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ABSTRACT
Many attempts to observe changes in terrestrial systems over time would be significantly enhanced 
if it were possible to improve the accuracy of classifications of low-resolution historic satellite data.  
In an effort to examine improving the accuracy of historic satellite image classification by combin-
ing satellite and air photo data, two experiments were undertaken in which low-resolution multi-
spectral data and high-resolution panchromatic data were combined and then classified using the 
ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The 
multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 
7. These data were augmented with panchromatic data (15m pixel resolution) from Landsat 7 in 
the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the 
second. The addition of the Landsat 7 panchromatic data provided a significant improvement in 
the accuracy of classifications made using the ECHO algorithm.  Although the inclusion of aerial 
photography provided an improvement in accuracy, this improvement was only statistically signifi-
cant at a 40-60% level. These results suggest that once error levels associated with combining aer-
ial photography and multispectral satellite data are reduced, this approach has the potential to sig-
nificantly enhance the precision and accuracy of classifications made using historic remotely sensed 
data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.

KEYWORDS: image classification, multispectral data, panchromatic data, data 
accuracy, remote sensing, archival data
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Introduction
Multispectral satellite data have been collected over the 
United States since the successful launch of the first 
in the Landsat series of satellites in 1972. Although 
multispectral satellite data are readily available for both 
historic land cover analysis and temporal change analysis, 
their use is limited by relatively low spatial resolution. 
Analysis that incorporates modern satellite technology 
with resolutions of 5-meters and better with historic satel-
lite data at resolutions of 80 and 30 meters is limited by 
the lower resolution of the older data. To overcome this 
limitation for terrestrial observation, there is consider-
able interest in improving the classification potential of 
historic satellite data through processes that augment mul-
tispectral data channels gathered at relatively low spatial 
resolutions with additional data gathered at higher spatial 
resolutions. Very little attention has been given, however, 
to the use of aerial photography for this purpose. This is 
most likely due to the difficult task of accurately combin-
ing low-resolution satellite data with high-resolution 
aerial photography.

Traditionally, satellite image classification has been 
accomplished with algorithms that incorporate spectral 
pattern recognition techniques to classify each pixel indi-
vidually, based on the organization of its spectral response 
in each of the recorded data channels (Lillesand and Kief-
er, 2000). Because each pixel is classified independently, 
information provided by spatial patterns within the data 
is unavailable for use by these algorithms. In an effort to 
take full advantage of the spatial information available in 
remotely sensed data, algorithms that combine spectral 
and spatial pattern recognition techniques during image 
classification have also been developed. The Extraction 
and Classification of Homogenous Objects (Landgrebe, 
1980) algorithm, developed by Kettig and Landgrebe 
(1976), uses scene segmentation techniques to extract 
spatial data for use along with spectral properties during 
image classification. In previous experiments with the 
ECHO algorithm, Landgrebe (1980) has shown it to be an 
effective tool for separating spectrally similar land cover 
types within multispectral data sets. 

Because the ECHO algorithm is capable of consid-
ering spatial patterns during image classification, it is 
particularly well suited to the task of classifying a data set 
in which the multispectral data have been augmented with 

high-resolution data. The high-resolution data provide the 
algorithm with additional detail with which to extract spa-
tial patterns that can be used along with the multispectral 
information to improve accuracy in image classification. 
Although the ECHO algorithm is an excellent candidate 
for this analysis, all classification algorithms are suscep-
tible to errors introduced during image registration.

In an effort to test this method of improving the clas-
sification potential of historic satellite data, two experi-
ments were undertaken in which the ECHO algorithm 
was used to classify spatially enhanced multispectral data. 
In the first experiment, multispectral data channels from 
Landsat 7 with a ground resolution of 30 meters were 
combined with the 15-meter resolution panchromatic data 
channel from the same satellite. Because both data sets 
were captured simultaneously by the same device over the 
same geographic area, issues associated with geometric 
registration and temporal differences between the data 
were avoided. This combination of data allowed for a 
direct assessment of the ability of the ECHO algorithm to 
utilize the additional spatial information in the improve-
ment of overall classification accuracy.

The second experiment was conducted using the 
same multispectral data, the same training samples, and 
the same test samples, however, the exercise was taken a 
step further by substituting the Landsat 7 panchromatic 
data channel with high-resolution (1-meter) aerial photog-
raphy collected over the same geographic area. As these 
data were captured using significantly different equipment 
at a different point in time, it was necessary to ensure that 
the aerial photography was mosaiced and geometrically 
registered to match the multispetral satellite imagery. 
Also, both data sets were resampled to 1, 5, and 15-meter 
pixel resolutions in an effort to find an appropriate resolu-
tion for use in classification.

