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SECOND ORDER PONTRYAGIN’S PRINCIPLE
FOR STOCHASTIC CONTROL PROBLEMS∗

J. FRÉDÉRIC BONNANS†

Abstract. We discuss stochastic optimal control problems whose volatility does not depend on
the control, and which have finitely many equality and inequality constraints on the expected value
of functions of the final state, as well as control constraints. The main result is a proof of necessity
of some second order optimality conditions involving Pontryagin multipliers.

Key words. Stochastic control, second order optimality conditions, Pontryagin’s principle.

1. Introduction. In this paper we consider stochastic optimal control problems
whose volatility does not depend on the control, and having two types of constraints:
(i) bound constraints on the control, and (ii) finitely many equality and inequality
constraints on the expected value of function of the final state. Such problems can be
studied by the Hamilton-Jacobi-Bellman (or dynamic programming) approach, using
the notion of viscosity solution, see [14, 19, 25]. This approach has the advantage
to give characterizations of global optimality in some cases. However, it is not easy
to apply in the presence of final state constraints. In this paper we will rely on the
variational approach, which consists in obtaining necessary or sufficient optimality
conditions by analyzing small perturbations of an optimal trajectory.

For deterministic control problems, a major result along this approach is Pontrya-
gin’s maximum principle, or PMP, which essentially says that with the solution of a
deterministic optimal control problem, are associated some multipliers such that the
optimal control minimizes the Hamiltonian of the problem. This has been extended
to stochastic control problems, first by Kushner [18, 17], Bensoussan [2] Bismut [3, 4],
and Haussmann [15, 16]. A major advance, due to Peng [22], was the extension of
such results to the case when the volatility depends of the control. See also Cadenillas
and Karatzas [9] and Yong and Zhou [25].

On the other hand, it is classical for abstract optimization problems to derive
second order necessary conditions. These conditions typically say that the curvature
of the Lagrangian of the problem is nonnegative over a set of critical directions, for
some multiplier that may depend on the direction [7]. The only extension we know
of such results for stochastic control problems is [8].

Finally, in some deterministic optimal control problems it is possible to obtain sec-
ond order necessary conditions in Pontryagin form, i.e., where the involved multipliers
satisfy the PMP, see [20]. A result of this form, for problems with state constraints
and mixed state and control constraints, was recently obtained in [5]. Corresponding
sufficient conditions were obtained in [6]. The aim of this paper is to obtain second
order necessary conditions in Pontryagin form for stochastic control problems. We
have to make the important restrictive hypothesis that the volatility does not depend
on the control. Note, however, that in the second order optimality conditions obtained
in [8], there were already important restrictions on the dependence of the volatility
w.r.t. the control.
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†INRIA-Saclay and Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau,
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As in [5] the analysis will be based on an auxiliary problem called “finite re-
laxation”, that makes use of the notion of relaxed control. There is an important
literature concerning the extension of relaxation to the stochastic case, see the early
reference Becker and Mandrekar [1], and El Karoui, Nguyen and Jeanblanc-Picqué
[11].

The analysis is simplified here for two reasons: (i) we use only finite relaxations,
which can be viewed as classical controls for the auxiliary problem, and (ii) the volatil-
ity does not depend on the control. This simplifies, in particular, the construction of
classical controls approximating relaxed ones.

The paper is organized as follows. The setting is presented in section 2, and the
main results are stated in section 3. The proofs are given for weak minima in section
4, and for Pontryagin minima, using the idea of partial relaxation, in section 5. We
recall some basic results on SDEs in the appendix.

2. Setting.

2.1. Some function spaces. Let (Ω,F ,F,P) be a filtered probability space,
F := {Ft} being the augmented natural filtration associated with a Brownian motion
W (t) ∈ Rd and P the corresponding probability law. We say that x(ω, t) ∈ R is
progressively measurable if, for all t ∈ [0, T ], the mapping: Ω × [0, t] → R, (ω, s) 7→
x(ω, s) is “Ft× Borel” mesurable.

For β ∈ [1,∞] and γ ∈ [1,∞], we define the spaces Lβ,γ as the set of progressively
measurable functions of (t, ω) such that the norm defined below, for β ∈ [1,∞) and
γ ∈ [1,∞), is finite:

(2.1) ‖x‖β,γ :=

IE(∫ T

0

|x(ω, t)|γdt

)β/γ1/β

,

with obvious extensions if β =∞ or γ =∞, in particular

(2.2)
‖x‖β,∞ :=

IE(esssup
t∈(0,T )

|x(ω, t)|

)β1/β

.

‖x‖∞,∞ := esssup
ω

esssup
t∈(0,T )

|x(ω, t)|.

We define the control space by Uβ,γ := (Lβ,γ)m and the state space by Yβ :=
(Lβ(Ω, C([0, T ])))n, endowed with the norm of (Lβ,∞)n. We set Uβ := Uβ,β Both
norms of Uβ and Yβ will be denoted by ‖ · ‖β , since no confusion should occur. We
say that a property is valid a.e. if it holds for a.a. t, almost surely.

Let F (t, u, y, ω) be a finite dimensional function over [0, T ]×Rm×Rn×Ω. Denote
by B the Borelian σ field on [0, T ]. We say that F is measurable if it is B([0, T ])×Rm×
Rn × FT measurable. We say that a measurable function F is essentially bounded if
it belongs to L∞. By DF , D2F , etc, we denote the partial derivative of F w.r.t. the
variables (u, y). We adopt similar conventions for functions of (y, ω), such as the final
cost.

2.2. Stochastic control problem. In the sequel we assume that (u, y) belongs
to Uβ,γ × Yβ , for β and γ in [1,∞). We define the cost function

(2.3) J(u, y) := IEϕ(y(T ), ω),
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the state equation

(2.4)

 dy(t) = f(t, u(t, ω), y(t, ω), ω)dt+ σ(t, y(t, ω), ω)dW (t);
t ∈ (0, T ); y(0) = y0,

the control constraints, where Uad is a multimapping [0, T ]× Ω→ Rm:

(2.5) u(t, ω) ∈ Uad(t, ω) a.e.,

the final state constraints

(2.6) IEΦ(y(T ), ω) ∈ KΦ,

where Φ : Rn×Ω→ RnΦ , and KΦ stands for finitely many equalities and inequalities,
i.e., for some nE and nI in N such that nE + nI = nΦ:

(2.7) KΦ := {0}RnE × RnI
− .

