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branch history:

André Seznec*
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Abstract

The most efficient branch predictors proposed in academic
literature exploit both global branch history and local branch
history. However, local history branch predictor components
introduce major design challenges, particularly for the man-
agement of speculative histories. Therefore, most effective
hardware designs use only global history components and
very limited forms of local histories such as a loop predictor.

The wormhole (WH) branch predictor was recently intro-
duced to exploit branch outcome correlation in multidimen-
sional loops. For some branches encapsulated in a multidi-
mensional loop, their outcomes are correlated with those of
the same branch in neighbor iterations, but in the previous
outer loop iteration. Unfortunately, the practical implemen-
tation of the WH predictor is even more challenging than the
implementation of local history predictors.

In this paper, we introduce practical predictor components
to exploit this branch outcome correlation in multidimen-
sional loops: the IMLI-based predictor components. The
iteration index of the inner most loop in an application can
be efficiently monitored at instruction fetch time using the
Inner Most Loop Iteration (IMLI) counter. The outcomes of
some branches are strongly correlated with the value of this
IMLI counter. A single PC+IMLI counter indexed table, the
IMLI-SIC table, added to a neural component of any recent
predictor (TAGE-based or perceptron-inspired) captures this
correlation. Moreover, using the IMLI counter, one can ef-
ficiently manage the very long local histories of branches
that are targeted by the WH predictor. A second IMLI-based
component, IMLI-OH, allows for tracking the same set of
hard-to-predict branches as WH.

Managing the speculative states of the IMLI-based pre-
dictor components is quite simple. Our experiments show
that augmenting a state-of-the-art global history predictor
with IMLI components outperforms previous state-of-the-
art academic predictors leveraging local and global history at
much lower hardware complexity (i.e., smaller storage bud-
get, smaller number of tables and simpler management of
speculative states).

1. INTRODUCTION

Improved branch prediction accuracy directly translates
to performance gain by reducing overall branch mispredic-
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tion penalty. It also directly translates to energy savings by
reducing the number of instructions executed on the wrong
path. Therefore replacing the branch predictor with a more
accurate one is the simplest, energy-effective way to improve
the performance of a superscalar processor, especially con-
sidering it can be done without reopening the design of the
overall execution core.

Current state-of-the-art predictors are derived from two
families of predictors: the neural-inspired predictors |1} [2|
3| 141 |51 16} |7} |8]] and the TAGE-based predictors [9} |10, [11].
Both rely on exploiting the two forms of branch outcome
histories that were initially recognized by Yeh and Patt [[12]:
global and local branch histories. The TAGE predictor [9]
has been shown to exploit the global path history (i.e., the
history of all branches, conditional or not) very efficiently.
But, in many applications, there are a few static branches
whose behavior is more correlated to the local history than
to the global history. Therefore, to capture this correlation,
state-of-the-art predictors presented in the literature [10} 11}
6, 7] dedicate a small portion of their storage budget to lo-
cal history components in addition to a large global history
component.

Evers et al. [13]] demonstrate that in many cases, the out-
come of a branch is correlated with the outcome of a single
past branch or the outcomes of a few past branches. Global
history or local history predictors do not isolate this corre-
lation but rely on brute force to capture it. However, they
fail to accurately predict branches when the number of paths
from the correlator branches to the predicted branch is too
large. Only a few proposals rely on identifying the correlator
branches rather than the path from the correlator to the pre-
dicted branch. Among these are the loop exit predictor [[14}
15]] — implemented in recent Intel processors — and the re-
cently proposed wormhole predictor [[16} [17]]. Albericio et
al. 16, |17]] demonstrate that in some cases, the outcome of
a branch encapsulated in the inner most loop of a multidi-
mensional loop is correlated with the outcomes of the same
branch in neighbor iterations of the inner loop but within
the previous outer loop iteration. This is illustrated in Fig-
ure |1} They propose the wormhole (WH) predictor to cap-
ture (part of) this correlation. While only addressing a few
branches, the WH predictor significantly reduces the mis-
prediction rate of a few applications within a limited storage
budget cost. Therefore, TAGE-SC-L+WH [16] can be con-
sidered as the state-of-the-art branch predictor in academic



literature.

However, managing the speculative states of branch pre-
dictors in superscalar processors is often ignored in academic
studies. Management of speculative global history can be
implemented through simple checkpointing, but management
of speculative local history requires searching the window
of in-flight branches on each fetch cycle. Therefore, real
hardware branch predictors generally rely on global history
components [18], sometimes backed by a very limited local
history component (e.g. a loop exit predictor [15}|14] in re-
cent Intel processors). As managing the speculative states of
the WH predictor is even more complex than that of specula-
tive local history, the WH predictor is difficult to implement
in a real hardware processor.