The assessment of these methods was accomplished 
through a comparison of thematic maps generated by both 
the ECHO algorithm and the Maximum Likelihood tech-
nique, with and without the high-resolution panchromatic 
data set in the first experiment and the high-resolution 
aerial photography in the second. 
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Materials and Methods

Overview
Using ERDAS Imagine, the 30m resolution Landsat 7 
multispectral data channels were resampled to match the 
higher resolution of the 15m panchromatic data channel 
used in the first experiment. For the second experiment, 
the multispectral data channels were resampled along 
with the 1m resolution aerial photography to gener-
ate 15m, 5m, and 1m data sets. Training samples were 
selected within ArcView GIS using high-resolution aerial 
photography, and then transferred to the satellite imagery. 
Using MultiSpec, four classifications were made at each 
resolution in which the enhanced and un-enhanced data 
sets were each classified with both the Maximum Likeli-
hood and ECHO algorithms. The accuracy of these classi-
fications was then determined through statistical analysis 
of randomly selected training samples. 

Data Set Description
In the process of preparing aerial photography and satel-
lite imagery to be combined for use in classification, al-
terations to the data are usually necessary. The air photos 
must be mosaiced, adjusted for differences in contrast, 
resampled to a compatible pixel size, and geometrically 
registered to match the satellite imagery. The multispec-
tral satellite data must also be resampled to match the 
more precise pixel size of the higher resolution aerial 
photography. Although these efforts are necessary in 
analysis of multi-resolution data, they are manipulations 
of the data and thus introduce a variety of potential errors 
into the data set. Geometric misalignment of data sets and 
temporal differences between data sets can both result 
in decreased classification accuracy. For this reason, two 
experiments were undertaken to explore both the theoreti-
cal concept and the practical application of the method. 
In both experiments, the multispectral data used in this 
research represented a portion of a Landsat 7 Enhanced 
Thematic Mapper scene (Table 1) captured in 1999. The 
scene depicts an area just northwest of downtown Des 
Moines, Iowa USA that covers approximately 5.3x107 m2 
(1.3x104 acres). This area was chosen because it included 
a range of land cover classes, and under visual inspection 

the differences between the satellite imagery and aerial 
photography were minimal.

The first experiment was performed using a data set 
in which the panchromatic data channel from the Landsat 
7 scene was combined with the corresponding multi-
spectral data channels. By substituting the higher resolu-
tion multispectral and panchromatic data from Landsat 
7 for the historic satellite data and aerial photography, 
respectively, error associated with the rectification of 
geometric and temporal differences between the data sets 
was avoided. In using an ideal data set, the results of this 
experiment are made more applicable to the first objective 
of this study, which was to determine the effectiveness 
with which the ECHO algorithm can utilize additional 
high-resolution spatial information to improve classifica-
tion accuracy. 

In the second experiment, aerial photography was 
combined with the Landsat 7 multispectral data channels 
to better simulate an actual combination of historic satel-
lite data with aerial photography. The aerial photography 
was captured, georeferenced, and combined into photo 
mosaics through a joint effort of the USDA Natural Re-
source Conservation Service, Iowa State University, and 
the Massachusetts Institute of Technology. Mosaics built 
at the maximum resolution (1m) were generated from the 
original photography captured in 1993, and were not resa-
mpled, feathered, or adjusted for contrast. By using more 
recent imagery for this experiment, temporal differences 
between the Landsat 7 data and the aerial photography 
were reduced, and the results of the first and second ex-
periments can be more easily compared. This comparison 
is useful in determining if the methods used within this 

Table 1 
Summary of Landsat ETM+ sensor characteristics
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research can be applied to improve the classification ac-
curacy of historic remotely sensed data.

Data Set Preparation
The differences in the ground resolution of the multispec-
tral data and both the high-resolution panchromatic data 
channel and aerial photography required the data to be 
resampled to a resolution that would be appropriate for 
classification. For the data set used in the first experiment, 
the 30m multispectral channels were resampled to match 
the 15m resolution of the panchromatic data channel. Due 
to the significant difference between the 30m resolution 
of the multispectral data and the 1m resolution of the 
aerial photography used in the second experiment, both 
data sets were sampled to 15, 5, and 1-meter grid cells in 
an effort to determine the optimum resolution for use in 
classification.

In resampling the multispectral data set to a higher 
spatial resolution, it was necessary to use a technique that 
would replicate the original pixels, leaving the radiomet-
ric properties of the data unaltered. As it is computation-
ally simple and does not introduce new values into the 
data (Dikshit and Roy, 1996), the Nearest Neighbor resa-
mpling technique was used. As the image is not rotated 
or distorted in this process, every pixel in the resampled 
image is assigned its original value. Each 30-meter pixel 
from the multispectral data set was subdivided into 
four15-meter pixels, thirty six 5-meter pixels and nine 
hundred 1-meter pixels, all of which were assigned the 
spectral properties of the original pixel. By using this pro-
cess, the radiometric properties of this data set were un-
altered.  There was no need to resample the panchromatic 
data channel, and it was simply combined with the resa-
mpled multispectral data for use in the first experiment.

