Chapter 5 and
experimental results on various spatial-temporal classifiers discussed so far are
compared. The data fusion-based spatial-temporal classifier designed in
Chapter 2 is modified to be used in the decision fusion-based approach. After
presenting the experimental results on the spatial-temporal contextual
classification, there follow conclusions and suggestions for future research
regarding the spatial-temporal contextual classification.
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CHAPTER 2
DESIGN OF A SPATIAL-TEMPORAL CONTEXTUAL CLASSIFIER

21 Introduction

In recent years, considerable research effort has been concentrated on
extracting more information from a given data set. In pattern classification
problems, this detailed information enables one to go deeper into the, so called,
information tree (Landgrebe 78), i.e. the more detailed data now becoming
available makes it possible to discriminate between classes of greater detail
than previously possible. For this purpose, sensors with very fine spectral and
spatial resolution are being put to use. Besides the development of new
sensors, research is being carried out to find more accurate and powerful data
analysis techniques. Most information extraction techniques rely on features
pertaining to only one pixel location at a time. Although the spectral variability of
a pixel can provide substantial discriminating power due to the increasingly fine
spectral resolution now becoming available, confining analysis methods to only
a single pixel at a time surely doesn't exploit the full information potential of
newly emerging data.

Additional information is available from the relationship between pixels. This is
called as "contextual" information. Context as used here is intended to mean
spatial, temporal and/or spatial-temporal relationships between pixels. A
contextual pattern classifier refers to a classifier which can utilize information
from this interpixel relationship. The informative nature of this information
source in human perception has such this contextual information an
indispensable clue which is extensively relied upon in the manual interpretation
of aerial photography. A simultaneous use of this spatial and/or temporal
context can push the performance limitation further down so that more accurate
and detailed classification result can be obtained.




2 CONTEXTUAL CLASSIFIER DESIGN

There can be basically two different types of information which can be extracted
from the data (Kittler and Foglein 84). One is interpixel dependency context
between class labels, and the other is interpixel correlation context between
pixel values. Both contexts exist spatially and temporally. Though contextual
information is not restricted to only these two types (for example, contextual
information can be obtained from shape, size, or direction, etc.), a main focus of
this research will be so confined.

Spatial Correlation Context Spatial Contextual
between Pixel Values ] Information
Spatial Dependency Context
between Class {abels .
Spatial and Temporal
(+)— Chhexual information
Temporal Correlation Context ‘[
between Pixel Values I
| }_I

Temporal Dependency Context| ] Temporal Contextual
etween Class Labels Information

Figure 21 Sources of Spatial and Temporal Contextual Information.

The reason for the class label dependency correlation contexts being existent
between class labels can be understood in following way. There are certain
classes which are more likely to be found adjacently than others. In the same
token, some classes are seldom found in proximity. Therefore, non-trivial
information can be drawn from the relative assignments of neighboring class
labels. Also, in many remotely sensed images, objects on the ground are much
larger than the pixel size so that neighboring pixels are very likely to come from
the same class and form a homogeneous region. This means that a pixel may
be expected to be from the same class as its neighboring pixels. This property is
successfully exploited in ECHO (Extraction and classification of Homogeneous
Qbjects) classifier (Kettig and Landgrebe 76, Landgrebe 80) which first finds
homogeneous regions to perform classification og per object basis. Though this
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class label dependency context might not provide more detailed information in
a discriminating process, in most of cases! a proper treatment of this contextual
information can produce a classification result with far fewer errors.

Depending on the purpose of the usage, this interpixel class label dependency
context can be divided further into two different types. One type of inter-pixel
class label dependency context can be used to impose a local homogeneity of
class labels in spatial or temporal proximity. In this case, the class label
dependency context will be used for a sort of smoothing of the class label
variability inside a local window. In other applications, one can use this class
dependency context to impose on classifiers, the statistical likelihood of co-
occurrence of the class labels in spatial or temporal proximity*. A good example
of this type of usage can be found in a land cover discrimination application in
an agricultural area where (temporal) class transition probabilities are used to
model the known land use pattern over time and fed into a multi-temporal
classification process as the temporal interpixel class dependency context.

In many cases, pixel values (or, feature vectors) exhibit significantly high spatial
correlation between spatially adjacent pixels. Spatial correlation coefficients
between pixels generally differ according to the distance between pixels and
the spectral bands. Proper exploitation of spatial correlation context can make it
possible to differentiate classes in more detail than would be possible without
additional spatial correlation contextual information, however, the inclusion of
spatial correlation factors in classifiers requires paying the price of increased
computational complexity as compared to pixelwise classification (Khazenie
and Crawford 90, Yu and Fu 83). It also tends to require a more highly trained
user.

The spatial correlation which is class-unconditionally computed has generally a
higher value and a slower decreasing rate vs. pixel separation than the class-
conditionally computed quantity. On the other hand, the class-conditional
spatial correlation decays rather quickly if the spatial distance between pixels is
increased. This fact was exploited in the ECHO classifier (Kettig and Landgrebe

1 An exception can be the case when the relative distribution of class labels itself can indicate a
particular information class. This will be discussed in next section in a review of S. W. Warton's
work (Warton 82).

2 The meaning of spatial or temporal proximity will be formally defined in section 2.3.
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76, Landgrebe 80) in which pixels inside an object are assumed to be spatially
independent and the likelihood values of an object are computed as a simple
product of the likelihood values of each pixel belonging to that object. This
interpixel correlation can also exists temporally. Temporal correlation contexts
may be useful in specific applications. But care must be taken in using this
temporal correlation context, since there can be potentially significant
difference!; in the termporal data sets, such as the difference of the atmospheric
condition.

In this report, attention will be given only to using the two spatial contexts
(correlation between class labels and pixel values), and temporal class label
dependency context. Before going further to develop a spatial-temporal
classification framework, some of the related works in this direction are
reviewed.

2.2 Relaied Works in Spatial and/or Temporal Contextual Classification

A tutorial overview of various techniques for using contextual information in
different pattern recognition problems can be found in (Toussaint 78). Among
many worlks in diverse fields of application, J. Kittler and J. Foglein (Kittler and
Foglein 84), N. L. Hjort and E. Mohn (Hjort and Mohn 87) and R. M. Haralick
(Haralick 83) specifically dealt with the use of contextual information in image
classification problems. Especially, J. Kittler and J. Foglein (Kittler ancl Foglein
84) and J. R. G. Townshend (Townshend 83) provide extensive overviews of
spatial contextual classifiers designed primarily for remote sensing applications.

2.2.1 Related Works in Spatial Contextual Classification

Broadly speaking, the methodologies to take spatial context into account can be
categorized into three different groups (Kittler and Foglein 84) according to how
the contextual information is used.

Post-processing approach
Pre-processing approach
Simultaneous processing approach
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Post-processing type contextual classifiers perform a post-processing such as
filtering or applying syntactic rule after the pixel-wise classification. One
example of filters available for post-processing is the majority filter (Drake et al.
87) which counts the votes of classification results inside a given-sized window
and re-assigns to the center pixel of that window, a particular class which most
of the pixels inside the window choose. Small classes mainly composed of
scattered noise pixels might be merged to neighboring large classes after the
majority filtering (Guo and Moore 91). Another approach which can be
categorized into this group is that of (Warton 82, Zhang et al. 88) which extracts,
in the first pass, new feature vectors composed by class labels of pixels in a
given neighborhood after pixelwise classification and then, in the second pass,
uses these vectors to obtain final decisions. Contextual information is used in
the second pass. These classifiers are especially useful in land-cover
classification of urban areas in which information classes consist of several
spectrally dissimilar components. For example, a class "residential area" may
contain spectrally different components of house, road, lawn, etc. By accounting
for the components' frequency distribution, such classes as "high density
residential area" and "low density residential area" can be differentiated.
However, a common handicap of this category is to try to recover the
information already lost in the pixel-wise classification phase, which inevitably
confines its success to a certain limit.

The pre-processing type approaches are based on a region growing or object
extraction process. A given scene is divided into distinct homogeneous regions
by using an appropriate homogeneity test and each homogeneous region is
classified on an object or per-field basis. One procedure of this category is
ECHO which uses a conjunctive, object-seeking method as the tool for region
finding (Kettig and Landgrebe 76, Landgrebe 80). Several varieties of
algorithms have been proposed with different statistical measures of
homogeneity. In a study of (Kusaka et al. 89), primitive regions with nearly
uniform colors (i.e., spectral responses) were found with edge-based
segmentation. Classification of the primitive regions was obtained using various
spatial features computed for each regions. S. L. Sclove (Sclove 81) and H. M.
Kalayeh and D. A. Landgrebe (Kalayeh and Landgrebe 87) developed similar
object classifiers which could utilize spatial correlation contexts through Markov
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random field modeling of feature vectors, but under an assumption that the
objects were already extracted. A common problem of these segmentation-
based algorithms is that the classification result is heavily dependent on the
success of the region finding process, which may be as difficult as the
classification itself.

Classifiens of the third type of approaches account for the spectral and spatial
contextual information simultaneously to make the most use of the available
information. One of the straightforward way of this is the so-called, stacked
vector approach, which adds, to the original spectral feature vector, new
components of features which can carry spatial contexts. Additional
components can be derived, for example, from some texture descriptors such as
Fourier coefficients or co-occurrence matrices (Haralick et al. 73). The stacked
vector approach has an inherent problem of excessive dimensionality of
augmented feature vectors and poor performances at the object boundaries
since the *texturemeasures are based on a multipixel sized region. Due to these
shortcomings of the stacked vector approach, simultaneous utilization of
contextual information is accomplished often by setting up a probabilistic model
such as the spatial stochastic model (Yu and Fu 83) which can effectively
incorporate contextual information in the resulting classifier. Classifiers in this
category usually assume a local dependency of a pixel on its neighbor;; and the
classification results are obtained in a recursive way. The procedure of the
contextual classification proposed in this report falls into this category.

Other well known procedures in this category are those based on relaxation
(Rosenfeld et a/. 76), which is an iterative procedure making fuzzy or
probabilislic decisions at each iteration and then successively updating those
decisions, according to a selected compatibility function and previous decisions
(Eklundh et al. 80, Richards eta/. 81, Kalayeh and Landgrebe 82).

There are several reports on comparative tests of various spatial classifiers. G.
Palubinskas (Palubinskas 88) compared performances of various object
classifiers with images modeled by a second order causal autoregressive
model ancl observed that the performance of the object classifiers was much
better than per-pixel classifier. In a Monte Carlo simulation study in (Mohn et al.
87), E. Mohn eta/. observed that, compared to non-contextual rules, contextual
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methods usually reduced error rates considerably and the performance
increase was particularly significant in homogeneous areas and on borders
with simple structures. Except for the case with very high spatial correlation,
however, they found generally no gain in using contextual methods on such
scenes with little or no structure at all.

Although there have been many spatial classifiers which can utilize class label
dependency contextual information, only a few researchers investigated
seriously the problem of estimating ‘the class label dependency contexts. J. C.
Tilton (Tilton et a/. 82) and G. R. Dattatreya (Dattatreya 91) investigated
unbiased estimation algorithms for evaluating the class label dependency
context from the unlabelled samples.

2.2.2 Related Works in Temporal Contextual Classification

In the case of the temporal contextual classification problem, there have been a
stacked vector approach (Fleming and Hoffer 77), the so-called, cascade
classifier (Swain 78a), a stochastic model based approach (Kalayeh and
Landgrebe 86), and an approach based on a mathematical model for spectral
development such as a regression model or growth profile (Crist and Malia 80).
The stacked vector approach has the same problem as in the spatial
classification case. Compared to the cascade classifier, which assumes class-
conditional independence of feature vectors of different temporal data sets, the
stochastic model based approach (Kalayeh and Landgrebe 86) considers the
ground cover types as a stochastic system with a non-stationary Gaussian
process as an input and temporal variations of feature vectors as an output
under the assumption that the class doesn't change over time; it utilizes the
temporal interpixel correlation context in the classification. Since it assumes
same set of classes for each temporal data set and requires classes not to
change over time, in the training stage, all given temporal data sets must be
processed together to define spectral classes. This simultaneous treatment of
all given temporal data sets in the training stage increases the total number of
necessary spectral classes. This problem is avoided in the cascade classifier by
allowing class changes over time.
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2. 2. 3 Related Works in Spatial-Temporal Contextual Classification

Compared to the spatial and temporal contextual classifier cases, there have
been only a few reports on spatial-temporal contextual classification. N.
Khazenie and M. M. Crawford (Khazenie and Crawford 90) reported a
procedure based on an extended version of the autocorrelation model
proposed by N. L. Hjort, E. Mohn and G. Strovik (Hjort et al. 85, Hjort and Mohn
85) to account for both spatial and temporal correlation structures. This is based
on the assumption that the observed process is a sum of two independent
processes, one having a class dependent structure and the other, being an
autocorrelated noise process. The noise process accounts for both spatial and
temporal correlation. Under the assumption of a certain form of the noise
covariance matrix, the conditional joint probability of spatial and temporal
neighbors; are computed. This approach is very expensive from a computational
standpoint.

Although it is almost impossible to compile a comprehensive and exhaustive list
of all previous works related to the spatial, temporal and spatial-temporal
contextual classifiers, some of the previous works are summarized in Table 21
~ 2.3 Depending on how the contextual information is incorporated into the
classifiers;, temporal and spatial-temporal classifiers are also categorized into
the same three types as the spatial contextual classifiers.
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Table 2.1 Classifiers with Class Label Dependency Context.

Classifier

Category

References

with local frequency distribution
of class labels

SP : post-proc.

(Warton 82)
(Zhang et al. 88)

Majority filtering of pixel-wise
classification map

SP : post-proc.

(Drake et al. 87)

with template histogram matching, iterative
majority filtering, small class merging and
class boundary detection

SP : post-proc.

(Guo and Moore 87)

Homogeneous region extraction based on

(Kettig & Landgrebe 76)

SP : pre-proc.
conjunctive, object-seeking method (Landgrebe 80)
Nearest neighbor based classifier
(spatial class transition probabilities SP : simul. (Welch and Salter 73)
estimated from training samples)
Probabilistic relaxation algorithm with SP : simul. (Eklundh et al. 80)
compatibility function between class labels (Kalayeh & Landgrebe 82)
Probabilistic and fuzzy relaxation SP : simul. (Zenzo et al. 87a,b)
Stochastic relaxation based on Markov SP : simul. (Zhang & Haralick 90)
random field
Geometric model for class label joint SP : simul. (Owen 84)
probability
with two dimensional Markovian model SP : simul. (Haslett 85)
Recursive estimation of joint probability of SP : simul. (Haralick et al. 84)
class labels (Haralick & Joo 86)
Iterative Conditional Models (ICM) SP : simul. (Besag 86)
Based on compound decision theory SP : simul. (Swain et al. 81)
with p-context array
Cascade classifier (require temporal class TP : simul. (Swain 78a)

Lrgnsition probabilities)

SP : With spatial contextualinformationonly TP :

With temporal

contextual information only
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Table 2.2 Classifiers with Interpixel Correlation Context.

Classifier Category References

Object classifier SP - simul. (Sclove 81)
(objecis assumed to be extracted) (Kalayeh & Landgrebe 86)
Region classification using spatial features (Kusaka et al. 89)
. SP : pre-proc.
after edge-based segmentation. (Kusaka & Kawata 91)
Based on spatial stochastic model SP : simul. (Yuand Fu E833)
Based on temporal stochasticmodel | TP : simul. (Kalayeh & Landggrebe 862

SP : With spatial contextualinformation only TP : With temporal contextual information only

Table 2.3 Classifiers with Both Class Label Dependency and Interpixel Correlation Context.

Classifier Category References
Recursive classifier SP : simul. (Kiffler & Foglein 84)
(Kittler & Pairman 85)
Autocorrelation model for spatial correlation .
) P SP : simul (Hjort et . 85)
between pixels. Markov random field model .
(Hjort & Mohn 87)
for class label dependency
Autocorrelationmodel for spatial/temporal

correlation between pixels. Markov random | spTp: simul. (Khazenie & Crawford 90)

field model for spatial class label

degendencz

SP : With spatial contextual information only SPTP : With spatial-temporalcontextual information




2 CONTEXTUAL CLASSIFIER DESIGN

2.3 Design of the Spatial-Temporal Contextual Classifier

2.3.1 Introduction

In this section, a general contextual classification framework under which both
spatial and temporal contextual information can be utilized is investigated. After
spatial and temporal neighbors are defined, a general form of a maximum a
posteriori spatial-temporal contextual classifier is derived. This contextual
classifier is simplified under several assumptions.

Noting that the spatial-temporal contextual classification can be thought as a
specific application of the more general problem of how to effectively make the
most of all available information sources to attain the "best" result. The meaning
for "best" might differ problem to problem, and in a classification problem,
classification accuracy can be one of the criterion to claim for being "best." The
problem of spatial-temporal contextual classification will be considered as a
special example of multisource classification (Benediktsson etal. 90, Lee 87) in
which the spatial, temporal and/or spatial-temporal contextual information is
considered as each being a separate information source. Among many
possibilities in simultaneously dealing with various information sources, the
decision fusion approach will be investigated, and it will be addressed in detalil
in Chapter 4.

2.3.2 Spatial-Temporal Contextual Classification

Suppose there are p multitemporal remotely sensed data sets {X(1), X(2), ---,
X(p)} taken over the same location. These multitemporal data sets are assumed
to be registeredto each other.

X(k), k = 1, ---, p, denotes the kil temporal data set. The size of each data set is 1
by Jand definedon the lattice L={r=(i,)) | 1 i<, 1 £j<J). x(r) refers to the
feature vector of a pixel at spatial location (or site) r, r € L, on the given kil data
set X(k). Therefore, X(k) can be written as X(k) = {xx(r) | r € L), the set of all
feature vectors of x,(r) on L. The class corresponding to xi(r) is denoted by c(r).
ck(r) takes one of the classes in Qg = {w 1, ---, @k M, } Which is the set of all

distinguishable classes in the kib data set. My is the total number of elements in

Q.
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Figure 2.2 p Multitemporal Data Sets.

Since each temporal data set is separately analyzed in the training stage, the
Q's and the My's are not necessarily the same for different k's. C(k) is defined

similarly as the set of class labels of all the pixels in X(k), /.e., C(k) = {cx(r) [ €
L}.

Let Ng denote a spatial neighborhood. Examples of Ng are given in Fig. 2.3. At
the boundary, a spatial neighborhood has a fewer number of pixels.

r-(1,0) r-(1,1) | r-(1,0) | r+(-1,1)

r-©0,1) | r=Gj) | r+0.1) | .0 | r=Gj) | r+0.1)
r+(1,0) +(1,-1) | r+(1,0) | r+(1,1)
(a) (b)

Figure 2.3 Examples of Spatial Neighborhood Systems. (a) First order spatial
neighborhood system : NS = ((fl,0), (0, £1)}. (b) Second order spatial

neighborhood system : NS ={(x1, 0), (0,1), (1,%1), (-1,%1)}.

Although it is also possible to use different spatial neighborhoods for each X(k),
k=1, ---, p, in this report, the same Ng is used for each temporal data set for

simplicity's sake. Define Xg k(r), the set of spatial neighbors of xk(r), as,
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Xg k(N oOf x(r+v) |ve Ng}, re Landk=1, --,p

It consists of the pixels in the spatial vicinity of xy(r), (that is, under the first order
spatial neighborhood system, it consists of the adjacent pixels of x(r) in the
north, south, east and west). Since Xg k(r) doesn't contain the pixel xy(r),
another notation, X's_k(r), is introduced to address the set of the pixel x(r) itself

and its spatial neighbors as,

Xs k(1) = Xs k(1) U { (1) }

IfNg is defined as Ng L {(0, 0)}, then X x(r) can be written as {x(r+v) | v « Ng}.
Similarly, Cg k(r) and C's,k(r), the set of classes corresponding to Xg k(r) and
X'S k(r), respectively, k=1, ---, p, are defined as,

Coxln ={cr+v) [ve Ng} € Qf
Csxif =Csk(n U {ckin}

Here, Q: denotes the set of all distinguishable classes that Xg k(r) can have. In

the same way, notation related to the temporal neighbors are introduced.
X1 k(r), the set of temporal neighbors of x,(r) and Cy (r), the set of
corresponding classes to Xt y(r) are defined as,

k-1,
Xrk(N=u Xgkln
t=1

k1, k1
CrulN=u CsiilN e [T
t=1 t=1

Q: is a set of all distinguishable classes that X's,k(r) can have. Xt (r) consists of
all the temporally previous pixels of x(r) and their spatial neighbors.

- 17 -
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The elements in the union of spatial and temporal neighbors of x(r), that is, the
union of Xg (r) and Xy k(r), are called the spatial-temporal neighbors of x(r).
Ex k(r) which is defined as follows, is then the set of x,(r) and its spatial-temporal

neighbor:;.

Exil(r) = { xk(r) } U Xg k(r) U Xy (r)
Eck(n) ={cx(r) } U Csk(n U Crilr)

&c k(r) is Ihe set of classes corresponding to &x k(r). (see Fig. 2.4 for a graphical
illustration of spatial and temporal neighbors).

Figure 2.4 Spatial and Temporal Neighbors of xp(r) under the First Order Spatial
Neighborhood System.; |:| Temporal neighbors of xp(r) : Xt p(r); B spatial
neighbors of Xy(n) : Xs'p(r); +- Spatialtemporal neighbors of Xp(r).

From now on, bold faced symbols will be used for random variables and plain
symbols will be used for specific realizations of the corresponding random
variables whenever there is a need to so differentiate. Also, for notational
simplicity, the spatial location argument "(r)" will be dropped in notation where
no confusion can result. For example, X, means xp(r), r € L. Also the realization
of the random variables will be omitted in equations whenever there is no
confusion by doing so. That is, P{x(r)} means P{xi(r) = x} and so on.
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The pixels in the ptd temporal data set X(p), are to be classified to one of the M,
classes using the given multitemporal data sets {X(1), X(2), ---, X(p)}. The best
set of class labels of pixels in X(p) in the maximum a posterioriprobability
(MAP) sense can be obtained using eg. (2.1).

Cvap = argmax [PC) =CIX(1) =X(1), - X(p) = X(P}]  (2.1)

Even though eqg. (2.1) is optimal in the sense of maximum a posteriori
probability, a direct computation and maximization of P{C(p) = C | X(1), ---,
X(p)} is, in most practical applications, too complex to be useful even for a small
sized scene. For example, with M, classes in X(p), the total number of possible
combinations of the classes amounts to M'F‘,’. This easily becomes an explosive
number for an even moderate My. One of the plausible remedies to avoid this
difficulty is to assume that all necessary contextual information can be
manifested by its spatial and temporal neighbors. An example of spatial-
temporal neighbors of xp(r) in case of a first order neighborhood is shown in Fig.
2.3. In many cases, this can be quite reasonable and also a very practical
assumption since the interactions between pixels decrease rapidly as the
(spatial and temporal) distances between pixels increase.

Hsprp(C; 1 k) = Plek = | X = Xy, Xs k = Xs ki X1k = X1 1} (2.2)

Under this practical assumption, define a spatial-temporal contextual classifier,
Hsprp(c;r k), re Landce Qg k=1, ---,pasineqg. (2.2). Inthe case of k =1,
Xtk is understood as an empty set since there is no temporally previous data.
Thus, when k =1, Hgptp(C: 1, K) is P{ck = C | Xk = Xk, Xs k = Xg k}. The spatial-
temporal contextual classification can be achieved then by finding the class c e
Qp which maximizes Hsprp(c; 1, p). To simplify eq. (2.2) into a computationally
more manageable form, several assumptions are made as in eq. (2.3.a,b) and
eq. (2.4). The first assumption in eq. (2.3.a,b) is about the classes between
spatial and temporal neighbors.
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Assumption 1.

For any &, 1 <k <p, and for C5 and Cg defined below,
PlCk+1 | Cks Cal = Plek,q | € (2.3.9)
P{Csk | ek Cgl = P{Cs | i} (2.3.b)
where,
Ca is any non-empty subset of £c  such that Ca N {ck} = ¢. ¢ is the empty set.
Cg is any non-empty subset of &g k-1

Equation (2.3.a) assumes that irrespective of the classes of the other spatial-
temporal neighbors of xi, the temporal class dependency context is conveyed
to €41 from its temporal neighbors only through €. This assumption makes it

possible to model the temporal class dependency with a simple class transition
probability P{ek,1 | €k}. Equation (2.3.b) is the spatial counterpart of the eq.
(2.3.a), that is, Cg i, the set of classes of the spatial neighbors of X, is assumed
to be only dependent on the class ¢, irrespective of the classes of temporal
neighbors; of x.

Assumption 2.

