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SUMMARY

RPL is a routing protocol for low-power and lossy networks. A malicious node can manipulate header
options used by RPL to create topological inconsistencies, thereby causing denial of service attacks,
reducing channel availability, increased control message overhead, and higher energy consumption at the
targeted node and its neighborhood. RPL overcomes these topological inconsistencies via a fixed threshold,
upon reaching which all subsequent packets with erroneous header options are ignored. However, this
threshold value is arbitrarily chosen and the performance can be improved by taking into account network
characteristics. To address this we present a mitigation strategy that allows nodes to dynamically adapt
against a topological inconsistency attack based on the current network conditions. Results from our
experiments show that our approach outperforms the fixed threshold and mitigates these attacks without
significant overhead.
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KEY WORDS: 1.6 Network Management / Sensor networks; 4.3 Functional Areas / Security
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1. INTRODUCTION

The Routing Protocol for Low-power Lossy Networks (RPL) [1], designed for constrained devices
and networks, is expected to find application in multiple areas of the Internet of Things (IoT). Being
suitable for various fields like, Industrial Networks [2], Home and Building Automation [3] and
Advanced Metering Infrastructure (AMI) Networks [4], it is evident that RPL will be exposed to
multiple different operating scenarios, some of which will expose it to malicious attacks.

To overcome such situations, RPL includes security mechanisms that can be used to ensure
integrity and confidentiality of messages, however, important features like key-management are
left out by the current standard [5]. Furthermore, cryptographic algorithms are known to occupy the
most memory and take many CPU cycles, thereby greatly affecting the performance of constrained
devices [6] likely to be used in IoT and WSN applications, for which RPL is suitable. An
examination of current RPL implementations across Contiki 2.6, TinyOS 2.1.2, RIOT 2013.08 and
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2 A. MAYZAUD ET AL.

SimpleRPL 1.0 for Linux, during the course of this study revealed that secure mode of RPL is a
feature that is not implemented. This leaves RPL open to multiple attacks wherein a malicious node
can manipulate contents of a packet to adversely affect the network.

One such attack is the Destination Oriented Directed Acyclic Graph (DODAG) inconsistency
attack, a type of topological inconsistency attack, which entails a malicious node manipulating the
RPL IPv6 header options [7] used to keep track of topological inconsistencies. This can lead to
an increase in control overhead, which can impact limited energy reserves of constrained devices
and decrease availability of an already constrained channel. RPL makes use of a fixed threshold to
counteract these DODAG inconsistency attacks. Once a node receives a certain number of packets
with the appropriate RPL IPv6 header options, all such subsequent messages are ignored. The RPL
standard proposes a value of 20 for this threshold [1], however, does not provide any reasoning as
to why this value is recommended.

A malicious node can also use a DODAG inconsistency attack to modify the IPv6 headers of
packets it forwards such that it forces the next-hop node to drop these modified packets. This leads
to the creation of a black-hole, which is hard to detect and counteract. Such an attack can lead to
serious denial of service attacks, or a malicious node could choose to selectively force nodes to
drop certain types of control, management, logging or update packets, thereby effecting the overall
stability of the network.

Our contribution is the development of an adaptive threshold (AT) mechanism to mitigate effects
of such attacks. This initial AT approach has also been further improved to dynamically account
for network characteristics while deriving an appropriate threshold for counteracting DODAG
inconsistency attacks. Our experimental results show that both our proposed approaches can lead to
improvements over RPL’s currently used fixed threshold approach. Furthermore, our approaches are
able to counteract the black-hole DODAG inconsistency attack scenario while still outperforming
the default RPL mitigation strategy.

The rest of this paper is organized as follows. In Section 2 an overview of relevant related work
is provided. This is followed by an overview of the RPL protocol in Section 3. The DODAG
inconsistency attacks are presented in Section 4, along with the proposed strategies that can be used
to mitigate them in Section 5. An evaluation of the DODAG inconsistency mitigation approaches
follows in Section 6, before we draw conclusions in Section 7.

2. RELATED WORK

While the study of RPL security is relatively new, the wireless sensor networks (WSNs) community
has investigated security in similar environments. The authors of [8] investigate trust to enhance the
security of WSNs and also propose to extend their approach to RPL networks [9]. However, such
an approach is not useful if malicious nodes perform DODAG inconsistency attacks, because they
can easily remain undetected owing to the unaltered control messages they broadcast.

The IETF RoLL working group identified potential security issues in RPL networks and proposed
countermeasures [10]. The identified threats were classified into four categories: (1) authentication,
(2) confidentiality, (3) integrity and (4) availability. The DODAG inconsistency attack cannot be
easily categorized because even though it appears to be an integrity threat, it could also be a
malfunction. This implies that any mitigation mechanism should be carefully designed so as to
account for network malfunctions as well. The RoLL working group proposed the data path
validation mechanism and a fixed threshold [7] approach to mitigate such attacks. However, a data
path validation mechanism usually requires nodes to maintain additional state [11], something that
quickly reduces the already scarce computing resources at constrained devices.

Studies on other attacks in RPL networks have also been performed in recent years. The authors
of [12] explored methods to detect black-hole attacks in RPL networks. Different works investigated
packet modification attacks resulting in topology modification or resource depletion, and proposed
prevention methods. The authors of [13] studied loop creation when in situations when an attacker
modifies the version number field in RPL control messages. An authentication scheme to prevent
malicious nodes from modifying important network control data was proposed in [11]. Defense
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MITIGATION OF TOPOLOGICAL INCONSISTENCY ATTACKS IN LOW POWER LOSSY NETWORKS 3

techniques against sink-holes in RPL networks were explored in [14]. The authors of [15] presented
an attack changing the topology by systematically choosing the worst parent in an RPL network.
However, none of these works consider DODAG inconsistency attacks.

We have previously performed an initial study on DODAG inconsistency attacks and the
effectiveness of the fixed threshold approach [16]. An adaptive threshold (AT) approach was
designed during this study to counteract the DODAG inconsistency attacks. However, even though
this AT changes based on the rate at which packets are received, it does not take into account network
characteristics. Furthermore, certain basic configuration parameters for the AT approach had to be
chosen in a somewhat arbitrary way. In this paper we not only extend the evaluation performed on
the AT approach, but also develop a new dynamic threshold (DT) approach that also adapts itself
based on network characteristics. This DT approach requires no parameters to be chosen arbitrarily,
since all information needed is derived from the network itself.