The aerial photography was resampled to a lower 
spatial resolution for integration into the 15m and 5m 
data sets, which required that the combined response of 
several adjacent pixels in the original image be accurately 
estimated and assigned to a single pixel in the resampled 
image. As it incorporates a greater number of the original 
pixels when determining the value assigned to a single 
pixel in the resampled data than either the Nearest Neigh-
bor or Bilinear techniques (Campbell, 1996), the Cubic 
Convolution technique was used to resample the aerial 
photography and produce data sets with 5 and 15-meter 

pixel resolutions from the original 1-meter pixel resolu-
tion data. 

Although this technique is a reasonable method 
for estimating the most appropriate value for pixels in 
the resampled image, it does not represent exactly what 
would have been captured with a lower resolution pho-
tograph. Because of this, it is assumed that a variety of 
errors, some detrimental to classification accuracy, were 
introduced during this process.
After resampling, the aerial photography was geometri-
cally registered to the multispectral data, and combined 
into a single data set at each resolution for use in the 
second experiment.

Geometric Registration
Because the aerial photographs were already mosaiced, 
the preprocessing required to combine the two resampled 
data sets for the second experiment was limited to crop-
ping and geometric registration. The aerial photographs 
were manually registered to the multispectral data to 
ensure that the original radiometric properties of the 
multispectral data were preserved (Munechika et al., 
1993), however, the radiometric properties of the aerial 
photographs were distorted during this process. After 
registration, the two data sets were cropped to identical 
geographic dimensions and combined into a single data 
set. 

Error associated with image registration can sig-
nificantly degrade classification accuracy. To reduce this 
error, registration of multiple data sources should achieve 
sub-pixel accuracy when the combined data is to be used 
in classification (Pohl and Van Gendern, 1998). In the 
process of registering data at 1-meter pixel resolution to 
data at 30-meter pixel resolution, sub-pixel accuracy is as 
difficult to measure as it is to achieve. The assessment of 
the registration procedure used in this analysis was lim-
ited to a visual inspection of the combined data set. Al-
though the two images appeared to line up closely under 
visual inspection, errors in registration between data with 
30m and 1m pixel resolutions are difficult to detect. It 
was assumed that errors resulting from this process were 
present in the data during classification, and had a nega-
tive impact on classification accuracy.

Temporal differences between the two data sets, 
which were separated by approximately six years, were 
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also present in the combined data set. These differences 
were found to be negligible during visual inspection, 
however, errors associated with temporal registration 
have an effect similar to that of errors associated with 
geometric registration on classification accuracy.

Classification and Training Sample 
Selection

Any selection of a land cover classification scheme is 
driven by the purposes of the study and the character-
istics of the study area.  In this case the larger goal of 
the research related to impacts of land cover change on 
surface water runoff in an urbanizing area, and thus land 
cover divisions were based on measures of impervious 
area.  Two residential and four non-residential classes 
were selected by choosing class boundaries based on the 
percentage of impervious surface for each class, which 
was estimated from the average lot size for that class ().  

Training samples were selected using the combina-
tion of high-resolution aerial photography and the Landsat 
7 multispectral data channels created for the second ex-
periment. The aerial photography was interpreted within 
ArcView GIS and individual lots were measured within 
each neighborhood to determine the average lot size 
(Table 2). Once the image was interpreted, and the class 
assignments were made, the boundaries of the training 
samples were replicated on the combined data set within 
MultiSpec. Training samples were selected in rectangular 
groups of pixels, as the neighborhoods were usually rect-
angular in shape. The total number of samples selected 
for each land cover class varied with the percentage of the 
total area occupied by that class (Table 2).

The Maximum Likelihood Algorithm
The Maximum Likelihood algorithm is the most com-
monly used supervised classification technique in remote-
ly sensed image classification (Landgrebe, 1980; Michel-
son et al., 2000; Richards, 1999; Tso and Mather, 1999). 
The technique is a per-pixel classifier, and therefore 
assigns a class value to each pixel based on its individual 
spectral response pattern. Because the algorithm consid-
ers the spectral properties of each pixel independently, it 
is incapable of incorporating the relationships that exist 
between multiple pixels. This limitation precludes the 

use of any available spatial information by the Maximum 
Likelihood technique during image classification.

The ECHO Algorithm
The ECHO algorithm was introduced by Kettig and 
Landgrebe (1976) in an effort to “exploit a particular type 
of dependence between adjacent states of nature that is 
characteristic of the data”. This dependence is reflected 
in two aspects of remotely sensed data. First, pixels that 
are in spatial proximity to each other are unconditionally 
correlated, and the degree of correlation decreases with 
the distance between the pixels (Kettig and Landgrebe 
1976). That is to say, the probability that two pixels are 
representative of the same land cover class is directly 
related the distance between them. The second aspect is 
a direct result of the first; if two pixels are spatially cor-
related, and are very similar spectrally, they have an even 
higher probability of belonging to the same land cover 
class. These two aspects of remotely sensed data favor the 
combination of two existing concepts in image classifica-
tion, scene segmentation and Bayesian statistical theory.

