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Abstract

The detection of change-points in a spatially or time-ordered data sequence is an important problem
in many fields such as genetics and finance. We derive the asymptotic distribution of a statistic
recently suggested for detecting change-points. Simulation of its estimated limit distribution leads to
a new and computationally efficient change-point detection algorithm, which can be used on very long
signals. We assess the algorithm experimentally under various conditions.

I. Introduction

When met with a data set ordered by time or space, it is often important to predict when or
where something “changed” as we move temporally or spatially through it. In biology, for
example, changes in an array Comparative Genomic Hybridization (aCGH) or Chip-Seq data
signal as one moves across the genome can represent an event such as a change in genomic
copy number, which is extremely important in cancer gene detection [17, 22]. In the financial
world, detecting changes in multivariate time-series data is important for decision-making
[27]. Change-point detection can also be used to detect financial anomalies [3] and significant
changes in a sequence of images [11].

Change-point detection analysis is a well-studied field and there are numerous approaches
to the problem. Its extensive literature ranges from parametric methods using log-likelihood
functions [4, 14] to nonparametric ones based on Wilcoxon-type statistics, U-statistics and
sequential ranks. The reader is referred to the monograph [5] for an in-depth treatment of
these methods.

In change-point modeling it is generally supposed that we are dealing with a random
process evolving in time or space. The aim is to develop a method to search for a point where
possible changes occur in the mean, variance, distribution, etc. of the process. All in all, this
comes down to finding ways to decide whether a given signal can be considered homogeneous
in a statistical (stochastic) sense.

The present article builds upon an interesting nonparametric change-point detection method
that was recently proposed by Matteson and James [15]. It uses U-statistics (see [9]) as the
basis of its change-point test. Its interest lies in its ability to detect quite general types of
change in distribution. Several theoretical results are presented in [15] to highlight some of
the mathematical foundations of their method. These in turn lead to a simple and useful data-
driven statistical test for change-point detection. The authors then apply this test successfully
to simulated and real-world data.
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There are however several weaknesses in [15] both from theoretical and practical points of
view. Certain fundamental theoretical considerations are incompletely treated, especially the
assertion that a limit distribution exists for the important statistic, upon which the rest of the
approach hangs. On the practical side, the method is computationally prohibitive for signals
of more than a few thousand points, which is unfortunate because real-world signals can be
typically much longer.

Our paper has two main objectives. First, it fills in missing theoretical results in [15]
including a derivation of the limit distribution of the statistic. This requires the effective
application of large sample theory techniques, which were developed to study degenerate
U-statistics. Second, we provide a method to simulate from an approximate version of the limit
distribution. This leads to a new computationally efficient strategy for change-point detection
that can be run on much longer signals.

The article is structured as follows. In Section II we provide some context and present the
main theoretical results. In Section III we show how to approximate the limit distribution of
the statistic, which leads to a new test strategy for change-point detection. We then show how
to extend the method to much longer sequences. Simulations are provided in Section IV. A
short discussion follows in Section V, and a proof of the paper’s main result is given in Section
VI. Some important technical results are detailed in the Appendix.

II. Theoretical results

I. Measuring differences between multivariate distributions

Let us first briefly describe the origins of the nonparametric change-point detection method
described in [15]. For random variables Y, Z taking values in Rd, d ≥ 1, let φY and φZ denote
their respective characteristic functions. A measure of the divergence (or “difference”) between
the distributions of Y and Z is as follows:

D(Y, Z) =
∫

R
|φY(t)− φZ(t)|2 w(t)dt,

where w(t) is an arbitrary positive weight function for which this integral exists. It turns out
that for the specific weight function

w(t; β) =

(
2π1/2Γ(1− β/2)
β2βΓ ((d + β)/2)

|t|d+β

)−1

,

which depends on a β ∈ (0, 2), one can obtain a not immediately obvious but very useful result.
Let Y, Y′ be i.i.d. FY and Z, Z′ be i.i.d. FZ, with Y, Y′, Z and Z′ mutually independent. Denote
by |·| the Euclidean norm on Rd. Then, if

E(|Y|β + |Z|β) < ∞, (1)

Theorem 2 of [25] yields that

D(Y, Z; β) = E(Y, Z; β) := 2E |Y− Z|β −E
∣∣Y−Y′

∣∣β −E
∣∣Z− Z′

∣∣β ≥ 0, (2)

where we have written D(Y, Z; β) instead of D(Y, Z) to highlight dependence on β. Therefore
(1) implies that E(Y, Z; β) ∈ [0, ∞). Furthermore, Theorem 2 of [25] says that E(Y, Z; β) = 0
if and only if Y and Z have the same distribution. This remarkable result leads to a simple
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data-driven divergence measure for distributions. Seen in the context of hypothesizing a change-
point in a signal of independent observations X = (X1, . . . , Xn) after the k-th observation Xk,
we simply calculate an empirical version of (2):

Ek,n(X; β) =
2

k(n− k)

k

∑
i=1

n

∑
j=k+1

∣∣Xi − Xj
∣∣β −(k

2

)−1

∑
1≤i<j≤k

∣∣Xi − Xj
∣∣β

−
(

n− k
2

)−1

∑
1+k≤i<j≤n

∣∣Xi − Xj
∣∣β . (3)

Matteson and James [15] state without proof that under the null hypothesis of X1, . . . , Xn being
i.i.d. (no change-points), the sample divergence given in (3) scaled by k(n−k)

n converges in
distribution to a non-degenerate random variable as long as min{k, n− k} → ∞. Furthermore,
they state that if there is a change-point between two distinct i.i.d. distributions after the k-th
point, the sample divergence scaled by k(n−k)

n tends a.s. to infinity as long as min{k, n− k} → ∞.
These claims clearly point to a useful statistical test for detecting change-points. However, we
cannot find rigorous mathematical arguments to substantiate them in [15], nor in the earlier
work [25].

As this is of fundamental importance to the theoretical and practical validity of this change-
point detection method, we shall show the existence of the non-degenerate random variable
hinted at in [15] by deriving its distribution. Our approach relies on the asymptotic behavior of
U-statistic type processes, which were introduced for the first time for change-point detection
in random sequences in [6]; see also Chapter 2 of the book [5]. We also show that in the
presence of a change-point the correctly-scaled sample divergence indeed tends to infinity with
probability 1.

II. Main result

Let us first begin in a more general setup. Let X1, . . . , Xn be independent Rd-valued random
variables. For any symmetric measurable function ϕ : Rd ×Rd → R, whenever the indices
make sense we define the following four terms:

Vk(ϕ) :=
k

∑
i=1

n

∑
j=k+1

ϕ(Xi, Xj),

Un (ϕ) := ∑
1≤i<j≤n

ϕ(Xi, Xj),

U(1)
k (ϕ) := ∑

1≤i<j≤k
ϕ(Xi, Xj),

U(2)
k (ϕ) := ∑

k+1≤i<j≤n
ϕ(Xi, Xj).