3. THE RPL PROTOCOL

RPL forms a loop-free tree like topology termed a Destination Oriented Directed Acyclic Graph
(DODAG), wherein nodes are organized into a hierarchical structure with a root, children, and
descendants. Objective functions are used to optimize the topology based on a set of goals, e.g.,
energy conservation, reduced hop count or best link-quality. Each network can have multiple
DODAGs, each optimized with its own objective function and appropriate topology. RPL can
also run multiple instances within a network, which leads to each instance having its own set of
DODAGs [1]. A node can be a member of only one DODAG in an instance at any given point in
time, but it may join multiple instances concurrently.

Formation and maintenance of the RPL DODAG are carried out using (1) DODAG Information
Solicitation (DIS), (2) DODAG Information Object (DIO) and (3) Destination Advertisement
Object (DAO) control messages. A new node may join an existing network by broadcasting a DIS
message to solicit DIO messages, which carry information about the DODAG such as node ID and
objective code point. Alternatively, a node may wait to receive DIO messages, which are periodically
broadcast, from its neighbors. The DIO transmission periodicity is determined by trickle timers [17].

Upon receiving a DIO message the node calculates its rank by using the objective code point
specified in this message. The rank value of a node corresponds to its position in the graph with
respect to the root and must always be greater than its parents’ rank in order to guarantee the acyclic
nature of the graph. If DIO messages are received from multiple nodes, the sender that results in
the best rank is chosen as the parent and informed of the decision. To build downward routes a
node must send the DAO message, containing routable prefixes, up the tree [1]. As the message
propagates upwards, prefixes are aggregated and downward routes become available to parents.

To avoid possible loops, RPL utilizes two basic rules. Any messages traveling downwards in
the DODAG, but having originated at a descendant node, are ignored. Also, nodes can normally
only change their parents and rank in case of upwards movement. Downwards movement is strictly
prohibited, unless it occurs during loop avoidance measures or when a new version of the DODAG
is created by the root.

When a loop occurs, RPL provides the data path validation mechanism to detect and repair rank
related DODAG inconsistencies. This mechanism works by carrying the following flags in the RPL
IPv6 header options [7] of multi-hop data packets:

• The ‘O’ flag — indicates the expected direction of a packet. When set, the packet is intended
for a descendant. Otherwise it is intended for a parent, towards the DODAG root.

• The ‘R’ flag — indicates that a rank error was detected by a node forwarding the packet. A
mismatch between the direction indicated by the ‘O’ flag and the rank of sending/forwarding
node causes the flag to be set.

A DODAG inconsistency exists if the direction indicated by the ‘O’ flag does not match the rank
relationship of the node from which the packet was received [1]. The ‘R’ flag is used to repair this
problem by setting it, in case it was not set previously, and forwarding the packet. Upon receiving
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4 A. MAYZAUD ET AL.

(a) (b)
Figure 1. DODAG inconsistency attack scenarios. (a) The attacker, node 10, targets node 2 by sending
packets with the ‘R’ flag. This causes node 2 to drop this packet, reset its trickle timer and increase network
overhead. (b) The attacker, node 3, modifies packets received from its descendants to contain the ‘R’ flag
before forwarding them. The receiving node 2 drops these packets and resets its trickle timer, leading to
increased network overhead and reduced delivery ratio. (R represents node’s rank) [16]

a packet with the ‘R’ flag already set an inconsistency is detected, the packet is discarded and the
trickle timer used by RPL is reset [17].

4. TYPES OF DODAG INCONSISTENCY ATTACKS

The RPL data path validation mechanism based on a fixed threshold was designed to improve
reliability of the protocol, however, a malicious node can misuse it in order to attack the network;
this is called a DODAG inconsistency attack. These attacks can either be used to harm a targeted
node, or a malicious node in the routing path may use this approach to manipulated packet headers
and cause the next-hop node to drop the modified packet.

4.1. Direct Attack Scenario

A malicious intruder can directly attack its neighborhood by sending packets that have the ‘R’ flag
and the wrong direction set. For instance, if a parent is targeted, the attacker can send packets with
the ‘O’ and ‘R’ flags set, since packets with ‘O’ flag are intended for descendant nodes. The parent
will detect an inconsistency and thus, drop the packet and restart the trickle timer.

Resetting the trickle timer causes control messages to be sent more frequently which leads to local
instability in the network. This increased control message overhead reduces channel availability
and increases energy consumption which can lead to a shortened network lifetime in case nodes
are battery operated. Since nodes in RPL networks are likely to be resource constrained, they
are unlikely to support multi-tasking or large packet buffers. As such, time spent on processing
malicious packets could lead to loss of genuine ones.

Figure 1(a) depicts a scenario where such an attack takes place. In this case, a stable network
topology of ten nodes is formed using RPL. Node 10 assumes the role of an attacker by sending
messages, with the ‘O’ and ‘R’ flags set, to node 2, its parent. Node 2 resets its trickle timer, thereby
flooding its neighborhood with control messages and affecting nodes 4 and 5 as well.

4.2. Packet Manipulation Scenario

In this scenario, the malicious intruder modifies the IPv6 header of packets it forwards such that the
‘R’ flag and the ‘O’ flag representing the wrong direction are set. The receiving node assumes that
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MITIGATION OF TOPOLOGICAL INCONSISTENCY ATTACKS IN LOW POWER LOSSY NETWORKS 5

Algorithm 1 The default DODAG inconsistency mitigation strategy of a node.
if (O = 1 and ri < rj) or (O = 0 and ri > rj) then

if R = 1 then
countR ++
drop(M)
if countR < λ then
reset(trickle timer)

end if
end if

end if

a DODAG inconsistency has taken place and discards the packet. As a result, the malicious node
succeeds in forming a black-hole at the next-hop node. This attack could either be carried out on all
packets forwarded by the malicious node, or selectively based on source, destination, or even type
of message.