The ECHO algorithm incorporates scene segmenta-
tion and Bayesian statistical theory in a two phase clas-
sification process. In the first phase, a scene segmentation 
technique is used to separate the image into statistically 
homogeneous objects. The second phase involves the 

Table 2 
Land cover class descriptions and test and 

training sample summary
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classification of those homogeneous groups of pixels 
using a Maximum Likelihood Sample Classification 
technique derived from Bayesian statistical theory. This 
combination of techniques allows the ECHO algorithm 
to take advantage of spatial trends in the data that are not 
available to single pixel classifiers.

Previous testing of this algorithm has demonstrated 
that it is capable of producing a more accurate thematic 
map, with less class variance, than the traditional Maxi-
mum Likelihood technique (Landgrebe, 1980).

Reference Sampling Issues and 
Strategy

Defining the Sampling Issues
A major contributing factor to error in accuracy as-
sessment lies in organization of the sampling strategy. 
Unfortunately, many published analyses do not report the 
details of their sampling strategy, and fewer comment on 
its role in the assessment of map accuracy (Hammond and 
Verbyla, 1996). The effective interpretation of research 
results is dependent on understanding the sampling 
methods used, and so for this analysis these are described 
in detail.

The objective of the accuracy assessment should be 
the dominant factor guiding sampling strategy develop-
ment (Stehman, 1999; Stehman and Czaplewski, 1998). 
The objective here was to assess the ECHO algorithm’s 
ability to utilize high-resolution panchromatic data, in ad-
dition to standard multispectral data, in separating specifi-
cally defined land cover classes. By first determining the 
effectiveness of this method with both an ideal data set,  
then experimenting with one in which temporal distortion 
and geometric registration are introduced, the potential of 
using the approach to enhance historic satellite data with 
aerial photography can be more accurately estimated.

Of the six land cover classes used in this analysis 
(Table 2), medium and high-density residential proved to 
be the most difficult to separate. Due to the spectral simi-
larities of the two classes and the high degree of variabil-
ity within each class, training the classifier to differentiate 
between them was challenging. The level of difficulty in 
separating these two classes is directly related to the reso-
lution of the data, which makes these classes particularly 

well suited for the purpose of accuracy assessment in 
this analysis. The high degree of lot size variation within 
individual neighborhoods complicated the classification 
process, and several neighborhoods simply did not fit 
the parameters specified for either land cover class. Even 
though high-resolution air photos were used for the inter-
pretation, the vagueness of lot boundaries made the aver-
age lot size for each neighborhood difficult to confirm. 
This resulted in several neighborhoods that could not 
be classified with a high degree of confidence in the air 
photo interpretation. Keeping the objective in mind, these 
areas were not included in the target population used in 
reference data selection because they were not represen-
tative of the specifically defined classes that would be 
used to determine the separation capability of the ECHO 
algorithm.

These conditions precluded the use of traditional 
simple random sampling, which is theoretically the ideal 
method for accuracy assessment (Congalton, 1988). Be-
cause of typical logistical issues in the collection of refer-
ence data, this situation is not uncommon (Congalton, 
1991; Hammond and Verbyla, 1996; Hord and Brooner, 
1976; Stehman and Czaplewski, 1998), and several al-
ternative methods are summarized by Congalton (1988). 
All of these methods, however, are designed to be used 
in determining the general accuracy of the entire mapped 
area (Congalton, 1991; Story and Congalton, 1986), rath-
er than to analyze the performance of a specific capability 
of the classifier. Sampling methods were thus designed to 
facilitate an accuracy assessment that fulfilled the require-
ments of the objectives of this study.

Defining the Sampling Strategy
The first step in the sampling strategy used in this 
research was the identification of a target population. 
Although the target population generally represents the 
entire mapped area, it can also be a subset of that area 
(Stehman, 1999). The target population in this study was 
defined by combining polygons that were identified with 
a high degree of confidence during the initial air photo 
interpretation. Due to the importance of limiting errors 
introduced by misinterpretation of reference samples 
(Congalton, 1991), areas that were not identified with a 
high degree of confidence offered no contribution to the 
interpretation of the accuracy assessment and were, there-
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fore, not included in the random sampling. By limiting 
the target population in this way, the accuracy assessment 
is limited in that it defines a single attribute of the classi-
fication. In this analysis, that attribute is the ability of the 
ECHO algorithm to differentiate between the specifically 
defined medium-density and high-density residential land 
cover classes within the study area. 

It is important to note that the entire mapped area 
was not included in the selection of random samples for 
reference data. Any measurement of accuracy made using 
reference data selected in this fashion (that is to say, it 
does not permit equal probability sampling for the entire 
mapped area), could produce an optimistic estimate of the 
overall accuracy of the entire mapped area (Stehman and 
Czaplewski, 1998). However, the capability of the ECHO 
algorithm to produce a map with high overall accuracy 
has already been established (Landgrebe, 1980), and is 
not the objective of this research.

By generating random sample points within this 
selective target area, it was possible to produce an error 
matrix that was statistically valid for use in assessing 
the algorithm’s ability to separate the land cover classes 
specifically identified within that area. A comparison of 
classifications made using multispectral data sets with and 
without the inclusion of an additional high-resolution data 
set is, therefore, an appropriate estimate of the algorithm’s 
capability to utilize additional spatial information pro-
vided by the inclusion of that data.