The stochastic control problem to be considered in this paper is

(P ) Min J(u, y) s.t. (2.4)-(2.6).

We assume throughout the paper that the functions f , σ, `, and ϕ belong to the class
of “nice functions” defined below: F is said to be nice if

(2.8)

(i) F is progressively measurable,
(ii) The mapping (u, y) 7→ F (t, u, y, ω) is a.e. C2,
(ii) The functions F , DF , and D2F are essentially bounded,

and Lipschitz with uniform constants,

with obvious adaptations for σ and ϕ that do not depend on u and (t, u), resp., ϕ
being only measurable. Under these assumptions, for any control u ∈ Uβ,1, the state
equation has a unique solution y[u] ∈ Yβ , and so, the cost function and constraints
are well defined.

We assume that Uad(t, ω) has the following structure:

(2.9) Uad(t, ω) = {u ∈ Rm; ai(t, ω) · u ≤ bi(t, ω), i = 1, . . . , nU},

where the functions ai and bi are progressively measurable. We set

(2.10) Uad := {u ∈ U2; u(t, ω) ∈ Uad(t, ω) a.e.}.

We assume in the paper that

(2.11) There exists u00 ∈ Uad ∩ U∞.

The feasible set of problem (P ), denoted by F (P ), satisfies therefore

(2.12) F (P ) = {u ∈ Uad; IEΦ(y[u](t)) ∈ KΦ}.

We will consider a ’nominal’ feasible trajectory (ū, ȳ) ∈ U2 × Y2, and abbreviate
for instance f(t, ū(t, ω), ȳ(t, ω), ω) into f̄(t), with similar conventions for the partial
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derivatives w.r.t. (u, y) denoted by f̄ ′(t) or Df̄(t), and the partial derivative w.r.t. to
say y only, denoted by f̄y(t) or Dy f̄(t).

We will assume throughout the paper that

(2.13)

 (i) The ai are essentially bounded,
(ii) There exists v0 ∈ U∞ and ε0 > 0 such that

ai · (ū+ v0) + ε0 ≤ bi, i = 1, . . . , nU , a.e.

Remark 2.1. If Uad ⊂ U∞, we may take U∞ as control space. If in addition the
bi are essentially bounded, then (2.13)(ii) coincides with the inward condition for the
mixed constraint in [5, Def. 2.5], therefore we will call it the inward condition for the
control constraint. This hypothesis is convenient since in the sequel we will make the
analysis of essentially bounded perturbations of the control ū.

Remark 2.2. When the ai and bi (and therefore Uad) do not depend on (t, ω),
and Uad is bounded, the inward condition for the control constraint is not restrictive.
Indeed, consider the apparently slightly weaker hypothesis

(2.14)
{

There exists ε1 > 0 such that, for any i = 1, . . . , nU ,
there exists ui ∈ Uad such that ai · u+ ε1 ≤ bi.

If (2.14) holds, (2.13)(ii) also with ε0 := ε1/nU and v0 := −ū+ (nU )−1
∑nU

i=1 u
i, and

therefore both conditions are equivalent. On the other hand, if (2.14) does not hold, for
at least one index 1 ≤ i ≤ nU , ai · u = bi for all u ∈ Uad. If ai = 0, the corresponding
inequality can be removed. Otherwise, reindexing if necessary the components of the
control, we may assume that for all u ∈ Rm, ai ·u = bi iff um =

∑m−1
j=1 αjuj for some

coefficients α1, . . . , αm−1, so that we can reformulate the stochastic control problem
with a control having m− 1 components. By induction we obtain a reformulation for
which (2.13)(ii) holds.

2.3. Expansion of the control to state mapping. When, as in this paper,
the volatility does no depend on the control, as established in [8, Prop. 3.14] the
mapping u 7→ y[u] happens to have a second order Taylor expansion, with the following
restriction: we have to choose the pertubation of the control in a smaller space than
the one of the control. Note that in general the control space should not be too small
since it has to contain the optimal control.

For the first order expansion we give an analysis in section A.2 (see theorem
A.2). For each β ∈ [1,∞), the mapping v 7→ y[ū + v] happens to be F-differentiable
U2β,2 → Yβ .

The linearized state equation is, skipping the arguments (t, ω) of v and z:

(2.15)
{

dz = f̄ ′(t)(v, z)dt+ σ̄y(t)zdW (t), t ∈ [0, T ],
z(0) = 0.

The solution is denoted by z[v], and we need to consider as well the second order
linearized state equation, with the same conventions, and z = z[v]:
(2.16){

dz2 = (f̄y(t)z2 + f̄ ′′(t)(v, z)2)dt+ (σy(t)z2 + σyy(t)(z)2)dW (t), t ∈ [0, T ].
z2(0) = 0.

Lemma 2.3. (i) For any v ∈ Uβ,1, with β ∈ [1,∞), (2.15) has a unique solution
z[v] in Yβ, and ‖z‖β = O(‖v‖β,1). (ii) For any v ∈ Uβ,2, with β ∈ [2,∞), (2.16) has
a unique solution in Yβ/2, denoted by z2[v], and ‖z2‖β/2 = O(‖v‖β,2).
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Proof. Immediate consequence of lemma A.1.
Theorem 2.4. Let ū ∈ U2 and v ∈ U∞. Then we have the expansion

(2.17) y[ū+ v] = y[u] + z + 1
2z2 + ρ2,

with ‖ρ2‖β,∞ = O(‖v‖2β,2‖v‖24β,4).
Proof. See [8, Prop. 3.14].

2.4. Hamiltonian and final Lagrangian. Let (ū, ȳ) be a feasible control and
associated trajectory. We define the Hamiltonian and final Lagrangian functions by
(skipping the argument ω):

(2.18)
{
H(ν, t, u, y, p, q, ω) := p · f(t, u, y, ω) +

∑d
i=1 σ

i(t, y, ω) · qi,
LF (y, ν,Ψ, ω) := νϕ(y, ω) + Ψ · Φ(y, ω).

Here p and qi, i = 1 to d, are elements of Rn. The costate equation is

(2.19)
{
−dp(t) = ∇yH(ν, t, ū, ȳ, p, q, ω)dt+

∑d
i=1 q

idWi(t)
p(T ) = ∇yLF (ȳ(T ), ν,Ψ).