The nodes originating the message cannot easily detect this forced black-hole because the packet
is not dropped by their next-hop, but by a node that is at least two hops away. If the malicious node
itself were to drop the packets, its children could detect this by enabling promiscuous mode. But
promiscuous mode is not an option in such a scenario since in most RPL networks, a node that is
two hops away is usually out of radio range as well [12]. This means, that only the attacker is within
radio range of the sender and the node that drops the packet, thereby making it nearly impossible
for nodes to detect the manipulation. Another problem with the promiscuous mode is that due to the
resource constrained nature of the nodes and the lack of multi-tasking or large packet buffers, time
spent on inspecting packets leads to loss of packets that should have been handled normally.

In general this approach is a good strategy for the attacker to force another node to drop the
packets. Furthermore, if the control packets originating from the malicious node are normal, then the
malicious activity is completely hidden. In this scenario, not only does the delivery ratio decrease,
but the control overhead of RPL nodes also increases along with deteriorating channel availability
and increasing energy consumption.

For example, in the DODAG depicted by Figure 1(b) node 3 is the attacker. Before forwarding
data packets from its descendants, nodes 4 and 5, it modifies them such that the ‘O’ and ‘R’ flags are
set. As a consequence, the node 2 drops them, thereby becoming akin to a black-hole. This causes
the delivery ratio for nodes 4 and 5, descendants of node 3 to be severely harmed. Node 2 also resets
its trickle timer causing an increase in overhead as well.

5. MITIGATION APPROACH

5.1. Default mitigation

The default DODAG inconsistency attack mitigation strategy of RPL can be seen in Algorithm 1,
where i is a node within the graph with a rank of ri.M represents a packet received by node i from a
neighbor j with rank rj . O and R represent the ‘O’ and ‘R’ flags present in M . The variable countR
is the number of received data packets with the ‘R’ flag set and is initialized to 0. λ is a constant set
to 20.

Upon receiving a packet with an inconsistency, the node drops it and resets its own trickle timer.
To limit the effects of an attack, the number of trickle timer resets is limited to the recommended
constant λ = 20 [7]. Upon reaching this threshold, malformed packets are dropped but the trickle
timer is not reset. countR is reset every hour, allowing attackers to once again have a higher impact.

This approach limits the impact of a DODAG inconsistency attack, but the value of the threshold
λ = 20 is arbitrarily set. No reasoning is provided to justify this choice or how performance could
be improved in case of varying attack scenarios.
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6 A. MAYZAUD ET AL.

Algorithm 2 The adaptive DODAG inconsis-
tency mitigation.

if (O = 1 and ri < rj) or (O = 0 and ri > rj) then
if R = 1 then

if countR < λ(r) then
countR ++

drop(M)

reset trickle timer()

else if λ(r) ≤ α then
O ← 0

R← 0

forward(M)

end if
end if

end if

Algorithm 3 The dynamic DODAG incon-
sistency mitigation strategy.

if (O = 1 and ri < rj) or (O = 0 and ri > rj) then
if R = 1 then
countR ++

if countT < λ(r) then
if timer expired(convergence timer) then
drop(M)

start(convergence timer)

reset(trickle timer)

countT ++

end if
else if r >= 1

ε
then

O ← 0

R← 0

forward(M)

else
drop(M)

end if
end if

end if

5.2. Adaptive Threshold

In order to take into account the current network state and react to varying attack patterns we
developed an adaptive threshold (AT) [16], which determines when to stop resetting the trickle
timer. Instead of a constant λ, a function λ(r) is used, which takes the following form:

λ(r) = bα+ β · e−γ·rc (1)

where,

r =
countR
Dpkt

, α = 5, β = 15

countR is the number of received data packets with the ‘R’ flag set and Dpkt represents normal
forwarded data packets. To allow comparison with the default strategy, the value of β was chosen
such that the default λ(r) = 20. The value α is an asymptote to ensure that threshold never reaches
0. This guarantees that data packet validation is not disabled upon encountering the first packet with
an ‘R’ flag, but only when the situation is deemed an attack.

Since γ impacts the threshold’s rate of change, a value is not chosen here. In general, a larger
value for γ leads to a smaller threshold being reached quicker. The effect of choosing different
values for γ is discussed in Section 6.4.

The adaptive threshold causes λ(r) to change based on network conditions. If an attacker is
aggressive, the threshold drops quickly and increases slowly once the attacks stop. Unlike with
the fixed threshold, countR is not reset every hour, but rather allowed to increase in the absence
of attacks. As such, not only is this approach likely to be better than a fixed threshold within the
first hour of an attack, but it should perform significantly better against long running attacks. This
also ensures that greater trust is placed in networks where problems have not been encountered for
a long time. Of course, a natural limit upon the value of the counter is the bit-length of the variable
imposed by the platform. In this case, the counter will reset when the value overflows. If any of the
counters overflows, we recommend resetting all counters (countR and Dpkt) so that the algorithm
functions as though it was started in a new network.

To counter the packet manipulation DODAG inconsistency attack, an extension was made
to the adaptive threshold. Nodes behave normally until the number of messages indicating an
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MITIGATION OF TOPOLOGICAL INCONSISTENCY ATTACKS IN LOW POWER LOSSY NETWORKS 7

inconsistency becomes greater than the threshold obtained from Equation 1. This situation indicates
either an attack against the node, or malfunction of the node forwarding such packets. To rectify the
situation, the node clears the ‘O’ and ‘R’ flags before forwarding the packets normally. The complete
packet manipulation mitigation strategy, combined with adaptive threshold mitigation approach, can
be seen in Algorithm 2.

Since no additional resources are used by this approach, the cost of protecting the network against
black-hole scenarios is quite low.

5.3. Dynamic Threshold

The adaptive threshold approach relies on a set parameters, which a particular RPL implementation
needs to choose. This can lead to sub-optimal optimizations and so we have improved our mitigation
approach via the design of a fully dynamic threshold, which is based on network characteristics. The
new threshold λ(r) used to determine whether the trickle timer should be reset is:

λ(r) = bδ · e−ε·rc (2)

where,

r =
countR
Dpkt

, δ = 2 · ε, ε = #neigh

As before, countR is the number of received data packets with the ‘R’ flag set. Dpkt represents
normal data packets forwarded by the node.