In this paper, we show that branch output correlations
that exist in multidimensional loops can be tracked by cost-
effective predictor components: the IMLI-based predictor
components. The IMLI-based components can be added to
a state-of-the-art global history predictor, and their specula-
tive states can be easily managed.

For a given dynamic branch, the Inner Most Loop Iteration
counter is the iteration number of the loop encapsulating the
branch. We show that for the inner most loop, the IMLI cou-
nter can be simply monitored at instruction fetch time and
therefore can be used for branch prediction. We present two
IMLI-based predictor components that can be included in
any neural-inspired predictor: the IMLI-SIC (Same Iteration
Correlation) and IMLI-OH (Outer History) components. The
IMLI-SIC prediction table is indexed with the IMLI counter
and the PC. IMLI-OH captures the same correlation as the
WH predictor. IMLI-OH features a prediction table and a
specific IMLI Outer History table. This history is indexed
with the PC and the IMLI counter. It allows for efficiently
tracking very long local histories for the same branches ad-
dressed by the WH predictor. A major advantage of the
IMLI-based components over the WH predictor is that their
speculative states can be managed via checkpointing of a few
tens of bits.

Our experiments show that in association with a main global
history predictor such as TAGE or GEHL, the two IMLI-
based components achieve accuracy benefits in the same range
as the ones achieved with local history and loop predictor
components. This benefit is obtained at much lower hard-
ware cost and complexity: smaller storage budget, smaller
number of tables and much simpler speculative management
of the predictor states. Moreover, the IMLI-based compo-
nents capture part of the branch outcome correlation that
was captured by the local history components and the loop
predictor. Therefore, the IMLI-based components are much
better candidates for real hardware implementation than lo-
cal history predictors and even loop predictors.

The remainder of this paper is organized as follows. Sec-
tion [2| presents the related work, the issues associated with
the speculative management of branch history and the moti-
vations for the IMLI-based components. Our experimental
framework is introduced in Section[3] Section ] presents the
IMLI-based predictor components and a performance eval-
uation of these components on top of state-of-the-art global
history branch predictors. Section [5]argues the case for im-
plementing IMLI-based components rather than local his-

tory components in branch predictors. Finally, Section []
concludes this study.

2. RELATED WORK AND MOTIVATIONS
2.1 General Context

Since the introduction of bimodal branch prediction [[19],
branch prediction has been extensively explored for three
decades. A major step was the introduction of two-level
branch prediction [12} 20] promoting the use of the history
of branch outcomes for predicting branches. Both global
branch history and local branch history were recognized as
possible sources of branch outcome correlation. Using the
global control flow path history instead of the global branch
history was suggested in [21[]. Hybrid prediction combining
local history prediction tables and global branch/path his-
tory prediction tables was proposed in [22]. Using multiple
prediction tables indexed with different history lengths was
suggested in several studies [23]|18].

Jimenez and Lin introduced the perceptron predictor that
exploits a very large number of different predictor entries [[1].
Unlike the previous generation predictors, the perceptron
predictor relies on accessing a large number of prediction
counters (e.g. 8-bit counters) and using a tree of adders to
compute the prediction. The perceptron predictor has been
instrumental in the introduction of the large family of neural
predictors, including the piecewise linear predictor 3], the
hashed perceptron [4], the GEHL predictor [§]], the SNAP
predictor [5]] and the FTL and FTL++ predictors [6,|7]]. Apart
from the complex management of speculative local history,
neural predictors can smoothly combine local history com-
ponents and global history components in the same predictor
as illustrated by the perceptron predictor [24]] and the FTL
predictor [6].

However, the TAGE predictor [9] that only uses global
branch history generally outperforms neural global history
predictors at equivalent storage budgets. TAGE relies on
prediction by partial matching [|25] and the use of geometric
history lengths for branch history [8]]. To capture the behav-
ior of branches that exhibit a non-perfect correlation with the
global history, the TAGE predictor can be augmented with
a neural-inspired component: the statistical corrector [26].
TAGE cannot accommodate global history and local history
at the same time. Since a few branches are more accurately
predicted using local history, it was proposed to incorporate
both global and local history in the statistical corrector in
TAGE-SC-L [11].