By [12, Thm 5.1] (see also [21, Proposition 3.1]), for each λ := (ν,Ψ), and y = y[u], the
costate equation has a unique solution (pλ, qλ) in Yβ × (Lβ,2F )nd, for each β ∈ (1,∞),
λ 7→ (pλ, qλ) is a linear mapping, and there exists Cβ > 0 such that

(2.20) ‖p‖ββ,∞ +

d∑
i=1

‖qi‖β,2 ≤ Cβ |λ|.

2.5. Lagrange and Pontryagin multipliers. Set

(2.21) F (u) := J(u, y[u]).

The reduced Lagrangian of problem (P ) is defined as

(2.22) L(u, λ) := νF (u) + Ψ · IEΦ(y[u](T ))
= IELF (y[u](T ), ν,Ψ, ω).

We define the sets of Lagrange and Pontryagin multipliers, resp., as follows:

ΛL(ū) :=

 λ = (ν,ΨE ,ΨI) ∈ R+ × RnE × RnI
+ ;

λ 6= 0; Ψ ⊥ IEΦ(ȳ(T ));
−∇uH(ν, t, ū, ȳ, pλ, qλ, ω) ∈ NUad

(ū(t, ω)) a.e.

 ,

ΛP (ū) :=

{
λ = (ν,ΨE ,ΨI) ∈ R+ × RnE × RnI

+ ; λ 6= 0; Ψ ⊥ IEΦ(ȳ(T ));
H(ν, t, ū, ȳ, pλ, qλ, ω) = infuH(ν, t, u, ȳ, pλ, qλ, ω) a.e.

}
.

We kown (see e.g. XXX) that, for any v in Uβ and λ ∈ ΛL(ū):

(2.23) Lu(ū, λ)v = IE

∫ T

0

Hu(ν, t, ū, ȳ, pλ, qλ)vdt.

Remark 2.5. When studying perturbations of the optimal control that belong to
U∞ we may reduce to the case when the bi are bounded. Indeed we can locally rewrite
the control constraints as

(2.24) ai · ū(t, ω) ≤ b′i(t, ω)
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where b′ is the bounded vector defined by

(2.25) b′i := min(bi(t, ω), 1 + ai · ū(t, ω)).

The multipliers associated with the control constraints are defined as the set
M(ū, λ) of µ ∈ (L∞)nU that satisfy the following relation:

(2.26)

 Hu(ū, ȳ, pλ) +

nU∑
i=1

µi(t, ω)ai = 0,

µi(t, ω) ≥ 0, µi(t, ω)(ai · u(t, ω)− bj) = 0 a.e.

Lemma 2.6. Let λ ∈ ΛL(ū). Then the set M(ū, λ) is nonempty and bounded.
Proof. By remark 2.5, we may reduce to the case when b is essentially bounded.

Set δ := ∇uH(ν, t, ū, ȳ, pλ, qλ), and consider the problem

(2.27) Min
v∈U∞

IE

∫ T

0

δv; v ∈ Uad a.e.

Clearly this problem has value zero, and is qualified in view of (2.13). Therefore, the
set of dual solution, that we denote by M ′(ū, λ), is a nonempty and bounded subset
of (U∞)∗. Let µ ∈M ′(ū, λ). We need to show that

(2.28) 〈µ, g〉 ≤ c‖g‖1, for all g ∈ (L∞F )nU .

Since µ ≥ 0, it suffices to obtain this inequality when g ≥ 0. We may write

(2.29) g(t, ω) = α(t, ω)ḡ(t, ω); α(t, ω) ≥ 0; |ḡ(t, ω)| = 1 a.e.

Let A be the matrix whose row i is (ai)>. By (2.13), h ∈ (L∞)nU defined by h :=
b−A(ū+ v0) is such that h ≥ ε0 a.e. Since gi ≤ α ≤ αhi/ε0, for i = 1 to nU , we have
that

(2.30) ε0〈µ, g〉 = 〈µ, ε0g〉 ≤ 〈µ, αh〉.

On the other hand, since µ ≥ 0 and h′i := bi − ai · ū is such that αh′ ≥ 0:

(2.31) 0 ≤ 〈µ, αh′〉 ≤
√
nU‖g‖∞〈µ, h′〉.

By the complementarity conditions, 〈µ, h′〉 = 0 and therefore the previous inequalities
are equalities, so that 〈µ, αh′〉 = 0. With (2.30), setting h′′ := −Av0 and v1 := αv0,
we deduce that

(2.32) ε0〈µ, g〉 ≤ 〈µ, αh〉 = 〈µ, αh′′〉 = −〈µ,Av1〉 = Lu(ū, λ)v1

≤ ‖Lu(ū, λ)‖∞‖α‖1|v0| = ‖Lu(ū, λ)‖∞‖g‖1|v0|.

The result follows.
The first order necessary optimality conditions, are as follows:
Theorem 2.7. Let ū be a weak minimum (local minimum in L∞). Then ΛL(ū) 6=

∅.
Theorem 2.8. Let ū be a local minimum in L1

F. Then ΛP (ū) 6= ∅.
Remark 2.9. (i) Theorem 2.7 is established in [8, Prop. 4.3 and lemma 4.5]

in the absence of final constraints, and in [8, Prop. 5.5] in the absence of control
constraints.
(ii) Theorem 2.8 is essentially the result of Peng [22], combined with the representation
of the multiplier µ in lemma 4.2.
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3. Second order optimality conditions.

3.1. Weak minima. Consider the following quadratic form over U2, that is
well-defined for v ∈ U2, since, when z[v] belongs to Y2:

(3.1) Q[λ](v) := IE

(∫ T

0

D2H̄(t)(v(t), z[v](t))2dt+D2LF (ȳ(T ), ν,Ψ)(z[v](T ))2

)
.

Set, for β ∈ [1,∞]:

(3.2) T βUad
:= {v ∈ Uβ ; v(t, ω) ∈ TUad

(ū(t, ω)) a.e.}.

By [8, Lemma 4.5], when β ∈ [1,∞), this is the set of control directions in Uβ that
are tangent directions (in the sense of convex analysis) to the control constraints set
Uad at the point ū. When β = ∞, it is easy to check that T βUad

in general is smaller
than this tangent set.

Similarly we define the corresponding set of strict tangent directions to the control
constraints as (note that this is a closed vector space)

(3.3) T βUad,S
:= {v ∈ Uβ ; ai · v(t, ω) = 0, if ai · ū(t, ω) = bi, i = 1, . . . , nU , a.e.}.