The interpretation of the randomly generated refer-
ence samples was accomplished using high-resolution 
aerial photography. This method, combined with the 
enhanced resolution of the satellite imagery, allowed 
for single pixel samples to be used. This is the preferred 
sample size when working with satellite data (Janssen and 
van der Wel, 1994; Franklin et al., 1991), and is advanta-
geous in that optimistic bias associated with the selection 
of adjacent pixels is avoided (Hammond and Verbyla, 
1996). 

Due to the differences between the resolutions of the 
data sets used in the first and second experiments, the cen-
ter of each randomly selected test pixel used in the first 
experiment was selected as the test sample in the second 
experiment. This was possible because the test samples 
were interpreted using the 15-meter data, and each pixel 
within both subsequent resampled data sets was divided 

into an odd number of pixels (nine for the 5-meter data set 
and twenty five for the 1-meter data set). The use of the 
same test samples for every classification made through-
out both experiments allowed a comparison of accuracy 
with the same number of single pixel test samples, at the 
same randomly selected locations, for classifications in 
both experiments at each resolution.

Determining a statistically valid estimate of classifi-
cation accuracy from an error matrix requires a minimum 
number of samples, which is based on both the total num-
ber of land cover classes and the size of the mapped area. 
A minimum of 50 samples from each land cover class 
represented in the error matrix has been recommended 
(Congalton, 1991; Hay, 1979) for classifications contain-
ing a small (less than 12) number of land cover catego-
ries. Congalton (1991) also suggests that the number of 
samples for each land cover class be adjusted if necessary, 
taking into consideration its percentage of the total area, 
the degree of variability within each class, and its impor-
tance to the objectives of the classification. 

The number of samples selected for each of the six 
land cover classes used in this study was based on the 
relative proportion of each class to the total area, ensuring 
that each of the major classes had at least 50 samples (Ta-
ble 2). The medium and high-density residential classes 
received additional samples due to the level of difficulty 
in distinguishing between them, and their importance to 
the goals of the accuracy assessment. The water class 
received far fewer reference samples due to the limited 
number of pixels over water, and to the ease with which 
water is classified. 

Accuracy Assessment Methods
In this analysis, the accuracy assessment focused on the 
comparison of classifications made with and without 
the inclusion of a high-resolution panchromatic data set. 
An error matrix (Card, 1982) was generated from each 
classification and used to derive the Overall Accuracy,  
Producer’s Accuracy, User’s Accuracy and an estimate of 
Kappa referred to as KHAT. The details of these meth-
ods are readily available (Cohen, 1960; Congalton et al., 
1983; Story and Congalton 1986;) and the discussion is, 
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therefore, limited to a brief description of the reasons for 
their inclusion in this research.

Overall Accuracy is the most commonly used esti-
mate of accuracy in satellite image classification (Con-
galton et al., 1983), and was included here as a general 
reference point for comparisons of the accuracy of each 
classification. Calculations of the Producer’s and User’s 
accuracy (Story and Congalton 1986) were included in 
this assessment to provide references to the accuracy with 
which specific land cover classes were classified. This is 
important in distinguishing the contributions from indi-
vidual land cover classes to the overall accuracy of the 
classification and in making comparisons of these values 
from each classification technique.

Kappa, also referred to as KHAT ( )K̂  (Cohen, 
1960), can be used to demonstrate the difference between 
the accuracy of a classified image and that of a map pro-
duced by selecting class values at random (Congalton et 
al. 1983). The technique has become a standard compo-
nent of accuracy assessment in remote sensing (Congal-
ton, 1991; Congalton et al., 1983; Hudson and Ramm, 
1987; Rosenfield and Fitzpatrick-Lins, 1986) and was 
included in this assessment along with a statistical test, 
described by Cohen (1960), that can be used to determine 
the significance of the KHAT statistic for any single er-
ror matrix. These calculations were used here to define 
the significance of the differences between classifications 
made with various algorithms in order to evaluate specific 
attributes of their performance (Congalton, 1991).

Results and Discussion
In both experiments, each data set was analyzed by 
comparing four classifications; two generated using the 
ECHO algorithm and two generated using the Maximum 
Likelihood technique. Of the two classifications made 
using ECHO, the first (ECHO 6) was generated using the 
six multispectral data channels and the second (ECHO 
7) incorporated additional high-resolution panchromatic 
data. The same was true of the two classifications made 
with the Maximum Likelihood technique. The first clas-
sification made using the Maximum Likelihood technique 
(MAX 6) was generated using the six multispectral data 
channels and the second (MAX 7) incorporated additional 
high-resolution panchromatic data. Training and test sam-

ples were constant, and the resampled multispectral data 
from Landsat 7 were used in all classifications. Improve-
ments in the accuracy achieved by the two algorithms are, 
therefore, directly attributed to their ability to utilize the 
additional spatial information made available with the 
inclusion of high-resolution panchromatic data and their 
susceptibility to the errors introduced during the prepara-
tion procedures associated with each individual data set.