Normally packets with the ‘R’ flag set do not arrive at any nodes, because the network is stable
and functions as intended. It has been observed, via experiments carried out during this study, that
packets with the ‘R’ flag set arrive only when an attack is performed on the network, or loops form
due to serious malfunction of nodes, which is unlikely, unless a software bug exists. Even when the
root node initiates a rebuild of the entire network, i.e., a global repair, a maximum of one or two
packets containing ‘R’ flags are received from each child. Any given local neighborhood in an RPL
network always returns to stability within two packets containing an ‘R’ flag, if the problem is a
genuine topological inconsistency.

As such, setting δ to twice the number of neighbors (parents and children represented by #neigh
or ε in Equation 2) allows the possibility for each link to send up to two packets with an ‘R’ flag set
in case of legitimate loops. λ(r) corresponds to the value of δ in a steady state, i.e., when no packets
with ‘R’ flags are received.

Even though not observed during our experiments, it is possible for multiple packets with
an ‘R’ flag to arrive as a result of the same inconsistency. This can be especially true in case
a node malfunctions, leading to a loop being formed. Resetting the trickle timer each time
a malfunctioning node sends packets with ‘R’ flags leads to unnecessary overhead, especially
since a single trickle timer causes aggressive transmissions of DIOs anyway. To avoid this
situation, a convergence timer is introduced in this algorithm. This timer is used to ensure
that no further trickle timer resets take place within the amount of time it takes for an RPL
neighborhood to typically converge. Previous experiments have shown that time for convergence
of a DODAG neighborhood increases by about 2 seconds for every additional 10 neighbors [18].
The convergence timer is, as such, set to 2 seconds by default but grows based on neighborhood
size of a node.

Since the purpose of introducing a convergence timer is to block trickle timer resets caused
by ‘R’ flag packets arriving within the time it takes for the neighborhood to converge, it no longer
makes sense to compare countR with λ(r) to determine whether a trickle reset must occur. Rather, a
new counter that keeps track of the number of trickle timer resets, countT , is introduced. The value
of countT is reset one hour after the first ‘R’ flag packet is encountered. Instead of λ representing the
number of ‘R’ flag packets allowed before a trickle timer reset occurs, as with the default mitigation
approach, it is now the number of trickle timer resets allowed to be caused by ‘R’ flag packets that
arrive while the neighborhood is already considered to be converged. The overall dynamic threshold
approach can be seen in Algorithm 3.
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8 A. MAYZAUD ET AL.

The dynamic threshold allows λ(r) to change based on network conditions. Like the adaptive
threshold approach, this mitigation strategy should perform better against long running attacks. This
dynamic threshold approach not only does away with arbitrary constant thresholds, as in the case
of the default strategy, but by being based purely upon network characteristics it does away with
the need for constant parameters to be chosen before deployment [16] and thereby is more useful in
case of unforeseen network conditions as well.

In order to counter the packet manipulation scenario using the dynamic threshold approach,
Algorithm 3 allows a node to forward packets with the inappropriate flags in some situations. Firstly,
as long as countT is lesser than λ(r), i.e. as long as a direct DODAG inconsistency attack or genuine
topological error is being corrected, all packets containing the incorrect flags are dropped. However,
once this mitigation is over, it is deemed that the network should have returned to normal and any
further attack could be a packet manipulation DODAG inconsistency attack. As such, if more than
1/ε traffic received by the node contains the ‘R’ flag, then this is considered a packet manipulation
attack. In this case, having given enough chances for the network to fix itself, the node clears the
flags and forwards the message normally. For example, if a node has three neighbors and 1

3 of its
traffic contains ‘R’ flags, the node considers itself to be the target of a packet manipulation attack.
This situation is then resolved after the direct attack mitigation threshold, countT , is exceeded.

6. EXPERIMENTAL EVALUATION

The Contiki 2.6 [19] operating system was chosen in order to perform an evaluation of the DODAG
inconsistency attacks since it provides an RPL implementation that works on multiple platforms.
The TelosB, also known as the TMote Sky, was used as the development platform of choice since
its computational resources allow it to function as an RPL router node with the Contiki RPL
implementation. To allow evaluation under multiple scenarios, instead of building a topology of
actual nodes, the compiled binary for a TelosB was used in the Cooja [20] simulator provided
by Contiki with Unit Disk Graph radio attenuation and scattering model (UDGM). This approach
provides a method of testing the adaptive threshold under conditions where the lossy IEEE 802.15.4
channel does not cause packet loss. This allows evaluation of our approach under ideal conditions,
with no external characteristics causing bias in the results. Utilizing Cooja is quite close to using
real hardware since it uses the MSPSim software to emulate the MSP430 architecture and the
performance of a MSP430F1611 microcontroller, which is utilized by the TelosB.

6.1. Simulation validation

Even though the Cooja approach is expected to be close to real performance, a validation of the
simulation is important. As such, the topology shown in Figure 1(a) was setup using real TelosB
motes, with node 1, the DODAG root, acting as the sink. All other nodes were configured to send
messages to the sink every six seconds. An additional per transmission random back-off period of
up to six seconds was utilized to avoid packet collisions and add a degree of irregularity to the
transmission scenario. The dynamic threshold mitigation mechanism was deployed to all nodes.

The attacker node, i.e., node 10 in Figure 1(a), was setup to periodically send packets with the
‘O’ and ‘R’ flags towards the sink. This period was varied from 20 to 90 messages sent per hour.
The experiment was repeated five times for each attack frequency and lasted for a duration of one
hour each time. The amount of outgoing packet overhead at the attacked node, which is the number
of DIS, DIO and DAO messages, for varying number of attacks per hour can be seen in Figure 2.
The same experiment was carried out in Cooja as well.