The critical cone is, for β ∈ [1,∞], defined as:

(3.4) Cβ(ū) :=
{
v ∈ T βUad

; DΦ(ȳ(T ))z[v](T ) ∈ TK(Φ(ȳ(T )) ∩ ϕ′(ȳ(T ))−
}
.

We also define the strict critical cone as

(3.5) CβS (ū) := T βUad,S
∩ Cβ(ū).

The next result slightly improves [8, Thm 4.10 and thm 5.10], by considering simul-
taneously the control constraints and the final constraints. It will be proved in the
next section.

Theorem 3.1. Let (ū, ȳ) a weak minimum and the associated state. Then, for
any strict critical direction v ∈ U∞:

(3.6) max
ΛL(ū)

Q[λ](v) ≥ 0.

Note that, by [8, Prop. 4.3 and lemma 4.5], in the absence of final constraints, (3.6)
also holds for critical directions.

3.2. Local minima in L1
F. This is the main result of the paper. Here we need

an additional hypothesis of regularity w.r.t. time of the dynamics:

(3.7) f and σ are uniformly continuous w.r.t. t.

as well as control constraints not dependig on time:

(3.8) The functions a and b do not depend on time.

Theorem 3.2. Let (ū, ȳ) be a local minimum in L1
F and the associated state, and

let (3.7) and (3.8) hold. Then, for any strict critical direction v ∈ U∞:

(3.9) max
ΛP (ū)

Ω[λ](v) ≥ 0.

As mentioned in the introduction, we may view this result as partial extension to
the stochastic setting of similar results in the deterministic setting, see [5, 20].
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4. Proofs in the case of weak minima.

4.1. Degenerate equality constraints. We say that the equality constraints
IEΦE(y[u](T )) = 0 are degenerate at the trajectory (ū, ȳ) if the mapping

(4.1) v 7→ DIEΦE(ȳ(T ))z[v](T )

is not onto. This holds iff there exists a nonzero element of the orthogonal space, that
we call totally singular multiplier, i.e.,

(4.2)
{

ΨE ∈ RnE , ΨE 6= 0, such that
v 7→ ΨE · IEDΦE(ȳ(T ))z[v](T ) identically vanishes.

If a totally singular multiplier Ψ̂E exists, we may identify it with the multiplier λ0

for problem (P ) having ν = 0, ΨI = 0 and Ψ̂E as components. Then theorems 3.1
and 3.2 trivially holds, by taking either λ0 or −λ0 (the latter is also a totally singular
multiplier). So in the sequel we may assume that the equality constraints are non
degenerate.

4.2. Formulation with slack variables. We may assume w.l.o.g. that J(ū, ȳ)
is equal to 0. Consider the following slack problem with slack variable θ ∈ R:

(4.3)

Min
(v,θ)∈U∞×R

θ s.t.

(i) IEΦE(y[u](T )) = 0,
(ii) F (u) ≤ θ,

(iii) IEΦI(y[u](T )) ≤ θ1,
(iv) A(t, ω)u(t, ω) ≤ b′(t, ω) + θ a.e. in (L∞)nU .

Set θ̄ = 0. The following result is easily obtained.
Lemma 4.1. If ū is a weak minimum of problem (P ), then (ū, θ̄) is a weak

minimum of the slack problem (4.3).
We denote by λ = (ΨE , ν,ΨI , µ) the components of the multipliers associated

with each of the four constraints of (4.3). We consider only regular multipliers for
this problem, in the sense that there is no multiplier associated with the cost function.
As in the proof of lemma 2.6 we can check that µ belongs to (L∞)nU . Of course ν ≥ 0
and ΨI ≥ 0. A Lagrange multiplier is a nonzero λ for which we have stationarity
w.r.t. the primal variables (u, θ) of the associated Lagrangian, whose expression is
(compare to (2.22); here we have dualized also the control constraints), putting apart
the coefficient of θ:

(4.4) L′(u, θ, λ) := L(u, λ) +

nU∑
i=1

〈µi, Aiv− b′i〉+

(
1− 〈ν,1〉 −ΨI · 1−

nU∑
i=1

〈µi,1〉

)
θ.

When µ ∈ (Lβ
′
)nU , the above duality products can be written as

IE
∑nU

i=1

∫ T
0
µi(t, ω)(ai · u(t, ω)− b′i)dt and IE

∑nU

i=1

∫ T
0
µi(t, ω)dt resp.

Taking (2.26) into account, we see that we recover the same set of Lagrange
multipliers as for problem (P ), up to the condition of stationarity of the Lagrangian
w.r.t. θ, i.e.

(4.5) Λ′L(ū) :=

{
λ ∈ ΛL(ū); 〈ν,1〉+ ΨI · 1 +

nU∑
i=1

〈µi,1〉 = 1

}
.
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Lemma 4.2. We have that
(i) The set Λ′L(ū) is nonempty and bounded, (ii) for any λ = (ΨE , ν,ΨI , µ) in Λ′L(ū)
we have that

(4.6) |µ(t, ω)| ≤ ε−1
0 |v0||H̄u(t, ω)| a.e.

Proof. Remember that we assumed that the equality constraints are not degener-
ate. The constraints other than equalities correspond to a convex set with nonempty
interior. In that case, we know [7, Corollary 2.101] that qualification holds iff there
exists a direction (v, δθ) in the kernel of derivative of equality constraints, whose cor-
responding image in the constraint spaces points in the direction of the interior of the
convex set. This condition holds: it suffices to take v = 0 and δθ = 1. Therefore, the
problem is qualified. By [23], the associated set of Lagrange multipliers is nonempty
and bounded. We conclude with lemma 2.6.

4.3. Second order necessary conditions. We need to approximate strict crit-
ical directions by a smaller set in order to be able to construct feasible paths, that will
allow to obtain the second order necessary conditions. For this we need Dmitruk’s
density lemma [10].

Lemma 4.3. Consider a locally convex topological space X, a polyhedron (finite
intersection of closed half spaces) C ⊂ X, and a linear subspace L of X, dense in X.
Then C ∩ L is a dense subset of C.

Set for any ε > 0:

(4.7) T βUad,ε
:= {v ∈ Uβ ; ai · v(t, ω) = 0, if ai · ū(t, ω) + ε ≥ bi, i = 1, . . . , nU , a.e.},

(4.8) T βUad,0
:= ∪ε>0T

β
Uad,ε

.

and the related set of totally strict critical directions

(4.9) Cβ0 (ū) := T βUad,0
∩ Cβ(ū).