The complete error matrices, along with the user’s 
and producer’s accuracies for each class, the overall ac-
curacy, the KHAT statistic, and the variance of KHAT, 
are summarized in figures 1-3 and 4-12 for the first and 
second experiments, respectively. As the class values are 
abbreviated in each of these figures, a legend is provided 
in table 2. The thematic maps derived from each method 
are included in figures 13-15. (See appendix A for all 
figures.)

Accuracy Assessment: Experiment One 
The overall accuracy of the six band classification in-
creased by 11.5% when the ECHO algorithm was used in 
place of the Maximum Likelihood technique (figure 3). 
This number increased to 15.0% when the panchromatic 
data channel was included in both classifications, which 
is an improvement of 29.7% of the initial difference 
in accuracy between the two classifications (figure 3). 
Similarly, when the panchromatic data was included in 
the classification, the difference between the values of the 
KHAT statistic for each technique increased by 30.0% of 
the initial value, the difference in the variance of KHAT 
increased by 44.2% of the initial value, and the difference 
in its significance increased by 80.7% of the initial value 
(figure 3).

By examining the change in the difference between 
the accuracy of classifications made with each method 
when the high-resolution panchromatic data channel is 
included, the effectiveness with which the each algorithm 
can utilize the additional data can be compared. The es-
timates of thematic map accuracy used in this study rep-
resent independent aspects of accuracy, and therefore the 
amount of improvement varies among them. All of these 
comparisons in the first experiment do represent signifi-
cant improvement however, and clearly demonstrate the 
ability of the ECHO algorithm to incorporate additional 
spatial information in image classification. The inability 
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of the Maximum Likelihood technique to take advantage 
of additional spatial information is apparent in these re-
sults as well.

Both techniques did quite well in their classification 
of the four non-residential classes. In these four classes, 
the largest difference between the two classification tech-
niques occurred in the Field class, in which there was a 
4.0% difference in both the user’s and producer’s accura-
cies between the thematic maps made with the ECHO and 
Maximum Likelihood techniques. Compared to the dif-
ferences in the high and medium-density classes, which 
were just under 20% for both the user’s and producer’s 
accuracies, 4% is a very small difference (figures 1 and 
2). That improvements in accuracy occur almost com-
pletely within the two residential classes is an observation 
that further demonstrates the capability of the ECHO 
algorithm to utilize spatial information to differentiate 
between spectrally similar land cover classes.

In comparing the differences between the ECHO 
6 and ECHO 7 classifications specifically, the ability of 
the ECHO algorithm to utilize the additional information 
provided by the panchromatic data is explicitly demon-
strated. In this experiment, the overall accuracy of the 
ECHO 7 classification was 5.3% higher than the accuracy 
achieved by the ECHO 6 classification. Similarly, the val-
ue of the KHAT statistic increased by 8.2% of the ECHO 
6 value. The variance of the KHAT statistic for ECHO 7 
was 32.5% less, and its significance 31.6% greater, than 
the ECHO 6 value (figure 3).

The significance of the difference between the 
KHAT statistics for the ECHO 6 and ECHO 7 classifica-
tions was determined with the Z statistic (7) and found 
to be 2.0 standard deviations from the mean. Because the 
only difference between the two classifications was the 
addition of the high-resolution panchromatic data, im-
provements in the classification can only be attributed to 
the ECHO algorithm’s ability to use the additional infor-
mation available in the panchromatic data. The high value 
of the Z statistic indicates a significant difference between 
the two classifications at a 95% confidence interval.

The ECHO 6 and ECHO 7 classifications separated 
and identified the four non-residential classes equally 
well. Within these four classes, the most dramatic differ-
ence between the two classification techniques occurred 
in the forest class, in which there was a 0.1% difference 

in the user’s accuracy, and a 2.0% difference in the pro-
ducer’s accuracy. Compared to the differences in the high 
and medium-density residential classes, which were ap-
proximately 10% for both the user’s and producer’s accu-
racies, 2.0% is a small difference (Figures 1 and 2). This 
demonstrates, just as in the comparison between ECHO 
and the Maximum Likelihood technique, that improve-
ments in accuracy occur almost completely within the two 
residential classes, a fact that further supports the impor-
tance of the capabilities of the ECHO algorithm to utilize 
the additional spatial data provided in the panchromatic 
data channel.

Accuracy Assessment: Experiment Two
 Using the 5-meter data set, the overall accuracy of the 
six band classification increased by 11.4% (from 73.5% 
to 85.1%) when the ECHO algorithm was substituted for 
the Maximum Likelihood technique (Figure 9). This dif-
ference in the overall accuracy decreased to 10.6% when 
the aerial photograph was included in both classifications, 
this decrease in accuracy represents approximately 8.1% 
of the initial difference in accuracy between the two 
classifications (figure 9). In other words, the addition of 
the aerial photography improved accuracy in both clas-
sifications, however that improvement was slightly larger 
between the classifications made using the Maximum 
Likelihood algorithm. The difference between the values 
of the KHAT statistic for each technique decreased by 
8.0% of the initial value, and the difference in the vari-
ance of KHAT decreased by 0.6% of the initial value 
(figure 9), when the aerial photograph was included in the 
classification.