It is clear from the plot that the results provided by Cooja are within the deviation range of the
overhead seen in a network of real motes. This indicates that the Cooja simulations provide results
which closely mimic reality. Furthermore, the overhead reported by Cooja is on average higher than
in reality because the IEEE 802.15.4 channel causes packets to be lost in a deployment of real motes,
whereas this does not occur in Cooja.

(2015)
Prepared using nemauth.cls DOI: 10.1002/nem



MITIGATION OF TOPOLOGICAL INCONSISTENCY ATTACKS IN LOW POWER LOSSY NETWORKS 9

20 45 90
50

75

100

125

150

175

200

225

250

Attacks Per Hour

N
um

be
r o

f C
on

tr
ol

 P
ac

ke
ts

 

 

Mote
Simulation

Figure 2. A comparison of the per node outgoing packet overhead (DIS, DIO, DAO) for node 2 in the
topology from Fig. 1, in case of a network of real TelosB motes (error-bars for average from 5 runs) and
simulated in Cooja.

0 15 20 30 45 60 90 180 360 720 1800 3600

500

1000

1500

2000

2500

3000

(Left Bar = No Threshold; Right Bar = Fixed Threshold)

75

N
um

be
r o

f C
on

tr
ol

 M
es

sa
ge

s

0 

N2 N3 N4 N5 N6 N7 N8 N9

Attacks per hour

Figure 3. Total control message overhead experienced by a network per node when no mitigation strategy
and the default mitigation strategy are used. (N2 . . . N9 represent nodes 2 . . . 9 in Fig. 1(a))

(2015)
Prepared using nemauth.cls DOI: 10.1002/nem



10 A. MAYZAUD ET AL.

A larger topology was not used since the effect of a DODAG inconsistency attack is limited
mostly to the targeted node. Its children and further descendants are affected only to a small degree.
A larger topology would only make the overhead greater, but not change the patterns observed with
this topology.

6.2. Direct attack mitigation

Using the same basic experimental setup as in Section 6.1 the performance of the adaptive and
dynamic threshold mitigation approaches were evaluated using simulations. The attack frequency
was varied from 15 to 3600 attacks per hour.

It is clear from Figure 3 that the overhead increases due to such attacks. As expected, the more
aggressive the attacker, the higher the overall message overhead in the network. Node 2 experiences
the largest increase in control messages since it is directly targeted. Nodes 4 and 5 also experience
an increase due to being direct descendants of node 2. The control message overhead can increase
by over 1100% in worst cases (720 attacks per hour). It can also be seen that at one point the attacker
becomes so aggressive that the overhead actually stabilizes, and even reduces do to collisions that
occur in the network due to a high number of packets being transmitted. The figure makes it clear
that using no mitigation approach leads to the overhead increasing many-fold. As such, it is very
important to mitigate DODAG inconsistency attacks.

When using the fixed threshold to mitigate DODAG inconsistency attacks, we can see from
Figure 3 that worst case overhead reduces by nearly 85%. Aggressive attacks cause the threshold
to be reached faster, causing lower overhead in these scenarios. As such, the best strategy for an
attacker is to remain as close to the threshold as possible, as is evident from the 20 attacks/hr
scenario. Since the counter for DODAG inconsistencies is reset every hour, by remaining close to
the fixed threshold the attacker can do maximum damage and the nodes have no recourse. While a
threshold is undoubtedly useful in mitigating such attacks, adapting it to current network conditions
would not allow an attacker to keep just below a well-known value and neither would counter resets
give the attacker another window of opportunity. The adaptive threshold approach provides such a
solution.

From Figure 4, it is clear that the adaptive threshold is more successful in reducing control
message overhead than a fixed threshold. An aggressive attack causes the adaptive threshold to
reduce rapidly, thereby limiting the impact of the attack. This results in slower attacks being the
best strategy. We can also see that 20 attacks/hr is the best strategy for an attacker because the
values of α and β were chosen to model the recommended default of 20 in a steady state. However,
if the values of these coefficients are changed, so will the periodicity of the optimal attack pattern.
For the most aggressive attacks the differences are not so significant since the fixed threshold is
quickly reached. The adaptive threshold is between 8% (γ = 20) to 13% (γ = 25) better, even in the
worst case scenarios.

Figure 5 shows that the dynamic threshold is able to reduce overhead by 20% for aggressive
attacks and 50% for slow attacks, when compared to the default fixed threshold approach.
Comparing Figures 4 and 5, we can see that the advantage of both approaches is almost the same
for aggressive attacks (above 90 attacks per hour). However the dynamic threshold has better results
for slower attacks, which means in by using the dynamic threshold approach the attacker cannot use
a strategy that overcomes mitigation.

Since the value of countR is not reset every hour for the adaptive and dynamic thresholds, the
attacker does not have a future window of opportunity for causing increased damage. Both these
thresholds increase in the absence of an attack, and as such the adaptive and dynamic approaches
mitigate long running attacks even better. Results from a two hour long experiment can be seen in
Figure 6. Only results from the directly attacked, node 2, are depicted.
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Figure 4. Total control message overhead experienced by a network when the default mitigation strategy and
adaptive threshold γ = 20 and γ = 25 are used. (N2 . . . N9 represent nodes 2 . . . 9 in Fig. 1(a))
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Figure 5. Total control message overhead experienced by a network when the default mitigation strategy and
the dynamic threshold are used. (N2 . . . N9 represent nodes 2 . . . 9 in Fig. 1(a))
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Figure 6. Time-line of outgoing packet overhead (DIS, DIO, DAO) experienced by the attacked, i.e., node
2 in Fig. 1, when the rate of attack is varied from 20 to 1800 packets per hour. Comparison of (a) fixed
threshold and adaptive threshold time-lines (γ = 25), (b) fixed threshold and dynamic threshold.

In Figure 6 we compare the fixed threshold approach to adaptive and dynamic thresholds
approaches. When using a fixed threshold the control messages increase quickly till the threshold is
encountered. They then grow at a slow rate, following the trickle timer pattern until the 1 hr mark,
when the counter is reset. Once again, the control messages increase quickly until the threshold
is encountered. This behavior causes a high control message overhead. The only exception is the
period of 20 attacks per hour, because at this rate the threshold is never encountered, thereby causing
the largest overhead growth.