Lemma 4.4. The set Cβ0 (ū) is a dense subset of C2
S(ū).

Proof. Obviously Cβ0 (ū) is a subset of C2
S(ū). In view of lemma 4.3, it suffices to

prove that T βUad,0
is a dense subset of T βUad,S

. Set for ε > 0

(4.10) I(t, ω) := {1 ≤ i ≤ nU ; ai(t, ω) · ū(t;ω) < bi(t, ω)},

and

(4.11) B(ε) := {(t, ω) ∈ [0, T ]× Ω; max
i∈I(t,ω)

ai(t, ω)ū(t;ω)− bi(t, ω) ≥ −ε}.

Given v ∈ T βUad,S
for ε > 0, define vε by

(4.12) vε(t, ω) :=

{
max(−1/ε,min(1/ε, v(t, ω))) if (t, ω) 6∈ B(ε),

0 otherwise.

Since ∩εB(ε) is negligible, vε → v a.e., and since |vε| ≤ |v| a.e., the conclusion follows
from the dominated convergence theorem.
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4.4. Proof of theorem 3.1. We say that a critical direction v ∈ Uβ is radial
if ū + sv satisfies the control constraints for small enough s > 0. In that case the
direction is also radial in the sense of [7]. We apply [7, Section 3.2] to the slack
problem (4.3). The functions are not of class C2, but as noticed in [8], we have
the existence of a second order Taylor expansion, and that is sufficient. We obtain
that (3.6) holds for any totally strict critical direction. Now let v be a strict critical
direction. By lemma 4.4, there exists a sequence vk of totally strict critical directions
converging to v in U2; let λk ∈ Λ′L(ū) be the associated sequence of multipliers such
that (3.6) holds for the pair (vk, λk). The set Λ′L(ū) is bounded by lemma 4.2, and
therefore, compact. So, extracting if necessay a subsequence, we may assume that
λk converges to some λ ∈ Λ′L(ū). Since (λ, v) 7→ Ω[λ](v) is a continuous function,
Ω[λ](v) = limk Ω[λk](vk) ≥ 0 as was to be proved.

5. Proof of theorem 3.2.

5.1. Castaing representation of Uad. Since the functions a and b do not
depend on time we may write Uad(ω) instead of Uad(t, ω). A Castaing representation
of Uad in Uβ is a sequence uk in Uβ such that uk(t, ω) ∈ Uad(ω) a.e., and for fixed
(t, ω), the sequence uk(t, ω) is a dense subset of Uad(ω) a.e. It is known that (see e.g.
[24, Thm 1B, p. 161]) measurable multifunctions with closed values have a Castaing
representation in Lp spaces. This result was extended to the case of adapted functions
in [8, Prop. 6.1]. So, Uad(ω) has a Castaing representation uk in U∞, where k ∈ N∗.
Here N∗ := N \ {0}.

5.2. Partial relaxation. We now introduce the partially relaxed (also called
simply relaxed in the sequel) problem as follows. This is a family of problems indexed
by k ∈ N \ {0}. The control variables are the progressively measurable functions
u ∈ Uβ and α ∈ Ak := (L∞)k. The state equation is, omitting the argument ω for
functions of (t, ω):

(5.1)
dy(t) =

1−
k∑
j=1

αj(t)

 f(t, u(t), y(t))dt+

k∑
j=1

αj(t)f(t, uk(t), y(t))dt

+σ(t, y(t))dW (t), t ∈ (0, T ); y(0) = y0,

where the sequence {uk}, k ≥ 1, is a given Castaing representation of Uad(ω) in uk
in U∞, and the control variable is the pair (u, α) ∈ U × Ak. This state equation
has in Yβ a unique solution, denoted by y[u, α]. For an unrelaxed control, i.e., when∑k
j=1 α(t) ≤ 1 and α(t) ∈ {0, 1}n a.e., we have that

(5.2) y[u, α] = y

1−
∑
j≤k

αj

u+
∑
j≤k

αju
j

 ,
where we remind that, by y[·] in the r.h.s., we denote the solution of the original state
equation (2.4). The nominal trajectory in this setting is u = ū, ᾱ = 0, with associated
state y[ū, ᾱ] = ȳ. The corresponding linearized state equation at the point (ū, ᾱ, ȳ),
for (v, δαj) ∈ U2 ×Ak, has the form

dz(t) = f̄ ′(t)(v(t), z(t)) +
∑
j≤k

δαj(t)(f(t, uk(t), ȳ(t))− f̄(t))dt

+σ̄′(t)z(t)dW (t), t ∈ (0, T ); y(0) = y0,
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We denote its unique solution in Y2 by z[v, δα], and introduce the family of partially
relaxed optimal control problems, with slack variable θ ∈ R (reminding that we may
assume w.l.o.g. that the optimal value of the original problem is zero):

(Pk)


Min(u,α,θ) θ IEϕ(y[u, α](T )) ≤ θ;
IEΦE(y[u, α](T )) = 0; IEΦI(y[u, α](T )) ≤ θ1;

u(t, ω) ∈ Uad(ω) a.e., α(t, ω) ≥ −θ a.e.

Set θ̄ := 0. Clearly, (ū, ᾱ, θ̄) ∈ F (Pk). We can identify α ∈ Ak with an element of
Ak′ , for k′ > k, by setting αj = 0 when j > k. It follows that F (Pk) ⊂ F (Pk+1).

Lemma 5.1. Either the equality constraints of (Pk) are not qualified at the point
(ū, ᾱ, θ̄) for any k ∈ N, or they are qualified for k ≥ k0.

Proof. That these equality constraints are qualified for of (Pk0
) means that there

exist (vi, δαi) ∈ U∞ × Ak0
, for i = 1 to nE , such that the corresponding linearized

states zi = zi[vi, δαi] are such that the family {IEΦ′E(ȳ(T ))zi} has rank nE . Since
Ak0

is included in Ak for all k > k0, we obtain the same rank property for any k > k0,
as was to be shown.

In the next section we will prove the following:
Proposition 5.2. Let ū be a local minimum in L1

F of (P ), the equality constraints
of (Pk) be qualified, and (3.7) hold. Then (ū, ᾱ, θ̄) is a weak minimum of (Pk).

