
HAL Id: hal-01197039
https://hal.inria.fr/hal-01197039v2

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusing Legacy DSLs with Melange
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais

To cite this version:
Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais. Reusing Legacy DSLs with
Melange. 15th Workshop on Domain-Specific Modeling, Oct 2015, Pittsburgh, United States. �hal-
01197039v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49476341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01197039v2
https://hal.archives-ouvertes.fr


Reusing Legacy DSLs with Melange

Thomas Degueule
Benoit Combemale

INRIA, France
firstname.lastname@inria.fr

Arnaud Blouin
INSA Rennes, France
arnaud.blouin@irisa.fr

Olivier Barais
University of Rennes 1, France

olivier.barais@irisa.fr

Abstract
The proliferation of independently-developed and constantly-
evolving domain-specific languages (DSLs) in many domains
raises new challenges for the software language engineering
community. Instead of starting the definition of new DSLs
from scratch, language designers would benefit from the reuse
of previously defined DSLs. While the support for engineer-
ing isolated DSLs is getting more and more mature, there
is still little support in language workbenches for importing,
assembling, and customizing legacy languages to form new
ones. Melange is a new language workbench where new DSLs
are built by assembling pieces of syntax and semantics. These
pieces can be imported and subsequently extended, restricted,
or customized to fit specific requirements. The demonstration
will introduce the audience to the main features of Melange
through the definition of an executable DSL for the design
and execution of Internet of Things systems. Specifically, we
will show how such a language can be obtained from the
assembly of other popular languages while maintaining the
compatibility with their tools and transformations.

Categories and Subject Descriptors D3.2 [Language Clas-
sifications]: Specialized application languages

Keywords Domain-specific languages, language work-
bench, language reuse, model typing, melange

1. Introduction
Domain-specific languages (DSLs) are increasingly used to
handle specific concerns in the development of complex soft-
ware systems [1]. However, developing a DSL is still a costly
and time-consuming task that requires advanced skills in lan-
guage design: language designers have to specify the abstract
syntax of their languages, their concrete syntax, semantics,
and tooling (e.g. editors, checkers, code generators, etc.). Lan-
guage workbenches assist language designers by providing
the right tools and methods to tame the complexity of lan-
guage design and reduce the development costs [2]. While
current workbenches (e.g. MetaEdit+, Spoofax, MPS, Xtext
– to cite just a few) propose a diffuse way to reuse language
modules, there is currently little support for assembling lan-
guages with customization facilities. Yet, it is likely that the
creation of new DSLs could benefit from the efforts spent

on the development of other ones, especially when their do-
mains overlap. A mere example is the family of statecharts
languages which, despite their specificities, share many simi-
larities in their syntax and semantics [3]. The expected out-
comes are twofold: one would like to import the definition
of legacy language artifacts to engineer a new one while en-
suring the compatibility with the tools and transformations
defined on its ancestors. Of course, imported artifacts may
not fit exactly the designer’s expectations. It follows that sup-
port for language extension, restriction, and customization is
required to tune them finely.

This paper is organized as follows. In Section 2, we
introduce Melange, a new language workbench attempting to
address each of these challenges. In Section 3, we present an
outline of the proposed demonstration.

2. The Melange Workbench
Melange [4] is an open-source language workbench built on
top of the Eclipse Modeling Framework (EMF) and tightly in-
tegrated with its ecosystem1. Thanks to the success of EMF in
both academia and industry, this enables Melange’s users to
import and manipulate a wide spectrum of existing DSLs. In
Melange, the abstract syntax of DSLs is defined in the form of
a metamodel with the Ecore formalism. Their operational se-
mantics is specified using the Xtend programming language2.
More precisely, Melange supports the definition of aspects
which allows to define the operational semantics of the con-
cepts contained in a metamodel in a non-intrusive manner,
based on static introduction [5]. In Melange, pieces of syntax
and semantics can be imported and assembled to form new
languages. The resulting languages follow the same design
principles: they consist of a metamodel and a set of aspects
that can be directly bundled and deployed as is, or reused
in other assemblies. In order to fit unforeseen requirements
or new environments, Melange also provides customization
operators: languages can be merged together, inherited, or
sliced. Each of these operators takes both syntax and seman-
tics into account. The merge operator serves as a language
unification mechanism and is inspired by the UML Package-