Otherwise, define the term to be zero; for instance, U(1)
1 (ϕ) = 0 and U(2)

k (ϕ) = 0 for k = n− 1
and n. Note that in the context of the change-point algorithm we have in mind, ϕ(x, y) =
ϕβ(x, y) := |x − y|β, β ∈ (0, 2), but the following results are valid for the more general ϕ
defined above. Notice also that the last three terms are U-statistics absent their normalization
constants. Next, let us define

Uk,n(ϕ) :=
2

k(n− k)
Vk(ϕ)−

(
k
2

)−1
U(1)

k (ϕ)−
(

n− k
2

)−1
U(2)

k (ϕ).
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Observe that Uk,n(ϕ) is a general version of the empirical divergence given in (3). Notice that

Vk (ϕ) = Un (ϕ)−U(1)
k (ϕ)−U(2)

k (ϕ) . (4)

While Uk,n(ϕ) is not a U-statistic, we can use (4) to express it as a linear combination of
U-statistics. Indeed, we find that

Uk,n(ϕ) =
2(n− 1)
k(n− k)

(
Un(ϕ)

n− 1
−
(

U(1)
k (ϕ)

k− 1
+

U(2)
k (ϕ)

n− k− 1

))
.

Therefore, we now have an expression for Uk,n(ϕ) made up of U-statistics, which will be useful
in the following.

Our aim is to use a test based on Uk,n(ϕ) for the null hypothesis H0 : X1, . . . , Xn have the
same distribution, versus the alternative hypothesis H1 that there is a change-point in the
sequence X1, . . . , Xn, i.e.,

H1 : There is a γ ∈ (0, 1) such that P(X1 ≤ t) = · · · = P(Xbnγc ≤ t),

P(Xbnγc+1 ≤ t) = · · · = P(Xn ≤ t), t ∈ Rd,

and P(Xbnγc ≤ t0) 6= P(Xbnγc+1 ≤ t0) for some t0.

For u, v ∈ Rd, u ≤ v means that each component of u is less than or equal to the corresponding
component of v. Also note that for any z ∈ R, bzc stands for its integer part.

Let us now examine the asymptotic properties of Uk,n(ϕ). We shall be using notation,
methods and results from Section 5.5.2 of monograph [21] to provide the groundwork. In the
following, we shall denote by F the common (unknown) distribution function of the Xi under
H0, X a generic random variable with distribution function F, and X′ an independent copy of
X. We assume that

Eϕ2(X, X′) =
∫

Rd

∫
Rd

ϕ2(x, y)dF(x)dF(y) < ∞, (5)

and set Θ = Eϕ(X, X′). We also denote ϕ1(x) = Eϕ(x, X′), and define

h(x, y) = ϕ(x, y)− ϕ1(x)− ϕ1(y), h̃2(x, y) = h(x, y) + Θ. (6)

With this notation, we see that Eh(X, X′) = −Θ, and therefore that Eh̃2(X, X′) = 0. Further-
more,

Uk,n(ϕ) = Uk,n(h) = Uk,n(h̃2), (7)

since

Un(Θ)

n− 1
−
(

U(1)
k (Θ)

k− 1
+

U(2)
k (Θ)

n− k− 1

)
=

Un(ψ)

n− 1
−
(

U(1)
k (ψ)

k− 1
+

U(2)
k (ψ)

n− k− 1

)
= 0,

where ψ(x, y) := ϕ1(x) + ϕ1(y). As in Section 5.5.2 of [21], we then define the operator A on
L2(R

d, F) by

Ag(x) :=
∫

Rd
h̃2(x, y)g(y)dF(y), x ∈ Rd, g ∈ L2(R

d, F). (8)

Let λi, i ≥ 1, be the eigenvalues of this operator A with corresponding orthonormal eigenfunc-
tions φi, i ≥ 1. Since for all x ∈ Rd, ∫

Rd
h̃2(x, y)dF(y) = 0,
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we see with φ1 := 1, Aφ1 = 0 =: λ1φ1. Thus (0, 1) = (λ1, φ1) is an eigenvalue and normalized
eigenfunction pair of the operator A. This implies that for every eigenvalue and normalized
eigenfunction pair (λi, φi), i ≥ 2, where λi is nonzero,

E (φ1(X)φi(X)) = Eφi(X) = 0.

Moreover, we have that in L2(R
d ×Rd, F× F),

h̃2(x, y) = lim
K→∞

K

∑
i=1

λiφi(x)φi(y).

From this we get that

Eh̃2
2(X, X′) =

∞

∑
i=1

λ2
i . (9)

For further details and theoretical justification of these claims, refer to Section 5.5.2 of [21]
and both Exercise 44 on pg. 1083 and Exercise 56 on pg. 1087 of [7]. In fact, we shall assume
further that

∞

∑
i=1
|λi| < ∞. (10)

It is crucial for the change-point testing procedure that we shall propose that the function
h̃2(x, y) defined as in (10) with ϕ(x, y) = ϕβ(x, y) = |x− y|β, β ∈ (0, 2), satisfies (10) whenever
(5) holds. A proof of this is given in the Appendix.

Next, for any fixed 2
n ≤ t < 1− 2

n , n ≥ 3, set

Yn(h̃2, t) :=
(bntc (n− bntc))2

n2(n− 1)
Ubntc,n(h̃2) (11)

=
2bntc (n− bntc)

n2

Un(h̃2)

n− 1
−

U(1)
bntc(h̃2)

bntc − 1
+

U(2)
bntc(h̃2)

n− bntc − 1

 .

We define U(1)
0 (h̃2) = 0, U(2)

0 (h̃2) = Un(h̃2), U(1)
1 (h̃2)/0 = 0, and U(2)

n−1(h̃2)/0 = 0 , which gives

Yn(h̃2, t) = 0, for t ∈
[

0,
1
n

)
,

Yn(h̃2, t) =
2(n− 1)

n2

(
Un(h̃2)

n− 1
−

U(2)
1 (h̃2)

n− 2

)
, for t ∈

[
1
n

,
2
n

)
,

Yn(h̃2, t) =
4(n− 2)

n2

Un(h̃2)

n− 1
−

U(1)
n−2(h̃2)

n− 3
−U(2)

n−2(h̃2)

 , for t ∈
[

1− 2
n

, 1− 1
n

)
,

Yn(h̃2, t) =
2(n− 1)

n2

Un(h̃2)

n− 1
−

U(1)
n−1(h̃2)

n− 2

 , for t ∈
[

1− 1
n

, 1
)

, and Yn(h̃2, 1) = 0.

