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We study the use of vibration localization in large arrays of mechanically coupled, nearly identical
microcantilevers for ultrasensitive mass detection and identification. We demonstrate that
eigenmode changes in such an array can be two to three orders of magnitude greater than relative
changes in resonance frequencies when an analyte mass is added. Moreover, the changes in
eigenmodes are unique to the cantilever to which mass is added, thereby providing a characteristic
“fingerprint” that identifies the particular cantilever where mass has been added. This opens
the door to ultrasensitive detection and identification of multiple analytes with a single coupled
array. © 2008 American Institute of Physics. �DOI: 10.1063/1.2899634�

Microcantilever sensors have been extensively used to
detect a variety of biological and chemical analytes over the
past decade.1–4 Most of these sensors use changes in reso-
nance frequencies or static bending of the microcantilever to
detect the adsorption of an analyte of interest. In contrast, the
concept of using vibration localization5–10 in an array of
nearly identical coupled oscillators has also been proposed as
a sensing mechanism in recent years in two or three coupled
microbeams under ambient conditions.11–13 Besides its high
sensitivity to added mass, an eigenmode-shift based sensor
possesses intrinsic common mode rejection12 that renders it
less susceptible to false-positive readings than resonance-
frequency based sensors; environmental factors or nonspe-
cific bindings that influence all cantilevers uniformly will not
affect the eigenmodes of the system, while changes in reso-
nance frequencies will still occur. In an effort to improve the
sensitivity and selectivity of vibration localization based mi-
crocantilever arrays, in this article, we examine an array of
fifteen weakly coupled microcantilevers in a low pressure
environment.

In order to estimate the sensitivity to added mass of the
eigenmodes of the coupled array, we begin with the eigen-
value problem of a perfect array of identical spring-mass
oscillators �cantilevers�, with each oscillator connected to its
neighbor by a coupling spring

M> −1K> u = �2u , �1�

where u is a normalized eigenmode ��ui�=1� of the system
representing the tip amplitudes of each cantilever of the array
at the corresponding eigenfrequency, � is an eigenfrequency
of the system, and M> and K> are the mass and stiffness ma-
trices of the system, respectively, given by

M> = �
M1 0 ¯ 0

0 M2 ¯ 0

] ] � ]

0 0 ¯ M15 + �M
� , �2�

K> = �
K1 + KC − KC ¯ 0

− KC K2 + 2KC ¯ 0

] ] � ]

0 0 − KC K15 + KC

�
where Mi and Ki represent the mass and stiffness, respec-
tively, of each cantilever, KC represents the coupling stiffness
between cantilevers, and �M represents the added mass of
the target analyte that binds to one cantilever.14 Solving Eq.
�1� when �M =0 and Mi=M, Ki=K yields 15 eigenmodes of
the initially perfectly ordered system. The first mode consists
of all cantilevers moving in phase with identical amplitude,
while higher modes of the array are characterized by increas-
ing spatial modulation with decreasing wavelength. The ac-
tual values of M, K, and KC can be estimated from experi-
mental data.14 However, manufacturing errors will inevitably
cause differences in the cantilevers. The effects of these dif-
ferences were studied by allowing the length, width, and
thickness of each cantilever to vary randomly up to �1%
from nominal values. When mass is added to the system
��M �0�, the magnitude of the relative shift in the ith eigen-
mode ui and the relative shift in the ith resonance frequency
after mass is added to a cantilever can then be written as

��ui� = �ui − ui,0�, ��i =
�i − �i,0

�i,0
. �3�

ui,0, �i,0 and ui ,�i represent the ith eigenmode vector and its
eigenfrequency before and after mass is added, respectively,
so that 0� ��ui��2. One thousand calculations were per-
formed with the random variations in cantilever dimensions,
and the sensitivity of the eigenmodes of the array to added
mass on one cantilever was calculated for each case. Baseda�Electronic mail: raman@ecn.purdue.edu.
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on these simulations for realistic initial disorder in the array,
we find that for any given added mass location, an eigen-
mode always exists whose relative shift is at least two orders
of magnitude higher than its relative frequency shift. In ad-
dition, because adding mass to one cantilever changes only
one row of the matrix M> , the resulting pattern of eigenmode
shifts will be unique to the added mass location, allowing the
exact location of an added mass to be determined by exam-
ining the matrix of eigenmode shifts �ui.