1 http://melange-lang.org
2 https://eclipse.org/xtend/

http://melange-lang.org
https://eclipse.org/xtend/


Merge relation [6]. The slice operator is inspired by model
slicing [7] and consists in extracting a subset of an existing
language to be imported in a new one. Finally, the inherits
operator allows to reuse the definition of one or more super-
languages into a new language. In addition to the merge
operator, the inherits operator ensures that the resulting lan-
guage remains compatible with its super-languages, i.e. the
tools defined on a super-language can always be applied on
its sub-language. Additionally, every language in Melange
is associated with a structural interface captured in a model
type [8]. This interface exposes the features that are publicly
accessible on a language, e.g. its meta-classes, their structural
features, and the methods defining its operational semantics.
Most importantly, model types are linked one another with
subtyping relations [9]. Intuitively, a model type is a subtype
of another one if it exposes the exact same features, and pos-
sibly others, i.e. it is not any less capable. These relations
and the associated type system provide model polymorphism,
i.e. the possibility to manipulate a model through tools de-
fined for different languages, providing that their interfaces
match. Concretely, this means that when a language is built
from another one (e.g. through inheritance or slicing), tools
and transformations can be reused if the resulting interface
remains substitutable with the one of its ancestor. The model
polymorphism facility is not only available within Melange,
but also contributed as a specialized resource management
system directly in EMF. This means that any project relying
on the EMF framework for model loading and serialization
can benefit from the model polymorphism facilities provided
by Melange. The overall approach is depicted in Figure 1.

3. Demonstration Outline
The demonstration will highlight the main features of
Melange, illustrated through the creation of an executable
DSL for the design and execution of Internet of Things
(IoT) systems. The resulting IoT language is inspired from
both general-purpose executable modeling languages such as
fUML [10] and modeling languages dedicated to IoT such as
ThingML [11]. We will show how the assembly operators of
Melange foster the reuse of pre-existing languages. Specifi-
cally, the IoT language will be designed as an assembly of
publicly-available DSLs: (i) an IDL language for specifying
the structural interface of sensors (ii) Lua for expressing their
behavior and (iii) an activity diagram to express concrete
scenarios involving different sensors. Taken independently,
each of these languages has been defined by different groups
of people for specific purposes, unrelated to IoT systems.
Combining them in a consistent way, however, leads to a new
DSL particularly suited to a new context, i.e. the IoT domain.
Because most of their syntax and semantics can be reused as
is, this drastically reduce the development costs compared to
a top-down approach. Of course, the syntax and semantics
of two independent languages may not fit together perfectly
when composed. Therefore, the demonstration will also focus

MM1

MM2

Sem1

Sem2

L2

L4

L1

L3

«inherit»

«merge»

«weave»

«slice»

Metamodel

Semantics

Language

Tooling

Model Type

Binding

«merge»

«merge»

«weave»

Legacy ArtifactsAssembled DSLs

MT1 MT2

MTi

«impl» «impl»

Figure 1: Assembling Languages using Melange. The right part
depicts the legacy language artifacts (syntax or semantics) that must
be assembled; the left part depicts the newly-created DSLs resulting
from the assembly. Each language implements a specific set of
model types which define how they are manipulated.

on the customization of these reused languages. Finally, the
demonstration will illustrate how the resulting DSL remains
compatible with the tools and transformations (e.g. checkers,
editors) previously defined on the imported languages.

References
[1] Jon Whittle, John Hutchinson, and Mark Rouncefield. The

state of practice in model-driven engineering. Software, IEEE,
31(3):79–85, 2014.

[2] Martin Fowler. Language workbenches: The killer-app for
domain specific languages. 2005.

[3] Michelle L Crane and Juergen Dingel. UML vs. classical
vs. Rhapsody statecharts: Not all models are created equal.
In Model Driven Engineering Languages and Systems, pages
97–112. 2005.

[4] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier
Barais, and Jean-Marc Jézéquel. Melange: A meta-language for
modular and reusable development of dsls. In 8th International
Conference on Software Language Engineering (SLE), 2015.

[5] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Mar-
tin Monperrus, and François Fouquet. Mashup of metalan-
guages and its implementation in the kermeta language work-
bench. Software & Systems Modeling, pages 1–16, 2013.

[6] OMG. Unified Modeling Language 2.0, Infrastructure, 2005.
[7] Arnaud Blouin, Benoit Combemale, Benoit Baudry, and Olivier

Beaudoux. Kompren: Modeling and generating model slicers.
Software and Systems Modeling (SoSyM), pages 1–17, 2012.

[8] Jim Steel and Jean M. Jézéquel. On model typing. SoSyM,
6(4):401–413, 2007.

[9] Clément Guy, Benoît Combemale, Steven Derrien, Jim RH
Steel, and Jean-Marc Jézéquel. On model subtyping. In Mod-
elling Foundations and Applications, pages 400–415. Springer,
2012.

[10] OMG. Semantics of a foundational subset for executable UML
models (FUML 1.0), 2011.

[11] Franck Fleurey, Brice Morin, Arnor Solberg, and Olivier Barais.
MDE to manage communications with and between resource-
constrained systems. In Proc. of MODELS’11, pages 349–363,
2011.



Figure 2: Assembling several variants of a finite-state machine language in Melange. The outline presents the abstract syntax of
each language, the methods and runtime data inserted using aspects (e.g. a fire() method on transitions and the current state), and
the subtyping relations linking their types. Language designers can thus build new languages on the one side and observe the
results on the other side at the same time.


	1 Introduction
	2 The Melange Workbench
	3 Demonstration Outline