One can readily check that Yn(h̃2, ·) ∈ D1[0, 1], the space of bounded measurable real-valued
functions defined on [0, 1] that are right-continuous with left-hand limits. Notice that on
account of (7) we can also write Yn(h̃2, ·) = Yn(ϕ, ·), and we will do so from now on. In the
following theorem, {B(i)}i≥1 denotes a sequence of independent standard Brownian bridges.
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Theorem II.1 Whenever Xi, i ≥ 1 are i.i.d. F and ϕ satisfies (5) and (10), Yn(ϕ, ·) converges weakly
in D1[0, 1] to the tied down mean zero continuous process Y defined on [0, 1] by

Y(t) :=
∞

∑
i=1

λi

(
t (1− t)−

(
B(i) (t)

)2
)

.

In particular,

sup
t∈[0,1]

|Yn(ϕ, t)| D−→ sup
t∈[0,1]

|Y(t)| .

The proof of this theorem is deferred to Section VI.

Remark II.1 Note that a special case of Theorem II.1 says that for each t ∈ (0, 1),

(bntc (n− bntc))2

n2(n− 1)
Ubntc,n(ϕ)

D−→ Y(t). (12)

This fixed t result can be derived from part (a) of Theorem 1.1 of [16]. [24] point out that convergence in
distribution of a statistic asymptotically equivalent to the left side of (12) to a nondegenerate random
variable should follow from [16] under the null hypothesis of equal distributions in the two sample case
that they consider. Also see [18]. ([18] also discuss the consistency of their statistic.) To the best of our
knowledge, we are the first to identify the limit distribution of the Ubntc,n(ϕ). We should point out here
that the weak convergence result in Theorem II.1 does not follow from Neuhaus’ theorem [16], since his
result is based on two independent samples, whereas ours concerns one sample.

As suggested in [15], under the following assumption, a convergence with probability 1
result can be proved for the empirical statistic Ek,n(X; β) in (3). We shall show that this is
indeed the case.

Assumption 1 Let Yi, i ≥ 1, and Zi, i ≥ 1, be independent i.i.d. sequences, respectively FY and FZ.
Also let Y, Y′ be i.i.d. FY and Z, Z′ be i.i.d. FZ, with Y, Y′, Z and Z′ mutually independent. Assume
that for some β ∈ (0, 2), E(|Y|β + |Z|β) < ∞. Choose γ ∈ (0, 1). For any given n > 1/γ, let
Xi = Yi, for i = 1, . . . , bnγc, and Xi+bnγc = Zi, for i = 1, . . . , n− bnγc.

Lemma II.1 Whenever for a given β ∈ (0, 2) Assumption 1 holds, with probability 1 we have:

Ebnγc,n(X; β)→ E(Y, Z; β). (13)

The proof of this can be found in the Appendix. Next, let ϕ(x, y) = |x− y|β, β ∈ (0, 2). We see
that for any γ ∈ (0, 1) for all large enough n,

sup
t∈[0,1]

|Yn(ϕ, t)| ≥ (bnγc (n− bnγc))2

n2(n− 1)
Ebnγc,n(X; β),

where it is understood that Assumption 1 holds. Thus by Lemma II.1, under Assumption 1,
whenever FY 6= FZ, with probability 1,

sup
t∈[0,1]

|Yn(ϕ, t)| → ∞.

This shows that change-point tests based on the statistic supt∈[0,1] |Yn(ϕ, t)|, under the sequence
of alternatives of the type given by Assumption 1, are consistent. This also has great practical
use when looking for change-points. Intuitively, the k ∈ {1, . . . , n} that maximizes (3) would
be a good candidate for a change-point location.
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III. From theory to practice

Theorem II.1 and the consistency result that follows it lay a firm theoretical foundation to
justify the change-point method introduced in [15]. For the present article, since we are not
aware of a closed form expression for the distribution function of the limit process, we may
imagine that this asymptotic result is of limited practical use. Remarkably, it turns out that we
can efficiently approximate via simulation the distribution of its supremum, leading to a new
change-point detection algorithm with similar performance to [15] but much faster for longer
signals. For instance, finding and testing one change-point in a signal of length 5 000 takes
eight seconds with our method and eight minutes using [15].

To simulate the process Y we need true or estimated values of the λi. Recall that these are
the eigenvalues of the operator A defined in (8). Following [12], the (usually infinite) spectrum
of A can be consistently approximated by the (finite) spectrum of the empirical n× n matrix
H̃n whose (i, j)-th entry is given by

H̃n(Xi, Xj) =
1
n
(

ϕ(Xi, Xj)− µ(i)− µ(j) + η
)

,

where µ is the vector of row means (excluding the diagonal entry) of matrix ϕ(Xi, Xj) and η
the mean of its upper-diagonal elements.

In our experience, the λi estimated in this way tend to be quite accurate for even small n.
We assert this because upon simulating longer and longer i.i.d. signals, rapid convergence of
the λi is clear. Furthermore, as there is an exponential drop-off in their magnitude, working
with only a small number (say 20 or 50) of the largest ones appears to be sufficient for obtaining
good results. We illustrate these claims in Section IV. Let us now present our basic algorithm
for detecting and testing for one potential change-point.

Algorithm for detecting and testing one change-point

1. Given signal X1, . . . , Xn, n ≥ 4, find the 2 ≤ k ≤ n − 2 that maximizes the original
empirical divergence given in (3) multiplied by the correct normalization given in (11),
i.e., k2(n− k)2/n2(n− 1), and denote the value of this maximum t?.

2. Calculate the m largest (in absolute value) eigenvalues of the matrix H̃n, where ϕ(Xi, Xj) =

|Xi − Xj|β and β ∈ (0, 2).

3. Simulate R times the m-truncated version of Y(t) using the m eigenvalues from the
previous step. Record the R values s1, . . . , sR of the (absolute) supremum of the process
obtained.

4. Reject the null hypothesis of no distributional change (at level α) if tcrit ≤ α, where
tcrit := 1

R ∑R
r=1 1{sr>t?}. In this case, we deduce a change-point at the k at which t? is

found. Typically, we set α = 0.05.

Remark III.1 One may imagine extending this approach to the multiple change-point case by simply
iterating the above algorithm to the left and right of the first-found change-point, and so on. However,
as soon as we suppose there can be more than one change-point, the assumption that we may have
X1, . . . , Xk i.i.d., with a different distribution to Xk+1, . . . , Xn i.i.d., is immediately broken. Therefore
the theory we have presented does not directly follow over to the multiple change-point case. It would
be interesting to cleanly extend the results to this, but this would require further theory and multiple
testing developments, which are out of the scope of the present article (for references in this direction, see,
e.g., [13]).
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The E-divisive algorithm described in [15] follows a similar logic to our approach except that
tcrit is calculated via permutation (see [19]). Instead of steps 2 and 3, the order of the n data is
permuted R times and for the r-th permuted signal, 1 ≤ r ≤ R, step 1 is performed to obtain
the absolute maximum sr. The same step 4 is then used to accept or reject the change-point.