For any k. 1 <k £p, and for Xa, Ca, Xothers and Coithers defined below,

P{Xa | Ca, Xothers: Cothers} = P{Xa | Ca} (2.4)

where,
Xa is any non-empty subset of X's'k.
C, is a set of the classes corresponding to Xa.
Xothers iS @any subset of Ex 5 such that Xothers ° X'S,k = 0.
Cothers iS any subset of &c p such that Cothers M C's.k =90.
(Cothers IS NOt necessarily a set of classes corresponding to Xpthers)-

The second assumption is that the pixel values of Xa (any non-empty subset of
Xs k) are affected only by the nature of pixels in Xa, that is, correspondling class
identities in Cp, irrespective of the pixels (Xothers) OF the classes (Cginers) Of
other temporal data sets. In other words, once the classes of a set of pixels at
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one particular time are known, the values or classes of pixels at any other times
do not provide any additional knowledge on the pixel values at that particular
time. This is a little bit stronger than the conventional class-conditional
independence assumption of different temporal data sets given below. Though
eg. (2.4) implies the following relation, but, the reverse is not always true.

P{Xap,Xg|CA Cg}=P(Xa|Ca}P{Xg|Cg}
where,
Xa and Xp are any subsets of pixels in different temporal data sets. Cp and
Cp are the set of classes corresponding to X5 and Xg, respectively.

Due to the implication of the class-conditional independence of temporally
different data sets, under the assumption in eq. (2.4), temporal correlation
context is not counted in the classification. With the assumptions in eq. (2.3.a,b)
and eq. (2.4), the following theorems and lemmas which are useful in
simplifying eq. (2.2) are derived in Appendix A. A direct consequence of the
assumptions in eq. (2.3.a,b) is the following theorem which relates to the
relationship between class labels of temporal neighbors.

Theorem 1.

For any tand usuchthat1 <t<u<p,

Py | Nt Cotherst = PNy | m} = Piny [ ¢4 (2.5)
where,
if u>t, nyis either {¢,} or C'S'u. 1y is either {¢;} or Cie,',.

ifu=t,ny=Cgyandn={cy
Cothers iS any non-empty subset of £c y such that Cothers M Mu = Cothers N Mt = ¢.

This theorem states that when u > t, the class ¢, or the set of classes, C'g,,u, 1<u

< p, is dependent only on the nearest temporal neighbors C'S,,, or the nearest
previous pixel, €. If u = t, the probability of Cg , given ¢, and any non-empty
subset of its temporal neighbors, &g, is described as P{Cg 4 | €y}. Therefore,
the set of class identities, Cqyihers doesn't provide any supplementary
information on Cg ,, once the class identity ¢, is available. Using this theorem,
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the first order Markov dependency property of class labels, i.e., P{ C'S,k | C's,k-1,
C;J } =P C'S,k | C'S,k-1 } can be easily shown.

Lemma 1.

For Cothers: Ny @nd 1y defined as in Theorem 1,
P{Cothers | Ny , Nt} = PlCothers | Nt} = P{Cothers | €1} (2.6.9)
P{Cr | €k Csd = P{Cr | e (2.6.b)

Applying the Bayes theorem to eg. (2.5) results in eq. (2.6.a), which shows a
similar relationship as in eq. (2.5) but in the temporally opposite direction;
substituting Cothers = Crx and n¢ = {€}, Ny = Cs x in €q. (2.6.a) yields eq. (2.6.b),
which shows that the probability of Ct g given ¢ and Cg  will be determined
only by €t x and ¢x. While Theorem 1 and Lemma 1 show the relationship
between the class labels of temporal neighbors, the following theorem shows
the relationship between feature vectors under the condition of given class
labels.

Theorem 2.

For any tand v such that 1 st<u < p, and for Xa, ngand n defined as below,
PIXa | Nt nu} = PXa | i} (2.7)
Especially, if Xa N X's,t =¢,
P{Xa [ g = P(Xa | ¢}
where,
ifus>t,
niis either {¢y} or C'S,t- nyis either {¢,} or C's,u
Xa is any non-empty subset of €x  such that Xa M X's_t is either ¢ or X's,t-
ifu=t,
m={cg andny=Cs,
Xa is any non-empty subset of &x t-1

According to Theorem 2 which can be proved by applying the Lemma 1 with the
assumption 2, when the class identity, €, or a set of class identities, Cé,v at a
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certain time t (1 £ t< p) is known, the class identity, ¢ or a set of class
identities, C.s'u, at a later time u (u > t) doesn't affect the appearance of the
pixels of time t or prior to the time t. In the case of u =t, knowledge of Cg ; will be
redundant in determining the appearances of the pixels in Ex .1, the pixels
observed prior to the time t, if the class identity ny = {¢4} is available.

Lemmaz2
P(X1k | Ck Cks1} = P{X7k | Ci
P{X1k | €k Cs i} = P{X1k | i (2.8)
PXsk | €k Chat} = PXsk | €

Substituting the variables Xa, ny and ny with non-abstract quantities in Lemma 2
reveals the meaning of this theorem more clearly. By using assumption 2 and
Lemma 1, the following lemma can be derived.

Lemmas3.

For any k, 1 <k < p, and for Xgyers Which is any non-empty subset of Ex k.1,
P{Xs k| €k Xothers } = P{Xsk | ¢} (2.9)

This lemma shows that if ¢, the class identity of center pixel in X's,k, is known,
Xothers Which is the set of the pixel values of temporally previous data sets, do
not provide any additional information on the pixel values X:s'k.

Using the results derived in the previous theorems and lemmas, the spatial-
temporal contextual classifier in eq. (2.2) is simplified. Applying the result of
Lemma 3 and the Bayes theorem, to Hgptp(®; I, K) in eq. (2.2), for k = 2, ---, p,

yields,

Pick | Xsd Pick | Xt}

Pick | Xs k. X1} = Ax e

(2.10)

where, Ay = P{XsdP{XTK}
P{xs,k, xT.k}
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Since Ak is not dependent on the particular class assigned to the pixel xy(r), it
doesn't need to be evaluated. Define the spatial contextual classifier Hgp(c; 1, K),
Ce IZk,k:1, % P.aS,

Hsp(C; 1, K) = Plck = ¢ | Xs = Xs i, C € Q (2.11)

This represents how much the spatial contextual information from lhe pixels
x,(r) and Xg k(r) support the class assignment c to the pixel x,(r). In the same
way, the temporal contextual classifier Hyp(c; 1, k), c € &, k= 2, ---, p, is defined
as,

Hrp(c: 1, k) = P{ek = ¢ | Xtk = X1k} CE & (2.12)

Hygp(c; 1, k) shows how much the spatial-temporal contextual information from

the temporal neighbors Xtk = {x;.k_h X'S,1} advocates the class assignment

of ¢ to the pixel x(r). For k=1, Hyp(c; 1, K) is defined as P{e, =c}. Forc e &, k=
2, ---, P, substituting these Hgp(*; 1, K) and Hyp(*; 1, K) into eq. (2.10) leads to the

following equation. Forc e £, k=2, ---, p,

HepTr(C; 7, k) = Ay LSRG ;,{2( f’g}“" ". k) (2.13)

In the case of k=1, Hgptp(C: I, K) is Hgp(c; 1, k). Due to the assumptions in eq.
(2.3.a,b), the temporal contextual classifier Hyp(c; r, k) can be computed using
Hsprp(d; 1, k-1), d € Q4 4, and class transition probabilities between temporal
neighbors in the (k-1)m data set and the ki data set. That is, by applying
Theorem 2 to eq. (2.12) and Bayes theorem, Hyp(c; r, k) can be computed as,

) Hspp(d; 1, k-1)
Hrelc;r, k) = Plek=¢} 3, ~—" P{ck = ¢ | Ci.q = d}
de Q. Pt = d}

= Y Hspre(d;r, k-1)P{ck = ¢ | Ck.1 = d} (2.14)
de Q.1
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This result is very similar to the case of cascade classifier (Swain 78a). But eq.
(2.14) has a quantity reflecting spatial-temporal contexts from the temporal
neighbors instead a quantity which reflects only the temporal context from the
previous pixel as in (Swain 78a). The temporal contextual classifier Hyp(c; 1, K)
passes the contextual information obtained from the spatial-temporal neighbors
of Xk.1(r) to the classifier Hgptp(C; 1, k) as a temporal context. This temporal
contextual information is then combined with the spatial contextual information
coming from spatial neighbors of x(r). The relation in eq. (2.14) is very
important from the viewpoint of the actual application of this spatial-temporal
contextual classification rule, since it allows a distribution of computational load
over different times. In other words, due to the first order Markov property of
temporal class labels, this classifier doesn't require one to process all the
temporal data sets at one time. At any specific time, Hgptp(¢) for that time can be
computed using only the current data set and the spatial-temporal classification
result of the previous data set. Then, this result of Hgpyp(*) can be passed to the
next step using eg. (2.14) when the next temporal data set is available. This
allows the computational load to be distributed over different times. Spatial-
temporal contextual classification with p temporal data sets can be obtained by
applying Hgptp(*; r, p) to each pixel in X(p).

Spatio-Temporal
Clasiﬁcagon of X(p) |

Spatio-Temporal
Classification of X(p-1),

Spatio-Temporal
Classification of X(2)
?

Spatial Classification
of X(1)

Figure 25  Spatial Temporal Classification with Hgprp(*)-

The flowchart of spatial-temporal contextual classification is provided in Fig. 2.5.
The result of spatial-temporal classification of the kih temporal data set is fed
into the classification process of the (k+1)m temporal data set as spatial-
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temporal contextual information. Therefore the classification of a current
temporal data set requires only the classification results of previous data set.

This spadial-temporal contextual classifier can be easily generalized to
accommodate different spatial neighborhoods for each different temporal data
set. This generalization may be quite useful when sensors with different spatial
resolutions are used to acquire each temporal data set. In this report, for
simplicity's sake, only first order spatial neighborhood system is considered for
all the given rnultitemporal data sets.
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CHAPTER 3
SPATIAL CONTEXTUAL CLASSIFICATION

3.1 Introduction

In this chapter, the problem of spatial contextual classification with Hgp(*) in eq.
(2.11) is addressed. Several models and approaches which allow one to
compute Hgp(*) will be discussed. Since only the spatial contextual
classification is considered and the result in this chapter is applicable to any
temporal data set X(k), k = 1, ---, p, the time index will be dropped for a
notational simplicity. The spatial location parameter "(r)" will be also dropped
whenever possible without causing confusion as in the previous chapter.

Spatial contextual classification can be carried out by applying Hgp(*) defined in
eg. (2.11) to each pixel in the given data set. Hgp(*) can be computed as,

P{Xs(r) = Xs | ¢(r) = ¢} Ple(r) = ¢}

Hsp(c; 1) = - .
> P{Xg(r) = Xs}

(3.1)

where,  P{Xs | c}Plc} = P{Xs = Xs | ¢ = ¢, Cs = C}P{¢ = ¢, Cs = C}
Ce Q‘

Spatial classifiers rely on the fact that the statistical dependence between
spectral responses of adjacent pixels, and subsequently the dependence
between their class labels, can provide discriminating information in addition to
spectral responses on which pixelwise classifiers depend. As discussed in
Chapter 1, there are two different sources of spatial contextual information. One
is the contextual information coming from spatial correlation between adjacent
pixel feature vectors, and the other is the spatial class label dependency context
between adjacent pixels. While the joint probability of class labels, P{c, C} in eq.
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(3.1), accounts for the spatial class label dependency context, the joint class-
conditional probability P{Xs|c, C}, manifests the spatial interpixel correlation
contextual information between feature vectors in X s

3.2 Spatial Interpixel Correlation Context

The interpixel correlation contextual information, in general, is a useful attribute
to utilize in the classification and has been successfully used in several cases,
for example, see (Yu and Fu 83), but, its inclusion generally requires extensive
computation. For this reason, it is often assumed that the feature vectors in X:S
are class-conditionally independent. That is,

PiXs|Cst= [1 Pix(rev) | c(rsv)) (3.2)

Ve Ns

However, as might often be seen in real data, there does exist spatial
correlation between adjacent feature vectors, and the spatial correlation
coefficients generally vary over the spectral wavelengths and over the classes.
It is also dependent on the direction of the spatial lag between pixels. The
degree of spatial correlation is also closely related to the spatial resolution of
the employed sensor. Spatial correlation coefficients which are class-
unconditionally computed have generally higher values and a slower
decreasing rate than the class-conditionally computed ones. R. Kettig and D. A.
Landgrebe (Kettig and Landgrebe 76) used this fact in the ECHO classifier,
which assumes independence of feature vectors in homogeneous; regions
since the class-conditionally computed spatial correlation coefficient usually
decreases; very quickly as the spatial distance between pixels increases.

Whether the independence assumption in eq. (3.2) is appropriate or not
depends on the particular problem under consideration. There are various
reasons for spatial correlation to exist between spectral measurements of
spatially adjacent pixels. It can arise due to an inherent property of specific
ground cover types being observed by the sensor. For example, the spacing of
row crops, the plant size in an agricultural scene, or the relative vegetation and
soil mixture, etc., could cause spatial variation in spectral responses. This is
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generally referred to as the "texture,” which can be described as a repeated
variation in spectral responses over relatively small areas (Hoffer 78). This
textural context would be able to provide valuable information, for example, in
identifying forest cover against agricultural crops, but, unfortunately, this textural
context may not be so conspicuous in some remotely sensed image data mainly
due to a relatively low spatial resolution. Since this textural context is a local
spatial characteristic belonging to each different scene cover type and therefore
generally spatially variant, its utilization often involves an object extraction step.

Other than the spatial characteristic of scene cover types which causes the
texture, there are also other sources such as the so called, "adjacent reflection,"
- the reflection of spectral energy of adjacent pixels to the sensor, the non-ideal
spatial cut-off characteristic of sensor, or the spatial overlaps of pixel elements.
Spatial correlation due to these effects seem to be not so directly related to
specific cover types in the scene being observed as in textural contexts. Again,
whether the spatial correlation should be considered as a property of each
different class or not, is solely dependent on the problem at hand and a spatial
characteristic of the selected data set. Even though the spatial correlation
context may not be a distinguishable characteristics of the classes, its inclusion
can help in improving classification performance by allowing more accurate
class-conditional joint probability estimates as illustrated in following.

¢

Assume a simple two class problem in one dimensional feature space as,

Class @y ~ N(my, cf) with prior probability 0.5
Class w, ~ N(m,, c§) with prior probability 0.5

Data are to be classified using the spatial interpixel correlation context. To make
the analysis simple, assume only one neighbor, denoted by x(r+v) to x(r). v
indicates a spatial displacement of the neighbor x(r+v) from the pixel x(r). Data
are spatially correlated as,

Cov [x(n, x(r+v) | 0, @] =oiop;,  1<ij<2
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Assume that oy =06, =a, and p;=p, -1 < p < 1. Assuming p; = p for all i, |
combinations means that the spatial correlation coefficient is independent of
classes. Inclusion of this interpixel spatial correlation context will allow more
accurate estimate of joint probability of x(r) and x(r+v). An extended feature

vector is defined as,
x(r)
Kart= )

With this extended feature vector, Xgys the pixel corresponding to the feature

x(r) is to be classified not only using x(r) but also x(r+v). Suppose x(r+v) belongs
to ;. If x(r) belongsto w, where k=1, 2, then, Xg, is distributed as,

Xext~ MVN[My, Z]

m 1
where, M, = [ k ]and2=02[ p]
m; p 1

The decision rule based on minimum Bayes error with "0-1" loss function with
xfo iS,

- R () 2}

M Z M -ME My < 0
2 >
1

Mz - Mp) T 27 Xour +

Suppose my =-m, mp, = +m, m > 0, then, after algebraic simplification, the
decision rule is reduced to following linear classifier.

(O]

XN S px(r+v) - mj (3.3)
@

This defines a linear decision boundary and its slope is determined by the
spatial correlation coefficient p between x(r) and x(r+v).
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x(n Decision boundary of spatial
s contextual classifier

Decision boundary of
pixelwise classifier

i

> x(r+v)

if x(r+v) € class 1 7] i x(r+v) e class 2

Figure 3.1 Decision Boundary of Spatial Classifier.

A decision rule corresponding to a pixelwise non-contextual classifier can be
obtained from eq. (3.3) by setting p =0, that is,

if x(r) <0, classify x(r) to @,
if x(r) > 0, classify x(r) to @,

The decision boundary of the spatial classifier in eq. (3.3) is shown in Fig. 3.1
with that of pixelwise classifier without taking account of the interpixel spatial
correlation context for comparison. With @(x), the cumulative distribution
function for the standard normal density function defined as,

-puls2 du

o= =" e

the Bayes errors corresponding to the spatial contextual classifier and the
pixelwise classifier can be written respectively as,
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Eaayes(p) = 1- (5 2=) (3.4.0)
Nig?
m
Eaamp=0)=1-0( ;) (3.4.b)
05
g 05
£ y
@ 0
) o
z 03
@A 2 .
g 0 N
Selelaaiiaizi: 0.1
g 01 =~E =2 -I=~-~~~
o S e
:g SR = ..-.'-::EE::':;&Q:' cﬂ'}@
. o -w,? =E=='.;~a.fv“:¢f
I'atio = m/o- ~ gﬁﬁ

Figure 3.2 Difference in Bayes Errors with and without Spatial Correlation Comtext.

The differonce between these two Bayes errors, denoted as AE, is computed as,

m

AE = Epayes(P=0) - Epayos(p) = &/ -o(7) (3.5)

O 2

1p

Since AE iis always non-negative for |p| £ 1 with minimum value zero at p =0, as
shown in Fig. 3.2, the classifier designed with spatial correlation context in
consideration always reduces the Bayes error compared to the pixelwise
classifier. However, the amount of reduction in Bayes error depends on the
degree of spatial correlation and also on the separability between the two
classes, which is represented by m/c in this example. If the two classes are well
separated|, that is, if m is large relative to o, then, there are very small
differences between the two Bayes errors in eq. (3-4.a,b). Therefore, there
would not be so significant an improvement in classification accuracy by using
the spatial interpixel correlation context. Note that the individual Bayes errors
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are also very small in this case. However, if m/6 is not large enough, there can
be significant differences between the two Bayes errors especially when |p]| is
near one. Figure 3.3 shows the Bayes error differences when the ratio m/c is
increased from 0.2 to 1.8.

0.5  ———
1| —— m/o=0.2 E
8 0 4 -:- ssrrssenesennaRTITIS m/°=0.6 i
g *ql----- m/o=1.0
b : - o omn u am v m/0=1.4
g 03 TN m/c=1.8
27
= 0.2
= ]
e
= ] o
0'0 b et s T8 % l

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Corredation Coefficient

Figure 3.3 Samples of Bayes Errors Differences with and without Spatial Correlation Context.

The value on the vertical axis when the spatial correlation coefficient p is one, is
the Bayes error in eq. (3.4.b) of the pixelwise classifier. When m/e = 0.2, there is
a significant Bayes error of about 0.4 for the pixelwise classifier. When |p] 2 0.8,
this Bayes error can be reduced by 0.05 ~ 0.4 by employing the spatial
contextual classifier in eq. (3.3). As the ratio m/¢ increases, the amount of
possible Bayes error decrease obtainable by using the spatial correlation
context becomes less significant. When the Bayes error of the pixelwise
classifier is moderate, for example, about 0.15 for the case m/c = 1.0, it can be
reduced by 0.05 ~ 0.15 when |p| 2 0.6 by using spatial interpixel correlation
context as in eq. (3.3).

3.3 Modeling of Class-Conditional Joint Probability

According to the property of a jointly Gaussian distribution, non-zero spatial
correlation between x(r) and Xg(r) means that they are not statistically

independent of each other. Therefore, appropriate modeling of joint conditional
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probability can improve classification performance by incorporating spatial
correlation into the decision making process. This incorporation of spatial
correlation into the classification rule might be expected to become more
importani as the spatial resolution becomes finer. Since the observations x(r)
and Xg(r) are assumed to be jointly Gaussian, one straightforward approach is
computing the conditional joint probability using the stacked vector or extended
feature vector defined as,

Xaxtr) =| 10| (3.6)

This stacked vector approach requires estimates of the mean and covariance
matrix of the extended feature vector, which requires increased numbers of
training samples due to the increased dimensionality of the feature vector. Also
the concadenation of feature vectors makes it necessary to define more spectral
sub-classes. In most remote sensing applications, it would be very hard to
obtain a large enough number of training samples, and this stacked vector
approach may be inappropriate in many cases due to this increased
dimensionality.

Instead of estimating directly the covariance matrix using feature vectors,
model-based approaches can be taken to loosen the requirement of additional
training samples by defining and estimating a few parameters which can
adequately model the spatial correlation structure. Proper choice of a flexible
model which can adequately fit various multispectral images in a given remote
sensing application will be very important. One available model is the
autocorrellation model proposed by Hjort etal. (Hjort etal. 85). It is based on the
assumption that an observed feature vector, x(r), r € L, is a sum of two
independsant processes, one being a class dependent spatially independent
process and the other being a spatially correlated noise process, i.e, forre L,

x(r) = y(r) +&(r) (3.7)

If x(r) is g dimensionally multivariate Gaussian, that is, MVN[M(r), Z}, then, y(r)
is assumed to be a spatially independent Gaussian process with MVN[M(r), (1-
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0)Z,). M(r) denotes a mean vector of the class to which x(r) belongs. X, is a
common covariance matrix of all classes. The noise, &(r), is a multivariate
Gaussian process with MVN[Oq, 6Z), (0qis a g by 1 matrix with all zeros), but it

is assumed to be spatially correlated as,

Cov[e(r), e(r+v)] = pS'ez, (3.8)

The y(r)'s are considered as bearing information directly about the pixel class
label, whereas the noise process, €(r)'s are assumed to be due to measurement

errors and possibly other sources of "extra variations" (Yu and Fu 83) and
consequently class-independent. From the relation in eq. (3.7 and 3.8), the
covariance matrix between x(r) and x(r+v) is computed as,

Cov[x(r), x(r+v)] = Cov[y(r), y(r+v)] + Cov[e(r), e(r+v)]

= p's" l9xo, where v = 0q (3.9)

Spatial correlation parameter pg and common covariance matrix X, are

estimated in the training stage (Hjort et al. 85). Using the relation in eqg. (3.9), the
covariance matrix of {x(r), Xg(r)} can be computed as,

(1aaaal
xa1PyB
Covariance matrix of {x(r), Xs(r)} =Z¢ ® aD 1Dy (3.10)
xayPBP1B
LBy B 1]
where, @ istheKronecker Product
a=o Corrdation of first order neighbors = E
B =P§9 Correlation of diagonal neighbors EIEI Fi51
Y= p% g Correlation of second order neighbors  ELT
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A few comments are deserved here about this model. One of its limitations lies
in the fact that it cannot adopt non-identical spatial correlation structure over
different spectral wavelengths. It is conceivable to have a different degree of
spatial carrelation over different spectral wavelengths especially when the
spatial resolution is dissimilar for different bands. In this case, this model cannot
be easily generalized to the case of non-identical spatial resolution over
different wavelengths such as in thermal band of Landsat Thematic: Mapper
data which has 120m resolution compared to the others of 30m. Probably the
most important notice about this model may be its assumption of the same
covariance matrix for all the classes. Note that the second order statistical
characteristics which are generally represented by the covariance matrix
provide crucial and indispensable information in classification. This limitation
occurs since x(r) is decomposed into two different processes and the spatial
correlation of the noise process, which is class-independent, is assumed to be
directly relatedto the covariance of x(r).

Before further considering models for the spatial correlation structure, it will be
worthwhile to scrutinize a remote sensing system model, especially the scene
model, to have a better understanding of spatial correlation. According to the
taxonomies of (Kerkes and Landgrebe 88), a remote sensing systenn can be
described as a cascade of three components, namely, a scene model, a sensor
model and a processing model. The scene model describes the mechanism
that input!; spectral radiance to a sensor, and is affected by all spectral and
spatial sources and variations of the scene. The sensor model explains the
effect of transforming the incident spectral radiance into a both spatially and
spectrally sampled discrete image. The processing model accounts for the
processing applied to the remotely sensed image data. Ifthe sensor is assumed
not to make significant changes in the reflectance values coming from the
scene, then, the pixels will vary similarly to the reflectance of the scene in both a
spatial and spectral sense. According to the scene model and with this
assumption, the formation of multispectral image data can be modeled in the
following two steps.

Step 1 : Generation of a spatially correlated but spectrally uncorrelated zero
mean signal.
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Step 2 : Transformation of this signal to have the appropriate class mean and
covariance matrix.

The Markov random field (MRF) model is a good candidate for describing the
first step. The second step is the inverse of the so called, the whitening process
(Fukunaga 90) or a decorrelation process. The Markov random field model has
been well-suited for many problems in statistical image processing, such as
restoration and segmentation. It has been also very useful to characterize given
spatially correlated or textured images with a few parameters. Therefore in this
report, the Markov random field will be used to model the spatial correlation
structure. Although many varieties of this model are available (Besag 74,
Kashyap 81, Derin and Kelly 89, Derin and Elliot 87), only the conditional
Markov (CM) model (Kashyap 81) is considered. This conditional Markov model
IS used to estimate spatial correlation between neighboring pixels using its
parameters which can best fit the given multispectral image data.