The sensitivity of the eigenmodes to added mass can be
defined as the magnitude of the relative change in the eigen-
modes ��ui� divided by the amount of added mass.15 Using
this definition, the theoretical sensitivity of the eigenmodes
to added mass is expected to be two to three orders of mag-
nitude greater than that of the resonance frequencies. How-
ever, in a practical implementation of an eigenmode-shift
sensor, the minimum detectable mass, which can be defined
as the minimum resolvable eigenmode shift divided by the
sensitivity, may not be very different from a frequency shift
sensor. This is because frequency shifts can be usually re-
solved with greater precision than amplitude changes. How-
ever, with very precise measurements of the amplitude shifts
the minimum detectable mass using eigenmode shifts could
surpass that due to frequency shift methods. This possibility
together with the intrinsic common mode rejection property
make eigenmode shift based sensors particularly attractive.

The arrays being tested consist of fifteen coupled poly-
silicon beams which are 200 �m long, 20 �m wide, and
2.25 �m thick. A small base overhang between the micro-
cantilevers and support compliance provides the mechanical
coupling between the beams. The chip was mounted on a
piezoelectric shaker, which in turn excited the chip with ver-
tical oscillations. A laser Doppler vibrometer in a microscope
measured the velocities at one point on the base of the array
and 35 points on each of the 15 cantilevers on the array. The
measurements were conducted under 7 mTorr air pressure to
ensure high Q factors and to minimize hydrodynamic inter-
actions between cantilevers.16

The measurements reveal the presence of many closely
spaced resonance frequencies, indicating that the cantilevers
are weakly coupled. Figure 1�a� shows the frequency re-
sponse function �FRF� between the reference velocity at the
base of the array and the response velocity at the end of one
cantilever. Figure 1�b� shows the portion of the FRF high-
lighted in Fig. 1�a�, with inset images of selected operating
deflection shapes. In a high-Q environment with nonoverlap-
ping peaks, these are in fact the eigenmodes of the array.

First, the eigenmodes of the initial array are fully char-
acterized. Figure 1�c� provides a convenient way to display
all the modes of the array in a single plot. Each row in Fig.
1�c� corresponds to one normalized mode ui of the array,
while each column corresponds to a given cantilever over
many different modes. The color shading in each cell �i , j� is
determined by the amplitude of the tip of the ith cantilever in
the jth eigenmode. The fact that the measured eigenmodes,
shown in Fig. 1�d�, and predicted eigenmodes for the per-
fectly ordered system appear slightly different confirms the
presence of initial disorder in the system.

Next, a 5 �m diameter borosilicate microsphere with a
nominal mass of 150 pg �Ref. 17� was added to one cantile-
ver in the array, as shown in Fig. 2�a�, and eigenmode and
resonance frequency measurements were then repeated. The
microsphere was then removed from the cantilever, and a

final set of measurements were then taken. Modes 4, 5, and
14 were affected significantly by the process of adding and
removing mass, while modes 6–13 were affected very little.
This is because in the process of adding or removing the
mass using a tungsten probe, it is possible to irreversibly
damage the specific microcantilever. Therefore, subsequent
results will focus on modes 6–13 when discussing the effects
of added mass on the array.

The localization of individual modes was observed after
the addition of a microsphere to cantilever 14. Figure 2�b�
shows the significant differences in the sixth mode of the
array before and after the addition of the microsphere, re-
spectively, while the resonance frequency of the mode
changes only very slightly.

The experimentally measured eigenmode shifts compare
well with the theoretical predictions described earlier. Figure
2�c� plots the relative shift in eigenmodes ��ui� for the modes
of interest due to the addition of a single microsphere on
cantilever 14. Most of the experimentally measured relative
eigenmode shifts fall within the theoretically predicted enve-
lope, indicating that the theoretical model with initial imper-
fections included correctly predicts the eigenmode shifts due
to an added mass. All of the measured modes in Fig. 2�c�
undergo large relative changes on the order of 10%–100%
due to the added mass; in contrast, the highest relative fre-
quency shifts, plotted in Fig. 2�d�, are on the order of 0.1%
in this case, indicating that the relative eigenmode shifts are