The permutation approach (E-divisive) of [15] is effective for short signals. Indeed, [10]
showed that if one can perform all possible permutations, the method produces a test that
is level α. However, a signal with n = 10 points already implies more than three million
permutations, so a Monte Carlo strategy (i.e., subsampling permutations with replacement)
becomes necessary, typically with R = 499. This also gives a test that is theoretically level α
(see [19]) but with much-diminished power.

One could propose increasing the value of R but there is an unfortunate computational
bottleneck in the approach. Usually, one stores in memory the matrix of |Xi − Xj|β in order to
efficiently permute rows/columns and therefore recalculate t? each time. But for more than
a few thousand points, manipulating this matrix is slow if not impossible due to memory
constraints. The only alternative to storing and permuting this matrix is simply to recalculate
it each time for each permutation, but this is very computationally expensive as n increases.
Consequently, the E-divisive approach is only useful for signals up to a few thousand points.

In contrast to this, our algorithm, based on an asymptotic result, risks underperforming on
extremely short signals, and its performance will also depend on our ability to estimate well
the set of largest λi. In reality though, it works quite well, even on short signals. The matrix
with entries |Xi − Xj|β needs only to be stored once in memory, and all standard mathematical
software (such as Matlab and R) have efficient functions for finding its largest m eigenvalues
(the eigs function in Matlab and the eigs function in the R package rARPACK). Each iteration of
the algorithm’s simulation step requires summing the columns of an m× T matrix of standard
normal variables, where m is the number of λi retained and T the number of grid points
over which we approximate the Brownian bridge processes between 0 and 1. For m = 50 and
T = 1 000 it takes about one second to perform this R = 499 times, and is independent of the
number of points in the signal. In contrast, the E-divisive method takes about ten seconds
for n = 1 000, one minute for n = 2 000, eight minutes for n = 5 000, etc. One clearly sees the
advantage of our approach for longer signals.

IV. Experimental validation and analysis

I. Simulated examples

It is very important to start with the simplest possible case in order to demonstrate the
fundamental validity of the new method. A basis for comparison is the E-divisive method
from [15]. Here, we consider signals of length n ∈ {10, 100, 1 000, 10 000} for which either the
whole signal is i.i.d. N (0, 1) or else there is a change-point of height c ∈ {0.1, 0.2, 0.5, 1, 2, 5}
after the (n/2)-th point, i.e., the second half of the signal is i.i.d. N (c, 1).

In the former case, we look at the behavior of the Type I error, i.e., the probability of
detecting a change-point when there was none. We have fixed α = 0.05 and want to see how
close each method is to this as n increases. In the latter case, we look at the power of the test
associated to each method, i.e., the probability that an actual change-point is correctly detected
as n and c increase. We averaged over 1 000 trials. In the following, unless otherwise mentioned
we fix β = 1. For the asymptotic method, the Brownian bridge processes were simulated 499
times; similarly, for E-divisive we permuted 499 times. Both null distributions were therefore
estimated using the same number of repeats. Note that we did not test the E-divisive method
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for n = 10 000 because each of the 1 000 trials would have taken around two hours to run.
All times given in this paper are with respect to a laptop with a 2.13 GHz Intel Core 2 Duo
processor with 4Gb of memory. Results are presented in Figure 1.

10 100 1000 10000
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0.5

1
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c=5

c=2
c=1
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Figure 1: Statistical power of the asymptotic (solid line) and E-divisive (dotted line) methods for detecting change c
in mean in a Gaussian signal of length n. The first n/2 points are i.i.d. N (0, 1) and the last n/2 points
i.i.d. N (c, 1). The Type I error is also shown (c = 0). Results are averaged over 1 000 trials.

For the Type I error, we see that both methods hover around the intended value of .05,
except for extremely short signals (n = 10). As for the statistical power, it increases as n and
c increase. Furthermore, the asymptotic method rapidly reaches a similar performance as
E-divisive: for n = 10, E-divisive is better (but still with quite poor power), for n = 100 the
asymptotic method has almost caught up, and somewhere between n = 100 and n = 1 000 the
results become essentially identical; the asymptotic method has a slight edge at n = 1 000.

Let us now see to what extent our method is able to detect changes in variance and tail
shape. We considered Gaussian signals of length n ∈ {10, 100, 1 000, 10 000} for which there
is a change-point after the (n/2)-th point, i.e., the first half of the signal is i.i.d. N (0, 1) and
the second half either i.i.d. N (0, σ2) for σ2 ∈ {2, 5, 10} or i.i.d. Student’s tv distributions with
v ∈ {2, 8, 16}. Results were averaged over 1 000 trials and are shown in Figure 2.

As before, the statistical power tends to increase as n increases and either σ2 increases or
v decreases. The asymptotic method matches or beats the performance of E-divisive starting
somewhere between n = 100 and n = 1 000.

Next, we take a look at the performance of the algorithm when the change-point location
moves closer to the boundary. As an illustrative example, we work with sequences of length
1 000 and either place the change-point after the 100th, 300th or 500th point. Figure 3 shows
histograms of 1 000 repetitions for the predicted location of the change-point, here a change in
mean of c = 0.5 (hardest), c = 1 (medium) and c = 2 (easiest). We see that moving towards the
boundary increases the variance and bias in the prediction. However, as the problem becomes
easier (bigger jump in mean), both the variance and bias decrease. Similar results are found
when looking at change in variance and tail distribution.

II. Algorithm for long signals

Remember that as it currently stands, the longest signal that we can treat depends on the
largest matrix that can be stored, which depends in turn on the memory of a given computer

9
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Figure 2: Statistical power of the asymptotic method (solid line) and E-divisive method (dotted line) for detecting
change in variance (left) and tail (right) in a signal of length n. The first n/2 points are i.i.d. N (0, 1)
and the last n/2 points either i.i.d. N (0, σ2), σ2 ∈ {2, 5, 10} (left) or from a Student’s tv distribution
with v degrees of freedom, v ∈ {2, 8, 16} (right). Results are averaged over 1 000 trials.
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Figure 3: Detecting change in mean of c = 0.5, 1 or 2 located at different distances to the boundary (change-point
location cp = 100, 300, 500) in standardized Gaussian signals with 1 000 points. Plots show histograms
of predicted change-point location over 1 000 trials.