The overall accuracy of classifications made with 
the 1-meter data set demonstrated differences of less than 
one half of one percent. Classifications made using the 
15-meter data set resulted in differences between the im-
provements in the overall accuracy achieved by the two 
algorithms that were almost identical to those described 
for the 5-meter data (figures 6, 9, and 12).  

The effectiveness with which each algorithm can 
overcome the errors introduced during data preparation 
and utilize the additional spatial information to improve 
classification accuracy is compared by interpreting the 
difference between the accuracy of classifications made 
with each algorithm when the high-resolution aerial pho-
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tography is included in the classification. The various esti-
mations of accuracy offered here represent independent 
interpretations of classification accuracy, and therefore it 
is expected that the range of possible, but hopefully con-
sistent, values vary among them. Of all of the estimates of 
classification accuracy at each resolution, however, none 
represents a difference of more than 1.2% between the 
accuracy achieved by the two algorithms with and with-
out the high-resolution data. In other words, the ECHO 
algorithm is no more or less capable, in this case, of using 
the aerial photography to improve classification accuracy 
than the traditional Maximum Likelihood technique.

In comparing the differences between the ECHO 
6 and ECHO 7 classifications specifically, the ability of 
the ECHO algorithm to utilize the additional information 
provided by the panchromatic data is explicitly demon-
strated. In this experiment, using the 5-meter data set, 
the overall accuracy of the ECHO 7 classification was 
2.2% higher than the accuracy achieved by the ECHO 6 
classification. Similarly, the value of the KHAT statistic 
increased by 2.9% of the ECHO 6 value and the variance 
of the KHAT statistic for ECHO 7 was 11.1% less than 
the ECHO 6 value (figure 9).

The accuracy of classifications made with the 15-me-
ter data set demonstrated differences that were almost 
identical to those described for the 5-meter data. Classifi-
cations made using the 1-meter data set resulted in differ-
ences between the improvements in the overall accuracy 
achieved by the two algorithms that amounted to less than 
one half of one percent (figures 6, 9, and 12).

The Z statistic (7) was used to estimate the signifi-
cance of the difference between the KHAT statistics for 
the ECHO 6 and ECHO 7 classifications specifically. 
Values of 0.6, 0.7 and 0.1 for the 15m, 5m, and 1m clas-
sifications, respectively, all represent an improvement in 
classification accuracy when the high-resolution data are 
included, however this improvement is not statistically 
significant. Because the only difference between the two 
classifications was the addition of the high-resolution 
aerial photograph, it is apparent that the ECHO algorithm 
was not capable of utilizing the additional spatial infor-
mation provided by the aerial photograph to generate a 
significantly more accurate classification. One possible 
explanation for this is that the additional information pro-

vided by the aerial photography was largely offset by the 
error associated with image resampling and registration. 

Relationships between the accuracy achieved for 
each land cover class at each resolution were indistinct. 
There were differences between each class at each resolu-
tion with both the user’s and producer’s accuracies, and 
trends within these values were weak at best. There were 
only two clearly discernable trends in the results. First, 
variations of individual class accuracy between the ECHO 
6 and ECHO 7 classifications fluctuated within both the 
user’s and producer’s accuracies from an increase of 3.7% 
without the aerial photograph to an increase of 10.7% 
with the high-resolution data. For each resolution, the 
largest individual increase in accuracy was always associ-
ated with the addition of the aerial photograph and not 
with its absence. This indicates that, although there were 
negative impacts due to errors introduced during data 
preparation, improvements gained through the inclusion 
of the high-resolution data source had a more significant 
impact on classification accuracy.

The second trend demonstrates this more clearly. An 
average of the differences in the accuracy estimated for 
each individual class indicated an overall increase when 
the aerial photograph was included during classifica-
tion. This overall increase was greatest, over 8% for both 
user’s and producer’s accuracy, in the classification made 
using the 5-meter data set. The 15-meter classifications 
demonstrated an increase of over 5%, and the 1-meter 
classifications demonstrated an increase of over 2%, in 
both measures when the aerial photograph was included 
in the data set.

At each resolution, and in both the user’s and pro-
ducer’s accuracies, the differences between the accuracy 
of the two residential classes were either very small or the 
ECHO 7 value was greater than the ECHO 6 value (Fig-
ures 4,5,7,8,10,11). These trends in the individual class 
accuracies, along with the increase in overall accuracy 
when the high-resolution aerial photography is included, 
indicate that there is potential for the ECHO algorithm to 
utilize the additional spatial information available in pho-
tography to improve classification accuracy.
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Conclusions
This study has demonstrated that augmenting multispec-
tral satellite data with panchromatic satellite data at a 
higher resolution can increase the precision and accuracy 
with which multispectral data can be classified by the 
ECHO algorithm. Although the use of aerial photography 
to enhance multispectral data resulted in a small increase 
in accuracy at each of the three resolutions tested, these 
increases were significant at confidence levels of only 40 
to 60%. Using spatially enhanced data with the ECHO 
algorithm has great potential for enhancing classification 
accuracy, but this potential is limited by the accuracy with 
which the data can be geometrically registered and by the 
ability to handle or avoid temporal differences in the data.
It was shown in the first experiment that the ECHO algo-
rithm was capable of utilizing the additional information 
available in the high-resolution panchromatic Landsat 7 
data channel to generate a more accurate classification. 
The lack of significant improvement when additional 
spatial information was provided in classifications made 
using the Maximum Likelihood algorithm confirms that 
it is the design of the ECHO algorithm that allows for the 
use of the additional spatial information. 