FIG. 1. �Color online� �a� Frequency response function between the velocity
of the free end of one cantilever and the reference velocity measurement
made at the base of the array with no mass added. The effective Q factor of
the second mode is �2500 in this case. �b� Zoomed view of the highlighted
portion of the FRF shown in �a�. The measured eigenmodes are shown in the
inset images for selected modes. �c� Plot of measured eigenmodes 2–15 of
the fifteen cantilever array with no added mass �the first mode of the array
was obscured by the resonance of the piezoelectric shaker�. Rows corre-
spond to individual modes ui of the array, while columns correspond to an
individual cantilever over all measured modes. The shading of each cell is
determined by the amplitude of a particular cantilever in a particular mode.
Negative amplitudes correspond to out-of-phase oscillations. �d� Plot of all
calculated eigenmodes for an ideal array of fifteen identical cantilevers.
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two to three orders of magnitude greater than the relative
frequency shifts. This represents one to two orders of mag-
nitude improvement in sensitivity over previous attempts at
the use of mode localization for mass sensing.12

The effects of adding mass to different cantilevers in the
array were also examined by adding and removing a 2 �m
diameter borosilicate microsphere with a nominal mass of
10 pg �Ref. 17� from two different cantilevers in the array.
Figures 3�a� and 3�b� plot the changes in the eigenmodes
after a 10 pg mass is added to cantilevers 10 and 14. Since
each pattern of shifts is unique, it becomes possible to exam-
ine an experimentally measured pattern of eigenmode shifts
and determine to which cantilever a target analyte particle
has adhered. The quantitative mass of the target particle can
in principle be determined by extending the theory devel-
oped in previous work12 to an array of 15 cantilevers.

In conclusion, we have demonstrated that eigenmode
changes in a large array of fifteen coupled cantilevers can be
as much as three orders of magnitude greater than relative
frequency shifts. These changes represent an order of mag-
nitude improvement in mass sensitivity of localization based

sensing over previous works involving two coupled cantile-
vers. We have also shown that adding mass to different can-
tilevers in the array leads to a unique pattern of eigenmode
shifts. These findings open the door to the ultrasensitive si-
multaneous detection of multiple analytes using a single
coupled array.

This work was performed, in part, at the Center for In-
tegrated Nanotechnologies �CINT�, a U.S. Department of
Energy, Office of Basic Energy Sciences user facility at Los
Alamos National Laboratory �Contract No. DE-AC52-
06NA25396� and Sandia National Laboratories �Contract
DE-AC04-94AL85000�. Sandia is a multiprogram laboratory
operated under Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under
Contract No. DE-AC04-94-AL85000.
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FIG. 2. �Color online� �a� Photograph of the array of fifteen coupled canti-
levers with a 5 �m diameter borosilicate microsphere attached to cantilever
14 �inset�. The coupling between cantilevers is labeled. �b� Representation
of the measured sixth mode of the array before �left� and after �right� the
addition of a 5 �m microsphere to cantilever 14. In this case, the vibrations
have localized in cantilevers 14 and 15 after the sphere is added. �c� Plot of
the magnitude of the relative eigenmode shift ��ui�, as defined in Eq. �3�, vs
mode number for selected modes. The upper and lower dotted lines repre-
sent the average predicted relative eigenmode shift plus and minus the stan-
dard deviation in the eigenmode shift, respectively. The solid blue line rep-
resents the experimentally measured relative eigenmode shift values when a
mass is added to cantilever 14. �d� Plot of the relative frequency shift ��i of
each mode due to the addition of a mass to cantilever 14. The upper and
lower dotted lines represent the average predicted relative frequency shift
plus and minus the standard deviation in the frequency shift, respectively.
The solid line represents the experimentally measured relative frequency
shift values when a mass is added to cantilever 14. The relative eigenmode
shifts plotted in �c� incorporate data from the frequency response functions
of all cantilevers, while the relative shifts in resonance frequencies in �d� are
the same for all cantilevers in the array.

FIG. 3. �Color online� �a� Plot of the change in each eigenmode �ui before
and after the addition of a 10 pg microsphere to cantilever 10. In this case,
mode 8 undergoes the greatest change. �b� Plot of �ui before and after the
addition of a 10 pg microsphere to cantilever 14. The greatest change is
observed in mode 12 in this case.
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