(memory problems for simply manipulating a matrix on a standard PC typically start to occur
around n = 10 -15 000). For this reason, we now propose a modified algorithm that can treat
vastly longer signals.
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Long-signal algorithm

1. Extract sub-signal of equidistant points of length 2 000.

2. Run the one change-point algorithm on this. If the null hypothesis is rejected, output
the index k of the predicted change-point in this sub-signal. Otherwise, state that no
change-point was found.

3. If a change-point was indeed predicted, get the location k′ in the original signal corre-
sponding to k in the sub-signal and repeat step 1 of the one change-point algorithm in the
interval [k′ − z, k′ + z] to refine the prediction, where z is user-chosen. If ` is the length
of the interval between sub-signal points, one possibility is z := min(2`, 1 000), where the
1 000 simply ensures this refining step receives a computationally feasible signal length
of at most 2 000 points.

We tested this strategy on simulated standard Gaussian signals of length 103, 104, 105, 106

and 107 with one change-point at the midpoint, a jump of 1 in the mean. Figure 4 (left) shows
the time required to locate the potential change-point.
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Figure 4: Long-signal change-point detection. Left: Computing time for signals with 1 000 to 10 million points.
Right: Variance in first change-point prediction over 1 000 trials after scaling signals to the interval
[0, 1].

Clearly, this is rapid for even extremely long signals. Looking at the algorithm, we see
that it merely involves finding a change-point twice, once in the sub-signal, then once in a
contiguous block of the original signal of at most length 2 000. As these two tasks are extremely
rapid, the increase in computation time seen mostly comes from the computing overhead
of having to extract the sub-signal from longer and longer vectors in memory. In Figure 4
(right), we plot the log signal length against the normalized variance, which means that we
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calculate the variance in predicted change-point location over 1 000 trials after first dividing the
predictions by the length of the signal. Thus all transformed predictions are in the interval [0, 1]
before their variance is taken. This shows that relative to the length of the signal, subsampling
does not deteriorate the change-point prediction quality. Instead, what deteriorates due to
subsampling is the absolute prediction quality, i.e., the variance in predicted change-point
location does increase as the signal length increases. However, we cannot get around this
without introducing significantly more sophisticated subsampling procedures, beyond the
scope of the work here.

V. Discussion

We have derived the asymptotic distribution of a statistic that was previously used to build
algorithms for finding change-points in signals. Our new result led to a novel way to construct
a practical algorithm for general change-point detection in long signals, which came from
the surprising realization that it was possible to approximately simulate from this quite
complicated asymptotic distribution. Furthermore, the method appears to have higher power
(in the statistical sense) than previous methods based on permutation tests for signals of a
thousand points or more. We tested the algorithm on several simulated data sets, as well as a
subsampling variant for dealing with extremely long signals.

An interesting line of future research would be to find ways to segment the original signal
without requiring stocking a matrix in memory with the same number of rows and columns as
there are points in the signal, currently a bottleneck for our approach and even more so for
previous permutation approaches. Furthermore, the pertinent choice of the power β ∈ (0, 2)
remains an open question. Lastly, theoretically valid and experimentally feasible extensions of
this framework to the multiple change-point case could be a fruitful line of future research.

VI. Proof of Theorem II.1

To prove Theorem II.1, we require a useful technical result. Let us begin with some notation.
For each integer K ≥ 1, let DK[0, 1] denote the space of bounded measurable functions defined
on [0, 1] taking values in RK that are right-continuous with left-hand limits. For each integer
n ≥ 1, let V

(k)
n , k ≥ 1, be a sequence of processes taking values in D1[0, 1] such that for some

M > 0, uniformly in k ≥ 1 and n ≥ 1,

E

(
sup

t∈[0,1]

∣∣∣V(k)
n (t)

∣∣∣) ≤ M. (14)

For each integer K ≥ 1, define the process taking values in DK[0, 1] by

Vn,K =
(

V
(1)
n , . . . , V

(K)
n

)
.

Assume that for each integer K ≥ 1, Vn,K converges weakly as n→ ∞ to the DK[0, 1]–valued
process VK defined as

VK :=
(

V(1), . . . , V(K)
)

,

12



where V(k), k ≥ 1, is a sequence of D1[0, 1]–valued processes such that for some M > 0,
uniformly in k ≥ 1,

E

(
sup

t∈[0,1]

∣∣∣V(k)(t)
∣∣∣) ≤ M. (15)

We shall establish the following useful result.

Proposition VI.1 With the notation and assumptions introduced above, for any choice of constants
am, m ≥ 1, satisfying ∑∞

m=1 |am| < ∞, the sequence of D1[0, 1]–valued processes

Tn :=
∞

∑
m=1

amV
(m)
n

converges weakly in D1[0, 1] to the D1[0, 1]–valued process

T :=
∞

∑
m=1

amV(m).

Proof. Notice that by (14)

E

(
∞

∑
m=1
|am| sup

t∈[0,1]

∣∣∣V(m)
n (t)

∣∣∣) ≤ M
∞

∑
m=1
|am| < ∞.

From this we get that with probability 1, for each n ≥ 1,

∞

∑
m=1
|am| sup

t∈[0,1]

∣∣∣V(m)
n (t)

∣∣∣ < ∞,

which in turn implies that with probability 1, for each n ≥ 1,

lim
K→∞

sup
t∈[0,1]

∣∣∣T(K)
n (t)

∣∣∣ = 0, (16)

where

T(K)
n (t) :=

∞

∑
m=K+1

amV
(m)
n (t).

Since for each n ≥ 1 and K ≥ 1, T(K)
n ∈ D1[0, 1], where T(K)

n := ∑K
m=1 amV

(m)
n , by completeness

of D1[0, 1] in the supremum metric (see page 150 of monograph [2]), we infer that Tn ∈ D1[0, 1].
In the same way we get using (15) that

lim
K→∞

sup
t∈[0,1]

∣∣∣T(K)
(t)
∣∣∣ = 0, (17)

where

T(K)
(t) :=

∞

∑
m=K+1

amV(m)(t),

and thus that T ∈ D1[0, 1]. Also, since by assumption for each integer K ≥ 1, Vn,K converges

weakly as n → ∞ to the DK[0, 1]–valued process VK, we get that T(K)
n converges weakly in

D1[0, 1] to T(K), where

T(K)
n :=

K

∑
m=1

amV
(m)
n and T(K) :=

K

∑
m=1

amV(m).