Applying the random field model requires the image to be stationary.
Stationarity is defined as follows. Feature vectors x(r)'s are called covariance
stationary if the covariance matrix of {x(r), x(r+v)} is dependent only on |v|. If x(r)
is covariance stationary and additionally satisfies E[x(r)] = M for all r, then, it is
called weakly stationary. Note that, in most of images in remote sensing
applications, the mean and covariance matrix of each pixel is generally different
at each location with respect to its corresponding class. To normalize this effect
of class statistics, the normalized feature vector, y(r), is defined as,

y(r) = W(r) [ x(r) - M(r) ] (3.11.a)

M(r) is the mean of the class to which x(s) belongs and Z(r) is the covariance
matrix of the class of x(r). The whitening matrix W(r) in eq. (3.11.a) which
decorrelates the interband correlation is computed as,

1
W(r)=p2¥T (3.11.b)
where, X(r)¥ =¥u
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¥ is the eigenvector matrix of Z(r) and p is the corresponding eigenvalue matrix
which has eigenvalues, A4, ---, Aq, at its diagonal. Since x(r) is assumed to
follow a multivariate normal distribution with M(r) and Z(r), y(r) has also a
multivariate normal distribution as,

Y(r) ~ MVN[Og, lxg] (3.12)

where Iqx.:I is a g by q identity matrix. These normalized feature vectors can be
considered as the spatially correlated but spectrally uncorrelated zero mean
signal in the step 1. There can be two modes of stationarity. If spatial correlation
context is different for each class, modeling with the Markov random field can be
performecl for each class separately. This is called "locally” stationary since the
stationarity holds for only that class. If the spatial correlation is assumed to be
the same for all classes, then, the modeling with the Markov random field is
performecl over the whole image, and it is called "globally" stationary.

The normalized feature vector y(r)’s, r € L, are assumed to be (globally)
stationary and follow the conditional Markov(CM) model. Although the following
derivation is based on the globally stationary case, the result can be easily
modified to the "locally" stationary case. Since there is no interband correlation
in y(r), each band is assumed to follow the conditional Markov(CM) model
separately with generally different parameters. According to the model, y(r)
satisfies,

y(r) = D, 8y y(r+v) + Ae(r) (3.13)
ve Ng
0.1 0 i 0
where, 0, = ) and A=
0 Bra 0 Vig

Ng is the spatial neighborhood defining set. Even though any order neighbor
system is possible, for simplicity, only the first order neighbor system, Ng ={(f1,
0), (0, £1)} is considered. 8, and A are diagonal matrices. According to the CM
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model, 6, is symmetric, that is, 6, = 6_,, and stationary noise field e(r) is
distributed as MVN(O, Iqxq] with following properties.

-8y, Ifve Ns
E{e(neT(r+v)} ={ lgq if v =(0.0) (3.14.a)

0, otherwise

Pr{e(r) | all y(v)'s, v = 1} = Pr{e(r) | y(r+v), v € Ng} (3.14.b)
E{e(r) y(v)} =0, r=v (3.14.c)

Unknown parameter matrices 8, and A are estimated using training samples.

Since no interband correlation in y(r) is assumed, the unknown parameters
6y i's and Aj's are estimated separately for each band i, i=1, ---, 9.

There are three different methods of estimating 8 ; and A;, maximum likelihood
estimation (MLE), the coding method and the least squared error (LS) method.
Although maximum likelihood estimation can give estimates with desirable
properties, like asymptotic consistency and efficiency, it is computationally very
complex due to a difficulty in deriving an explicit log-likelihood function
expression because of an evaluation of the Jacobian of the transforming matrix.
Although the coding method (Besag 74) succeeds in avoiding this complex
calculation by dividing the pixels into disjoint subsets and estimating unknown
parameters over each subset, one of its drawback, especially significant in
remote sensing application is its low efficiency in data utilization since it can use
the data only partially in estimating unknown parameters. A least squared error
(LS) approach is computationally simple, asymptotically consistent and also
efficient in the utilization of the training data (Chellappa 81). Therefore in this
report, the least squared error (LS) approach is taken. For each bandi, i=1, ---,
9, the il component (band) of y(r) is written as,

Yl = Y 6y, yi(r+v) + VA ei(n) (3.15)

ve Ng
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Note that 8, is symmetric, therefore, 8(4,0).i = 8(.1,0),i and 8¢, 1),i = 8(0.-1),;- Denote
©,; as a rnatrix of unknowns as,

Oy,i= 0“'°"‘] (3.16.a)
(0,1),i
and, gi(r) as,
m=| Yilr+(1,0)) +yi(r-(1,0)
o= e G v o | (3.165)

then, the astimate based on the least square approach is obtained as,

~ -1
ovi=[3 tn &) [ Gt yin)] (3.17)

The summation in eq. (3.17) is performed over all training samples. If isotropy is
assumed for the spatial correlation, that is, if spatial correlation is assurned to be
independent of the direction of the spatial lag between pixels, then.,8(4 )i =

8(1,0)i = 6(0,1).i = ©(0.-1).i- Therefore, it is sufficient to estimate only one parameter
0,4.0)i for each band by using eqg. (3.17) with,

0vi=[6(1,0)] (3.18.a)

&i(r) [yi(r + (10 ) +yi(r - (1,0)) + y;(r + 0,1)+y (0,11 (3.18.b)

Using the properties given in eg. (3.14.b,c) and the estimated parameters 6y ;'s,
spectral density function of y;(r)’s can be derived as,

Syi(ur, Up) = A (3.19)
1-2 {0(1 ,0),i COS Uq + 8(g,1),i COS u2}

The covariance of {y;(r), Y;(r+v)} is then obtained by inverse Fourier transforming
the spectral density function in eq. (3.19) as in,
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Cov {Yi(r)v YE(”‘V)} = 2'11{—2] J Sya(uh uz)eﬁu v dU1 dus (3_20)

U V1
where,u=[ ],v [ ]andu-v:uv + u,v
Uz Vo 1V1 T UaVp

Using eq. (3.20), 'the covariance matrix of {y(r), Ys(r)}, which is denoted as Zy,

can be computed. For each band i, i = 1, ---, g, define the following covariances
which comprise the 5g by 5q symmetric joint covariance matrix of Zy.

aq,i= Cov [yi(r), yi(r + (1,0) ]
ap;= Cov [y(r), yi(r+ (0,1) ]
B1,i=Cov [yi(n), yi(r+(1,1) ] (3.21)
Y1,i= Cov [yi(r), yi(r + (2,0) ]
Y2,;= Cov [ yi(r), yi(r + (0,2) ]

Using these components, the covariance matrix Zy is written as,
[lgxq A1 A2 A1 A
Ar lgxq B1 Ci By
Ao Bj |qxq By G (3.22)
A1 Cy By lgxq B
| A2 By Co By lgxq |

Sy

where, for k=1, 2,

Ok, 1 0
Ax = - (3.23.a)
Y Ok,q |
e | 0
Ck= . (323b)
| 0 Yk.q
and, i i
B1,1 0
B = . (3.23.c)
L 0 B1.q_
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In an isotropic case, A, = Ayand C; = C,. If the spatial correlation is

independent of wavelength, then with oy = oy 1 = --- = &g g, By =Py 4 = === = Bi.q
and Y= 1Yk,1= - = Y%kq the matrices, Ay, Cy, and B, can be further simplified as,
Ck =% |qxq

Since y(r) is obtained from x(r) by performing the linear transformation of eq.
(3.11.a), the joint covariance matrix of {x(r), Xg(r)} given their classes {c(r), Cg(r)}
can be computed by using the transformation matrix We,(r) as,

Zeua(r) = Covix(r), Xg(r) | €(r), Cs(r)} = Wex(r) Ty Wixt(r) (3.25)
wW(r) 0 0 0 0
0 W(r+(0,1)) 0 0 0
where, Wex(r) = 0 0 W(r-(1,0)) 0 0
0 0 0 W(r-(0,1)) 0
0 0 0 0 W(r+(1,0))

Notice that the joint covariance matrix in the form of eq. (3.22) and consequently
the covariance matrix in the form of eq. (3.25) is not limited only to the Markov
random field model but, in fact, is quite general. For example, the joint
covariance matrix in eqg. (3.10) which is derived under the autocorrelation model
in eq. (3.7) can be written in the form of eq. (3.25) with appropriate values of o,
B4 and ¥, and assuming the covariance matrices are the same for all classes.
More generally, the form of eq. (3.22) and eq. (3.25) can be assumed to be
valid, ancl the constituent unknown parameters can be directly estimated Fom
the available training samples without explicit modeling of the given irnage with
such models as the conditional Markov model, or the autocorrelation model.

Since {x(r), Xg(r)} given their classes is assumed to be multivariate Gaussian, its
joint class-conditional probability is computed by using Mgy(r) defined as,
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M(r)
M(r+(0,1))
Maxt(r) ={ M(r-(1,0)) (3.26)
M(r-(0,1))
M(r+(1,0))

and the covariance matrix Zgy(r) in eg. (3.25). Classification is then, performed
by finding a class, ¢ € £ which maximizes,

Hgp (c; 1) = Ple(r) = ¢ [ x(r) = x(r), Xs(r) = Xs(N)} (3.27)

Note that evaluation of Hgp(*) requires summations over all possible
combinations of C € R* as shown in eg. (3.1). The number of these class
combinations would be very large since it grows exponentially with respect to
the number of classes. This can be avoided by taking a recursive scheme as a
sub-optimal approach, instead of its direct maximization over all combinations
in one pass. Under the recursive scheme, Hgp(*) reduces to the following
equation, which needs only the knowledge of the class identities of spatial
neighbors.

Hgp (c; 1| C) = Ple(r) = ¢ | x(r) = x(r), Xs(r) = Xg(r), Cs(r) = C}

_ PAx(r) = x(r), Xs(r) = Xs(r) | &(r) = ¢, Cs(r) = C}P{ c(r) = ¢ | Cs(r) = C}
P{x(r) = x(r), Xs(r) = Xs(r) | Cs(r) = C}

(3.28)

The denominator of eq. (3.28) does not depends on the class ¢ and it need not
be evaluated. Since the class identities of spatial neighbors are not available,
intermediate classification results are used instead as estimates. This process is
recursively applied to the pixels over all x-sites and e-sites in Fig. 3.4 at each
recursion until negligible changes of class assignments are attained.
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Figure 3.4 x-Sites and .-Sites of First Order Spatial Neighborhood System.

This recursive approach precludes not only the necessity of considering all the
combinations of classes but also the need of evaluating exponential function to
obtain probabilities from log-likelihood values.

In many multispectral images, however, especially in such scenes of
agricultural areas, there are many homogeneous fields which are relatively
large compared to the pixel size. For those pixels in homogeneous regions, it
will be unnecessary to check all the possible combinations of {Cs(r) = C).
Therefore, if M classes are present, it will be sufficient to check only those M
cases assuming all Xg(r) have the same class as x(r). This will save
computation time significantly. Furthermore, pixels {x(r), Xg(r)} are all classified
simultaneously to one of the M classes. This simultaneous classification of all
pixels in {x(r), Xg(r)} will remove any isolated errors in the classification map
which may be present otherwise. To avoid any blurring of the classification map
near fielcl boundaries, a careful choice of homogeneity test would be very
important,

There are many measures of homogeneity of a set of pixels. The log-likelihood
value of the conditional joint probability is one of the possible homogeneity
measures. The ECHO classifier (Kettig and Landgrebe 76), for example, used
this log-likelihood value to check the homogeneity of cells.

Log[ P{x(r), Xs(r) | &(r) and Cg(r) are of same class)] > THD  (3.29)

If the log-likelihood value is greater than a certain pre-defined threshold value,
denoted by THD, then the pixels {x(r), Xg(r)} are considered as homageneous.
In this case, instead of checking all combinations of {Cg(r) = C), pixels {x(r),
Xg(r)} are classified simultaneously to one of the M classes. If the pixels {x(r),
Xs(r)} do not pass the homogeneity test of eq. (3.29), then those pixels are not
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homogeneous. Therefore those pixels are subject to either the usual recursive
operation or simple pixel-wise classification.

3.4 Modeling of Prior Probability

In eq. (3.1), spatial interpixel class dependency context is conveyed by the
conditional prior probability P{c(r) =c | Cg(r) = C). This conditional prior
probability can impose a constraint reflecting the global property on each class
assignment of the pixels and can produce a more homogeneous classification
map. On the other hand, the class-conditional joint probability of the feature
vectors P{x(r), Xg(r) | c(r), C(r)} may only reflect the local characteristics of the
pixels in terms of appropriate distance measures, such as the Euclidean or the
Mahalanobis distance measures. In many applications of remotely sensed data,
the pixel size is much less than that of the real object or field on the ground.;
therefore, classification results consisting of homogeneous regions with less
isolated spots would be expected. This inherent tendency of coherent class
labels of spatially adjacent pixels can be accounted for in classificationby using
conditional prior probabilities which can impose some constraints on the
configurations of the class labels of spatially adjacent pixels.

The most straightforward way of obtaining conditional prior probabilities is to
estimate 'the probabilities directly from training samples, or the class map after
each iteration in case of a recursive approach. Although simple in concept and
computation, this has several drawbacks in practice. First of all, there may not
be enough training samples, in many real situations, to adequately estimate the
prior probabilities of so many different configurations of classes. Furthermore, it
will be very hard, and in some times, almost impossible, to gather a
representative set of training samples containing all the meaningful
configurations of classes in adequate amounts. Estimation using the
intermediate result of classification is also another possibility, but this method is
known to result in biased estimates (Tilton et al. 82, Dattatreya 91). Instead of
estimating the prior probability itself, transition probabilities can be estimated
under a simplifying assumption such as,

Ple(r+v) | e(r), c(r+t), v andt € Ng, t #V) = P{e(r+v) | ¢(r) } (3.30)
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This assumption implies that the probability of a class of a certain neighboring
pixel of x(r) given all the other neighboring classes and the class of x(r)
depends only on the class of the center pixel x(r). With this assumption, the
conditional joint prior probability is simplified as,

Ple(r), Cs(n} = Ple(r} T Ple(r+v) | e(n)} (3.31)

v e Ng

If enough prior informationis available, all the transition probabilities can be set
up using prior information in advance. Otherwise, the transition probabilities can
be estimated and iteratively updated after each iteration using the class map in
a recursive way.

It is also possible to assume a certain form of distribution function for the joint
prior probabilities and deduce conditional prior probabilities from the
distribution function. This is analogous to assuming a multivariate normal
distribution for feature vectors to compute the class-conditional joint probability
of the feature vectors. The justification for assuming a certain form of distribution
function for the joint prior probability might not be easily attainable.
Nevertheless, among other possibilities, (for example, the geometric probability
model (Owen 84), the Gibbs random field model (GRF) (Derin and Kelly 87,
Besag 86, Derin and Elliot 87) is taken as a model of priors in this report, since it
can exploit the inherent tendency of coherent class labels of spatially adjacent
pixels in a very straightforward and efficient way. Also the Markov property of
Gibbs random field model allows the conditional prior probability P{c(r)|Cg(r)}'s
relatively in a very simple form.

The class labels e(r)'s, r € L, are assumed to be modeled by the Gibbs random
field, then the conditional prior probabilities are given as, forc € Q and C € R?,

Pie(n=c|Cs(=C}-1e -Ue, C) (3.32)

where, Uic,C)= ¥ Vwc, C. Z= Y e U, C)
We N CEW
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Vw(c, C) is a potential function of a class configuration {e(r) =c, Cg(r) = C) on a
cliguew € Ng;, and U(c, C) is an energy function. A clique is a set of sites
(including single sites) such that any two elements in the set are neighbors of
each other. Types of cliques of first order spatial neighborhood system are
shown in Fig. 3.5.

- O B m

Type0 Typel Type2

Figure 3.5 Clique Types of First Order Spatial Neighborhood System.

Ng in eg. (3.32) denotes a set of cliques consisting of only the sites of pixels in
{x(r), Xg(n}. Z is a normalizing factor and called as partition function. Since this
is not dependent on the particular realization of {e(r) = c, Cg(r) = C), it needs not
be evaluated. It is very important to have a proper potential function to be able

to exploit the class label coherence in a classification. The clique potential
function Vyy(c, C) is defined as Vyl(c, C) = a¢, ¢ € Qin the case of type 0. For

type i, i=1, 2, Vylc, C) is defined as,

_ J -bi, if all classes of pixels in the clique w are the same
Vw(c, C) = { +bi, otherwise

While {ac | c € R} determines the relative likelihood of each classc, ¢ € R, {by,
bo} determines the emphasis of interactions between classes of adjacent pixels.
As the b's become large, more homogeneous regions will be favored in the
classification. If the b's are set to zero, this model of priors will be converted
back to a classification with no interaction between class labels of adjacent

pixels. Therefore, it is possible to control the preferred sizes and directions of
homogeneous regions with appropriate values of {b4, bo}. Assuming ag = a, for

allcin Q, i.e., equal prior probabilities of the classes and b = by = by, then the
class-conditional probability is given as,

Pic(r) = ¢ | Cs(r) = C} o< €22(M-2) (3.33)
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where, m is the number of occurrences of the class c in C, the classes of
neighbors. This simplifies the log likelihood value computation of eqg. (3.28) as
in,

Log [Hsp(c; r| Cg (r) = C)]

= Log [Px(r), Xg(r) | e(r) = ¢, Cg (1) = C}] + 2b(m-2) + const. (3.34)

where "const.” doesn't depend on the particular class assignment c t¢ the pixel
x(r). If the pixels {x(r), Xg(r)} are assumed to be independent of each other given

their classes, then, eq. (3.34) is modified to much simpler form,

Log [Hsp(c; r | Cs (r) = C)] = Log [P {x(r) | e(r) = c}] + 2b(m-2) + const. (3.35)

35 Experiments of Spatial Contextual Classification

3.5.1 Description of Experiments

To test the spatial contextual classification rule Hgp(*) proposed in this chapter,
two Landsat Thematic Mapper (TM) data sets, which were acquired over the
same agricultural areas in Tippecanoe County, Indiana during July and
September, 1986, were used in an experiment.

All 7 bands were used in the classification. Four information classes were
determined from the available ground truth data and several spectral sub-
classes were defined for each information class separately for each diata set to
satisfy the multivariate normal assumption. Training and test samples were
chosen as in Table 3.1.
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Table 3.1 Training and Test Samples.

_ July Data September Data
Information
Class number number
of of
Sub- o Test Sub- o Test
classes Training classes Traning
Com 1 286 5559 2 376 5559
Soybeans 3 495 4773 1 408 4773
Wheat 2 208 1215 2 330 1215
Alfalfa/Oat 3 321 1366 2 219 1366
Total 9 1310 12998 7 1333 12998

A portion of image, 128 by 128 pixels, is chosen as a test data set. Since there
are pixels with unknown identities in the test portion of the data, only 12998
pixels which have known ground truth labels, were counted when assessing
classification performance. Classification performance is computed in terms of
overall classification accuracy (OVA) and class averaged classification
accuracy (CAG) and compared with that of a pixelwise maximum likelihood
classifier.

To see the effectiveness of spatial contextual information, three different
experiments were carried out. The first experiment was performed only with the
spatial interpixel correlation context. Secondly, only the spatial class label
dependency context was used and in the last experiment, both were used
simultaneously in the classification. Figure 3.6 and 3.7 show the July and
September data sets and Fig. 3.8 is the associated ground truth map.
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3 (0.63 - 0.69 pm)
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Band 2 (0.52 - 0.60 pm) Band

Band 1 (0.45 - 0.52 um)

Band 4 (0.76 - 0.90 pm)  Band 5 (1.55 - 1.75pm)  Band 6 (2.08- 2.35 um)

Band 7 (10.4 - 12.5pm)

Figure 3.6 July Thematic Mapper (TM) Data Set.; The white box
shows the 128 by 128 pixel portion of selected test fiekd.
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Band 3 (0.63 - 0.69 pm)

Band 2 (0.52 - 0.60 pm)

Band 1 (0.45 - 0.52 pm)

Band 4 (0.76 - 0.90 pm) Band 5 (1.55 - 1.75 pm) Band 6 (2.08 - 2.35 pm)

Band 7 10.4 - 12. pm)

Figure 3.7 September Thematic Mapper (TM) Data Set.; The whiie box
shows the 128 by 128 portion of selected test field.
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Figure 3.8

B8 Soybeans
Wheat

B Alfalfa/Oats

(] Unknowns

Associated Ground Truth Map.; The white box shows the
128 by 128 portion of selected test field.
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3.5.2 Spatial Contextual Classification with Interpixel Correlation Context

To test how much increase of classification accuracy can be attained by
incorporating spatial correlation context into classification, the following 4
different classifiers in Table 3.2 with only spatial interpixel correlation context,
were applied to the July and September data.

Table 3.2 Description of Spatial Contextual Classifiers with
Interpixel Correlation Context Only.

Classifier Description
RECU - 1 Recursive spatial contextual classifier as in eg. (3.28)
(With isotropy assumption)
RECU - 2 Recursive spatial contextual classifier asin eq. (3.28)
(Without isotropy assumption)
CM-1 Spatial correlation context only for homogeneous pixels
with eq. (3.29) (With isotropy assumption)
CM-2 Spatial correlation context only for homogeneous pixels
- with eq. 53.292 (Without isotropy assumgtionz

RECU stands for a recursive spatial contextual classifier in eq. (3.28). Since this
recursive classifier is very time-consuming, in the classifiers of CM - 1 and 2, the
homogeneity test in eq. (3.29) was first carried out to find homogeneous group
of pixels. If the pixels {x(r), Xg(r)} were homogeneous according to the test in eq.
(3.29), then one of the M classes which maximized the joint conditional
probability in eq. (3.28) was assigned to all pixels in {x(r), Xg(r)} without
checking every combinations of {c(r), Cg(r)}. If the pixels {x(r), Xs(r)} failed the
homogeneity test, those pixels were classified by a pixelwise maximum
likelihood classification. These classifiers are denoted by CM. In both the RECU
and CM classifiers, two conditions, that is, with and without isotropy
assumptions in eqg. (3.16.a) and eq. (3.18.a), were tested.
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For comparisons, a pixelwise maximum likelihood classifier (ML) was used to
classify the July and September data sets. Classification accuracies are
summarized in Table 3.3 and 34.

Table 3.3 Percent Classification Accuracy of July Data by Spatial Contaxtual
Classifier with Interpixel Correlation Context Only.

Classifier Com Soybeans Wheat Alfalfa/Oats CAG OVA

ML 90.18 57.72 68.72 77.89 73.63 74.37
RECU- 1 93.70 56.00 73.33 80.97 76.00 7600
RECU - 2 94.10 56.04 72.67 81.26 76.02 76.16

CM-1 92.98 62.69 72.59 79.87 77.03 77.97
CM-2 92.95 62.62 72.67 80.09 77.08 77.96

CM-1 : THD =-150, CM-2 : THD =-150

Table 3.4 Percent Classification Accuracy of September Data by Spatial
Contextual Classifier with Interpixel Correlation Context Only.

Classifier Com Soybeans Wheat Alfalfa/Oats CAG OVA

ML 82.59 55.06 51.28 4707 5900  65.28
RECU-1 8307 61.85 57.12 4693 6224 6851
RECU-2 829 62.46 56.38 4663 6211 6859

CM-1 8557 62.04 61.32 4978 6468  70.34
CM-2  84.82 66.44 27.08 6449 6071  69.98

CM-1 : THD =-150, CM-2 : THD =-150
In the July data set, for all classifiers tested above, there was considerable
confusion of soybeans and wheat into alfalfa/oats. The spatial classifiers
increased the classification accuracies compared to the maximum likelihood
classifier (ML) as much as 5% for all classes except soybeans. The recursive
classifiers (RECU-1, 2) were better than the pixelwise ML classifier by 1.63%
and 1.79% in overall classification accuracy. CM-1 and CM-2 were better than
the ML classifier by 3.6% and 3.59% in overall classification accuracy. The CM
classifiers gave better results than the recursive (RECU) classifier for the class
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soybeans, and the overall and class average classification accuracies were
both better than the totally recursive cases (RECU-1, 2). Note that the CM
classifiers are implicitly relying on the spatial class dependency context since a
homogeneous group of pixels, {x{(r), Xg(r)}, are assigned the same class
simultaneously. When there are many homogeneous fields, the approach of first
testing homogeneity and classifying homogeneous pixels, would give better
performance than a totally recursive approach. It can also reduce the
computational time. There were not significant differences between the isotropic
and non-isotropic cases. The estimated values of 6 )i and 6 1), in €q.
(3.16.a) were very similar to each other and this caused similar classification
results.

In the case of the September data, soybeans and wheat were also confused
mostly as alfalfa/oats. Generally, the spatial classifiers increased the
classification accuracy as much as 10% for all classes but alfalfa/oats. There
were 3.23% ~ 5.06% of increase in overall classification accuracy comparedto
the ML classifier. Again, there were not noticeable differences between isotropic
and non-isotropic assumptions.

Several threshold values for the homogeneity criterion in eq. (3.29) were tested
in the CM classifiers. Classification accuracy of CM -1 and CM -2 were
observed not so sensitive to a small change of threshold value as seen in Fig.
39.
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Figure 3.9 Classification Accuracies of July Data with Various Thresholds for the

Homogeneity Test. (a) CM-1 Classifier. (b) CM-2 Classifier.
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In the Ckl-classifiers, if the threshold value is set up too high, then only a small
number of pixels will be classified with spatial correlation contextual
information. But if it is too small, then many pixels will be considered as
homogeneous with their neighbors and will result in undesirable blurs near field
boundaries. In the experiments with July and September data, threshold values
between -140 ~ -170 were generally satisfactory.