5.3. Set of Lagrange multipliers of the relaxed problem. First, by ex-
pressing the stationarity of the Lagrangian of the problem w.r.t. θ we obtain that
each Lagrange multipliers of the relaxed problem satisfies (compare to (4.5)):

(5.3) 〈ν,1〉+ ΨI · 1 +

nU∑
i=1

〈µi,1〉 = 1.

We denote the set of Lagrange multipliers of problem (Pk) at the nominal trajectory
by Λk. By the above display, the components (ν,Ψ, µ) of elements of Λk are uniformly
bounded.

The expression of the Hamiltonian of problem (Pk) is, dropping the argument ω:

(5.4) Hk(ν, t, u, α, y, p) := H(ν, t, u, y, p) + p ·
∑
j≤k

αj(f(t, uj , y)− f(t, u, y)).

It is therefore easy to see that the costate equation at the nominal point (ū, ᾱ, θ̄) coin-
cides with the one for the original problem. So, the only difference in the expression of
first-order optimality conditions w.r.t. the first formulation (4.3) with a slack variable
is that we have the relation expressing the nonnegative variation of the Hamiltonian
w.r.t. feasible (nonnegative) variations of ᾱ, and this means that for j = 1 to k:

(5.5) p̄(t) · f(t, ū(t), ȳ(t)) ≤ p̄(t) · f(t, uj(t), ȳ(t)) a.e.

that we can rewrite as, skipping the argument ω :

(5.6) H(t, ū(t), ȳ(t), p̄(t), q̄(t)) ≤ H(t, uj(t), ȳ(t), p̄(t), q̄(t)), a.e., for all j ≤ k.

Observe that

(5.7) Λk = {λ ∈ Λ′L(ū); (5.6) holds}.
11



By the definition of a Castaing representation, and in view of the continuity of the
Hamiltonian H(·) w.r.t. the control variable, it follows that

(5.8) ∩k Λk = {λ ∈ ΛP (ū); (4.5) holds}.

We have the following alternative. Either the equality constraints are qualified (at
the nominal point) for k0, and hence

(5.9) For k > k0, Λk is uniformly bounded,

since Λk is included in Λk0
which is itself bounded. The other possibility is that the

equality constraints are not qualified for any k ∈ N.
Proof of theorem 3.2 in the case of never qualified equality constraints.

This means that there exists some nonzero ΨE ∈ RnE in the orthogonal of the range
space, i.e., such that

(5.10) ΨE ·DΦE(ȳ(T ))z[v, δα] = 0 for any (v, δα) ∈ U∞ ×Ak,

meaning that the associated costate say p satisfies the condition of stationarity of the
Hamiltonian in (5.4) w.r.t. (u, α) ∈ Rm × Rk. The condition of stationarity w.r.t. α
gives therefore

(5.11) p · (f(t, uj , y)− f(t, ū, y)) = 0, for any k ∈ N.

Since uk is a Castaing representation it follows that

(5.12) p · (f(t, u, y)− f(t, u, y)) = 0, for any u ∈ Uad.

In that degenerate case it appears that the conclusion of theorem 3.2 holds in a trivial
way, with either ΨE or −ΨE .

Proof of theorem 3.2 in the case of of qualified equality constraints. Let
v ∈ U∞ be a strict critical direction of the original problem. For k ∈ N, k > 0, set
v̂k := (v, 0, 0) ∈ U∞ ×Ak × R. By proposition 5.2, v̂k is a strict critical direction for
the relaxed problem (Pk). So we can express optimality conditions based on theorem
3.1. We obtain the existence of a Lagrange multiplier (for problem (Pk)) say λk, such
that

(5.13) Ω[λk](v) ≥ 0.

By (5.9), λk is bounded. For some subsequence, Ψk and therefore also the associated
costate (pk, qk) converge (the latter in Yβ × (Lβ,2F )nd) and has therefore weak limit
λ for a subsequence that by (5.8) belongs to ΛP (ū) (note that we do not care about
the convergence of the multiplier associated with the nonnegativity constraint on α).
Since Ω[λ](v) is a continuous function of λ, it follows that Ω[λ](v) ≥ 0. The conclusion
follows.

6. Proof of proposition 5.2. This is the most technical part for proving the
main result. The approach is an adaptation of the technique of [5] to the stochastic
setting. We start with a metric regularity result.

12



6.1. Metric regularity. Note that in the proposition below we do not use the
same norms for the neighborhood of the control and the correction of the control.

Proposition 6.1. Let the equality constraints of (Pk) be qualified for k ≥ k0.
Then there exists cE > 0 such that, when k ≥ k0, for any relaxed trajectory (u, α, y)
with (u, y) close enough in L2β,1 × Yβ and α close enough to 0 in Ak, there exists a
relaxed trajectory (u′, α′, y′) such that IEΦE(y(T )) = 0 and

(6.1) ‖u′ − u‖∞ + ‖α′ − α‖∞ + ‖y′ − y‖β ≤ cE |IEΦE(y(T ))|,

where α′ satisfies α′j = αj, for all j > k0.
Proof. By [8], the mapping (u, α) 7→ y is C1 : L2β,1 → Yβ . Also, the function

y → IEΦ(y) is C1: L2β → R.
Since the equality constraints are qualified when k = k0, there exists nΦE

elements
(vi, αi) of L2β,1 × L∞, with α having nonzero components only for i ≤ k0. By the
Lyusternik theorem, (6.1) holds if we put the L2β,1 instead of the L∞ norm for the
control. However in the proof of this theorem based on a Netwon type ’algorithm’,
we can choose the increments to belong to the vector space spanned by the (vi, αi),
1 ≤ i ≤ nΦE

, that will also therefore contain u′ − u. But in this finite dimensional
space, the norms are equivalent. The result follows.

6.2. Derelaxation. Let u ∈ Uβ . It is convenient to set

(6.2) u0 := u; α0(t, ω) := 1−
k∑
j=1

αj(t, ω),

so that the state equation of the relaxed problem can be written as

(6.3) dy(t) =

k∑
j=0

αj(t)f(t, uj(t), y(t))dt+ σ(t, y(t))dW (t), t ∈ (0, T ); y(0) = y0.