13



We complete the proof by combining this with (16) and (17), and then appealing to Theorem
4.2 of [2]. �

We are now ready to prove Theorem II.1. It turns out that it is more convenient to prove the
result for the following version of the process Yn, namely

Ỹn(h̃2, t) :=
2bntc (n− bntc)

n3 Un(h̃2)−
2 (n− bntc)

n2 U(1)
bntc(h̃2)−

2bntc
n2 U(2)

bntc(h̃2),

which is readily shown to be asymptotically equivalent to Yn(h̃2, t). Following pages 196-197
of [21], we see that

2Un(h̃2)

n
=

∞

∑
k=1

λk

( n

∑
i=1

φk(Xi)/
√

n

)2

− 1
n

n

∑
i=1

φ2
k(Xi)

 =:
∞

∑
k=1

λk∆k,n,

2U(1)
bntc,n(h̃2)

n
=

∞

∑
k=1

λk

(bntc

∑
i=1

φk(Xi)/
√

n

)2

− 1
n

bntc

∑
i=1

φ2
k(Xi)

 =:
∞

∑
k=1

λk∆(1)
k,n(t),

and

2U(2)
bntc,n(h̃2)

n
=

∞

∑
k=1

λk


 n

∑
i=1+bntc

φk(Xi)/
√

n

2

− 1
n

n

∑
i=1+bntc

φ2
k(Xi)

 =:
∞

∑
k=1

λk∆(2)
k,n(t).

Thus,

Ỹn(h̃2, t) =
∞

∑
k=1

λk

(
bntc (n− bntc)

n2 ∆k,n −
(n− bntc)

n
∆(1)

k,n(t)−
bntc

n
∆(2)

k,n(t)
)
=:

∞

∑
k=1

λkV
(k)
n (t).

(18)
Let {W(i)}i≥1 be a sequence of standard Wiener processes on [0, 1]. Write

Y(t) :=
∞

∑
k=1

λkV(k)(t),

where, for k ≥ 1,

V(k)(t) = t(1− t)
((

W(k)(1)
)2
− 1
)
− (1− t)

((
W(k)(t)

)2
− t
)

− t
((

W(k)(1)−W(k)(t)
)2
− (1− t)

)
= t(1− t)

((
W(k)(1)

)2
+ 1
)
− (1− t)

(
W(k)(t)

)2
− t
(

W(k)(1)−W(k)(t)
)2

. (19)

A simple application of Doob’s inequality shows that there exists a constant M > 0 such that
(14) and (15) hold, for V

(k)
n and V(k) defined as in (18) and (19).

For any integer K ≥ 1, let U1 be the random vector such that UT
1 = (φ1(X1), . . . , φK(X1)).

We see that E(U1) = 0 and E(U1UT
1 ) = IK. For any n ≥ 1 let U1, . . . , Un be i.i.d. U1.

Consider the process defined on DK[0, 1] by

Wn,K(t) :=

n−1/2 ∑
j≤bntc

φ1(Xj), . . . , n−1/2 ∑
j≤bntc

φK(Xj)

 =:
(

W
(1)
n (t), . . . , W

(K)
n (t)

)
,

14



where for any i ≥ 1,
W

(i)
n (t) := n−1/2 ∑

j≤bntc
φi(Xj).

Notice that as processes in t ∈ [0, 1],

Wn,K(t) : D
= n−1/2 ∑

j≤bntc
Uj.

Clearly by Donsker’s theorem the process (Wn,K(t))0≤t≤1 converges weakly as n → ∞ to
the RK–valued Wiener process (WK(t))0≤t≤1, with mean vector zero and covariance matrix
(t1 ∧ t2)IK, t1, t2 ∈ [0, 1], where

WK(t) :=
(

W(1)(t), . . . , W(K)(t)
)

.

Using this fact along with the law of large numbers one readily verifies that for each integer
K ≥ 1, (V(1)

n , . . . , V
(K)
n ) converges weakly as n → ∞ to (V(1), . . . , V(K)), where V

(i)
n and V(i)

are defined as in (18) and (19). All the conditions for Proposition VI.1 to hold have been
verified. Thus the proof of Theorem II.1 is complete, after we note that a little algebra shows
that Y(t) is equal to

∞

∑
i=1

λi

(
t(1− t)−

(
W(i)(t)− tW(i)(1)

)2
)
=

∞

∑
i=1

λi

(
t(1− t)−

(
B(i)(t)

)2
)

,

where B(i)(t) = W(i)(t)− tW(i)(1), i ≥ 1, are independent Brownian bridges. �

VII. Appendix

I. Proof of Lemma II.1

Notice that for each n > 1, Ebnγc,n(X; β) is equal to the statistic in (3) with k = bnγc. By the
law of large numbers for U-statistics (see Theorem 1 of [20]) for any γ ∈ (0, 1), with probability
1, (

bnγc
2

)−1

∑
1≤i<j≤bnγc

∣∣Yi −Yj
∣∣β → E

∣∣Y−Y′
∣∣β

and (
n− bnγc

2

)−1

∑
1≤i<j≤n−bnγc

∣∣Zi − Zj
∣∣β → E

∣∣Z− Z′
∣∣β .

Next for any M > 0, write

|y− z|β = |y− z|β 1 {|y| ≤ M, |z| ≤ M}+ |y− z|β 1 {|y| ≤ M, |z| > M}

+ |y− z|β 1 {|y| > M, |z| ≤ M}+ |y− z|β 1 {|y| > M, |z| > M} .

Applying the strong law of large numbers for generalized U-statistics given in Theorem 1 of
[20], we get for any M > 0, with probability 1,

2
bnγc (n− bnγc)

bnγc

∑
i=1

n−bnγc

∑
j=1

∣∣Yi − Zj
∣∣β 1

{
|Yi| ≤ M,

∣∣Zj
∣∣ ≤ M

}
→ 2E

(
|Y− Z|β 1 {|Y| ≤ M, |Z| ≤ M}

)
.
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Also observe that

2
bnγc (n− bnγc)

bnγc

∑
i=1

n−bnγc

∑
j=1

∣∣Yi − Zj
∣∣β 1

{
|Yi| ≤ M,

∣∣Zj
∣∣ > M

}
≤ 2
bnγc (n− bnγc)

bnγc

∑
i=1

n−bnγc

∑
j=1

(
M +

∣∣Zj
∣∣)β 1

{∣∣Zj
∣∣ > M

}
=

2
n− bnγc

n−bnγc

∑
j=1

(
M +

∣∣Zj
∣∣)β 1

{∣∣Zj
∣∣ > M

}
.

By the usual law of large numbers for each M > 0, with probability 1,

2
n− bnγc

n−bnγc

∑
j=1

(
M +

∣∣Zj
∣∣)β 1

{∣∣Zj
∣∣ > M

}
→ 2E

(
(M + |Z|)β 1 {|Z| > M}

)
≤ 2β+1E

(
|Z|β 1 {|Z| > M}

)
.

Thus, with probability 1, for all M > 0,

lim sup
n→∞

2
bnγc (n− bnγc)

bnγc

∑
i=1

n−bnγc

∑
j=1

∣∣Yi − Zj
∣∣β 1

{
|Yi| ≤ M,

∣∣Zj
∣∣ > M

}
≤ 2β+1E

(
|Z|β 1 {|Z| > M}

)
.