For visual assessment of classification performance, the classification maps of
the spatial classifiers considered here and the maximum likelihood classifier
are also shown in Fig. 3.10 ~ 3.12. The classification maps of pixelwise
maximum likelihood classifiers shown in Fig. 3.10 have many isolated spots
and most of them were erroneous classifications (For the locations of errors, see
Fig. 3.16). The spatial classifiers provided much cleaner class maps as shown
in Fig. 3.11 and 3.12. The totally recursive classifiers (RECU-1, 2) resulted in
less spatially small isolated classes than 'the classifiers CM-1, 2 which checked
homogeneity first.

Since the recursive classifiers utilize spatial correlation context for all pixels in
the given image, classification errors tend to be blocky. That is, when a small
group of pixels are incorrectly classified, this error region tends to grow by
encroaching into its neighbors through the recursive process. In the CM
classifiers, this growing of error regions is prevented by the homogeneity test.
This gives a slightly higher classification accuracy for CM classifiers although
the class maps of the totally recursive classifiers look cleaner.
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D Com Wheat
@ Soybeans [ Alfalfa/Oats

Classification Maps Obtained by the Pixelwise Maximum

Figure 3.10
Likelihood Classifier. (a) July Data. (b) September Data.
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© @)

C] Corn Wheat
) Soybeans [ Alfalfa/Oats

Figure 3.11 Classification Maps of July Data Obtained by the Spatial Classifier with
Interpixel Correlation Context Only. (a) Isotropic Recursive (RECU-1)
Classifier. (b) Non-isotropic Recursive (RECU-2) Classifier. (c)
Isotropic CM (CM-1) Classifier. (d) Non-isotropic CM (CM-2) Classifier.
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Figure 3.12

(c) (d)

Soybeans Alfalfa/Oats

Classification Maps of September Data Obtained by the Spatial Classifier
with Interpixel Correlation Context Only. (a) Isotropic Recursive (RECU-1)
Classifier. (b) Non-isotropic Recursive (RECU-2) Classifier. (c) Isotropic
CM (CM-1) Classifier. (d) Non-isotropic CM (CM-2) Classifier.
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35.3 Spatial Contextual Classification with Class Label Dependency Context

In the second experiment, only the class label dependency context, Pr{Cg(r),
c(r)}, was used in spatial classification. That is, the feature vectors were
assumed to be class-conditionally independent as in eqg. (3.2) and the classifier
in eq. (3.35) was used. Classification results are shown in Table 3.5. In this
experiment, only the GRF prior model was considered.

Table 3.5 Percent Classification Accuracy of Spatial Contextual Classifier
with Class Label Dependency Context Only.

Data Set Com Soybeans Wheat Alfalfa/Oats CAG OVA

July Data 94.51 57.28 73.50 80.82 7653  76.82
September Data__83.79 5952 5251  50.07 6147  67.86

b=30 -

When the spatial class dependency context was used via Hgp with the prior
probabilities based on the Gibbs random field, the classification accuracy was
increased by 2 ~ 3% over the pixelwise maximum likelihood classification. In
the case of the July data, there were significant increases in classification
accuracy of the classes corn and wheat. In September data, there was about a
4% increase of classification accuracy for the class soybeans and the other
classes als0 showed classification accuracy increases.

Although some algorithms which can estimate parameter b in eq. (3.35) are
available (Dattatreya 91), in modeling the conditional prior probabilities in eq.
(3.33), several different values of b were tested as shown in Fig. 3.13 {0 see its
effect on the GRF prior model. The classification performance was observed to
increase as b became larger to a certain value and to level off thereafter. When
b was small, there were no significant changes of classification accuracy
compared to the case without spatial priors. As bincreased, classification
accuracy was observed to increase to a certain extent and then start to
decrease. Larger values of b means more emphasis given to spatial class
homogeneity. The result in Table 3.5 were obtained with the best result for
various b's as shown in Fig. 3.13. The classification result was not so sensitive

to the value of bif it was large enough.
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Figure 313 Percent Overall Classification Accuracy (OVA) Versus

b in the Spatial Contextual Classification Using Hgp in
Eq. (3.35). (a) July Data Set. (b) September Data Set.

Figure 3.14 shows a histogram of the differences of the first and second largest
log-likelihood values of each pixel in July data set. Approximately 45% of the
pixels have differences of first and second largest log-likelihood values larger
than 20.
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0 20 40 60 80 100
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Figure 3.14 Histogram (Hist) and Accumulated Histogram (A.Hist) of Differences
Between First Largest And Second Largest Log-Likelihood Values
Of Pixelsin July Data Set.

Therefore if the spatial prior term in eq. (3.35) is too small compared to the
differences of log-likelihood values, the inclusion of spatial priors wont change
the classification performance much.
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Figure 3.15 shows classification maps of July and September data when only
the class label dependency context was used in spatial classification. Imposing
class label coherence for spatially neighboring pixels with the Gibbs random
field in eq. (3.35) was very effective in removing scattered ancl isolated
classification errors as shown in Fig. 3.15. Field boundaries were more regular.
Figure 3.16 and 3.17 show error maps which identify the locations where error
occur.

a) . _ ()

(] Com -_ Wheat
g Soybeans [l Alfalfa/Oats

Figure 3.15 Classification Maps Obtained by the Spatial Classifier with Class Label
Dependency Context Only. (a) July Data Set. (b) September Data Set.
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(@) (b)

(d) (e) (f)

Correctly classified pixels
. Incorrectly classified pixels

Figure 3.16 Error Maps of the July Data Set without Spatial Class Dependency Context.
(a) Pixelwise maximum likelihood classifier. (b) Isotropic Recursive (RECU-1)
Classifier. (c) Non-isotropic Recursive (RECU-2) Classifier. (d) Isotropic CM
(CM-1) Classifier. (e) Non-isotropic CM (CM-2) Classifier. (f) with Only Spatial
Class Dependency Context in eq. (3.35).
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Figure 3.17

(d)

(e)

Correctly classfiedpixes

B Incorrectly dassified pixds

Error Maps of the September Data Set without Spatial Class Dependency
Context. (a) Pixelwise maximum likelihood classifier. (b) Isotropic Recursive
(RECU-1) Classifier. (c) Non-isotropic Recursive (RECU-2) Classifier. (d)
Isotropic CM (CM-1) Classifier. (€) Non-isotropic CM (CM-2) Classifier. (f) with
Only Spatial Class Dependency Context in eg. (3.35).
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3.5.4 Spatial Contextual Classification with Both Interpixel Correlation Context
and Class Label Dependency Context

In the third experiment, spatial class dependency context in the form of spatial
prior probability, Pr{Cg(r), ¢(r)}, is also included in the classification addition to
the spatial interpixel correlation context. The same value of b in the GRF prior
model is used as with the case of spatial class dependency context only in
previous section.

When pixels are classified with CM classifiers which check the homogeneity of
a given group of pixels {x(r), Xg(r)}, the class of homogeneous groups of pixels
IS not changed by additionally incorporating spatial prior probability since the
pixels are classified simultaneously to the same class. However, those pixels
which fail the homogeneity test are subjected to pixelwise maximum likelihood
classification with the spatial priors. Therefore, only those inhomogeneous
pixels undergo the recursive procedure for class label dependency context.
This procedure is capable of utilizing the spatial interpixel correlation context
where it is most suitable, namely in homogeneous regions and to use only the
class label dependency context for inhomogeneous pixels. This will significantly
reduce erroneous pixels near homogenous pixels or field boundaries.

Table 3.6 and 3.7 summarize classification accuracies obtained by using both
of the spatial contexts simultaneously. CM classifiers which first test
homogeneity of the pixels and then selectively apply the spatial contextual rule
were observed to perform better than the totally recursive cases (RECU-1, 2).

Table 3.6 Percent Classification Accuracy of the July Data using the Spatial
Contextual Classifier with Both Interpixel Correlation and Class Label
Dependency Context.

Classifier Comn Soybeans Wheat Alfalfa/Oats CAG OVA

RECU - 1 94.84 57.95 74.49 81.92 77.30 7741
RECU - 2 95.02 57.97 74.16 81.84 77.25 77.46
CM-1 94.53 63.06 73.83 80.97 78.10 79.00

CM-2 94.50 63.10 73.91 81.33 78.21 79.04
CM-1 : THD =-150, CM-2 : THD =-150, b: 30
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Table 3.7 Percent Classification Accuracy of the September Data using the Spatial
Contextual Classifier with Both Interpixel Correlation and Class Label
Dependency Context.

Classifier Comn Soybeans Wheat Alfalfa/Oats CAG OVA

RECU-1 8374 6105 5572 4963 6254 6866

RECU-2 8392 61.41 56.13 4985 6283 6893
CM-1 8.7 62.39 61.81 4971 6492 7060
CM-2 _ 85.18 6694 2576 65.30 6079 70.28

CM-1 : THD =-150, CM-2 : THD =-150, b:

Compared with the pixelwise maximum likelihood classifier results in Tabie 3. 3,
all classes were classified much better except the class wheat in September
data with CM-2. As with the results in Table 3. 3 and 3. 4 which were obtained by
using only the interpixel correlation context, the results in Table 36 an 3. 7were
generally better. As for July data, simultaneous incorporation of both spatial
contexts increased classification accuracies for all classes compared!| with the
previous cases of using only one type of spatial contextual information.
However, in the September data, although both the overall and class (averaged
classificalion accuracies showed improvement over the previous results in
Table 34 and 3.5, some classes such as soybeans and wheat, had slightly
worse classification accuracy.

Figure 318 and 3. 19 show the classification maps obtained with the spatial
classifiers with both spatial contexts. The corresponding error maps are
presented in Fig. 3.20 and 3.21. For a comparison, the error maps of the
pixelwise maximum likelihood classifier and the spatial classifier in eq. ( 3. 35)
with only spatial class dependency context are also included in Fig. 3.20 and
3.2L
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Figure 3.18

- . L 5.

@ Soybeans [ Alfalfa/Oats

Classification Maps of the July Data Obtained by Spatial Contextual
Classifier with Both Interpixel Correlation and Class Label Dependency
Contexts. (a) Isotropic Recursive (RECU-1) Classifier. (b) Non-isotropic
Recursive (RECU-2) Classifier. (c) Isotropic CM (CM-1) Classifier. (d) Non-
isotropic CM (CM-2) Classifier.
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Figure 3.1'9 Classification Maps of the September Data Obtained by Spatial
Contextual Classifier with Both Interpixel Correlation and Class Label
Dependency Contexts. (a) Isotropic Recursive (RECU-1) Classifier. (b)
Non-isotropic Recursive (RECU-2) Classifier. (c) Isotropic CM (CM-1)
Classifier. (d) Non-isotropic CM (CM-2) Classifier.
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Figure 3.20

Correctly classified pixels
- Incorrectly classified pixels

Error Maps of the July Data Set with Spatial Class Dependency Context.
(@) Pixelwise Maximum likelihood classifier (without Spatial Class
Dependency context). (b) with Only Spatial Class Dependency context.
Ec) Isotropic Recursive (RECU-1) Classifier. (d) Non-isotropic Recursive
RECU-ZE)CIassiﬁer. (e) Isotropic CM (CM-1) Classifier. (t) Non-isotropic
CM (CM-2) Classifier.
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(b) ()

(d)

Figure 3.21

Correctly classified pixels
B Incorrectly classified pixels

Error Maps of the September Data Set with Spatial Class Dependency
Context. (a) Pixelwise maximum likelihoodclassifier (without Spatial Class
Dependency context). (b) with Only Spatial Class Dependency context.
(c) Isotropic Recursive {RECU-1) Classifier. (d) Non-isotropic Recursive
(RECU-2) Classifier. (e) Isotropic CM (CM-1) Classifier. (f) Non-isotropic
CM (CM-2) Classifier.
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As shown in Figure 318 and 319, the spatial classifiers accounting for both
spatial contexts simultaneously resulted classification maps with many fewer
isolated errors. These clean class maps would be very useful in applying the
classification results since they show field boundaries very clearly.

In summary, Fig. 3. 22 and 3. 23 show the classification accuracy increases over
the pixelwise maximum likelihood classifier obtained by incorporating spatial
contextual information.
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Interpixel Correlation ContextOnly ~ Both of Spatial Contexts
RECU-1 : clasdfier2 RECU -1 : classfier6
RECU -2 : classifier3 RECU-2 : classifier7
CM -1 : classfierd CM -1 : classfier8
CM -2 : classfierb CM -2 : classfier9
Figure 3.22 Classification Accuracy Improvement by Spatial Contextual

Information over Pixelwise Maximum Likelihood Classifier (July Data).
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Figure 3.23 Classification Accuracy Improvement by Spatial

Contextual Information over Pixelwise Maximum
Likelihood Classifier (September Data).

As seen in Fig. 3.22 and 3.23, there were about 2 ~ 6% classification accuracy
increases. It is very difficult to judge which contextual informationis more useful
in improving classification results. While the answer should be dependent on
each particular data set classified, from a computational viewpoint, however, the
interpixel correlation context is much more complex to properly account for due
to calculating joint class conditional probabilities of augmented feature vectors.
An incorporation of the class label dependency context is relatively simple. In
the case of the Gibbs random field (GRF) model, it only requires to count the
number of neighboring pixels which have the same class as the center pixel
under cornsideration. The parameter b in eq. (3.33) decides the relative
importance of homogeneity of the class labels compared to the differences in
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likelihood values. Since the degree of this class label coherence represented
by the value b in eq. (3.33) is not necessarily all the same over the given image,
- for example, larger weights on this class label coherence might be beneficial
inside homogeneous fields and lesser weights in inhomogeneous fields or near
boundaries-, spatially different values of b could be useful in classifying given
image data. However, this is left unsolved for future research.

3.6 Conclusion

In this chapter, the spatial contextual part Hgp(*) in the spatio-temporal
contextual classifier derived in Chapter 2, was applied to a problem of spatial
classification. Spatial interpixel correlation context was represented by the joint
class-conditional probabilities and, class label dependency context was
accounted for by the joint prior probability which was modeled by a Gibbs
random field.

Experiments were carried out with two Landsat Thematic Mapper data sets with
these two spatial contexts. In incorporating spatial interpixel correlation context,
the procedure of first testing homogeneity of a given group of pixels and then
selectively utilizing contextual information was very useful both in improving
classification performance and reducing computational complexity. The class
label dependency context was relatively simple and computationally less
demanding, and it was very useful in improving classification accuracy by
removing spatially small isolated classes. The Gibbs random field model was
effective in implementing class dependency context.

The spatial classifiers discussed in this chapter not only increased classification
accuracies over the pixelwise maximum likelihood classifier and but also
resulted in classification maps with far less isolated errors and clean field
boundaries.
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CHAPTER 4

TEMPORAL CONTEXTUAL CLASSIFICATION:
A DECISION FUSION APPROACH

41 Introduction

This chapter addresses the temporal contextual classification problem. A few
desirable properties of the temporal classifier to be developed are as follows.

1. Since there are usually only a limited number of training samples
available for each temporal data set, employing a temporal contextual
classifier should not require extra training samples additional to those
already available for pixelwise non-temporal contextual classification.

2. Thus, it should be possible to train a temporal classifier separately for
each temporal data set. For this requirement, it is quite common to
assume class-conditional independence of features of different temporal
data sets.

3. It will be also very desirable if a temporal contextual classifier can
facilitate distribution of computation required for classification over
different times. In other words, as new temporal data sets becomes
available, the intermediate results already computed with previous
temporal data sets should be able to be updated so that they can be
again used when the next temporal data set becomes available.

4. Different temporal data sets can have distinct properties and varying
discriminating power, therefore, one should be able to associate a
"reliability factor." A temporal classifier would be very useful if it can
accommodate different reliability factors associated with each temporal
data sets.
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Noting that a temporal contextual classification can be thought as a special
example of the multisource classification problem with temporal data sets being
considered as separate information sources, focus is brought on a more general
problem of multisource classification and the term "temporal contextual”
classification and "multisource classification” will be interchangeably used in this
chapter.

Unlike those customary data combination approaches in multisource
classification, this chapter is addressing a totally new multisource classifier which
is based on a fusion of “class decisions" of each separate data set. Each data set
Is separately fed into a local classifier and a final classification is performed by
summarizing these local class decisions. An optimum decision fusion rule based
on a minimum expected cost is derived. This new decision fusion rule is
developed to be capable of handling not only data set reliabilities but also
classwise reliabilities of each data set.

The temporal contextual classification algorithms discussed in this chapter will be
used in spatial-temporalclassification in Chapter 5 in conjunction with the spatial
contextual parts developed in Chapter 3. When they are complete as is,
experimental results with multiternporal data are included in this chapter.

4.2 Multisource Data Classification

With remarkable advances in sensor technology in many application fields, it
becomes quite common to employ several sensors and to extract desirable
informaticn from the amassed set of all available data sets. This approach allows
more reliable and improved results. One application of this, for example, can be
found in an analysis of multisource data which deals with data sets obtained by
multiple sensors possibly with different characteristics. Other than digital image
data sets, non-image data sets such as geophysical measurernenl data or,
cartographic data sets, etc., are also often available for analysis, for example, in
a geographic information system (GIS). These disparate information sources are
utilized simultaneously to improve the results of data analysis. There have been
many efforts to effectively employ multisource data sets; for example, see
(Benediktsson and Swain 92, Benediktsson et al. 90, Lee et al. 87). These can
be categorized in terms of how the disparate information sources are combined
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to attain a desired objective. In this chapter, we address a multisource
classification algorithm based on an optimal fusion of decisions of each data set.

The idea of the decision fusion is to let each local classifier make a (local)
decision based only on its own data set and forward the decision to the central
classifier which finalizes a decision based on a set of local decisions and any
available prior knowledge, such as the reliabilities of the respective local
decisions. Since each data set is separately fed into its own classifier and only
the decision of the local classifier is required by the fusion rule, this approach can
significantly ease a requirement at the training stage and subsequently
computational complexity.

Different information sources can have different degrees of reliability. One data
set might be more reliable than another data set in the analysis of specific data.
This is to be expected since the conditions or characteristics of the various
sensors or data sets are not necessarily all the same. In classification problems,
for example, one set of data might be able to provide more discriminating power
than another data set if the classes are more separable from each other using
that data set. It is also very likely that a certain class or a subset of classes may
be discriminated more successfully than others, and it is clear that a less reliable
data set should have less effect on the overall classification procedure, thus a
classification algorithm should be able to appropriately deal with data set
reliabilities. It will ,therefore be very useful to associate a reliability factor not only
to the data set but also to the classes which the local classifier defines.

In this chapter, the reliability factor associated with each class will be called the
"classwise reliability.” A simplest use of this "classwise reliability" can be found
where decision fusion is based on selecting the particular local decision which
has the largest classwise reliability among other local decisions. Although data
set reliabilities have been successfully utilized in combining disparate information
sources, for example, in the approaches proposed by (Benediktsson and Swain
92, Benediktsson et at. 90, Lee et at. 87), few examples of considering classwise
reliability can be found. One of the objectives of this research is the effective
utilization of classwise reliabilities as well as data set reliabilities in classification.

The fusion of the decisions of different data sets can be formulated in a manner
similar to M-ary distributed hypothesis testing problems, which have been a
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subject of considerable research attention (Tenny and Sandell 86, Chair and
Varshney 86, Reibman and Nolte 87, Hoballa and Varshney 89, Tang etal. 89) in
such fields as radar systems and military surveillance systems. We apply the
maximum likelihood decision fusion rule as in (Tang et al. 89) in a multisource
classification problem and extend the result in (Tang etal. 89) by adopting a
modified cost function to find the optimum fusion rule which can handle both data
set and classwise reliabilities.

Applying a decision fusion approach in multisource classification has several
advantages over conventional algorithms based on the conventional delta fusion.
Since the algorithm based on a decision fusion requires only classes assigned
«sing each data sets and doesn't need to keep the class-conditional probabilities,
it. is very simple not only from the computational viewpoint but also from a
memory requirement. It can also deal with several disparate data sets which
have significantly different underlying distributions. For example, there can be a
data set which cannot be successfully modeled by a set of statistical distribution
functions on which the conventional data fusion multisource classification
algorithm!; are formulated. However, forwarding only the classes assigned with
each data set forfeits information of data fusion, although the prior information
required in decision fusion can supplement the loss to some extent. Much simpler
computation and reduced memory requirements would be able to reduce the
performarice degradation due to the loss. In many practical applications in which
the information carried by posterior probabilities is inaccurate to some extent,
however, if properly estimated, the prior information, supplied for the decision
fusion process, can surpasses the information loss and result in better
performance.

The organization of this chapter is as follows. In section 4.3, a brief review of
multisource classification and its previous research is presented. In section 4.4,
an optimal decision fusion algorithm based on minimum expected cost is derived.
The problem of selecting data set and classwise reliabilities is addressed in
section 4.5. Some comments on information combination structures in
multisourcee classification are given in section 4.6. Experimental results with three
remotely sensed multitemporal Thematic Mapper (TM) data sets are presented in
section 4.7. Finally, section 4.8 concludes this chapter.
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43 Review of Previous Works

Suppose there are p different data (or information) sources which produce a set
of features (or, feature vectors) {xq, ---, xp} where x, k =1, ---, p, is a g-
dimensional feature vector of the kil information source (note that the dimension
need not be the same for different data sets). The objective with these amassed
multisource data sets is to make the best decision on the nature of the object
observed as {x;, ---, Xp}.

A decision is to be made among the classes in Qg, a set of user-defined
information classes. In temporal contextual classification with these p
multitemporal data sets, the set Q,, is typically the set of classes in the pm data
set, that is, €,. However, in this chapter, Qg can be any set of user-defined
information classes. My is the number of information classes in Q4. The term
"information class" means a class which is directly of informational value to user
according to the specific purpose of data analysis. If the purpose is for finding
classes of objects on the ground via remotely sensed data, then, the list of
information classes might include the names of objects on the ground, e.g.,
specific plant species. If it is for detecting a particular target, then, the information
classes could be {target, non-target}. Since information classes are defined
ordinarily based solely on the user's interests, they may not be separable in the
feature space. Thus, in the classifier training stage, the given data sets might be
analyzed, for example, through a clustering, to find a mutually exclusive and
exhaustive set of sub-classes or "data classes" each of which can be modeled by
an appropriate probability density function. Due to the computational complexity
and a practical limitation on the requirement for training samples etc., the data
sets are assumed, in general, to be class-conditionally independent of each other
(see (Lee et al. 87) for a discussions of this assumption), and each data set is
separately analyzed in the training stage. Therefore different data sets can have
generally a distinct set of data classes with a different number of data classes. As
defined in Chapter 2, Q, k =1, ---, p, iS a set of data classes in the KR data set
with My elements.

The problem of multisource classification is to determine the optimum decision
rule given the multisource data {xy, ---, Xp}, a priori information such as €, £
and the estimated probability density functions of the data classes in each Q, k =
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1, ---, p. The optimal decision rule in a Bayesian approach, is to findthe class o,
e ), which maximizes the probability P{a;| x4, ---, Xp}. Under the independence
assumption mentioned above, this is equivalent to finding a class w; maximizing
P(ay)P(x4| ay)== (x5 | @). Note that, in this Bayesian approach, each data set has
the same effect on the final decision of Q.

Xy — | Data Fusion |p.cision
: and — U,
X, —————> Classifcation
(@
u;

x, —| Classify |t pata F(gfsion Decision
e — an — u,

Xp —* o[ ClassiTy |—»] Classifcation
Up

(b)

Figure 4.1 Multisource Classification Structures. (a) Fusion
of Features. (b) Fusion of Decisions.

Generally, there are two different approaches to multisource data set
classificalion as shown in Fig. 4.1.

The feature vectors of each data source (or sensor) can be fed into a central
decision procedure as in Fig. 4.1.(a) to draw a final decision which is denoted by
ug € Q. For a detailed review on works in this category, refer to (Benecliktsson et
al. 90). In this decision procedure, a subset of original features might be used by
applying a suitable feature extraction algorithm. A simple straightforward example
of this approach might be the so called, extended vector approach in which all
given feature vectors are used simultaneously to form a single compound feature
vector for classification. The cascade classifier (Swain 78a) belongs also to this
category. Another example might be the layer-based classifier where a different
subset of features are used in each different level (Hoffer et al. 79). Lee et al.
(Lee et al. 87) developed a statistical multisource classifier which was later
extended by Benediktsson et al. (Benediktsson et al. 90) to be capable of having
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reliability factors associated with data sets. In (Benediktsson et a/. 90), a global
membership function Fj(-) which is definedfor wj € €, /=1, ---, My, as,

o] Ok
F o - [P((Dj I xk)l 4.1
j (X1, ==, Xp) = Plwy) g Rl (4.1)

is used to perform data fusion and classification. Equation (4.1) shows how the
individual weighted posterior probabilities affect the global membership function.
o IS a reliability factor associated with the kI data set. The decisionis made by
selecting a class among £2, which gives a maximum membership function value.