On the other hand in Figure 6(a), the limit is reached much faster with the adaptive threshold, due
to the exponential growth of the function. Coupled with a non-reseting counter, this leads to between
45%-55% savings in the control message overhead. Those results depend on the value chosen for γ
(discussed in Section 6.4). We notice a similar tendency in Figure 6(b) with the dynamic threshold
approach. Instead of rising quickly in the second hour, as happens in case of the fixed threshold,
overhead increases slowly with the dynamic threshold since the r from Equation 2 increases slowly.
The saving for the different attack patterns is around 45%. In comparison with Figure 6(a), we
can see that the adaptive threshold has slightly better results. This is due to the γ chosen here and
also because countT in Algorithm 3 is reset every hour to allow legitimate ‘R’ flag packets from
neighbors to be correctly handled.

Unlike with the adaptive threshold, the increase in overhead will continue after the second
hour while using the dynamic threshold. This makes it seem like it might be better to use the
adaptive threshold, however, this is not necessarily the case. Firstly, the dynamic threshold is able
to mitigate packet manipulation attacks, unlike the adaptive threshold algorithm. Furthermore, the
adaptive threshold requires setting the γ value, which needs to be learned empirically for every
node in the network if optimal performance is desired. The dynamic threshold does not require any
such empirically learned values to be configured. As such, because we gain more flexibility and
mitigation of an additional type of attack, the dynamic threshold algorithm is recommended over
adaptive threshold.

6.3. Packet manipulation mitigation

To evaluate the effect of our mitigation approaches on packet manipulation attacks (Algorithms 2
and 3), the topology shown in Figure 1(b) was setup in Cooja, with node 1, the DODAG root, acting
as the sink. All other nodes, except the attacker were configured to send messages to the sink at rates
varying from 5 to 20 packets per minute. The packet sending rate is varied, because the attacker,
i.e., node 3, silently modifies the option headers of the packets it forwards, rather than originating a
direct attack.
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Figure 7. The total control message overhead experienced by a network operating with a fixed threshold, an
adaptive threshold (γ = 25) and a dynamic threshold when a black-hole is formed at node 2 from Fig. 1(b).
(N2 . . . N5 represent nodes 2 . . . 5 in Fig. 1(b))

The nodes were configured to use the adaptive threshold, then the dynamic threshold for
mitigating packet manipulation and the overhead caused by DODAG inconsistency attacks. Results
in Figure 7 show that the adaptive and dynamic thresholds reduce overhead in the network.
Compared to the default fixed threshold approach a reduction up to 30% can be achieved.

However, the main effect of packet manipulation attacks is not only to increase overhead, but to
cause the next-hop node to drop packets of the attacker’s descendants. This black-hole created at the
next-hop node can severely impact the overall delivery ratio of packets, since none of the packets
from the attacker’s descendants will reach the sink. Without a black-hole mitigation approach the
overall delivery ratio is only about 33%. This is because only packets from node 2 reach the sink,
while the attacker forces node 2 to drop all packets sent by nodes 4 and 5.

On the other hand with the adaptive threshold strategy the overall delivery ratio increases to just
above 99%, because node 2 no longer drops packets from node 4 and 5 once the threshold is reached.
The dynamic threshold approach also has a similar performance, with the delivery ratio being
above 99%. However, since the dynamic threshold’s working depends upon the size of a node’s
neighborhood, it is also important to check the effect this can have upon the delivery ratio. Figure 8
shows the delivery ratio for different neighborhood sizes of node 2. The experiment was repeated
five times in order to obtain a standard deviation. In case of two neighbors, which corresponds to
the simple scenario being tested, we can see that the delivery ratio is above 99% as well (the effect
of different neighborhood sizes is discussed in Section 6.4.2). These results speak strongly in favor
of mitigating packet manipulation based DODAG inconsistency attacks via an adaptive or dynamic
threshold approach.

It is important to note here that in certain situations it is possible that the packet manipulation
attack mitigation might take a long time to start up. This is only the case when a network has not
been attacked via packet manipulation for an extended period of time. In this scenario, it would
take 1/ε packets for the mitigation to start, which can be quite a large number if the network has
been operating normally for a long time. This situation could be resolved by resetting the Dpkt
counter periodically. Ideally, the reset period for this counter should be chosen based upon the packet
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Figure 9. (a) The effect of different values for γ on the total control packet overhead experienced by the
attacked node, i.e., node 2 in Fig. 1(a), under multiple attack patterns. (b) Outgoing packet overhead (DIS,
DIO, DAO) experienced by the attacked, i.e., node 2 in Fig. 10, when the rate of attack is varied from 20 to
720 packets per hour; and neighborhood size changes between 4–32 nodes.

transmission rate. For more frequent packet transmissions, the value of the reset period should be
smaller.

Even though this slow startup may seem like a disadvantage, it should be noted that the dynamic
threshold approach will eventually discover the packet manipulation attack and then mitigate it
for the future. Furthermore, in most situations, such an attack would be discovered and resolved
normally. As such, the dynamic threshold is recommended over the other approaches, since unlike
those it will mitigate the packet manipulation attacks and save upon significant overhead once the
attack is discovered.
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Figure 10. DODAG inconsistency attack scenario used to study the effect of neighborhood size on the
dynamic threshold. The attacked node 2 has a neighborhood size of 4 in the shown topology. Similar
topologies with neighborhood sizes of 8, 16 and 32 were also evaluated. Nodes 1, 2, and 3 retain their
function of root, attacked and attacker, respectively, for all neighborhood sizes. (R represents a node’s rank)

6.4. Effect of Parameter Values

In the adaptive and dynamic threshold, the calculation of the threshold λ(r) depends on different
parameters. In this section we discuss the effects of those parameters on the mitigation efficiency.

6.4.1. Adaptive Threshold - Effect of γ Given the same attack periodicity, the value of γ in
Equation 1 determines the rate at which the threshold changes. Experiments were run with
20 ≤ γ ≤ 35 to gain insights into its impact. Values larger than 35 have not been used because
larger values of γ result in the threshold dropping too quickly. This leads to situations where even
a single packet with the ’R’ flag causes the trickle timer resets to stop. This means that genuine
malfunctions will no longer be repaired either. In our tests we observed that over values of 35, this
situation was encountered frequently. Below 20, the threshold reduces too slowly, thereby making
it too permissive and increasing the likelihood of an attack working.