In the same way we get that, with probability 1,

lim sup
n→∞

2
bnγc (n− bnγc)

bnγc

∑
i=1

n−bnγc

∑
j=1

∣∣Yi − Zj
∣∣β 1

{
|Yi| > M,

∣∣Zj
∣∣ ≤ M

}
≤ 2E

(
(|Y|+ M)β 1 {|Y| > M}

)
≤ 2β+1E

(
|Y|β 1 {|Y| > M}

)
.

Finally, note that, by the cr-inequality,

2
bnγc (n− bnγc)

bnγc

∑
i=1

n−bnγc

∑
j=1

∣∣Yi − Zj
∣∣β 1

{
|Yi| > M,

∣∣Zj
∣∣ > M

}
≤ 2β

bnγc (n− bnγc)

bnγc

∑
i=1

n−bnγc

∑
j=1

(
|Yi|β +

∣∣Zj
∣∣β) 1

{
|Yi| > M,

∣∣Zj
∣∣ > M

}
≤ 2β

bnγc

bnγc

∑
i=1
|Yi|β 1 {|Yi| > M}+ 2β

n− bnγc

n−bnγc

∑
j=1

∣∣Zj
∣∣β 1

{∣∣Zj
∣∣ > M

}
.

By the law of large numbers this converges, with probability 1, to

2βE
(
|Y|β 1 {|Y| > M}

)
+ 2βE

(
|Z|β 1 {|Z| > M}

)
.

Obviously as M→ ∞,

2E
(
|Y− Z|β 1 {|Y| ≤ M, |Z| ≤ M}

)
→ 2E |Y− Z|β
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and
3 · 2βE

(
|Y|β 1 {|Y| > M}

)
+ 3 · 2βE

(
|Z|β 1 {|Z| > M}

)
→ 0.

Putting everything together we get that (13) holds. �

II. A technical result

Let X and X′ be i.i.d. F and let ϕ be a symmetric measurable function from Rd ×Rd → R

such that Eϕ2(X, X′) < ∞. Recall the notation (6). Let A be the operator defined on L2(R
d, F)

as in (8).
Notice that

E
(

g(X)h̃2(X, X′)g(X′)
)
=
∫

Rd
g(x)Ag(x)dF(x) =: 〈g, Ag〉.

Let us now introduce some useful definitions. Given β ∈ (0, 2) and ϕβ(x, y) = |x − y|β,
define as in (6),

h2,β(x, y) = ϕβ(x, y)− ϕ1,β(x)− ϕ1,β(y) and h̃2,β(x, y) = hβ(x, y) + Eϕβ(X, X′).

The aim here is to verify that the function h̃2,β(x, y) satisfies the conditions of Theorem II.1 as
long as

E|X|2β < ∞. (20)

Let Ãβ denote the integral operator

Ãβg(x) =
∫

Rd
h̃2,β(x, y)g(y)dF(y), x ∈ Rd, g ∈ L2(R

d, F).

Clearly (20) implies (5) with ϕ = ϕβ, which, in turn, by (9) implies

Eh̃2
2,β(X, X′) =

∫
Rd

∫
Rd

h̃2
2,β(x, y)dF(x)dF(y) =

∞

∑
i=1

λ2
i < ∞,

where λi, i ≥ 1, are the eigenvalues of the operator Ãβ, with corresponding orthonormal
eigenfunctions φi, i ≥ 1.

Next we shall prove that when (20) holds then the eigenvalues λi, i ≥ 1, of this integral
operator Ãβ satisfy (10). This is summarized in the following lemma, whose proof is postponed
to the next paragraph.

Lemma VII.1 Whenever for some β ∈ (0, 2), (20) holds, the eigenvalues λi, i ≥ 1, of the operator Ãβ

satisfy (10).

The technical results that follow will imply that λi ≤ 0 for all i ≥ 1 and ∑∞
i=1 λi is finite,

from which we can infer (10), and thus Lemma VII.1. Let us begin with two definitions.

Definition VII.1 Let X be a nonempty set. A symmetric function K : X ×X → R is called positive
definite if

n

∑
i=1

n

∑
j=1

cicjK(xi, xj) ≥ 0

for all n ≥ 1, c1, . . . , cn ∈ R and x1, . . . , xn ∈ X .
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Definition VII.2 Let X be a nonempty set. A symmetric function K : X × X → R is called
conditionally negative definite if

n

∑
i=1

n

∑
j=1

cicjK(xi, xj) ≤ 0

for all n ≥ 1, c1, . . . , cn ∈ R such that ∑n
i=1 ci = 0 and x1, . . . , xn ∈ X .

Next, we shall be using part of Lemma 2.1 on page 74 of [1], which we state here for
convenience as Lemma VII.2.

Lemma VII.2 Let K be a symmetric function on X ×X . Then, for any x0 ∈ X , the function

K̃(x, y) = K(x, x0) + K(y, x0)− K(x, y)− K(x0, x0)

is positive definite if and only if K is conditionally negative definite.

The following lemma can be proved just as Corollary 2.1 in [8].

Lemma VII.3 Let H : Rd × Rd → R be a symmetric positive definite function in the sense of
Definition VII.1. Assume that H is continuous and EH2(X, X′) < ∞, where X and X′ are i.i.d. F.
Then E(g(X)H(X, X′)g(X′)) ≥ 0 for all g ∈ L2(R

d, F), i.e., H is L2-positive definite in the sense of
[8].

We recall that an operator L on L2(R
d, F) is called positive definite if for all g ∈ L2(R

d, F),
〈g, Lg〉 ≥ 0.

Proposition VII.1 Let ϕ : Rd ×Rd → R be a symmetric continuous function that is a conditionally
negative definite function in the sense of Definition VII.2. Assume that ϕ(x, x) = 0 for all x ∈ Rd and
Eϕ2(X, X′) < ∞. Then ϕ defines a positive definite operator L on L2(R

d, F) given by

Lg(x) = −
∫

Rd
h(x, y)g(y)dF(y), x ∈ Rd, g ∈ L2(R

d, F),

where h is defined as in (6). Furthermore the operator L̃ on L2(R
d, F) given by

L̃g(x) = −
∫

Rd

(
h(x, y) + Eϕ(X, X′)

)
g(y)dF(y), x ∈ Rd, g ∈ L2(R

d, F),

is also a positive definite operator on L2(R
d, F).

Proof. We must show that for all g ∈ L2(R
d, F),

〈g, Lg〉 = −E(g(X)h(X, X′)g(X′)) ≥ 0.