It is apparent in the analysis of the classifications 
performed in this research that improvements in the 
accuracy of thematic maps generated with the ECHO 
algorithm were a direct result of its ability to distinguish 
between the spectrally similar high and medium-density 
residential land cover classes. Classification accuracy 
was measured by estimates of the overall accuracy, the 
producer’s and user’s accuracies of the two residential 
classes, and with the KHAT statistic. Each of these es-
timates demonstrated an improvement in classification 
accuracy, and the KHAT statistic demonstrated that the 
inclusion of the high-resolution data allowed for a statisti-
cally significant improvement in the overall accuracy of 
the classification.

Augmenting the multispectral satellite data with 
high-resolution aerial photography did not significantly 
increase the accuracy achieved through classifications 
made using the ECHO algorithm as measured by the Z 
statistic. As the only alteration of the data set used by both 
algorithms was the inclusion of the high-resolution aerial 
photography, these results suggest that the ECHO algo-

rithm was not capable of utilizing the additional spatial 
information to generate a significantly more accurate clas-
sification. The results of the second experiment do show, 
however, that the accuracy of classifications made using 
the spatially enhanced data set were higher than those 
made using only the multispectral data at each of the three 
resolutions tested. Although these increases in accuracy 
were relatively small, they do indicate potential for this 
method. One possible explanation for this result, which is 
supported by the results of the first experiment, is that the 
additional information provided by the aerial photography 
was largely offset by the error associated with image resa-
mpling and registration. Unfortunately, temporal gaps and 
geometrically imperfect data sets become more common 
as the age of data increases. 

The concept of combining aerial photography with 
satellite imagery is not well examined in the literature, 
and more research is needed to explore techniques that 
can be used to overcome the limitations of the method. 
Research focused on determining the nature of registra-
tion error in data sets with large differences in both tem-
poral and geometric resolution, its potential for degrading 
classification accuracy, and also in defining scenarios in 
which the method is appropriate, will be necessary to 
more fully develop the potential of this approach.
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Appendix A

Figure 1 
User’s accuracy by individual class for the ECHO 6, 

ECHO 7, MAX 6 and MAX 7 classifications

Figure 2 
Producer’s accuracy by individual class for the ECHO 

6, ECHO 7, MAX 6 and MAX 7 classifications.

Figure 3 
Overall accuracy and the KHAT statistic for the 

ECHO 6, ECHO 7, MAX 6 and MAX 7 classifications.

Figure 4 
User’s accuracy by individual class for the ECHO 6, 

ECHO 7, MAX 6 and MAX 7 classifications of the 15 
meter data set.
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Figure 5
Producer’s accuracy by individual class for the ECHO 
6, ECHO 7, MAX 6 and MAX 7 classifications of the 

15 meter data set.

Figure 6
Overall accuracy and KHAT for the ECHO 6, ECHO 
7, MAX 6 and MAX 7 classifications of the 15 meter 

data set.

Figure 7
User’s accuracy by individual class for the ECHO 6, 
ECHO 7, MAX 6 and MAX 7 classifications of the 5 

meter data set.

Figure 8
Producer’s accuracy by individual class for the ECHO 
6, ECHO 7, MAX 6 and MAX 7 classifications of the 

5 meter data set.
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Figure 9
Overall accuracy and KHAT for the ECHO 6, ECHO 
7, MAX 6 and MAX 7 classifications of the 5 meter 

data set.

Figure 10
User’s accuracy by individual class for the ECHO 6, 
ECHO 7, MAX 6 and MAX 7 classifications of the 1 

meter data set.

Figure 11
Producer’s accuracy by individual class for the ECHO 
6, ECHO 7, MAX 6 and MAX 7 classifications of the 

1 meter data set.

Figure 12
Overall accuracy and KHAT for the ECHO 6, ECHO 
7, MAX 6 and MAX 7 classifications of the 1 meter 

data set.
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Figure 13
Thematic maps derived from the ECHO 6, ECHO 7, MAX 6 and MAX 7 classifications.
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Figure 14
Thematic maps derived from the ECHO 6, ECHO 7, MAX 6 and MAX 7 classifications of the 

15 meter data set.
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Figure 15
Thematic maps derived from the ECHO 6, ECHO 7, MAX 6 and MAX 7 classifications of  

the 5 and 1 meter data sets.
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