The reliabilities associated with the data sets, {ay, ---, ap} in eq. (4.1) are set
considering such factors as class separabilities, classification accuracies, and/or
equivocation in such a way that the percentage change in the posterior
probability of one data set is proportional to the percentage change in the global
membership function multiplied by the reliability factor of that data set as,

ofi (X) _ . 9Pey|xd/ Play)
F; (X) Pw; | xk) / Pax)

The evidential reasoning approach based on interval-valued probabilities has
been also used to perform multisource classification with data set reliabilities
(Kim and Swain 90). However, neither of these approaches handle classwise
reliabilities.

If the conditional probability of feature vector x, given both the data class and
information class is assumed to be the same as that of feature vector xi given
only the data class, then, the source-specific posterior probability is computed as,

Pli1 %) = B S Pl oy ) P @2)
uge L2
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The probability P(w; | uk), called the "class transition probability,” shows a
relationship between the data class and the information class. As discussed in
Chapter i!, in multitemporal classification, this class transition probability provides
temporal contextual information between temporal data sets.

Define a class transition matrix, T(£g|€%) which consists of class transition
probabilities, Plw; | uk), e € and uk e €, as,

Py | uy) Ploy | umy)
T(Qo | ) = : Plos | u)) : (4.3.a)
Plomg | uv) coo Plomg | um)

Since there are Mg and My elements respectively in Q4 and Q,, T(q | £2,) is Mg
by M. In the case of the cascade classifier (Swain 78a) which was developed for
bi-temporal contextual classification, final classificationis performed among g =
Qp, p =2, and the matrix, T(2; | ;) provides information about class transitions
between two temporal data sets. With this class transition matrix, the relation in
eg. (4.2) can be equivalently writtenin a vector form as,

P(xk, Q0) = T(Q0 | ) P(xk, ) (4.3.)
[ P(x | 1)P(Qy) | [ P(x | uy)P(uy)
where, P(xc, Qo) = : and P(xc, Q) =
| POk | Q) PQMy) | | P(% | um) P(umy) |

Only one component is may be dominant over the others in f-s(Xk., lIk); for
example, suppose P(xy | u)Py;) is dominantly larger than other components,

then, eq. (4.3.b) is approximated by,
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[ Ploy | u)) |
P(xx, Qo) = ; P(xk | uj) P(uj)

| Plomg [ uj).

Since the term P(xJu;)P(u;) is common for all classes in Qg, the relative
differences between terms in {Plwy|y), ---, Plawy,lu)} determine an actual
contribution of temporal contextual information. If these relative differences are
much smaller than those between terms in {P(x|w)P(@), ---, P(x|ay,)Play)},
then the information of _l5(xk, Q) won't contribute much discriminating information
in the global membership functionin eq. (4.1).

Frequently, a certain class in one data set strongly indicates a particular class in
Q, and only one componentin each row of T(£2q | £24) is dominant over others in

that row. Suppose comparing two classes, ®; and w;in £25 and class up, and uy in
the ki data set, strongly indicates those ; and w; classes, respectively. In this
case, the ratio of information class-conditional probabilities is,

Pixi | ax) Plwi) _ Alox|um) , PXk | Um) Plum)
P(xk | a) Pley) Plwi|un)  Plxk | un) P(un)

The ratio of data class-conditional probabilities is shown to be directly related to
the ratio of the corresponding information class-conditional probabilities. Note
that the relative values of the data class-conditional probabilities are generally
widely variant for different data sets. If any data set happens to have data class-
conditional probabilities which have very large differences among them, the
information class-conditional probabilities corresponding to this data set are very
likely to dominate the global membership function in eq. (4.1) unless its data set
reliability factor is very small.

In the approach of Fig. 4.1.(b), a final class decision is made by summarizing
only the classification result of each data source. J. Tubbs and W. Alltop (Tubbs
and Alltop 91) considered a problem of integrating classification results from
multiple sensors and suggested a decision process based on a ranked lists of
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class decisions. The local decision of each data source is denoted by uy, k=1, --
-, p. The decision rule of each data source is assumed to be already determined.
In general, the key problem of the approach in Fig. 4.1.(b) is how to determine an
optimum decision ug € Qg given the local decisions {uy, ---, up}. This problem is
very similar to that of M-ary distributed hypothesis testing.

There are two issues in distributed hypothesis testing, or the distributed detection
problem, one being the design of the local classifiers and the other being the
fusion rule of local decisions. R. R. Tenny and N. R. Sandell (Tenny arid Sandell
86) proposed first a distributed detection algorithm in the case of two sensors. Z.
Chair and P. K. Varshney (Chair and Varshney 86) derived an optimum fusion
rule when binary local decisions were given in a multiple sensor detection
problem. Later, A. R. Reibman and L. W. Nolte (Reibman and Nolte 87) reported
a system-wide optimum solution for a restricted case when the statistics and
thresholds of the local detectors are assumed to be identical. Z. Tang et al. (Tang
89) presanted a solution of the more general case of a distributed M-ary
detection problem with multiple sensors which will be extended in this chapter by
adopting a modified cost function to find an optimum fusion of local decisions.

44 Decision Fusion Approach in Multisource Classification

Suppose we have the problem of finding an optimum decision uy € Q4 given the
local decisions {uy, ---, up}. The decision rule of each data source is assumed to
be already determined. This problem of decision fusion is analogous to the
decision-making of a main expert to whom the decisions of local experts are
forwarded. The main expert has a priori information about the reliabilities of the
decisions which the local experts make. We denote the classwise reliability,
rel(k,uy), uxe &, k=1, ---, p, as a reliability of a decision on u using the kil data
set (or by Kid expert). In the same way, REL(k), k = 1, ---, p, is denoted as the
reliability of the kI data set.

To find an optimal decision fusion rule based on the Bayesian minimum cost
approach, a cost function is defined as follows. A cost J(uq, @) is given to the
decision ug, Ug € Lo When the true class is @;, wje . Then, given a set of local
decisions {uy, ---, up}, an optimal fusion rule in the sense of minimum expected

cost can be derived (Tang et a. 89) asin,
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choose ug=u € € (4.4.8)

where, U = arg c;""';o Y, J(uo=c, &) Pluy, -, Up, 63}
o

Consider the "0-1" cost function given as,

J(up, @) =[ 1 - d(up, ) ] (4.4.b)

where, §(x,y) =1, if x=y, and, d(x, y) =0, otherwise

With this "0-1" cost function, an optimal fusion rule in eq. (4.4.a) will choose a
class ug=u € £ having a maximum joint probability of P{uy, ---, up, @; = u} which
shows the likelihood of joint occurrence of {uy, ---, up} and {a, = u).

choose ug=u € Qg (45.8)

where, u = ar max Uq, ==, Up, @ = C
gcemPh p» @ = C}

In other words, this fusion rule will find a class ug = u which is most likely to occur
jointly with the local decisions {uy, ---, up}. If the conditional independence of uy's
given Ug is assumed as,

Plug | ug.1, === Uy, U} = Pluk | ug} (4.5.)
then, the joint probability P{uy,---,up, Ue} is simplified as,

P{uy,=--, Up, Ug} = P(ug) lE[ Plug | up) (4.5.c)
k=1

For each data set, a set of conditional probabilities, {P(ux | Up) | ux € g, Ug € 25},
is required. Note that this straightforward result cannot support a disparate
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degree of data set reliabilities nor classwise reliabilities. This is because the cost
function in eq. (4.4.b) is determined only on a basis of (ug, ).

Among the local decisions {uy, ---, up}, some of the decisions could be more
dependable in terms of data set and classwise reliabilities than others. In this
case, it would be more desirable to have a final decision as consistent as
possible with those reliable local decisions. This consistency, or consensus over
the local decisions will also be as important as the maximum likelihood of joint
occurrence which is pursued by eq. (4.5.a).

To acconimodate this idea, a slightly modified cost function is considered so that
an optimum decision fusion algorithm selects a decision uy which is not only most

likely to occur jointly with local decisions but also as consistent as possible to the
reliable lecal decisions among {uy, ---, up}.

Let's consider a new cost function which is dependent not only on (uo, ;) but
also on (u4, ---, up). This cost function will be designed to allow a final decision
maximally consistent with the local decisions (uy, ---, up). The degree of
consistency to each local decision will be based on the classwise and data set
reliability. Specifically, a cost function J(ug, uy, ---, Up, @;) in the following form is
examinec!.

J(ug, uq, ==, Up,s @; )= ki J(ug, Uy, @) (4.6)
=1

J(uo, Uk, ), called a local cost function associated with ki data set, determines a
cost given to an action of selecting ug based on the kI ocal decision U, A
summed value of all the local costs is then, the actual cost assigned to the action
of selecting ug based on {uy, ---, up} and J(up, uy, ---, Up, @) is called a global cost
function.

To determine the proper local cost function, consider assigning costs to the
following five possible actions in Table 4.1.
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Table 4.1 Cost Assignments to Courses of Actions.

Conditions J(Ug, Uy, ) cases

1. uy = @y and ugp = Uy 0 Ug = @

2. Uy = oy and ug # Uy 1 Ug # O

3. ug # @y and ug = U A Up #

4. uy # o, B' Up = @
S U # @, Ug # U and Ug # o 1 Ug # Q)

0<A', B' <€ 1;A', B arenot both 1

The idea in assigning cost values to the courses of action is to give lower cost to

those desirable actions and higher costs to less desirable actions. As in case 1 in
Table 4.1, if a decision uy matches the local decision u, and if it is a correct
decision (i.e., up = ;), then, the lowest cost, which is selected as zero in this
case, is assigned. On the other hand, if a decision uy doesn't match the local
decision ug and if the selected decision is also wrong (i.e., up # ), then the
highest cost, which is selected as one, is assigned.

Since it is desirable for a fusion rule to choose a decision uy which is as
consistent as possible to the local decisions {uy, ---, up}, a cost A" which is not
necessarily the largest cost of one is assigned to the case 3 in Table 4.1. Even if
the decision uq is erroneous, the cost value A' can be less than the largest cost,
since the decision of ug follows the decision of the ki data set, U, Similarly, a
cost value B' which can be larger than the smallest cost value of zero is given to
case 4 since the decision ug doesn't follow u, even if the decision of ug may be
true. When ug doesn't follow u, and ug is not correct either, the largest cost value

Is assigned.

If the costs A" and B' are not both 1, then the cost assignments in Table 4.1 can
be expressed in terms of two separate components, one being a function of (uy,
«;) and the other, a function of (ug, u), in two different ways as,

J(ug, Uy, @) = Ky J(up, Uy) * J(up, @) + (1 - Ky) (4.7.a)

J(uo, Ui, (0]) = KzJ(Uo, Uk) + (1- K2) J(Uo, (l)]) (4.7.b)
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K4 and K; are constants which are independent of the class decisions. The cost
function component J(ug, ux) imposes a consistent relationship with the local
decision uy on the decision ug. On the other hand, the component J(uo, )
imposes a constraint of maximum likelihood of co-occurrence as in eq. (4.4.b).
These two cost function components can be expressed as,

J(Ug, u) =1-Ad(ug, ), O< A <1 (4.8.a)

J(Uo @) =1-Bd(Ug @), 0 <B <1 (4.8.b)

where, A and B are not both 0.

With a cost function in a form of eq. (4.7.a), the parameters A, B, and K, are
related to the costs A' and B’ in Table 4.1 as,

A=1-K,Aand B'=1-K;B (4.9.a)
where, Ky = 1/[1 - (1-A) (1-B)]

Since constant K, in eq. (4.7.a) does not affect a selection of ug, without loss of
generality, the cost function in eq. (4.7.a) can be redefined as,

J(ug, Uy, @) =J(Up, @) * J(ug, uy) (4.9.b)

In the case of a cost function in an additive formin eg. (4.7.b), the constant K, is
not related to the value of A and B, and it can be set arbitrarily since it doesn't
affect the global decision. For simplicity, it is set to 1/2. The relationship between
A BandA', B'is,

A=1-A and B'=1-B (4.10)

With appropriate values of A and B (or equivalently, A' and B), it is possible to
control the relative importance between selecting a decision maintaining maximal
consistency with the local decisions {uy, ---, up} and selecting a class of highest
joint occurrence likelihood with the local decisions. The cost function defined in
eg. (4.6) with eq. (4.7.a,b) is quite general in its scope of application since it can
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define various cases of cost function by choosing different values of A and B. For
example, the cost function J(ug, w;) in eq. (4.4.b) which is based on maximum
likelihood fusion, is achieved with A' = 1 and B' = 0. If parameters of A' =0 and B'
=1 are used, the resulting fusion rule will be selecting a majority decision among
the local decisions.

Employing this new cost function in eq. (4.6), an expected cost of choosing u,
given {uy, ---, up} is computed as,

Expected Cost = E {J (Ug, Uy, -, Up, &)}

= 2 2 J(u, uy, ---, up, @) Pluy, -, up, ;)
U4, --, Up wj€ QO

Define the inner summation term in the above equation as a function H, as,

H(Uol Uy, ==, up) = EJ(UO' Uy, "'iupi w]) P{U1, = up, (‘oj}
:
1

An optimum decision which minimizes the expected cost can be found by
minimizing H with respect to ug € 4. Note that a choice of A in the cost function
in (4.8.a) controls the relative importance of consistency between u, and local
decision u, therefore it should be dependent on the particular data set employed
and a local decision uy, according to the data set and classwise reliabilities. Thus,
the notation "Ay(u,)" would be more appropriate to explicitly show the
dependence of "A" on the particular data set and the local decision u,. That is,
according to the data set and classwise reliabilities, REL(k)’'s and rel(k,u)'s,
appropriate values of Ag(uk)'s can be determined in such a way that a less
reliable local decision has less effect on making a final decision ug through a
selected fusion rule. Substituting the cost function in eq. (4.9.b) into H results in,

H(up | uy, -, up) = { ki J(uy, uk)] [ z J(up, o) Pluy, -, up, @) | (4.11)
=1
[
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The first term in eq. (4.11) which is rewritten as in eq. (4.12.a) accounts for a
consistency constraint between the local decisions {uy, ---, up} and u,.

p - kiAk(Uk) 5(u, Uy) (4.12.a)
-

To understand the role of this term a bit more clearly, suppose weight factors,
Ay (*)'s are all the same. Then the cost function with only this term would choose
the class ug which is a majority class among uy's. Therefore it is a majority rule.
With the distinct reliabilities associated with uy's, the "vote" of each local decision
is weightad according to Ag(*)'s. Then the fusion rule in eq. (4.12.a) will select a
class ug attaining most of weights. For this reason, this fusion rule will be called a
"weighted majority decision fusion rule." On the other hand, the second
component of eq. (4.11), which may be re-written as,

P{uy, ==, up} [ 1 - B Plug | uy,--, up}] (4.12.b)

is dependent only on u, and @;. If the cost function J(up, @) was employed for
itself alone (that is, if all Ay(uy)'s are zero), it would choose u,y based on a relative
likelihood of the joint occurrence of {uy, ---, Up, Up} as in eq. (4.5.a). The relative
magnitude of the A,(uk)'s and B will determine the actual degree of balance

between emphasizing the importance of the term in eq. (4.12.a) and Ihat in eq.
(4.12.b) in deciding a class ug under the eq. (4.11).

In the same manner, if the cost function in eq. (4.7.b) is employed, then the
following H is obtained.

H(uo  uy, -+~ up) =

Py, bp) ;" Up) kﬁJ(uo' U) + %2 Puy, - up, o) kf.1'J(L‘O' @) (4.13)
-1 w; =
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As before, the first term in eq. (4.13), which is rewritten as,

P(U1, === Up) [% - 'i Ak(uk) S(Uo, Uk) :| (4143)

is related to emphasizing the consistency of a global decision with the local
decisions. The secondterm in eq. (4.13) which is simplified as,

Puy, -, Up) [% - B Plug [ Uy, Up)] (4.14.b)

where, By = i1 - Ag(uy)
k=1

is based on the maximum likelihood decision fusion and this is equivalent to eq.
(4.5.a). The parameter By, accounts for the total weight given to the maximum
likelihood based fusion. The posterior probability P(ug|uy,---, up) can be computed

asineq. (4.5.c).

4.5 Data Set and Classwise Reliability

In eq. (4.12.a and 4.14.a), the data set and classwise reliability factors are
reflected in the Ag(ug)'s. It would be very logical to assign a large cost to the case
when the fusion rule fails to follow a local decision which has high reliability. In
the report in (Benediktsson et al. 90), several different measures of data set
reliability were introduced. Statistical separabilities between classes are a
possible candidate for assessing data set reliability. The computationinvolved in
evaluating separabilities could be non-trivial if the multivariate normality
assumption about the data set cannot not be satisfied. Furthermore, in the case
of a data set where the data values are not changing enough, e.g., in digital
elevation data, the covariance matrix may be ill-conditioned. Another measure of
reliability based on equivocation is introduced in (Benediktsson et al. 90), and in
this approach, the data set reliability is related to the degree that the data classes
indicate specific information classes. If the data classes in one data set strongly
indicate the correspondinginformation classes, then this data set is considered to
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be reliable. Since the purpose of multisource data analysis in this chapter lies in a
classification, classification accuracy could be a logical choice for the reliability
measure. Any data set which has higher classificationaccuracy may be assumed
more reliable than the others. Note that classification accuracy can be easily
obtained irrespective of assumptions about underlining probability density
functions. Data set reliability REL(K) can be determined similarly to
(Benediktsson et a/. 90) based on these criteria.

However, these measures are not directly applicable to the classwise reliability
which is a measure of reliability of a particular local decision selected based on a
given (local) data source. Two different measures based on classification
accuracy can be examined as follows. For ug e and @€ Qq k=1, ---, p, and j
=1, M,

rel(k, uy = @) = P(ug = | X = o) (4.15)

Equation {4.15) is the probability of correctly classifying x, as belonging to a class
w, and it is the detection probability of class w;. Any class with high classification
accuracy should be associated with large classwise reliability. However, there
can be a problem in using this measure as manifested in following hypothetical
example. Suppose a local classifier is very poorly designed or, feature vectors of
a certain data set are of very bad quality, and it assigns a particular class to all
pixels. In this case, the measure of eq. (4.15) will assign the highest reliability of
1 to that particular class, although the decision to this class is meaningless.

rel(k, ux = o) = P(x = ;| U= o) (4.16)

On the other hand, the measure in (4.16) doesn't have this problem, and it is the
probability that a pixel x is truly from the same class as the local decision u.
Since this reliability measure is one minus the probability that the local decision is
incorrect, if the probability of eq. (4.16) is high, then, statistically speaking, the
knowledgo of a local decision u, will be able to indicate the class of x, with a high
probability. These classwise reliabilities can be estimated from the classification
results of representative training samples.
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A (uy) = REL(K) * rel(k,uy) (4.17)

There still remains a problem in associating the data set and classwise reliability
measures to actual values of weights Ay(¢)'s. Since it appears difficult to do

optimally, at least for now, the seemingly simple way of eq. (4.17) is used.

4.6 Information Combination Structures in Multisource and Temporal Contextual
Classification

The multisource classifiers discussed so far can be straightforwardly used for
temporal contextual classification. One difference between these two applications
may be distinguishing the order of data sets in temporal classifiers. Generally,
there can be two different structures in combining multiple data sets as shown in
Fig. 4.2.

Global decisionamong 2 Global decision among £

| T(Q 1 Q) ] 1

X(k); Qg
T TQ 1) XM: Qi T(Qq | )

X(k-1); Q, , X1); Q

: : T(Q | Q1)
+ TQ,1Q) :

X(1); Q, X(1); Q, TN

(@) (b)

Figure 4.2 Information Combination Structures. (a) Serial Structure. (b) Parallel Structure.

The serial structure of Fig. 4.2.(a) may best fit the temporal contextual
classification since the temporal information up to t=k can be conveyed as
temporal information to the next classification process of the (k+1 M data set. As
a new temporal data set becomes available, likelihood values are updated to be
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used with next temporal data set. An intermediate classification result can be
obtained at each temporal stage. In this serial structure, the different order of
data sets;, which is mostly likely to be chronological, generally gve, different
results.

The parallel structure shown in Fig. 4.2.(b) is what the rnultisource classifier in
eg. (4.1) is based on, and there is no distinction in the order of data sets, since
information from each data set is independently fed into the (global) classifier
which makes decisions among Qg,. There are no intermediate classification
results. This structure is more straightforward to accommodate data set
reliabilities than the serial one. The decision fusion algorithms previously
discussed are based on this structure. Note that this parallel combination
structure is based on an assumption of class-conditional independence! between
data sets. Note that since the class transition matrix to Qg is required only at the
final temporal data set in the serial structure, selecting a different class set, £,
affects only the last temporal stage. However, in the parallel structure, this
flexibility cannot be attained.

4.7 Experiments and Discussion on Temporal Contextual Classification

4.7.1 Description of Experiment

To test the multisource (or, temporal contextual) classification algorithms
discusseclin this chapter, three Landsat Thematic Mapper (TM) data :sets were
used. In additional to the July and September data sets which were introduced in
previous ¢hapter, Thematic Mapper data acquiredin April was used for temporal
classification among the same four information classes {corn, soybeans, wheat,
alfalfa/oats} as in previous chapter.

In the April data set, there was not much difference between these four
information classes except wheat. In fact, the information class "wheat" was the
only green crop type which could be observed in the given agricultural fields at
that time, and the information class, wheat, was identifiable from the others with
high accuracy using this April image. The April data set is shown in Fig. 4.3, in
which the darker regions in band 6 matches well with the location of the class
wheat in the truth map shown in Fig. 3.8. Note that in band 6, green vegetation
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has relatively lower spectral reflectance than soil (Swain 78b). Thus, the regions
corresponding to green vegetation would look darker than those correspondingto
soils.

Band 3 (0.63- 0.69 pm)

i SA

Band 4 (0.76 - 0.90 pm)

Band 5 (1.55- 1.75pm)  Band 6 (2.08 - 2.35 pm)
Band 7 (10.4 -12.5pm)
Figure 4.3 April Thematic Mapper (TM) Data Set.; The white box

shows the 128 by 128 portion of selected test field.
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Only two information classes (wheat and "others™) were definedin the April data
set, and several sub-classes of these two information classes were defined to
meet the multivariate normality assumption. The number of samples in the April
data selected for training and test are summarized in Table 4.2.

Table 4.2. Training and Test Samples of April Thematic Mapper Data.

Information April Data —
Class number of
Subclasses Training Samples Test Samples
Others 2 960 11698
Wheat 1 376 1215
Total 3 1336 12998

Experiments were carried out with the several classifiers discussed in this
chapter. Final (global) decisions were made among the user-defined information
classes of Q4 = {corn, soybean, wheat, alfalfa/oat} and classification
performances were compared in terms of the overall classification accuracy
(OVA) and the class-averagedclassificationaccuracy (CAG).

Applying fusion rules requires a class transition matrix in eq. (4.3.a). In the
experiments, class transition probabilities were selected heuristically in such a
way that a transition between the same information class had a higher probability
than other cases. To implement this idea, following relationship was used. For ug
€ ;€ Qo k=1,---, p,

Pluk | @} = Poln, if ux and ; belong to the same information class 1)

Py | oy} = (1 - Po) 1(Mk - n), otherwise

n is the number of total sub-classes of the information class to which sub-class uk
belongs. Py is a user defined number between zero and one. Py being one
means n¢ allowance of class transition to another information class. If Py is zero,
class transitionis permitted only to differentinformation classes. Several different
values of Py were tested as in Table 4.3 and the values of Py which gave the best
performance was chosen for comparison with other classifiers. (Pg = 0.99 for
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class corn and soybean, Py = 0.8 for class wheat, Py = 1 for class alfalfa/oats). In

the case of classifying July data with April data or September data with April data,
P, was set to one.

Table 4.3 Bitemporal Classification of July Data with September Data with
Different Class Transition Probabilities. (Equal Data set reliability).

%

— —
Ppineq.(4.18) Comn Soybeans Wheat Afata/Oats CAG OVA
0.80 91.02 59.42 66.34 78.55 73.83 75.20

0.99 92.03 60.28 64.12 78.92 73.84 75.78

100 89.84 60.03 61.40 79.43 72.68 74.55

Best! 91.80 63.08 69.88 73.35 74.53 76.67

1 Pg = 0.99 for corn and soybeans. Pg = 0.8 for wheat, Pg = 1 for alfalfa/oats

4.7.2 Temporal Classification with Data Fusion

The multisource classifier based on data fusion in eq. (4.1) was applied to the
classification of July data with April and September data, and classification
results are shown in Table 44 ~ 4.6. Since the ground truth was gatheredin July
and it matches best with July data, all comparisons were made with respect to
the July data set. Non-contextual maximum likelihood classification results of
each temporal data set separately are also included in the tables. In the
classification of single data sets, the July data set gave better classification
performance than the September data set for all classes. But some of the classes
(soybeans, wheat in July data or soybeans, wheat and alfalfa/oats in September
data) had very poor classification accuracy. Note that the class, wheat and others
in the April data set were discriminated very successfully from each other.