Theorem 6.2. There exists c0 > 0 such that, if k ≥ k0, and (u, α) is a feasible
relaxed control for problem (Pk), with θ < 0, sufficiently close to (ū, ᾱ) in the L∞
norm, then, for any ε > 0, there exists a ’classical’ control uε ∈ U with associated
state yε, that satisfies

(6.4) ‖uε − ū‖β,1 ≤ c0
k∑
j=1

‖αj‖β,1‖ui − ū‖∞; ‖yε − ȳ‖β ≤ ε.

The proof has several steps involving the lemma below. Let (u, y) be a relaxed
control for problem (Pk), with associated state y. Set

(6.5) η(t) := 1− 1
2

N∑
j=1

αj(t), α̃i(t) := 1
2αj(t)/η(t), i = 1, . . . , N ;

and

(6.6) α̃0(t) := α0(t)/η(t); G(t, y) := 1
2

N∑
j=1

αj(t)f(t, uj , y).
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Observe that

(6.7)
N∑
j=0

α̃i(t) = 1.

We can write the state equation (5.1) in the form

(6.8) dy(t) = η(t)

N∑
j=0

α̃j(t)f(t, uj , y) +G(t, y)dt+ σ(t, y)dW (t).

We denote by y[u, α̃, η] the solution of this equation, to be compared to the ’derelaxed’
one

(6.9) dy(t) = η(t)f(t, u, y) +G(t, y)dt+ σ(t, y)dW (t).

whose solution is denoted by yG[u, η].
Lemma 6.3. There exists c0 > 0 such that, given k ≥ k0, the following holds. If

(u, α) is a feasible relaxed control for problem (Pk), sufficiently close to (ū, ᾱ) in the
L∞ norm, for any ε > 0, there exists uε ∈ Uβ with associated ’state’ yε := yG[uε, η]
such that:

(6.10) ‖uε − u‖β,1 ≤ c0
k∑
j=1

‖α̃j‖β,1‖ui − u‖∞; ‖yε − ȳ‖β ≤ ε.

Proof. We borrow from Fleming [13] the idea of time averaging.
(i) ’Truncation’ and ’quantization’: set, for j = 0 to k:

(6.11) ûj(t, ω) :=

{
uj(t, ω) if |uj(t, ω)| < 1/ε,
u00(t, ω) otherwise,

where u00 ∈ Uad ∩ U∞ comes from hypothesis (2.11). By the dominated convergence
theorem, given ε′ > 0, we have that

(6.12) ‖uj − ûj‖β,1 ≤ ε′ if ε is small enough.

Let ũi be a dense sequence in B(0, 1/ε) (ball in Rm). For some index iε we have that
any element of B(0, 1/ε) is at distance less than ε of {ũ1, . . . , ũiε}. Set

(6.13) ŵj(t, ω) := ũi; i the smallest index such that |ûj(t, ω)− ũi| < ε.

The ŵj are adapted functions, and satisfy ‖ŵj − ûj‖∞ ≤ ε, so that

(6.14) ‖ŵj − ûj‖β,1 ≤ ε′ if ε > 0 is small enough.

We can write,

(6.15) ŵj :=
∑
i≤iε

1Aij
ũi,

the measurable sets Aij being such that Aij ∩ Ai′j is negligible whenever i 6= i′. So
we have an ε-uniform approximation (up to the truncation process) of the relaxed
control by

(6.16)
k∑
j=0

αj(t, ω)
∑
i≤iε

1Aijδũi =

k′∑
i=0

α′i(t, ω)δũi ,
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where

(6.17) α′i(t, ω) :=

k∑
j=0

αj(t, ω)1Aij
.

Note that

(6.18)
k∑
i=0

α′i(t, ω) =

k∑
j=0

αj(t, ω) = 1.

(ii) Time translation (in order to have a progressively measurable control):

(6.19) w̃(t, ω) :=

{
u(t, ω) if t ∈ (0, ε),
ŵ(t− ε, ω) for t ∈ (tq,i, tq,i), q = 1, . . . , N − 1.

(iii) Time averaging and reduction to a classical control: We may assume that N :=
T/ε is an integer. For q = 0 to N , set tq := qε, and consider the averaged coefficients
over each time step (tq−1, tq), for q ≥ 1:

(6.20) ᾱiq(ω) :=

∫ tq+2

tq+1

α′i(s, ω)ds.

Roughly speaking, this represents the amount of time in (tq+1, tq+2), spent by the
relaxed control in the vicinity of ũi. Now define the stopping times

(6.21) tq,0 = tq; tq,i(ω) = tq,i−1(ω) + εᾱiq(ω), i = 1, . . . , iε,

so that tq,iε = tq+1, and the corresponding classical control by

(6.22) uc(t, ω) :=

{
u(t, ω) if t ∈ (0, ε),
ũi for t ∈ (tq,i−1, tq,i), q = 1, . . . , N − 1.

Equivalently, set

(6.23) α′′i (t, ω) =

{
1 if t ∈ (tq,i−1, tq,i), q = 1, . . . , N − 1, i = 1, . . . , iε,
0 otherwise.

Then we can write

(6.24) uc(t, ω) =

iε∑
i=1

α′′i ũ
i.

Let y := y[u, α], yc := y[uc]. By the mean value theorem, there exists a progressively
measurable, bounded function σ̂ such that z := y − yc satisfies z(0) = 0 and

(6.25) dz =

4∑
q=1

Bqdt+ σ̂zdW (t),
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with

(6.26)



B1 := η(t)

k∑
j=0

αj
(
f(t, uj , y)− f(t, uj , yc)

)
+G(t, y)−G(t, yc) (state variation)

B2 := η(t)

k∑
j=0

αj
(
f(t, uj , yc)− f(t, ŵj , yc)

)
(quantization)

B3 := η(t)

k∑
j=0

αj
(
f(t, ŵj , yc)− f(t, w̃j , yc)

)
(time translation)

B4 := η(t)

k∑
j=0

αj
(
f(t, w̃j , yc)− f(t, uc, yc)

)
(derelaxation)

By the mean value theorem and the previous relations:

(6.27) |B1(t, ω)| ≤ c1|z(t, ω)|; ‖B2(t, ω)‖β,1 → 0, when ε ↓ 0.

From an easy variant of [21, Prop. 2.1], we deduce that

(6.28)
IE

(
max

t≤t′≤t+ε
|yc(t′)− yc(t)|

)β
≤ c

[(∫ t+ε

t

|f(s, u, 0)|
)β

ds+

(∫ t+ε

t

|σ(s, 0)|2
)β/2

ds

]
.