As can be seen in Figure 9(a), by increasing the value of γ the overhead, even in the case of the
most efficient attacker, can be further reduced by around 10%. This means that higher values of γ
are able to offer more significant savings in the overhead. Our recommendation is to keep the value
of γ between 20 and 35 so that the algorithm is neither too permissive nor too aggressive.

As such, the temptation to use a larger value for γ might be high, but it is important to keep in
mind that a rapidly reducing threshold might also impact the repair of genuine loop conditions. It
would, therefore, be best to remain conservative in choosing a value for γ.

6.4.2. Effect of neighborhood size The performance of the dynamic threshold approach is closely
tied to the size of an attacked node’s neighborhood. This makes it important to study the effect of
varying neighborhood sizes on the dynamic threshold. The same attack and data packet transmission
scenarios from Section 6.1 were used with the topology from Figure 10 to evaluate the impact of
changing neighborhood sizes. The number of neighbors for node 2, targeted by node 3, was set to 4,
8, 16 and 32 neighbors. A larger neighborhood size was not evaluated since Contiki can only track
about 30 neighbors [21]; furthermore, due to the limited resources on the TelosB mote, maintaining
a list of large number of neighbors can lead to a node being out of resources.

The overhead experienced by node 2 under different neighborhood sizes and attack patterns can
be seen in Figure 9(b). The dynamic threshold outperforms the default fixed threshold approach,
in all neighborhood sizes. In fact, the savings to be achieved are between 20-50% and are mostly
impacted by the variation of r. The one major advantage the dynamic threshold approach appears
to have is that after reaching a neighborhood size of at least 16 nodes, the control overhead does not
increase more significantly in case of a larger neighborhood. This is because larger neighborhoods
cause the threshold to get smaller faster.

In Figure 9(b) the curves for neighborhood sizes of 16 and 32 nodes, while using the dynamic
threshold, are the same because the threshold values obtained in these cases are nearly the same.
This happens because of the impact of neighborhood size on the calculation of the threshold. Since
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Figure 11. Outgoing packet overhead experienced by node 2 in Fig. 1 (b), when the rate of data packet
transmission is varied from 5 to 20 packets per minute; and neighborhood size changes between 2–16 nodes.

larger neighborhood sizes cause the threshold to reduce quickly, in case of 16 and 32 nodes, the
threshold reaches its minimum value at the same time. As such, the dynamic threshold leads to
lesser overhead in large neighborhood sizes.

The effect of varying number of neighbors was also studied in the packet manipulation scenario.
The same simulation scenario as Section 6.3 was used, the number of neighbors for node 2 was
set to 2, 4, 8 and 16 neighbors. Larger neighbors were not studied since, as previously mentioned,
the impact of larger neighborhoods is not significant. Figure 11 shows the overhead experienced
by the node 2 for different packet transmission patterns. The overhead increases according to the
number of neighbors, this is because the threshold allows more resets to occur when the size of
the neighborhood is larger as designed in the Equation 2. Figure 8 presents the delivery ratio for
different packet transmission patterns when the number of neighbors of node 2 is varying from 2 to
16. The delivery ratio decrease when the number of neighbors is increasing in accordance with the
Algorithm 3. However even if the size of the neighborhood is 16 the delivery ratio stay above 99%.

6.5. Resource consumption

To evaluate the efficiency of a countermeasure designed for constrained environments it is necessary
to assess the cost of the solution in comparison with its benefits.

6.5.1. Computational Overhead Since Equations 1 and 2 replace a constant threshold, the
complexity of which is O(1), it is important to also quantify the impact using an exponential
function has upon the overall computation costs. Measuring this impact is even more important since
these approaches are expected to be used on resource constrained devices with limited computing
abilities.

While running the aforementioned experiments, the time taken to calculate the threshold was also
obtained. Table I shows the average computation time required to obtain the thresholds for multiple
attack patterns.

Calculation of the dynamic threshold appears to add about 25 ms of computational overhead, and
30 ms for the adaptive threshold. This is because the value of the exponential part of the equation in
the dynamic approach is lower than in the adaptive approach.
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Table I. Average computation time (ms) to calculate adaptive and dynamic thresholds for different attack
patterns (20, 45 and 90 attacks/hour) while using a MSP430F1611 microcontroller operating at 1 MHz on
the TelosB platform.

Type of threshold 20 attacks/hr 45 attacks/hr 90 attacks/hr

Adaptive threshold (γ=20) 28 ms 31 ms 31 ms
Adaptive threshold (γ=25) 28 ms 30 ms 31 ms
Dynamic threshold 26 ms 25 ms 24 ms

Table II. Energy model for the CC2420 radio and MSP430F1611 microcontroller operating at 1 MHz on the
TelosB platform.

Operation Current Voltage Part

Transmit (Tx) 18.8 mA 2.2 V CC2420 [22]
Receive (Rx) 17.4 mA 2.2 V CC2420 [22]
Processing 0.33 mA 2.2 V MSP430F1611 [23]

Using the msp430-size tool it was determined that a node using the fixed threshold occupies
41.96 kB (87.4%) of Flash memory and 8.63 kB (86.3%) of statically allocated RAM. The adaptive
threshold approach requires 45.61 kB (95%) of Flash memory and 8.62 kB (86.2%) of statically
allocated RAM. The dynamic threshold approach requires 45.73 kB (95%) of Flash memory and
8.64 kB (86.4%) of statically allocated RAM. It is important to note that the base Contiki system
is also already a part of this. The almost 8% increase in Flash usage, for both approaches, can be
reduced by optimization. On the other hand, there is almost no change in the amount of statically
allocated RAM required.

The almost 4 kB increase in Flash memory occupancy is due to the usage of a floating point
library for calculation of the thresholds. This negative impact can be reduced greatly by using certain
optimization, for example, a lookup table with linear interpolation will save not only flash space but
also CPU execution time. Results using such optimizations have not been presented here so that the
worst case performance of the algorithms can be quantified.