Several different data set reliability factors were tested to see their effect on
classification accuracies. As seen in the Table 44 ~ 4.6, temporal contextual
classification based on data fusion with eq. (4.1) generally gave better results
than any of the single pixelwise maximum likelihood classification.

Inclusion of April data improved the classification accuracy of wheat and
alfalfa./oats significantly. Although this improvement couldn't increase the overall
classification accuracy (OVA) much due to a relatively small portion of sample
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numbers belonging to those classes, the class-averaged classification accuracies
(CAG) were increased by as much as 5% (July data) or 14% (September data).
The September data set was helpful in classifying the class soybeans in July
data as seen in Table 4.5, but there was a slight degradation in classification
accuracy for the class, alfalfa/oats. The classification accuracies in September
data were generally very low except com and the improvement due to including
September datain classifying July data was not significant.

Table 4.4 Classification Accuracy Comparison of the Statistical
Multisource Classifier with Different Data Set Reliabilities
(Classification of July and September Data with April Data).

Data Set Weights Grn  Soybeans Wheat Alalfa/Oats CAG QVA
Separate Mwiqum Likelihood Classification of Each Data Set

April 89.59 90.29 89.94 89.65

July 90.18 57.72 68.72 77.89 73.63 74.37

September 82.59 55.06 51.28 47.07 59.00 65.28

April July Classification of July Data with April Data

0.6 1 90.30 56.69 85.27 83.02 78.82 76.13

0.7 1 90.29 56.44 85.51 83.24 78.87 76.08

0.8 1 90.23 56.42 86.26 83.31 79.05 76.13

0.9 1 90.29 56.42 86.50 83.16 79.09 76.16

1 1 90.32 56.42 86.58 82.94 79.07 76.16

1 0.9 90.27 56.44 86.91 82.80 79.11 76.16

1 08 90.23 56.36 87.41 82.72 79.18 76.15

1 0.7 90.12 56.30 87.49 82.72 79.16 76.09

1 0.6 90.12 56.25 87.49 82.65 79.13 76.07
April Sept. Classification of September Data with April Data

0.6 1 82.64 56.27 87.65 57.61 71.05 70.26

0.7 1 82.59 56.27 88.15 59.88 71.72 70.52

0.8 1 82.53 56.23 88.89 61.93 72.40 70.76

0.9 1 82.51 56.21 89.47 62.96 72.79 70.91

1 1 82.50 56.19 89.63 64.35 73.17 71.06

1 0.9 82.44 56.15 89.79 65.45 73.46 71.15

1 08 82.41 56.15 89.71 66.25 73.63 71.21

1 0.7 82.30 56.15 89.63 66.54 73.66 71.19

1 0.6 82.19 56.13 89.79 66.84 73.74 71.18

A

'In classifying April data with a maximum likelihood classifier, there were only 2

information classes {wheat, others}. Classification accuracy of "others" is given under
corn. (seeTable 4.2).
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Table 4.5 Classification Accuracy comparison of the Statistical Multisource
Classifier with Different Data Set Reliabilities (Classification of
July Data with September Data and vice versa).

Percent Classification Accuracy

Data Set Weights Corn Soybeans Wheat Alfalfa’Oats CAG OVA
Separate Maximum Likelihood Classification of Each Data Set

July 90.18 57.72 68.72 77.89 73.63 74.37

September 82.59 55.06 51.28 47.07 59.00 65.28
Sept. July Classification of July Data with September Data

0.6 1 91.31 61.70 69.79 75.92 74.68 76.21

0.7 1 91.53 61.95 69.71 75.26 74.61 76.32

0.8 1 91.65 62.37 69.47 75.11 74.65 76.49

09 1 91.71 62.81 69.63 7467 74.70 76.64

1 1 91.80 63.08 69.88 73.35 7453 76.67

1 0.9 91.87 63.40 69.71 72.40 74.35 76.70

1 08 91.99 63.86 69.47 71.01 74.08 76.75

1 0.7 92.08 64.42 69.14 69.11 73.69 76.77

1 0.6 92.30 64.63 69.22 67.72 73.47 76.80




4 DECISION FUSION APPROACH

Table 4.6 Classification Accuracy Comparison of the Statistical Multisource
Classifier with Different Data Set Reliabilities (Classificationof July
and September Data with April Data).

Percent Classification Accuracy

Data Set Weights Corn  Soybeans Wheat Alfalfa/Oats CAG OVA
Separate Maximum Likelihood Classification of Each Data Set

April 89.591 90.29 89.94 89.65

July 90.18 57.72 68.72 77.89 73.63 74.37

Sepltember 82.59 55.06 51.28 47.07 59.00 65.28

April  Sept. July Classification of July Data with September and April Data

0.60 0.60 1.00 91.53 61.60 86.01 81.41 80.13 78.36
0.70 0.70 1.00 91.78 61.95 86.75 81.41 80.47 78.67

0.80 0.80 1.00 9192 6254 86.83 81.48 80.69 78.96
0.90 0.90 1.00 91.99 63.19 86.91 81.63 80.93 79.25
1.00 1.00 1.00 92.08 63.63 87.16 81.63 81.12 79.47

0.90 1.00 0.90 92.14 64.05 87.41 81.41 81.25 79.65
0.80 1.00 0.80 92.26 64.61 87.57 80.89 81.34 79.87

0.70 1.00 0.70 92.41 65.24 87.74 80.16 81.39 80.10
0.60 1.00 0.60 92.52 65.56 88.07 79.50 81.41 80.23

1.00 0.90 0.90 92.01 63.61 87.33 81.70 81.16 79.46
1.00 0.80 0.80 91.98 63.63 87.65 82.06 81.33 79.52

1.00 0.70 0.70 91.96 63.67 87.90 81.63 81.29 79.50
1.00 0.60 0.60 91.87 63.61 87.98 81.77 81.31 79.47

Tin classifying April data with a maximum likelihood classifier, there were only 2
information classes {wheat, others). Classification accuracy of "others" is given under
corn. (see Table 4.2).
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When all three temporal data sets were used all together, classification results
were much improved for all 4 information classes as seen in Table 4.6. Especially
the classes, soybeans and wheat had major classification accuracy
improvements. Notice that improvement for both the class wheat in Table 4.4 and
for the class soybeans in Table 4.5 were achieved in the results in Table 4.6.
Classification error maps of the best multisource classification results in Table 4.4
~ 4.6 are shown in Fig. 4.4.

(e)

Correctly classified pixels

B Incorrectly classified pixels

Figure 4.4 Classification Error Maps of Multisource Classifier. (a) April Data set.
(b) September Data set. (c) July Data set. (d) July Data with April
Data. (e) July Data with September Data. (f) July Data with
September and April Data.
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473 Temporal Classification with Decision Fusion

The multisource classifiers based on decision fusion were applied in classifying
July data with April and September data sets. The maximum likelihood decision
fusion rule in eq. (4.5.a) requires prior knowledge of the joint probability, P{uy, ---,
up, Up}. Under the conditional independence assumption of eq. (4.5.b), the
amount of prior information required can be reduced substantially by using the
relationship in eqg. (4.5.c). If there are M classes in the ki data set and Mo
different ug's, then, My times My conditional probabilities of P{u, | ug} are
required. This a priori information would not be necessary in data fusion-based
multisource classification since information is combined in terms of posterior
probabilities. In the decision fusion-based approaches where information is
combined in a level of decisions, only limited information (that is, that of
decisions) is transferred for global decision making. However, the aclditional a
priori information about conditional probabilities of P{uy| ug}'s provides
information needed in making a global decision. As for the weighted majority
fusion rule in eq. (4.12.a), note that only My differentclasswise reliability factors
are sufficient for decision fusion.

Table 4.7 shows classification accuracy compansons between the data fusion-
based algorithm with eq. (4.1) and the maximum likelihood decision fusion
scheme in eq. (4.5.a). The best results in terms of overall classification accuracy
(OVA) in Table 4.4 ~ 4.6 are also included in Table 4.7 for easy comparison.

The maximum likelihood decision fusion rule in eq. (4.5.a) compares very
favorably to the data fusion based multisource classifier in eq. (4.1), although
only limited information of local class decisions were combined. A priori
information about conditional probabilities, P(ui|up)'s were found to be very
effective in combining information for classification. Especially in classifying July
data with September data, the maximum likelihood decision fusion rule resulted
in about 5.4% of overall classificationaccuracy increase over the best data fusion
multisource classification result in Table 4.5. The classification performance
increase was significant for the classes corn and soybeans. Compared to the
maximum likelihood classification of July data only (that is, non-contextual), this
amounts to a 7.9% of increase.
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Table 4.7 Classification Accuracy Comparison of the
Maximum Likelihood Decision Fusion.

Percent Classification Accuracy

Data Set Weights Com  Sovbeans Wheat  Alfalfa/Oats CAG OVA
Separate Maximum Likelihood Classification of Each Data Set
Apnl 89.59' 90.29 89.94 89.65
September 82.59 55.06 51.28 47.07 59.00 65.28
July 90.18 57.72 68.72 77.89 73.63 74.37
Data Fusion Based Classifier in eq. (4.1)2

JUL+APR 90.29 56.42 86.50 83.16 79.09 76.16
JUL+SEP 9230  64.63 69.22 67.72 73.47 76.80
JUL+APR+SEP 9252 65.56 88.07 79.50 81.41 80.23
Maximum Likelihood Decision Fusion Rule in eq. (4.5.a)

JUL+APR 90.18 57.72 89.96 80.82 79.67 76.67
JUL+SEP 94.19 75.63 68.72 73.79 78.08 82.24
JUL+APR+SEP 95.79 77.08 88.89 71.52 83.32 85.10

In classifying April data with a maximum likelihood classifier, there were only 2 information
classes {wheat, others). Classification accuracy of "others"is given under corn. (see Table
4.2).

2These are the best resultsin Table 4.4 ~ 4.6.
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Classification error maps of this maximum likelihood decision fusion rule are
shown in Fig. 4.5. Combining local decisions of September data to those of July
were very effective as seen in Fig. 4.5 where many corn and soybeans pixels
were correctly classified as in Fig. 4.5.(c). The April data set was effective in
improving classification accuracy of wheat. Notice that both of the improvements
in Fig. 4.5.(b) and (c) are visible in Fig. 4.5.(d), which shows the error rnap when
all three clata sets are used.

(a) (b)

(d)

Correctly classified pixels
B Incorrectly classified pixels

Figure 4.5 Classification Error Maps of July Data with the Maxiimum
Likelihood Decision Fusion. (a) July Data only (non-temporal).
(b) July Data with April Data. (c) July Data with September
Data. (d) July Data with April and September Data.
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Classification results with the weighted majority decision fusion are presented in
Table 4.8 ~ 4.10. Under the weighted majority decision fusion, different data set
reliability factors can be assigned to each data set. In the experiment, several
different data set reliabilities were tested as seen in the tables. Both of the two
different classwise reliabilities in eq. (4.15) and (4.16) were tested to see their
effectiveness. Note that the weighted majority decision fusion requires much less
prior information than the maximum likelihood decision fusion. For comparison
purposes, the results of data fusion and maximum likelihood decision fusion are
alsoincludedin Table 4.8 ~ 410.

Table 4.8 Classification Accuracy Comparison for Weighted Majority
Decision Fusion (Classificationof July Data with April Data).

Percent Classification Accuracy

Data Set Weights Corn  Soybeans Wheat Alfalfa/Qats CAG OVA

see below?! 90.29 56.42 86.50 83.16 79.09 76.16
see below? 9018 5772  89.96 80.82 7967  76.67
April July with Classwise reliabilityin eq. (4.15)

0.60 1.00 90.18 §7.72 68.72 77.89 73.63 74.37
0.70 1.00 90.18 53.55 69.55 77.89 72.79 72.92

0.80 1.00 92.61 53.55 68.64 77.89 73.17 73.87
0.90 1.00 92.61 53.55 90.78 70.86 76.95 75.20
1.00 1.00 92.61 53.55 90.78 70.86 76.95 75.20
1.00 0.90 86.24 53.55 90.86 70.86 75.38 72.49
1.00 0.80 86.24 53.55 90.86 70.86 75.38 72.49
1.00 0.70 86.24 53.55 90.86 70.86 75.38 72.49
1.00 0.60 86.24 53.55 90.86 70.86 75.38 72.49

April July with Classwise reliability in eq. (4.16)

0.60 1.00 92.61 57.72 69.71 76.50 7413 75.36
0.70 1.00 92.61 §7.72 69.71 76.50 7413 75.36

0.80 1.00 92.61 57.72 69.71 76.50 74.13 75.36
0.90 1.00 92.61 57.72 69.71 76.50 7413 75.36
1.00 1.00 92.61 57.72 84.53 73.50 77.09 76.43
1.00 0.90 92.61 57.72 84.53 73.50 77.09 76.43
1.00 0.80 92.61 57.72 84.53 73.50 77.09 76.43
1.00 0.70 92.61 56.53 84.53 73.50 76.79 75.99
1.00 0.60 92.61 56.53 84.53 73.50 76.79 75.99

Twith data fusion-based multisource classifier of eg. (4.1) and data set reliability April = 0.9,
July = 1.

2With Maximum Likelihood Fusion Rule in eq. (4.5.a).
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Table 49 Classification Accuracy Comparison for Weighted Majority
Decision Fusion (Classificationof July Data with September Data).

—
Percent Classification Accuracy
Data Set Weights Com Soybeans Wheat AHlalfa/Qats CAG OVA
see below’ 92.30 6463  69.22 67.72 7347  76.80
see below? 94.19 75.63 68.72 73.79 78.08 82.24
Sept. July with Classwise reliability in eq. (4.15)

0.60 1.00 90.18 57.72 68.72 77.89 73.63 74.37
0.70 1.00 94.21 56.46 68.72 77.89 7432 75.63

0.80 1.00 94.21 56.46 68.72 77.89 7432 75.63
0.90 1.00 96.11 56.46 64.86 77.89 73.83 76.09
1.00 1.00 96.83 56.46 64.86 70.64 72.20 75.63
1.00 0.90 96.83 56.46 64.86 70.64 72.20 75.63

1.00 0.80 96.83 38.24 61.81 78.40 68.82 69.47

1.00 0.70 96.83 57.18 61.81 74.30 7253 76.00

1.00 0.60 96.82 57.41 50.21 46.78 62.80 72.10
Sept. July with Classwise reliability in eq. (4.16)

0.60 1.00 92.80 78.11 67.00 57.69 73.90 80.70
0.70 1.00 96.82 77.23 67.00 57.69 74.68 82.09

0.80 1.00 96.82 77.23 67.00 55.20 74.06 §1.83
0.90 1.00 96.82 77.23 67.00 51.46 73.13 81.44
1.00 1.00 96.83 76.89 64.44 51.46 7241 81.08
1.00 0.90 96.82 77.08 62.63 51.46 72.00 80.97
1.00 0.80 96.82 77.08 62.63 51.46 72.00 £0.97
1.00 0.70 96.82 77.08 67.90 44.58 71.59 80.74
1.00 0.60 96.82 77.08 67.90 44.58 71.59 80.74

b ] -
Twith data fusion-based multisource classifier of eg. (4.1) and data set reliability Sept. = 1,
July = 0.6.

2Wlth Maximum Likelihood Fusion Rule in eq. (4.5.a).
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Table 4.10 Classification Accuracy Comparison for Weighted Majority Decision
Fusion (Classificationof July Data with April and September Data).

Percent Classification Accuracy

Data Set Weights Com _ Soybeans Wheat Alfalfa/Oats _ CAG OVA
see below! 9252 6556 8807 7950 8141  80.23
see below? 9579  77.08 8889 7152 8332 8510

April  Sept.  July with Classwise reliability in eq. (4.15)

0.60 0.60 1.00 91.78 58.62 78.44 76.43 76.32 76.14
0.70 0.70 1.00 94.93 54.70 79.09 76.43 76.29 76.11

0.80 0.80 1.00 94.93 54.70 79.01 76.43 76.27 76.10
0.90 0.90 1.00 94.93 54.70 81.98 74.96 76.64 76.23
1.00 1.00 1.00 95.59 54.70 81.98 68.16 75.11 75.80

0.90 1.00 0.90 94.59 54.70 81.98 68.16 74 .85 75.37

0.80 1.00 0.80 94.59 54.70 81.98 68.16 7485 75.37
0.70 1.00 0.70 94.93 53.95 90.86 65.74 76.37 75.81
0.60 1.00 0.60 94.93 53.95 90.86 65.74 76.37 75.81

1.00 0.90 0.90 94.93 54.70 81.98 74.96 76.64 76.23

1.00 0.80 0.80 94.93 54.70 79.01 76.43 76.27 76.10
1.00 0.70 0.70 94.93 54.70 79.09 76.43 76.29 76.11
1.00 0.60 0.60 91.78 58.62 78.44 76.43 7632 76.14

April  Sept.  July with Classwise reliability in eq. (4.16)

0.60 0.60 1.00 92.50 78.11 74.49 72.04 79.28 82.77
0.70 0.70 1.00 96.85 77.23 74.07 72.04 80.05 84.27

0.80 0.80 1.00 96.85 77.23 73.99 70.35 79.61 84.09
0.90 0.90 1.00 96.85 77.10 73.42 66.62 78.50 83.60
1.00 1.00 1.00 97.18 76.77 75.23 64.86 78.51 83.60

0.90 1.00 0.90 96.87 76.77 77.28 64.86 78.94 83.66
0.80 1.00 0.80 96.87 76.35 78.11 64.86 79.05 83.58

0.70 1.00 0.70 96.87 76.24 78.11 64.86 79.02 83.54
0.60 1.00 0.60 96.55 76.24 87.49 62.45 80.68 84.03

100 0.90 0.90 96.85 77.10 73.42 66.62 78.50 83.60
130 0.80 0.80 96.85 77.23 73.99 70.35 79.61 84.09

100 0.70 0.70 96.85 77.23 74.07 72.04 80.05 84.27
1.00 0.60 0.60 92.50 78.11 74.49 72.04 79.28 82.77

TWith the data fusion-based multisource classifier of eq. (4.1) and data set reliability
April=July=0.6, Sept. = 1.

2with Maximum Likelihood Fusion Rule in eq. (45.a).
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The classwise reliabilitiesin eq. (4.16) were observed far better in performance
than those in eq. (4.15). This can be easily understood since the classwise
reliability in eq.(4.16) indicates more directly the possibility of a local decision
being true. Figure 4.6 shows locations of classification occurrences; with the
weighted majority rule.

(d) (e) (f)

Correctly classified pixels
B Incorrectly classified pixels

Figure 4.6 Classification Error Maps of July Data with Weighted Majority Decision
Fusionwith Classwise Reliability in eg. (4.15). (a) With April Data set.
(b) Wih September Data set. (c) Wih April and September Data sets.;
With Classwise reliability in eq. (4.16). (d) With April Data set. () With
September Data set. (f) With April and September Data sets.
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With eq. (4.16), the weighted majority fusion rule performed much better than the
data fusion based rule in eg. (4.1). However, it could not surpass the
performance of the maximum likelihood based fusion rule, although it followed
very closely the performance. Note that the weighted majority fusion rule requires
much less a priori information than the maximum likelihood decision fusion.

Decision fusion rules with cost functionsin eq. (4.7.a,b) in a hybrid of maximum
likelihood and weighted majority fusion were also tested and showed no
significant advantages over the maximum likelihood fusion rule. In the case of the
cost function in eq. (4.7.a), the relative magnitude between Ay (uy)'s and the
parameter B in (4.12.b) determines a balance of importance between the two
decision fusion rules in the global decision. Several different B values were
tested. As B became small (near 0), classification performance was dorminated
by those of the weighted majority fusion rule, and the opposite happened when B
became closer to 1. In case of the cost function in eq. (4.7.b), the parameter By,
in eq. (4.14.b) which is essentially a sum of 1 - Ac(uy)'s and the classwise
reliabilities Ay (uy), decides a balance between the two decision fusion rules. Both
of the hybrids in eq. (4.7.a,b) performed less successfully compared to the
maximum likelihood decision fusion rule.

Although there is further need for research on an optimum selection of data set
and classwise reliabilities, multisource classification based on various decision
fusion rules discussed in this chapter were observed to perform quite
successfully compared to the non-contextual maximum likelihood classifier, or
the multisource classifier with feature level fusion. Note that decision fusion
approaches are computationally very simple and always applicable to classifying
multisource data sets whenever the class decisions of the data sets are
available. In contrast, the data fusion-based multisource classifiers combine
posterior probabilities of each data set and therefore, all data sets must be
describable with statistical probabilities. If data sets are very diverse in terms of
their statistical properties, a combination of the posterior probabilities might not
be able to produce desirable results since one data set with large ranges of
probability values can easily dominate the global decision process. The decision
fusion-based approach can be applied, on the contrary, whenever local decisions
for each data set can be obtained. With data set and classwise reliability, or the
information about conditional probability P{uy | ug}'s, it is very straightforwardto
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control the relative importance of a specific data set, or particular class decisions
on the final global decision.

4.8 Conclusion

In this chapter, the problem of multisource classification based on decision fusion
was addressed and an optimum decision fusion rule based on Bayesian
minimum cost was derived. Three different decision fusion rules were considered
with application to multisource data classification.

A maximum likelihood fusion rule was found to be most effective, and it also
performed much better than the data fusion based multisource classifier.
Although having a limited a priori information requirement compared to the
maximum likelihood decision fusion rule, the weighted majority fusion rule
performed better than the data fusion-based multisource classifier. Note that both
classwise and data set reliabilities can be accommodated in weighted majority
decisionlusion.

Two different methods were considered in determining classwise reliabilities, and
the classwise reliability based on eg. (4.16) was found, as expected, to be far
more effective than the other.

This decision fusion-based approach in multisource classification or temporal
classification is very attractive since it can be always applied to the multisource
classification problem irrespective of the diverse nature of data sets whenever
local class decisions are provided. This also enables independent processing of
each data set separately both in training and actual classification steps.
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CHAPTER 5
SPATIAL-TEMPORAL CONTEXTUAL CLASSIFICATION

5.1 Introduction

In this chapter, the spatial contextual classifiers discussed in Chapter 3 and the
temporal contextual classifiers in Chapter 4 are combined as suggested in
Chapter 2. The cascade classifier (Swain 78a) which was originally developed for
bi-temporal data sets can be easily extended for a general multitemporal
classification which has more than two temporal data sets, but, as discussed in
the previous chapter, the extension requires one to decide on a structure by
which temporal information is combined. The spatial-temporal contextual
classifier Hgptp in €q. (2.13) is based on an extension of the bi-temporal cascade
classifier under the serial structure with which information of each temporal data
set is combinedin a serial way as shown in Fig. 4.2.(a).

It is also possible to formulate a similar spatial-temporal classifier under the
parallel structure of Fig. 4.2.(b) with additional assumptions about class-
conditional independence between different temporal sets. A modified spatial-
temporal contextual classifier of Hgptp in eg. (2.13) is derived in this chapter, to
be suitable for the parallel structure in Fig. 4.2.(b). The decision fusion approach
discussed in the previous chapter is also extended for spatial-temporal
classification. The local decisions of each temporal data set obtained with a
spatial classifier are combined, according to the decision fusion rules discussed
previously, for the best global decision.

Experimental results with three temporal Landsat Thematic Mapper (TM) data
sets are presented with discussions. Suggestions for future research in the field
of the spatial-temporal contextual classification conclude this chapter.
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52 Spatial-Temporal Contextual Classification Under a Parallel Information
Combination Structure

Given p temporal data sets, spatial-temporal contextual classification which is
optimal in the sense of maximum a posteriori (MAP) probability can be performed
with the classifier, Hgptp(C; 1, p) presented in eq. (2.13). This can be easily
computed using the relations in eq. (2.12) and eq. (2.14). As depictedin Fig. 25,
this classification scheme is based on a temporal classification scenario, that is,
as a new temporal data set becomes available, its spatial contextual information
extracted by Hgp(®) in eg. (2.11) is combined according to the rule in eq. (2.13)
with the spatial-temporal contextual information available up to that time in a form
of Hgprp(*) in eq. (2.14) so that the updated contextual information can be
conveyed to the next classification process of incoming temporal data.

It is also possible to formulate a spatial-temporal contextual classifierin a parallel
structure with additional assumptions about class-conditional independence
between temporally different data sets. Note that this parallel structure is
generally used for multisource classification.

Suppose a classification decision is made among a user-defined set of classes,
Q. In the serial structure on which eq. (2.13) is established, Q4 is frequently
selected as the set of classes in the final temporal data set, €, However, under
the parallsl structure, Qg need not be restricted to €,; it can be an arbitrary user-
defined set of classes. Denote a random field ¢q(r) which indicates a class
assigned to a pixel which is spatially located at r on the lattice L. cq(r) takes a
value among the set Q4. Two additional assumptions on which the modified
spatial-temporal contextual classifier is based, are stated as follow. (For an
explanation of notation, refer to Chapter 2).