For any u ∈ Rd, let us write

ϕ(x, y, u) := ϕ(x, u) + ϕ(y, u)− ϕ(u, u)− ϕ(x, y)

= ϕ(x, u) + ϕ(y, u)− ϕ(x, y).

Since ϕ is assumed to be conditionally negative definite, by Lemma VII.2 we have that for any
fixed u ∈ Rd, ϕ(x, y, u) is positive definite in the sense of Definition VII.1. Hence, since ϕ is
also assumed to be continuous, by Lemma VII.3 for all g ∈ L2(R

d, F),

E
(

g(X)ϕ(X, X′, u)g(X′)
)
≥ 0.
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Noting that if U has distribution function F, Eϕ(x, y, U) = −h(x, y), we get, assuming that X,
X′ and U are independent, that

E
(

g(X)ϕ(X, X′, U)g(X′)
)
= −E

(
g(X)h(X, X′)g(X′)

)
≥ 0.

Next, notice that for any eigenvalue and normalized eigenfunction (λ̃i, φ̃i) pair, i ≥ 1, of the
operator L̃, we have

λ̃iφ̃i(x) = L̃φ̃i(x) = −
∫

Rd

(
h(x, y) + Eϕ(X, X′)

)
φ̃i (y) dF(y).

Now, ∫
Rd

(
h(x, y) + Eϕ(X, X′)

)
dF(y) = 0, for all x ∈ Rd,

implies that (λ̃1, φ̃1) := (0, 1) is an eigenvalue and normalized eigenfunction pair of L̃. From
this we get that whenever λ̃i 6= 0, Eφ̃i(X) = 0, i ≥ 2, which says that for such λ̃i,

λ̃iφ̃i(x) = −
∫

Rd
h(x, y)φ̃i(y)dF(y).

This implies that whenever for some i ≥ 1, (λ̃i, φ̃i), with λ̃i 6= 0, is an eigenvalue and
normalized eigenfunction pair of the operator L̃, it is also an eigenvalue and normalized
eigenfunction pair of the operator L. Moreover, since the integral operator L is positive definite
on L2(R

d, F), this implies that for any such nonzero λ̃i (where necessarily i ≥ 2)

−
∫

Rd

∫
Rd

φ̃i(x)
(
h(x, y) + Eϕ(X, X′)

)
φ̃i(y)dF(x)dF(y)

= −
∫

Rd

∫
Rd

φ̃i(x)h(x, y)φ̃i(y)dF(x)dF(y) = λ̃i ≥ 0,

which says that the operator L̃ is positive definite on L2(R
d, F). �

III. Proof of Lemma VII.1

A special case of Theorem 3.2.2 in [1] says that the function ϕβ(x, y) = |x − y|β, β ∈ (0, 2),
is conditionally negative definite. Also see Exercise 3.2.13b in [1] and the discussion after
Proposition 3 in [26]. Therefore by Proposition VII.1 the integral operator Lβ defined by the
function

Kβ (x, y) = −h2,β (x, y)

is positive definite as well as the integral operator L̃β = −Ãβ defined by the function

K̃β (x, y) = −h2,β(x, y)−Eϕβ(X, X′).

Next, as in the proof of Proposition VII.1, any eigenvalue and normalized eigenfunction(
λ̃i, φ̃i

)
= (−λi,−φi)

pair, with λ̃i 6= 0, i ≥ 1, of the operator L̃β = −Ãβ is also an eigenvalue and normalized
eigenfunction pair of the operator Lβ.

We shall apply Theorem 2 of [23] to show that uniformly on compact subsets D of Rd,

Kβ (x, y) =
∞

∑
i=1

ρiψi(x)ψi(y), (x, y) ∈ D× D,
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where ρi ≥ 0, i ≥ 1, are the eigenvalues of the operator Lβ = −Aβ with corresponding
normalized eigenfunctions ψi, i ≥ 1. In particular

Kβ (x, x) =
∞

∑
i=1

ρiψ
2
i (x), x ∈ D,

and thus since Eψ2
i (X) = 1, i ≥ 1, and EKβ (X, X) < ∞, we get

∞

∑
i=1

ρi < ∞.

Therefore since, as pointed out above, the eigenvalue and normalized eigenfunction pairs
(−λi,−φi) of L̃β = −Ãβ, with λi 6= 0, are also eigenvalue and normalized eigenfunction pairs
of the operator Lβ this implies that ∑∞

i=1 |λi| < ∞.
Our proof will be complete once we have checked that Lβ satisfies the conditions of Theorem

2 of [23].
Since the function ϕβ(x, y) = |x − y|β, β ∈ (0, 2), is conditionally negative definite, by

Lemma VII.2 the function Kβ (x, y) is positive definite. To see this note that by Lemma VII.2
for any fixed u ∈ R the function

ϕβ (x, u) + ϕβ (u, y)− ϕβ (x, y)− ϕβ (u, u) = ϕβ (x, u) + ϕβ (u, y)− ϕβ (x, y)

is positive definite. Therefore we readily see that

Kβ(x, y) =
(∫

Rd
ϕβ (x, u) + ϕβ (u, y)− ϕβ (x, y)

)
dF (u)

is positive definite. In addition, Kβ (x, y) is symmetric and continuous, and thus Kβ (x, y) is a
Mercer kernel in the terminology of [23]. We must also verify the following assumptions.
Assumption A. For each x ∈ Rd, Kβ (x, ·) ∈ L2(R

d, F).

Assumption B. Lβ is a bounded and positive definite operator on L2(R
d, F) and for every

g ∈ L2(R
d, F), the function

Lβg(x) =
∫

Rd
Kβ(x, y)g(y)dF(y)

is a continuous function on Rd.
Assumption C. Lβ has at most countably many positive eigenvalues and orthonormal eigen-
functions.

Since ϕβ is a symmetric continuous function that is conditionally negative definite in the
sense of Definition VII.2 satisfying ϕβ(x, x) = 0 for all x ∈ Rd and Eϕ2

β(X, X′) < ∞, we get

by Proposition VII.1 that Lβ is a positive definite operator on L2(R
d, F). Also (20) obviously

implies that Assumption A holds and

EK2
β(X, X′) =

∫
Rd

∫
Rd

K2
β(x, y)dF(x)dF(y) < ∞,

which by Proposition 1 of [23] implies that the operator Lβ is bounded and compact. (From
Sun’s Proposition 1 one can also infer that Lβ is positive definite. However, he does not provide
a proof. Therefore we invoke our Lemma VII.3 here.) An elementary argument based on the
dominated convergence theorem implies that Lβg(x) is a continuous function on Rd. Thus
Assumption B is satisfied. Finally, since the operator Lβ is compact, Theorem VII.4.5 of [7]
implies that Assumption C is fulfilled. Thus the assumptions of Theorem 2 of [23] hold. This
completes the proof of Lemma VII.1. �
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