Combining with (3.7), we deduce that

(6.29) ‖B3‖β,1 → 0 when ε ↓ 0.

We next estimate B4. Set ∆q := [tq, tq+1]. We have that, for each ω:

(6.30)
∫

∆q

η(t)

k∑
j=0

αjf(tq, û
j , yc(tq))dt =

∫
∆q

η(t)

iε∑
i=0

ᾱif(ũi, yc(tq))dt.

Since f is Lipschitz and uniformy continuous w.r.t. time, say

(6.31) |f(t′′, ·)− f(t′, ·)| ≤ ν(|t′′ − t′|)

with ν non decreasing R+ → R+ with limit 0 at 0, it follows that

(6.32)

∣∣∣∣∣
∫

∆q

B4dt

∣∣∣∣∣ ≤ εν(ε) + c

∫
∆q

|yc(t)− yc(tq)|dt

and therefore

(6.33) ‖B4‖ββ ≤ c(εν(ε))β + cIE

(∫
∆q

|yc(t)− yc(tq)|dt

)β
.

From (6.28) we deduce that

(6.34) IE(max
t∈∆q

|yc(t)− yc(tq)|)β ≤ cεβ/2.

So, again by the estimates in [21], we deduce that

(6.35) ‖z‖ββ ≤ c
(
‖B2‖ββ,1 + ‖B3‖ββ,1

)
can indeed be made as small as desired.
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6.2.1. Core of the proof of proposition 5.2 . (i) We follow the ideas detailed
in the preprint version of [5, Appendix A.2]. Let R := diamL∞(û, u1, . . . , uN ). We
will next prove under the hypotheses of the proposition the existence of c0 > 0 and of
a sequence wi := (ûi, ŷi, α̂i, θ̂i), satisfying all constraints of the ’slack’ problem (Pk)

other than the equalities, such that w0 = (û, ŷ, α̂, θ̂) and for k ∈ N:

(6.36) (i) ‖ûi+1 − ûi‖1,β ≤
c0
4

(
3

4

)i+1

‖α̂‖∞ (ii) ‖ŷi+1 − ŷi‖β ≤
(

3

4

)i+1
ε

4
;

(6.37) (i) ‖αi+1‖β ≤
(

3

4

)i+1

‖α̂‖∞; (ii) θ̂i+1 =
1

4
θ̂i.

Clearly the sequence is converging to w̃ = (ũ, ỹ, α̃, θ̃) with α̃ = 0, θ̃ = 0, and

(6.38) ‖ũ− û‖1,β ≤ 3c; ‖ỹ − ŷ‖β ≤
3

4
cε.

(ii) We next prove the existence of the sequence by induction; assume that the exis-
tence holds up to index i. By theorem 6.3, for any ε′ > 0, there exists (u, y) ∈ Uβ×Yβ
such that ut ∈ {ûkt , u1

t , . . . , u
N
t ) a.e., (ut,

1
2 α̂

k, y) is a relaxed trajectory, and

(6.39) (i) ‖ûi+1 − ûi‖1,β ≤ c0
i∑

j=1

‖α̃j‖β,1; (ii) ‖ŷi+1 − ŷi‖β ≤ ε′

(iii) Applying proposition 6.1, taking ε > 0 small enough, we deduce the existence of
wi+1.

Appendix A. SDE estimates.

A.1. Linear SDEs. The next lemma follows from [21, Prop. 2.1].
Lemma A.1. Consider the linear SDE

(A.1) dz(t) = (A′z + C ′)dt+ (A”z + C”)dW (t);
t ∈ (0, T ); z(0) = z0.

with z0 ∈ Rn, A′, B′, B′′ in L∞F , C ′ ∈ Lβ,1, and C ′ ∈ Lβ,2, where β ∈ [1,∞). Then
(A.1) has in a unique solution in Lβ,∞ such that

(A.2) ‖z‖β,∞ = O (|z0|+ ‖C ′‖β,1 + ‖C ′′‖β,2) .

A.2. Perturbed SDEs. Given u1, u2 in Uβ,1, and associated states y1, y2,
setting v := u2 − u1 and δy := y2 − y1 for some bounded A, B, C:

(A.3) dδy(t) = (Av +Bδy)dt+ CδydW (t);

so that, by lemma A.1:

(A.4) ‖δy‖β,∞ = O(‖v‖β,1).
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Differentiability of y[u]. Set ȳ = y[ū], f̄ [t] = f(ū, ȳ), etc, δy := y[ū + τv] − y[ū].
Then

dδy(t) =
(
f̄ ′[t](v, δy) + fR[t]

)
dt+

(
σ̄y[t]δy + σR[t]

)
dW (t)

where for Ψ = f, σ; ΨR(ω, t) =∫ 1

0

(Ψ′(ū(t) + θv(t), ȳ(t) + θδy(t))−Ψ′(ū(t), ȳ(t))) (v(t), δy(t))dθ

so that {
|fR(ω, t)| = O(|v(ω, t)|2 + |δy(ω, t)|2)
|σR(ω, t)| = O(|δy(ω, t)|2)

We denote by z = z[v] the solution of the linearized state equation (2.15).
Linerization error ρ = δy − z, solution of ρ(0) = 0 and

dρ(t) =
(
f̄y[t]ρdt+ fR[t]

)
dt+

(
σ̄y[t]ρ+ σR[t]

)
dW (t)

and so

‖ρ‖β,∞ = O(‖fR‖β,1 + ‖σR‖β,2)

Linearization error again.

‖v2‖ββ,1 = IE

(∫ T

0

v2dt

)2β/2

= ‖v‖2β2β,2

and

‖δy2‖ββ,2 = IE

(∫ T

0

(δy)4dt

)2β/4

= ‖δy‖2β2β,4 = O(‖v‖2β2β,1)

and finally

‖ρ‖β,∞ = O(‖v‖22β,2)

Fréchet differentiability. Remember that z solution of the linearized equation is
such that

y[ū+ v] = y[ū] + z + ρ.

and

‖ρ‖β,∞ = O(‖v‖22β,2); ‖z‖β,∞ = O(‖v‖β,1).

Theorem A.2. The mapping v 7→ y[ū + v] is F-differentiable U2β,2 → Yβ, for
each β ∈ [1,∞), and in particular U2,2 → Y1.

Remark A.3. If u ∈ U2β,2, then y[u] ∈ Y2β.
But the differentiability holds only in Yβ.
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