Assumption 3.
For any k, 1 sk Sp, any class ¢y € £, and for Cyiners Which is a subset of &g k.1,
Pick | o, Cotherst = P{Ck | Co} (5.1.a)

P{Csx | €k €0, Cotherst = P{Cs x | Ci} (5.1.b)
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The assumption in eq. (5.1.a) is an extension of eq. (2.3.a) when a class €4 = ¢
among the user defined set Qg is involved. The relation in eq. (5.1.b) is of the
same nature as eqg. (2.3.b) in that, once the class of pixel x(r) is available, no
additional information comes from the class ¢g, or the classes of its temporal
neighbors. Note that eq. (5.1.a) is very crucial in allowing modification of eq.
(2.13) into the parallel structure since it states that the class information of the
temporal neighbors, Cuihers: IS irrelevant to evaluating the conditional probability
of ¢ once the identity of ¢q is available. Based on this assumption, a useful
relationship can be derived as follows.

Suppose Cothers is @ subset of & k-1, and 1 takes either €, or C;'k. Then,

_ P{nk | Cothers, €a}XCothers | Co}
P{Cothers | €0, Nk} = Pnx | Co}

From the assumption in eq. (5.1.a,b), the first term is P{n|Cq, Cothers} = P{NklICa},
therefore, the following relation holds.

P{Cothers | o Tt = P{Cothers | Co} (5.2)

A direct application of eg. (5.2) shows that, (data) classes ¢, and ¢; of temporally
different data sets, u #t, are class-conditionally independent as,

P{cu’ G | co} = P{cu | co} P{ct | co}

The following is another slightly extended class-conditional independence
assumption of eq. (2.14) when ¢, is involved.

Assumption 4.

For any k, 1 <k <p, and for any class ¢ € €y,

P{Xa | Ca, Xothers: Cothers: Co} = P{Xa | Cal (5.3)
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where,
X is an any non-empty subset of xg,k.
Ca is a set of classes corresponding to Xa.
Xothers is an any subset of Ex 5 such that Xqghers M x;,k = ¢.
Cothers is an any subset of &¢ , such that Cogners ® Csx = 9.
(Cothers IS NOt necessarily a set of classes corresponding to Xethers)-

This assumes class-conditional independence of temporal data sets, irrespective
of whether the class ¢ is conditioned or not. The validity of the assumptionin eq.

(5.3) may be hard to prove, but as suggested in (Lee et al. 87), without further a
priori correlation information between temporal data sets, this can be a practical
assumption to keep classifier complexity and the prior knowledge requirement
within a manageable limit.

Suppose Xg is either xy, or X's,k and Cg is its corresponding set of classes. Then,
from the assumption in eq. (5.3), the following relationship can be established.

P{Xothers | Cg. o} = P{Xg | Co} (5.4)

Since the probability P{Xqthers | Cg: €g} IS computed as,

C}E‘ P{xothers | cothers = c;others: CBv co}P{cothers = Cothers | ch co} (5-5)
others .

Its first term may be written, from the assumptionin eq. (5.3), as,

P{xothers | cothers = Cothers- CA' co} = P{xothers | cOlhers= Cothers}

From eq. (5.2), the second term is given as P{Cqthers = Cothers | Co}- Substituting
these in eq. (5.5) proves the relationship in eq. (5.4).
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Under the two assumptions in eg. (5.1.a,b) and eq. (5.3), a theorem which is
useful for deriving a modified spatial-temporal contextual classifier, can be
established as,

Theorem 3.

Forany t, 1 £ t £ p andfor Xa, €, and Xqthers defined below,

P{Xa | €o. Xothers} = P{Xa | €0} (5.6)

where  Xais either x, or X;'t. Xothers iS any subset of &x t.1.

This can easily be proved using the results in eqg. (5.2) and eq. (5.4). Note that
the probability P{Xp | €o, Xothers} iN €0. (5.6) can be written as,

CZ P{Xa | Ca=Ca, €o. Xotherst P{CA = Ca | €o. Xothers} (5.7)
A

From the class-conditional independence assumption of eq. (5.3),
P{Xa | Ca=CAa, €o. Xotherst = P{Xa | Ca = Cal (5.8.a)

Using Bayes theorem and eq. (5.4), the second term of eq. (5.7) may be
expressed as,

P{Ca = Ca | €o. Xothers} = P{Ca=Ca | €5} (5.8.b)

Since P{Xpa | Ca = Ca}ineq. (5.8.a) is equal to P{Xa | Ca = Ca, Co}; substituting
this and eq. (5.8.b) in eq. (5.7) proves eqg. (5.6). Note that a direct application of
eg. (5.6) establishes,
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p
P{x4, ---, X5 | €o} = p P{xy | co} (5.9)
-1

which is frequently assumed in multisource data classification. x4, ---, x, are the
feature vectors corresponding to a same spatial location.

With the two additional assumptions 3 and 4 for the case when ¢, is involved, it is
straightforward to derive a modified spatial-temporal contextual classifier. Under
the parallel information combination structure in Fig. 4.2, decisions with p
multitemporal data sets are made among a user-defined set of classes, Q. In a
manner similar to eq. (2.2), Hgpyp(Co: I, k), 1 <k < p, is defined as,

Hsptp(Co: T, K) = P{co(r) =Co | Xk = X, Xsk = Xs o X1 =X1Kd  (5.10)

When k = 1, Hgpp(C; 1, K) is understood as P{ck = | xk = Xk, Xgx = Xgk} since
there are no temporally previous sets, that is, Xty is empty. Note that, under the
parallel structure, a class decision is made among the set, 4. Spatial-temporal
classification is performed by choosing a class ¢4(r) = ¢, which maximizes
Hsptp(co: T, P) among Q. By applying Bayes theorem and the results in eq. (5.6),
Hsp1p(Co: I, K) can be expressed, for 2 < k <p, as,

_ a Hsp(Co; I, K) Hrp(Co; I, k)
r, k) = A Ploo(t) = Go) (5.11)

HspTr(Co;

The term A, which is definedin eq. (2.10), is irrelevant to making a class decision
¢ and therefore, it needs not be evaluated. For the case k=1, Hgptp(Co: I k=I)
= Hgp(Cq; I, k=1). Hgp(cy i I, K) in eq. (5.11) is a spatial contextual part of the kih
data set and is defined, for 1 <k £, as,

Hsp(Co ;T k) = Plco = Co | Xg k = X5k Xk = Xid (5.12)
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This is the same spatial contextual classifier part as eq. (2.11) but formulated in
terms of a class in €4. This can be computed, using the class transition matrix
T(Qq | Q). from the spatial contextual part in terms of classes among € in eq.

(2.11) as,

Hsp(Co:r, k)= 2, Hsp(c:r, k) Pleo(r) = co | C(r) = ¢} (5.13)
ce Q

where c is a class among £, the set of classes for the ki data set. Hgp(c; 1, k) is
the spatial contextual classifierin terms of data classes in €, and computed using

eg. (3.1).

In the same way, the temporal contextual classifier part, for 2 < k <p, which is
defined as,

Hrp(co; 1. K) = P{eo(r) = co | X1} (5.14)
can expressed, for2 <k <p, as,
Hrp(Co: 1, k) = Hsprp(Cos 1, k-1) (5.15)

This is different from its serial counterpart in eq. (2.14). The assumption in eqg.
(5.1.a) is indispensable in establishing this relationship. From eq. (5.11) and eq.
(5.15), the spatial-temporal contextual classifier, with p temporal data sets, under
a parallel information combination structure, Hspyp(Co; r, p) can be expressed as,

p
H . P H Hsp(co; 1, k) (5.16)
IP - = _—
SPTP(Coi . P) G0 = Col " Plco = cg}

The terms, Ay's are dropped from Hsptp(Co; I, P) in eq. (5.16) since they are
irrelevant in making the decision of ¢y. Note that it is in the same form of eq. (4.1)
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which is a data fusion-based multisource. A flowchart of the spatial-temporal
contextual classifier under the parallel structure is shown in Fig. 5.1.

Spatial-Temporal Classification : Hgprp (cg; 1, P)

Spatial Classification : Hgp (c,; 1, P) —T 7 |

Spatial Classfication : Hgp (cy; 1, p-1) e —

Spatial Classification : Hgp (cy; 1, 2)

Spatial Classfication : Hgp (¢, 1)

Figure 5.1 Spatial-Temporal Classification Under Parallel Information Combination Structure.

One important difference of the spatial-temporal contextual classifier in eq. (5.16)
from that in eq. (2.14) is that there is no interaction between the class ¢4(r) and
the classes of its spatial neighbors, that is, €y(r+v), v € Ng. Under the serial
structure in eq. (2.14), at each temporal stage, spatial information of that
temporal set is combined with its temporal information to execute spatial-
temporal contextual classification. But in eq. (5.16), only the spatial contextual
information of each temporal data set is combined to make a decision among 2,
and there is no interaction between the global decisions of spatially adjacent
pixels.

In the same manner as in Chapter 4, the decision fusion approach can be taken

for the classifier of eq. (5.16). The class decisions obtained with the spatial
contextual classifiers Hgp(c ; 1, K), k =1, ---, p, are combined together to find a

global decision among Q,.

The spatial-temporal contextual classifiersin eq. (2.13) and eqg. (5.16) are quite
general in their scope of application in that, the spatial contextual classification
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parts, Hgp(*)'s can be independently defined according to the particular
properties of the data sets. For example, different spatial neighborhoods can be
assumed for different temporal data sets. This generalization might be quite
useful when sensors with different spatial resolutions are used to acquire
temporal data sets. In experiments in this report, for simplicity's sake, only a first
order spatial neighborhood system is considered for all given multitemporal data
sets.

53 Experiments on Spatial-Temporal Contextual Classification

To test the spatio-temporal contextual classifiers in eq. (2.13), orin eg. (5.16) and
their modification based on decision fusion, experiments were carried out with the
three Landsat Thematic Mapper data sets introduced in previous chapters. Data
set descriptions can be found in Chapter 3 and 4. Since the ground truth
information shown in Fig. 3.8 was gathered in July and therefore matches best
with July data, classification performances were evaluated by comparing
classification results of July data with the ground truth map in terms of class-
averaged classification accuracy (CAG) and overall classification accuracy
(OGVA). Classification results with only spatial contexts, or only temporal contexts
were presented in previous chapters and, in this chapter, only the results with
spatial-temporal contexts are shown.

Table 5.1 Description of Spatial Contextual Part Hgp(+) in €q. (2.13).
Classifier Description of Classifiers
With the recursive spatial contextual classifier as in eg. (3.28)

RECU -1 (With isotropy assumption)
With the recursive spatial contextual classifier as in eq. (3.28)
RECU -2 (Without isotropy assumption)
CM- 1 Spatial correlation context only for homogeneous pixels with eg. (3.29)

(Withisotropy assumption)
Spatial correlation context only for homogeneous pixels with eg. (3.29)

CM-2 ithout isotropy assumption
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In the first experiment, the July data set was classified with September data as a
temporal neighbor set, therefore, the number of temporal data sets, p, was two.
The July data set was used as X(2) and the September data set was used as
X(1). First, the spatial-temporal classifier in eq. (2.13) was tested. Four different
spatial classification schemes, which were introduced in Chapter' 3, were
employec for Hgp(*) in eq. (2.13) as shown in Table 5.1.

All four spatial classifiers are able to utilize spatial interpixel correlation contexts.
In addition, a spatial classifier which utilizes only the spatial interpixel class
dependency context in eg. (3.35) was also examined in the experinient. The
same class transition matrix as in Chapter 4 was used. For details of spatial and
temporal classification, refer to Chapter 3 and 4. Spatial-temporal classification
results are shown in Table 5.2. in which the result of a non-contextual maximum
likelihood classifier is also included for comparison.

To classity the July data set with the September data set using Hgptp(*) in €q.
(2.1 3), the selected spatial classifier, Hgp(*) was applied first to the pixels in the
September data set; its classification result was then used in eq. (2.14) to
compute Hyp(*); and finally eq. (2.13) was used to classify pixels in July data set.
Both of the classifications were performed recursively over x-sites and -sites in
Fig. 3.7 until negligible changes of class assignments were attained.

As seen in Table 5.2, in the case of using spatial interpixel correlation contexts,
there were 3 ~ 6% overall classification accuracy increases over the non-
contextual maximum likelihood classification. Compared to the 8.40% increase
over the non-contextual scheme with only spatial interpixel class dependency
context, the spatial correlation contexts were not so effective. Considering the
additional computational complexity due by including spatial correlation contexts
and their relatively low effectiveness compared to the spatial class dependency
context case, in the following experiments, only the spatial class dependency
context was used in spatial-temporal classification.

The improvement with Hgpyp(®) of eq. (2.13) over the non-contextual classifier
was very significant for either the temporal, or spatial contexts only classification.

The improved classification results of the September data set using spatial
context with Hgp(*) was very helpful as temporal contextual information in

classifying the July data.
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Table 5.2 Percent Accuracy Comparison of Classifying July Data with September
Data using the Serial Spatial-Temporal Contextual Classifier in eq. (2.13).

Classifier Corn Soybeans Wheat Alfaifa/Oats CAG  OVA

July, ML' 90.18 57.72 6872 77.89 7363 74.37
July, Spatial Only? 9451 57.28 7350 80.82 76.53 76.82

With only spatial class label dependency context in eq. (3.35)

9592 75.01 8132 6288 78.78 82.77

With interpixel correlation context, without spatial class label dependency context

RECU-1 9433 59.19 7350 7738 76.10 77.08
RECU -2 9459 58.77 73.00 77.09 7586 76.96
CM-1 9293 6893 7119 6940 7561 79.00
CM-2 92.88 68.80 7103 6955 7559 78.98

With interpixel correlation and spatial class label dependency contexts

RECU -1 9565 60.30 73.83 8141 7780 78.50
RECU -2 9566 59.90 73.17 8155 7757 78.32
CM-1 9450 69.87 7218 7116 76.93 80.30
CM-2 94.62 6985 72.02 7145 76.99 80.36

iN

on-contextual maximum likelihood classificationof July data.
2with only spatial interpixel class dependency context.
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The same July data set was classified with the parallel spatial-temporal
contextual classifier of eq. (5.16), and the results are presented in Table 5.3.

Table 5.3 Percent Accuracy Comparison of Classifying July Data with September
Data using the Parallel Spatial-Temporal Contextual Classifier in eq. (5.16).

Classifier Com Soybeans Wheat Alfalfa/Oats CAG OVA
Data Fusion Based'

Without Spatial contexts®  91.80 6308 6988  73.35 7453  76.67

With Spatial Contexts 9520 6181 7646 7665 7753 7861
Decision Fusion Based?

without Spatial Contexts® 9419 7563 6872 7379 7808 8224

With Sgatial Contexts 95.88 79.11 72.67 77.89 81.39 85.04
1—

With eq. (5.16).
Maximurn Likelihood Decision Fusion rule.

3These are obtained without spatial contexts and are copied from Table 4.5 ancl 4.7 for
comparison.

As discussed in Chapter 4, the data fusion-based and the decision fusion-based
approaches were taken. To see the effectiveness of applying spatial classification
to each temporal data set, the classification results without partial contexts in
Table 4.7 are also included in Table 5.3.

To classify the July data set with the September data set using the data fusion-
based Hgptp(*) in eg. (5.16), the spatial classifier with only spatial interpixel class
dependency contexts in eq. (3.35) was appliedto the September data; the results
of September data, Hgp(c; 1, k=1)'s were translated into Hgp(cy ; 1, k=1)'s to be
used as Hqp(*); finally, according to eq. (5.16), Hyp(*) and Hgp(co ; 1, k=2) was
combinedto classify pixels in the July data set. In the decision fusion approach,
the class decisions of July and September data with the spatial classifier in eq.
(3.35) are combined according to the maximum likelihood decision fusion rule in
eq. (4.5.a). Note that in making decisions among £, there is no spatial
interaction between ¢, at r and its spatial neighbors, co(r+v), v e Ng.
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Compared to the case of temporal classification without spatial contexts in Table
5.3, there were only about 2 ~ 3% overall classification accuracy increase by
incorporating spatial contexts in the temporal contextual classification. The data
fusion-based classifier in eq. (5.16) was about 4% worse than the serial
counterpart in eg. (2.13). This is because there is no consideration of spatial
interactions between ¢y at rand its spatial neighbors in eq. (5.16). However, in
the case of decision fusion-based the informationcombination of eq. (5.16), there
was a 2.3% classificationaccuracy increase (OVA) over the result with eq. (2.13).
Compared to the non-contextual maximum likelihood classification of the July
data, this amounts to a 10.7%, a significantincrease (OVA). The class-averaged
accuracy was also increased by 7.8%. Better classification results of each
temporal data set by using the spatial contextual classifier brought significant
accuracy increases when decision fusion took place.

Figure 5.2 shows the locations where pixels were incorrectly classified. The error
map of spatial classification of the July data with only class dependency context
in eg. (3.35) is also included for visual comparison.

Comparedto the error map of the non-contextual maximum likelihood classifier in
Fig. 5.2.(a), the other error maps in Fig. 5.2 look much cleaner with far fewer
isolated errors. This is due to utilizing the spatial-temporal interpixel dependency
class context. This cleaner classification result will be much more meaningful in
real applications of classification. Also some regions in the July data set which
were incorrectly classified with spatial contexts only were correctly classified by
utilizing additional spatio-temporal contextual information from the temporal
neighbors in the September data set. Therefore we can say that it is very
effective to incorporate contextual information from the spatio-temporal neighbors
into classification. In the error maps Fig. 5.2.(a) and (b), there were large
incorrectly classified fields in the middle of scene, and they were of the class
soybeans, but mostly classified to the class alfalfa/oats. When temporal
contextual information was incorporated, as shown in Fig. 5.2.(c) and (d), a
considerable number of pixels in those incorrect fields were correctly classified.
Note that, there was significant increase in classification accuracy of soybeans in
Table 5.3. Figure 5.3 shows corresponding classification maps.
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Figure 5.2

(b)

(d)

Correctly classified pixels
B Incorrectly classified pixels

Error Maps o Spatial-Temporal Contextual Classification of July
Data with September Data. (a) With pixelwise maximum
likelihood classifier (no spatial, temporal contexts). (b) With eqg.
(3.35) (no temporal contexts). (c) With eq. (2.13). (d) With eq.
(5.16), maximum likelihood decision fusion based.
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@ Soybeans [l Alfalfa/Oats

Figure 5.3 Classification Maps of Spatial-Temporal Contextual Classification
of July Data with September Data. (a) With a Non-Contextual
Maximum Likelihood Classifier. (b) With a Spatial Classifier using
eqg. (3.35). (c) With Data fusion using eq. (2.13). (d) With
maximum likelihood decision fusion using eq. (5.16).
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Classification accuracy increases, over non-contextual pixelwise maximum
likelihood classifier, by incorporating spatial and/or temporal contextual
information are summarizedin Fig. 5.4.

14
- B Class-AveragedClassfication Accuracy (CAG)
® 12 Overall ClassficationAccuracy (OVA)
p 7727,
= 10 é?r#
‘_ !
S 8 %, 7 %—-
3 . W 7 7
E 4 . R /“ é
o o -
2 %
= 0 i G %
Tempora Context Only* Spatial Context  Spatial-Temporal Context
1 2 Only 1 2
Figure 5.4 Improvement of Classification Accuracy, over a Pixelwise Maximum

Likelihood Classifier, by Incorporating Contextual Information in Classifying
July Data with September Data as a Temporal Neighbor. 1. Data fusion-
based temporal contextual classification (cascade classifier) with eq. (4.1) -
serial combination structure.; 2. Maximum likelihood decision fusion-based
temporal contextual classification with eq. (4.5.a) - parallel connbination
structure.; In spatial classification, only the spatial class dependency
context was used with eq. (3.35).

In the case of data fusion-based classification with temporal context only,
the improvements shown here are based on the result in Table 4.5, with
the data set weights (Sept=July=1). Compared with the best result in terms
of overall classification accuracy, which is shown in Table 4.7, the
improvements are OVA = 2.43%, CAG= - 0.16%.

In the second experiment, the April data set was also included in classifying July
data. with September data. All three temporal data sets were used to examine
the effectiveness of the spatial-temporal classifiers discussed in this chapter.
Under the serial spatial-temporal contextual classifier in eq. (2.13), the posterior
probabilities obtained with spatial classification of April data were combined with
those of September data according to eq. (2.14). These results were then
combined with Hgp(*) of July data to make class decisions. In the parallel data

- 126 -




5 SPATIAL-TEMPORAL CLASSIFICATION

fusion case of eg. (5.16), the Hgp(*) of each data set were combined using eq.
(5.16).

Spatial classification results of April data with the classifier of eq. (3.35) are
shown in Table 5.4.

Table 5.4 Percent Accuracy Comparison of Spatial Classification of April Data.

bineg.(3.35) Wheat Others CAG OVA
0 90.29 89.59 89.94 89.65
2 91.19 90.17 90.68 90.27
4 91.03 90.02 90.52 90.11
6
8

9128 90.02 9065 90.14
9128 8990 9059  90.03

10 9128 89.89 9058  90.02
12 91.28 8984 9056 8998
14 9128 89.77 9052 8991
16 9128 89.74 9051  89.88
18 9128 89.69 9048 89.84
20 9128 89.70 9049 89.84

Spatial classification of April data with eq. (3.35) didn't make significant
differences compared to the pixelwise classification (b = 0 case in Table 5.4).
Note that there were defined only 2 classes {wheat, others) for April data. In the
data fusion based spatial-temporal classification procedures, the parameter b in
eg. (3.35) decides the relative emphasis on spatial class homogeneity compared
to the class-conditional likelihood values. If different b values are used for
different data sets, then, the data set with the largest b will dominantly affect the
classification decisions as discussed in Chapter 4, since that data set is most
likely to have the largest range of Hgp(*) values. Therefore, the parameter b's
must be decided for each data set carefully. With the decision fusion-based
classifier, on the contrary, proper values of b's can be independently selected for
each data set to best fit each data set.
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Table 5.5 Percent Accuracy Comparison of Classifying July Data with April
and September using the Spatial-Temporal Contextual Information.

Percent Classification Accuracy

Selected Classifier Com Soybeans Wheat Alfalfa/Oats CAG

OVA

Classification of July Data with April Data
Data Fusion: eq. (2.13) 9432 56.69 8436 8243 7945
Data Fusion : eq. (5.16) 9464 5707 7728 8170 7767
Decision Fusion:eq. (45a) 9451 5728 9012 8163 80.89

77.70
77.24
78.46

Classification of September Data with April Data
DataFusion : eg. (2.13) 8367 6000 8222 5425 70.03
Data Fusion : eq. (5.16) 83.76  59.71  59.59 5300 64.01
DecisionFusion :eqg. (45.a) 83.79 5952 8724 7357 76.03

71.20
68.89
73.58

Classification of July Data with April and September Data

Data Fusion : eq. (2.13) 9590 7260 8165 6398 7853

Data Fusion : eq. (5.16) 9529 6166 8058 7804 78.89
Decision Fusion : eg.
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Table 55 shows classification results for July data when both September and
April data were used as temporally previous data sets. The parameter b was
chosen as 0 for April data. The result of the July data classification with temporal
context from April data is also included in the table.

As observed in Chapter 4, due to its relative small number of classes, "wheat"
compared to others, April data was only marginally effective in improving the
overall classification (OVA) as shown in Table 5.5. However, there was a
considerable accuracy increase for the class wheat. Compared to the temporal
classification case (CAG=79.07, OVA=76.16) in Table 4.4, and the spatial
context only case (CAG=76.53, OVA=76.82) in Table 3.5, the spatial-temporal
information in classifying July data with April data was useful as shown in Table
55.

Decision fusion-based spatial-temporal classification outperformed the others as
seen in the previous bi-temporal classification case of July data with September
data in Table 5.3. When the September data was classified with the April data,
the performances with spatial-temporal information was better than that of the
spatial context only (CAG=61.47, OVA=67.86) in Table 3.5. Compared with the
temporal context only case (CAG=73.17, OVA=71.06) in Table 4.4, the results
with eq. (2.1 3) were not much different.

Due to the relatively large differences of b values between April (b=0) and
September data (b=30), the classes wheat and alfalfa/oats in Table 5.5 were not
as accurately classified as with the data fusion-based temporal classifier in Table
44. In a separate experiment of classifying September data with April data, it
was observed that there were differences in the overall classification accuracy of
3% (a maximum was 73.13%, and a minimum was 69.89%), and in the class-
averaged classification accuracy of 5% (a maximum was 75.44%, and a
minimum was 70.03%) for various combination of b values for the two temporal
data sets. As the b value for the April data set increased, the class-averaged
accuracy was seen to increase due to better classification for the classes, wheat
and alfalfa/oats.