From the measured worst case values, it can be said that the overall impact of both adaptive
and dynamic threshold approaches on computational overhead is quite minimal, especially when
taking the gains into consideration. Furthermore, it could also be said that even though the dynamic
threshold approach uses a little extra memory, the gains in not having to select constants and yet
providing good performance make it a good choice.

6.5.2. Energy consumption From the energy model shown in Table II it can be determined that
the amount of energy taken up by the adaptive threshold (γ=25) computation is approximately
22.68 µJ, which is the amount of energy required to keep the processor running for the computation
time of 31.25 ms. On the other hand, it can be determined that computing the dynamic threshold
uses about 18.14 µJ, since the time to compute the threshold is about 25 ms. This means that for
attack frequencies of 20, 45 and 90 attacks per hour, the total energy spent over a period of one
hour on computing the adaptive threshold is about 0.45 mJ, 1.02 mJ and 2.04 mJ respectively,
for the adaptive threshold (γ=25). On the other hand, this is about 0.36 mJ, 0.81 mJ, 1.63 mJ
respectively for the dynamic threshold. Figure 12 presents the energy consumed at the attacked
node to calculate the adaptive and the dynamic thresholds. The energy consumed increases by a
significant amount when the attacker becomes more aggressive. This is because aggressive attacks
lead to more threshold calculations, as such, more energy is consumed.

However, looking only at the energy consumed in calculation of the overhead is not a good
measure for energy consumption since such attacks also cause additional packet overhead, which
leads to additional consumption by the radio. Since the radio tends to be the most energy hungry
device on constrained nodes, it is important to factor this into the energy consumption as well.
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Figure 12. The energy required for adaptive (γ=25) and dynamic threshold to be computed under different
attack patterns varying from 15 to 3600 attacks per hour.

15 20 30 45 60 75 90 180 360 720 1800 3600

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

 

 

Fixed Threshold

Dynamic Threshold

15 20 30 45 60 75 90 180 360 720 1800 3600
−50

−40

−30

−20

−10

0

10

Attacks Per HourE
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 C

h
a

n
g

e
 (

%
)

 

 

Dynamic Threshold
Adaptive Threshold

Adaptive Threshold

Figure 13. The energy consumption caused by the control message overhead for all nodes in the network
and thresholds computation resulting from different attack patterns at the attacked node, i.e., node 2 from
Fig. 1(a).(γ=25 for the adaptive threshold)

The upper part of Figure 13 shows the energy consumption caused by the control message
overhead and threshold computation for all the nodes in the network. The lower part of Figure 13
presents the change in energy consumption caused by the control message overhead and threshold
computation for all the nodes in the network, while the adaptive and dynamic thresholds approaches
are used in comparison to the fixed approach. We see that in case of our adaptive and dynamic
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thresholds the energy spent by the network to process the control message overhead and the
computation of thresholds is less than the energy used for the fixed threshold strategy. However,
when the attacker is the most aggressive (3200 attacks per hour) the curves become closer. This is
because, in case of aggressive attacks the threshold is computed more often, leading to a higher
energy cost. For all attack patterns, the dynamic algorithm has better results than the adaptive
threshold as observed in the lower part of Figure 13. In fact, the dynamic threshold approach can
provide nearly 50% energy savings in certain attack scenarios.

7. CONCLUSIONS

In this paper we presented two topological inconsistency attacks that are possible in networks that
use the RPL routing protocol. It is evident from the experiments we conducted that mitigating such
attacks is important to avoid channel congestion and high resource usage. While RPL provides a
fixed threshold based approach to mitigate these attacks, the value of the threshold is arbitrary and
can be improved by taking into account network characteristics.

Towards this goal we designed an adaptive and dynamic threshold. Both these approaches were
evaluated in our study and it was discovered that both outperform the fixed threshold. However, due
to the drawback of picking pre-deployment constants that need to be determined empirically for
the adaptive approach, the dynamic approach is recommended since it derives all parameters from
the network neighborhood size. The performance of our two approaches is quite similar in case of
aggressive attacks, however, in all other scenarios the dynamic threshold outperforms the adaptive,
thereby making it more suitable for use.

Using our mitigation approach, not only can overhead be reduced between 20%-50%, but even
energy savings of up to 50% can be had. In case of black-hole attack scenarios, which are not
mitigated by the default RPL approach, our method can improve the delivery ratio to 99% as against
33% for the default RPL mitigation approach. Since these black-hole attacks cannot be mitigated
by the adaptive threshold the dynamic threshold is recommended.
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RPL Networks. Proc. of GIIS conference, 2014.

17. Levis PA, Patel N, Culler D, Shenker S. Trickle: A Self Regulating Algorithm for Code Propagation and
Maintenance in Wireless Sensor Networks. 1st Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco, CA, USA, 2004.

18. Clausen T, Herberg U. A Comparative Performance Study of the Routing Protocols LOAD and RPL with Bi-
Directional Traffic in Low-power and Lossy Networks (LLN) . Master’s Thesis, Ecole Polytechnique, Centre de
recherche INRIA Saclay, Orsay, France 2011.

19. Dunkels A, Gronvall B, Voigt T. Contiki - a Lightweight and Flexible Operating System for Tiny Networked
Sensors. 29th Annual IEEE International Conference on Local Computer Networks (LCN), Tampa, FL, USA, 2004;
455–462.

20. Osterlind F, Dunkels A, Eriksson J, Finne N, Voigt T. Cross-Level Sensor Network Simulation with COOJA. 31st
IEEE Conference on Local Computer Networks (LCN), Tampa, FL, USA, 2006; 641–648.

21. Dawans S, Duquennoy S, Bonaventure O. On Link Estimation in Dense RPL Deployments. 7th IEEE International
Workshop on Practical Issues in Building Sensor Network Applications (SenseApp), Clearwater, FL, 2012.

22. Chipcon AS. CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver. Oslo, Norway 2004; .
23. Texas Instruments. MSP430F1611 Mixed Signal Controler Datasheet 2006.

AUTHORS’ BIOGRAPHIES
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