This effect was also visible in the classification with all three data set together
using eq. (2.13). There were differences in the overall classification accuracy of
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4.6% (a maximum was 83.82%, and a minimum was 79.18%), and in the class-
averagecl classification accuracy of 5.6% (a maximum was 81.59%, and a
minimum was 76.02%) in the separate experiment of classifying with all three
data sets and with various combination of b values for September and April data.
The classification result with eq. (2.13) in Table 5.5 turned out to be slightly
worse than the result of the spatial context only case (OVA=82.77, CAG=78.78).
Due to the relatively low emphasis on April data (b=0), the classes wheat and
alfalfa/oats had low classification accuracies, and so did the class-averaged
classification accuracy (CAG). However, the decision fusion-based classifier was
very successful even in this case. For all four classes, classification accuracies
were increased significantly over the non-contextual, and the spatial contextual
only classification of July and September data sets. This insensitivity is a direct
consequence of dealing with only the class decisions. Notice that it also attained
better performances for all classes compared with the same classifier but with
only temporal contexts in Table 4.7.

Figure 5.5 shows the locations of classification errors. For visual
comparison, the error maps of the non-contextual maximum likelihood classifier
and of tho spatial classifier in eq. (3.35) are also presented. When spatial class
dependericy context was used, many isolated errors in Fig. 5.5.(a) were
removed. But, the large incorrectly classified soybean fields in the middle of
scene were considerably corrected by using temporal contexts as sean in Fig.
5.2. Significant portions of the wheat fields in upper right portion of image which
were incorrectly classified without April data set, were mostly correctly classified
as seen in Fig. 5.5.(d). In Fig. 5.5.(c), wheat fields were still in errors since the
ranges of class-conditional likelihood values of April data set were relatively
smaller than for the other data set due to its low b parameter value (b=0) in eq.
(3.35). Most of the classification errors left in Fig. 5.5.(d) were along field
boundaries, in which the problem of mixed pixels might most likely exist. Figure
5.6 shows corresponding classification maps which clearly exhibit the
effectiveness of spatial and temporal contextual information
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Correctly classified pixels

@ Incorrectly classified pixels

Figure 5.5 Error Maps of Spatial-Temporal Contextual
Classification of July Data with April and September
Data. (a) With pixelwise maximum likelihood
classifier (no spatial, temporal contexts). (b) With
eg. (3.35) (no temporal contexts). (c) With eq.
(2.13). (d) With eq. (5.16), maximum likelihood
decision fusion based.
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(©) (d)

(] Com Wheat
§8 Soybeans [ Alfalfa/Oats

Figure 5.6 Classification Maps of Spatial-Temporal Contextual Classification of
July Data with April and September Data. (a) With Non-Contextual
Maximum Likelihood Classifier. (b) With Spatial Classifier using eq.
(3.35). (c) With Data fusion using eg. (2.13). (d) With maximum
likelihood decision fusion using eq. (5.16).
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A summary of classification accuracy improvement over the non-contextual
maximum likelihood classification of July data by incorporating the spatial-
temporal contextual information is given in Fig. 5.7.

14
§ B Class-Averaged Classification Accuracy (CAG)
- 12 Overall Classification Accuracy (OVA)
.J e
= 10
| ™1 L
2
2 8
e 4
-] 6" Z
g 4
> 4 -
E .
E 27
[~ o

0 - “ e RS L
Temporal Context Only Spatial Context Spatial-Temporal Context
1 2 Only 1 2
Figure 5.7 Improvement of Classification Accuracy, over a Pixelwise Maximum

Likelihood Classifier, by Incorporating Contextual Information for

Classifying July Data with April and September data as temporal neighbor

sets). 1. Data fusion-based temporal contextual classification (cascade

classifier) with eq. (4.1) - serial combination structure.; 2. Maximum

likelihood decision fusion-based temporal contextual classification with eq.

(45.a) - parallel combination structure.; In spatial classification, only
. Spatial class dependency context was used with eq. (3.35).

In case of data fusion-based classificationwith the temporal context only,
the improvements shown here are based on the best result in terms of
overall classification accuracy, which is shownin Table 4.7.

By utilizing both spatial and temporal contextual information, there were
classification accuracy improvements as much as 12% over the non-contextual
case. The improvements were both for the class-averaged and overall
classification accuracies. Spatial context only classification resulted in 2 ~ 3%
increase. As seen in previous error maps, the spatial contextual information
produced much cleaner classification maps with spatially isolated errors
considerably reduced. The classification maps with good delineation of fields will
be very useful in may practical application. Temporal contextual information
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modeled in term of class transition probabilities was observed to be especially
useful in classification. The decision fusion-based combination of multiple data
sets was found to perform much better than the data fusion based. It was seen to
be insensitive to the inter-relationship of classifiers used for different data sets.
This property is expected to be one of the most important requirement for
information combination algorithms since it allows independent design and
classificationof each data set.

5.4 Conclusions

In this chapter, experimental results of the spatial-temporalclassifier formulated
in Chapter 2 were presented. In addition, with a slight modification, a spatial-
temporal contextual classifier under a parallel information combination structure
was derived.

The proposed spatial-temporal contextual classifiers exploit the spatial-temporal
interpixel class dependency context through spatial prior probabilities and
temporal class transition probabilities. The Gibbs random field was used to model
the inherant coherence of class labels of spatially adjacent pixels in terms of
spatial prior probabilities. Class transition probabilities convey temporal interpixel
class dependency context into the classification process.

By allowing the changes of classes over time, it is not necessary to consider the
given temporal data sets simultaneously in the training stage and to define
additional spectral classes. The number of classes need not be increased even
though the number of feature vectors is increased by adding feature vectors of
spatio-temporal neighbors. Since this classifier doesn't require processing all the
temporal data sets simultaneously, the computational load can be distributed
over different times. This classifier is applied to the pixels in a recursive way to
yield a computationally efficient contextual classification.

The experiments with three temporal Landsat Thematic Mapper (TM) data sets,
taken at April, July, and September, showed significant improvements of
classification accuracy over the maximum likelihood non-contextual classification.

In the case of bi-temporal classification of July data with September data, the
maximum likelihood decision fusion-based spatial-temporal classifier achieved
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classification accuracy increases of about 10.7% in the overall accuracy (OVA)
and about 7.8% in the class-averaged classification accuracy (CAG) over the
non-contextual maximum likelihood classification of July data.

In experiments with all three temporal data sets, the spatial-temporal contextual
information achieved classification accuracy increases as much as 12% for the
overall accuracy (OVA) and 11% for the class-averaged classification accuracy
(CAG) over the non-contextual maximum likelihood classification of July data.
Maximum likelihood decision fusion-based spatial-temporal contextual classifier
was found again to be most effective in utilizing spatial-temporal contexts. The
resulting classification maps were more meaningful since they had much fewer
isolated errors. Classifiers which can utilize potentially important contextual
information from spatial, temporal or spatial-temporal neighbors should be quite
useful in many real applications, especially where classification accuracy is
important.

The degree of usefulness of spatial, temporal or both contextual information in
classification may be dependent on data set properties. The spatial class
dependency context modeled by a Gibbs random field was found to be very
effective in obtaining a more homogeneous class map with much reduced
isolated errors. It was not exceptionally computationally demanding under the
coding-based recursive approach.

The temporal contextual information based on class transition probabilities was
also very useful in improving classification accuracies. When a certain data set is
especially effective in extracting a subset of classes, for example, the class
wheat in the April data set, its inclusion in the classification process, if properly
combined, usually leads to classification accuracy increases. In the experiments,
the temporal contextual classification based on decision fusion was observed to
have several advantages over the data fusion based counterpart. For example, it
would be particularly useful in such cases when the range for posterior probability
values are quite different from data set to data set, or when some data sets can
not be adequately modeled with statistical probabilities so that posterior
probabilities can be computed.
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Although all derivations and discussions have been focused on the spatial-
temporal contextual classification, as seen in Chapter 4, the contextual classifiers
derived in this report can be directly applied to general multisource classification
problems. Depending on data set properties, an appropriate classifier, whether it
IS a spatial classifier or not, can be employed to best utilize the selected data set.
The inforimation extracted from each data set can be combined either in a serial
or parallel fashion according to the need of application.

55 Suggestionsfor Future Research

The spatial class dependency context was seen to be very effective, but the
spatial classifierin eqg. (3.35) is based only on local homogeneity of class labels.
This spalial class dependency context might not be equally effective in such
scenes with relatively small homogeneous fields. In such cases, it needs to be
extended to model the general spatial dependency relationship between adjacent
class labels. An unsupervised procedure is also necessary for estimating
parameters used for such model.

There must be some systematic procedure to decide the data set and classwise
reliability or weight factors used for the temporal classifiers in Clhapter 4.
Although there are ideas about measuring data set or classwise reliability,
assigning specific values for weight factors to be used in classification still
remains for further research attention.

When several data sets are combined in classification at the level of data fusion,
large differences in the posterior probability ranges often obscure the effect of
data set weight factors. Therefore, for the data set weight factors to be fully
functional, there must be better way to combine multiple information at the data
fusion level.

In temporal classification, the temporal contextual information is conveyed to
different data sets using the class transition probabilities, however, there is no
estimating procedure available for those. If there are a lot of transition between
classes, not only between the same information classes, an unsupervised
estimation procedure should be essential.
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Appendix A Proofs of Theorems and Lemmas in Chapter 2

The purpose of this appendix is to present formal derivations and proofs of the
theorems, lemmas and the spatio-temporal contextual classifier addressed in
Chapter 2. For an explanation of the notation used, refer to the first part of
Chapter 2.

A.l Proofs of Theorems and Lemmas

Since the two assumptions addressed in Chapter 2 are frequently referred in
the process of proofs, they are repeated here for easy reference as follows.

Assumption 1.
Forany k, 1 <k <p, and for Ca and Cg defined below,
Plcks1 | Cki Cal = PlCkyq | € (A.1.a)

P{Csk | ck, Cg} = P{Csk | ck} (A-1.b)
where,
Ca is any non-empty subset of &g x such that Ca O {€x} = ¢. ¢ is an empty set.
Cgis any non-empty subset of &g k-1-

Assumption 2.

For any k, 1 sk <p, and for X, Ca, Xothers 2nd Cothers defined below,

P {XA | CA, xotherSv cothers} =P {XA | CA} (A-2)

where,
Xa is any non-empty subset of X's,k-
Ca is a set of the classes corresponding to Xa.
Xothers is any subset of £  such that Xothers © X's.k = ¢.
Cothers is any subset of ¢ 5 such that Cothers C'S,k = 0.
(Cothers iS NOt necessarily a set of classes corresponding to Xgthers)-
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Based on these assumptions, the theorems and lemmas introduced in Chapter
2 can be proved as follows.

Theorem 1.

Forany tand usuchthat 1 st <u<p,

Py | nt. Cotherst = Py | i} = Piny | e (A.3)

where,
ifu > t, n, is either {cy} or Cg . Ny is either {€4} or Cs;t.

if u=1, ny=Cgy and ny={c4}.
Cothers iS any non-empty subset of §¢  such that Cotngrs MMy = Cothers N Mt

=¢_

Proof of Theorem 1 :

*Whenu=t:
In this case, Ny = Cg y and Ny = {¢y}- Since Cothers M Cs,u= Cothers N {C4} = 9,
note that Cothers iS @ Non-empty subset of ¢ t-1 and P{ny | Ny, Cothers} =
P{Cs | &, Cothers}- From the assumption 1 in eq. (A.1.b),

P{Cs u | ¢t Cothers} = P{Csu | 4} = P{ny | ng-

*Whenu:=t+1:

CasSe.
Suppose my = {cy} = {C,1}, i.6., P{ny | Nt Cothersl = P{Cts1 | Nt Cotners}-
Since Cothers NNt = Cothers M {4 = ¢, from the assumption 1 in eq. (A.1.a),

P{Ci+1 | Mt Cotherst = P{Cts+1 | Gt} = PlCeq [ My

case: |
Suppose ny =Cg y = Cs.t+1, i.e., Piny | Nt Cotherst = P{Cs 141 | Nt Cothers}-

Note P{Cs 141 | Mt Cothers} = P{Cs 141 | Ca1: Nt Cothers} PlCts1 | Mt Cothers}-
Since Coihers Y Nt IS a subset of &g 1, from the assumption 1 in eq. (A.1.b),

P{Cs t+1 | €t41: Mt Cotherst = P{Cs 141 | €141} = P{Cs ta1 | Cryts Mtk
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In the same way, since Cothers U [Nt -{€4}] is @ subset of &c t without {€4}.
from the assumption 1 of eq. (A.1.a),

P{cy.1 | Nt. Cothers} = PlCts1 | €1} = P{Creq | M4}

Therefore,

Py | nt. Cotherst = P{cs,m | Ctet. NP{Ce1 | Mt} = Plny | My}

Whenus>t+l:
Note that PMy,k+1 | Nt Cothers} can be written as,

P{Ntsk+1 | Nt Cothers!

= z P{Mt+k+1 | Stk Nt Cotherst P{Ctok | Nt Cothers}
Ctek

Suppose eq. (A.3) holdforu=t+Kk, k21, i.e., Py, | M. Cothers} = PNtk |
4. Then, from this assumptionfor u =t +k,

Pk | Nt Cotherst = P{Crak [ el
case.

Suppose Nisk+1 = {Ctak+1}- From the assumption 1 in eq. (A.1.a),

P{Mtsk+1 | Ctak Mt Cotherst = PCtak+1 | Crakd = P{Ctik+1 | Ctak Ny

Theretore, P{Ni4k+1 | Nt Cothers} IS computed as,

Y, PlCtuket | Ctake Nt PlCrakc | Tt = PlCtokcst | Mt} = PNpyicer [ M)
Ctik

CaseE.

SuppoSe Myuks1 = Cs taks1, them,

P{Mi:k+1 | Ctake M. Cothers!
= P{Cs tsk+1 | Ctaks1: Ctaks Mt Cothers} P{Ctak+1 | Ctaks Mt Cotherst
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From the assumption 1 in €q. (A.1.b), P{Cs t4k+1 | Cteks1r Ctak: Nt Cothers} IS

equal t0 P{Cg tuk41 | Ctekst} = PICs take1 | Crakats Mt aNA PlCrikst | Crape Mt
Cothers! = P{Ctiks1 | Crard = P{Cruxs1 | Nd. Therefore,

PMtsk+1 | Ctake Nt Cotherst = P{cs.t+k+1 | Cteks1> Nt} P{Ctykst | Tie}

= P{Cs t+k+1 | Mg} = PMtaicsr | Mtk

From case 1, 2, it is proved that if eq. (A.3) holds foru =t + k, k 2 I ,then it
also holds for u =t + k + 1. Since eq. (A.3) holds when k = 1, by induction, it
holds for every t and u suchthat 7 stsu <p.

Proof of second part : P{ny |y} = Pny | ¢}

« When 1, = {¢4} : Itis trivial to show Ping j ng} = Ping | €}
* When ny=Cgy : Inthiscase u=t, Piny {ng =P{ny | Cs e} = P{ny | ¢t Csy4}-
Since Cgy Ny = Cg 4N ¢ = ¢, fromthe result of the first part of Theorem 1,

Piny | ¢, Cs g} = Piny | ¢4}

-Q.E.D.-
Lemma 1.
For Cothers: My @and ny defined as in the Theorem 1,
P{Cothers | Nu » Nt} = P{Cothers | Mt} = P{Cotners | €1} (A4.9)
PCrx | €k Cs,i} = P{Cr | €} (A.4b)

Proof of eq. (A.4.9) :
Applying Bayes Theorem to the left side of eq. (A.4.a) gives,
P{Cothers | Nu » g} = ANy | Nt Cothers }PiMt . Cotners } / PNu. Ni}-

From the Theorem 1, P{ny | Nt Cothers } = PMu | My}, therefore,
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P{Cothers | Nu » Mt} = PNt Cothers } / PNt = P{Cothers | Nt} (A.5)

Ifnyis {cy}, it is trivial to show P{Cqthers | Nt} = P{Cothers | €1 }. If nyis C:s.,, then,
P{Cothers | €1} = P{Cothers | €1, Cs1}- Applying the result in eq. (A.5) gives,
P{Cothers | €1, Cs 1} = P{Cothers | €1 }. Therefore, P{Cothers | Ny » Nt} = P{Cothers |
Nt = P{Cotners | €1}

Proof of eq.(A.4.b) :
Substitute Cothers = C1x Nt = {4} and ny = Cgin eq. (A.4.a) proves eq. (A.4.b).
-Q.E.D.-

Theorem 2.

For any tand v such that 1 <t <u <p, and for X, ny and n defined as below,

P{Xa | Nt My} = P{Xa [ Mg} (A.6.a)

Especially, when Xa N X'SJ = ¢,

P{Xa |} = PXa | ct} (A.6.0)
where,

if u>t,

M is either {cg} or Czs.,. Ny is either {c,} or C:s.u.

Xa is any non-empty subset of £x y such that Xa N X‘S,t is either ¢ or X:S,t-
if u=t,

M= {e and n, = Cs .

X4 is any non-empty subset of £y 4.
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Proof of Theorem 2 :

Define na ¢ = Ca MMy Where Cp is a set of classes corresponding to the pixels in
XA.

case1:whenmna=¢.
This implies Xa N X ¢ = ¢.

Ca

Since Ca M (ny U My ) = ¢, from eq. (A.2), P{Xa | Ca, iy, ny} = P{Xa | Ca} and
from the lemma 1, P{Ca | . Ny} = P{Ca | N4}

P{Xa | Ny, Ny} = g, P{Xa | CA}P(CA | My}
A

= Y P{Xa | Ca, m}PICA | My} = P{Xa | Ty} (A.7.9)
Ca

gase 2 :whenmnga# ¢.
This implies u # t and na ¢ =1y. Let's define Ca = Ca - Mag=Ca-m,

when Ca # ¢,

P{Xa | nt. N} = X, P{Xa | Ca, 1, Nu}PCa | Nt, Nu}
Ca

From the assumption 2, P{Xa | Ca, N1, lu} = P{Xa | Ca, N} and from the
lemma 1, P{Ca | m1, Nu} = P{Ca | m}. Therefore, P(Xa | Np Ny} = P{Xa | N1}

« when Ca = ¢, it implies Xa = X's,'t andny = Célt. In this case, P{Xa | Nt Nu}
= H‘{X's,,t | C:e,',. Ny} and since u # t, from the assumption 2, P{X's,t I Cg,,,
Ny} = PXs | Cg 4} = PXg ¢ | ng}. Therefore,

P{Xa | My Mg} = P X | N = P{Xa | 1} (A.7.b)
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With eq. (A.7.a) and (A.7.b), eq. (A.6.a) is proved.

proof of eq. (A.6.b) :

» When n; = {¢4}, itiis trivial to show P{Xa | s} = P{Xa | ct}-
« Whenmng = C'S,t, P{Xa | Nt} = P{Xa | €1, Cs gl and from eq. (A.7.a), P{Xa | &, Cs ¢}
= P{XA | ¢;}. Therefore, P{Xa | Nt} = P{Xa | €4}.

-Q.E.D.-
Lemma?Z2.
P{Xtk | €k Ck+1} = PXyx | Cil (A.8.a)
P{Xyx | €k Cs i = P Xtk | Sk} (A.8.b)
P{Xs k | Ck. Cks1} = PXs k | €} (A.8.)

proof of Lemma 2 :

Substituting Xa = Xt k, Mt = {ck} and ny = {ck41} in €q. (A.6.a) proves eq. (A.8.a).
substituting Xa = Xy, Nt = {ck} and ny = Cg k in eq. (A.6.a) proves eq. (A.8.b).
Substituting Xa = Xg k. Nt = {ck} and Ny = {Ck.1} in eq. (A.6.a) proves eq. (A.8.a).

Lemma3.

Forany k, 11 k <p and for Xqthers Which is any non-empty subset of Ex .1,

P{xS.k | Ck» xothers} = P{xS,k | ck} (A.9)
proof of Lemma 3:

Note that the left -hand side of eq. (A.9) can be written as,

P{xs,k | Ck» xothers} = ;, P{xS,k | CS,k- xothers}P{cS,k | Ck» xothers} (A-10)
s,k
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From the assumption 2, P{X's'k [ C's,k, Xothers) = P{x's,k | C'S,k}. By the Bayes rule,

P[Cs,k | Ck xothers} = P{xothers I CS,k' ck}P{cS,k | ck} / P{xothers l ck}

Note that,

P{xothers | CS,k- ck} = ; P{xothers | cothersv cS.kr ck}P{cothers| cS.k: ck}
s,k

and from the assumption 2, P{Xothers | Cothers: Cs,k, Ck} = P{Xothers | Cothers} =
P{Xothers | Cothers: Ci}- According to the lemma 4, p{C . .. | Cs .k €k} = PlCothers |
ci}- Therefore, P{Cs k | Xothers » €k} = P{Csk | €} and,

P{xothsrrs I cS,b ct} = ;, P{xothers | cothers- Ct }P {cothers l ct} = P{xothars | ck}
s,t

From these results, eq. (A.IO) is

P(Xs k | €k Xothers } = cz PXsk |Csk}P(Csk | Ck} = PXsk | €id
s.k

-Q.E.D.-

A.2 Derivation of Spatio-Temporal Contextual Classifier

In this section, the spatio-temporal contextual classifier given below will be
simplified using the properties derived in the previous section. For k = 2, -, p
andc € £, the spatio-temporal contextual classifier is defined as,

Hsprp(c: T, K) = Plec=C | X =X, Xs k= Xs o X1k =XT}  (A.11.3)

Specially, if k=1, Hgptp(*) is defined as,
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HSpr(C; r, k) = P{ck =C| Xy = X, Xs,k = XS,k}' ce (A1 1 b)

Applying the Bayes rule when k = 2, ---, p, results in,
Hsprp(c: 1, K) = Plek | Xy, Xs k. X1t = Pley [ Xsk, Xtk
The probability P{cy | X's,k » X7 } can be written as,

P{X's,k, X1k, Ck}
P{Xs o X7}

Plck | Xs o X1 =

_ PiXsi | X eibPXTx | SitPlext

: (A12)
P{Xs k» Xt}

Notice, from the lemma 3, (ie., Xqhers = X1k IN €Q. (A.9)),

P{Xs x| Xtk Cd = P{Xgk | €}

By using the Bayes theorem,

P{Xsk | € = Pic | Xs k 1PXsx } / Plcd)
P{Xtxk | cd = Plex | Xy }P{Xyk }/ Pleyd
therefore,

P{Xs,dP (X1} _ Plek | Xs,d Plex | XTal
P(Xs o XTad Pled

Pick | Xs o XTA} =
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Let's define Hgpl(c; 1, K), Frp(c; 1, k), and Ay , forc € Q andk =2, ---, p as follows.

Hgp(c: T, k) = P{ck = ¢ | X5 = Xg 1}

Hrp(c; 1, K) = Plek = ¢ | Xtk = Xt

_ PiXsdPX7,d
P(Xs o X7 d

Ak

Then, Hgpyp(C: 1, k) can be writtenforc e &, k=2, ---, p, as,

Hspre(c: 1, k) = A TEP(C: ;{2 ’:Tg}“" .k (A.13)

The temporal contextual classifier, Hyp(c; r, k) can be computed using its
previous spatio-temporal contextual part. According to Bayes theorem,

Hrp(c: 1, K) = Pleg=c | Xt}

= P{XT,k l Ck= C}P{ck= C} / P{xT,k}

Y, PX1k|Ck=C, Cx1}P{Ck-1 | Ck = ¢} (A.14)
Ck-1

From the theorem 2 {i.e., substituting, X4 = Xy x = Ex ko NIt = €k-q @and ny, = €y), the
probability P{Xtk | €k , Ck.1} is equal to P{Xyk ] €x.1} which can be computed as,

PX7 4 | Gt} = PlCict | X 10 X7 11PXs k10 XTke1} / P{Cicrd
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Notice also that P{cy.q | x;‘,,k-h xT,k~1} can be written as Hgptp(Ck-1; I k-1) and
P{x;',ﬂ, X1 k-1} = P{X1,}: substituting these yields,

P{X1.1}
P{Xtk | Ck-1} =—P{TI(-:T Hsp1p(Ci.1: 1, k-1)

The temporal contextual classifier part, Hyp(c; 1, k) in eq. (A.14) is now written
aSl

HTP(C; r, k) = P{Ck = c} Ck§= stpr(ckJ =d;r, k'1) P{ck;{;:j ch}= C}

Applying the Bayes theorem yields,

_aAcki=dlck=¢ _ . _ _
Pex=c} Ploi=dl - Plex=c | ¢4 =d}

therefore, Hyp(c; 1, K) can be computed as,

Hrple;r k)= Y Hgprp(d; 1, k-1) Pleg=c| ¢y =d}
d € Qk-‘l

In a summary of previous results, fork =2, ---,p, andc € Q,

Hsp1p(C; T, K) = Ak Hsp(c; 1, k) Hre(c: 1, k)

P{cx = ¢}
where, ’ '
Hsp(c; 1, k) = Plek = ¢ | Xgk = Xs i}
Hre(c;r, k) = Plck=c | Xtx = X1}
and,
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Hplcin k= Y  Heprpld:r k1) Pleg=c ey =d}
d € Qk-1

In case k=1,

Hgprp(c: 1 k) = Piog = € | X = X, Xs k= Xs it = HgplC: 1 k)

This concludes the derivation of the spatio-temporal contextual classifier.
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Appendix B Program List for Spatial-Temporal Classification

Program list for the spatial and temporal classifiers discussed in this report is
available upon request.
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