2.2 Tracking Precise Correlation

For two decades, state-of-the-art predictors have relied on
exploiting the correlation of branch outcomes with global
branch/path history and local history. These two forms of
correlations were already recognized in the initial study by
Yeh and Patt [12]. However, it is well known that in most
cases, the outcome of a branch is not dependent on the com-
plete global or local branch history but only on the outcomes
of a very few branches in the past control flow [13]] . We re-
fer to these branches as the correlator branches.

In the general case, identifying the exact correlator branch
in the past control flow is almost impossible at fetch time.



for (N=0;i <Nmax;N++)
for (M=0; M <Mmax; M++){
if (A[M+N] >0) { ..} /I Branch B1
if (B[N][M]-B[N-1][M])>0{..} // Branch B2
if (C[M]>0) /f Branch B3
if(D[M] >0) {..} // Branch B4

Figure 1: Branches whose outcomes are correlated with pre-
vious iterations of the outer loop

Nevertheless, predictors relying on local or global branch
histories are able to capture this correlation when the number
of paths (either local or global) from the correlator branch(es)
to the current branch is relatively small, independent of the
history length. When the number of these paths becomes
large, current predictors fail to accurately predict the branch.

To our knowledge, there has only been two propositions
of branch prediction mechanisms that aim at identifying the
correlator branches. They both try to track specific cases: the
loop predictor [[14}15]] predicts the exit of the regular loops,
and the recently introduced wormhole predictor [[16}17] pre-
dicts branches encapsulated in multidimensional loops. Both
predictors are used as side predictors in collaboration with a
main predictor.

2.2.1 The Loop Predictor

For loops with a constant number of iterations, the loop
predictor identifies the last iteration of a loop by counting
the number of consecutive loop iterations [[14}|15].

Loop predictors have been implemented in recent Intel
processors.

2.2.2  The Wormhole Predictor
Albericio et al. [16| |17] recognize that in many cases the

hard-to-predict branches are encapsulated in multidimensional

loops. Sometimes such a branch can be predicted using the
outcomes of the branch itself in neighbor iterations of the in-
ner loop, but in the previous iteration of the outer loop. Say
B is a branch in the inner loop IL encapsulated in outer loop
OL. If Out[N][M] is the outcome of B in iteration M of IL
and in iteration N of OL, then Out[N][M] is correlated with
Out[N-1][M+D], where D is a small number (e.g -1, 0 or
+1).

This is illustrated in Figure[I] We assume that arrays A,
B, C and D are not modified by the (not represented) in-
ternal code. The outcome of branch B1 in iteration (N,M) is
equal to its outcome in iteration (N-1,M+1). The outcome of
branch B2 is weakly correlated with its outcome in iteration
(N-1,M). The outcome of branch B3 is equal to its outcome
in iteration (N-1,M). If executed, the outcome of branch B4
is equal to its outcome in iteration (N-1,M)

To (partially) track these particular cases, Albericio et al.
propose the wormhole (WH) predictor Similar to the loop
predictor, WH is intended to be used as a side predictor.
WH is a tagged structure with only a few entries (7 in the
proposed design optimized for CBP4). For a branch B en-

Sat. counter

Outer loop 0 0 i
iterations 0 0 0

Inner loop iterations

Figure 2: Example of WH prediction.

capsulated in a regular loop IL (i.e., a loop predicted by the
loop predictor with a constant number of iterations Ni), an
entry is allocated in the WH predictor upon a misprediction.
WH then records the local history of branch B. When B is
fetched in iteration M of IL and in iteration N of OL, then
Out[N-1][M+D] is recovered as bit Ni-D from its associated
local history. Figure [2]illustrates the prediction process. WH
embeds a small array of prediction counters in each entry. A
few bits (grey squares in Figure 2] ) retrieved from the local
history (as just described) are used to index this prediction
array.

Since for most branches, the correlation tracked by WH
does not exist, the WH prediction subsumes the main pre-
diction only in the case of high confidence.

WH is the first predictor in the literature to track the out-
come correlation of a branch encapsulated in a loop nest with
occurrences of the same branch in neighboring inner loop it-
erations, but in the previous outer loop iteration. The number
of dynamic instances of these branches can be very signif-
icant. When such correlation exists and is not captured by
the main predictor, the accuracy benefit can be high as will
be illustrated in Section 331 When associated with a state-
of-the-art global history predictor, on average WH achieves
accuracy improvement on the same range as local history
components with a very limited number of entries [16].

WH limitations

The WH predictor exposes that there is an opportunity to ex-
ploit a new form of correlation in branch history. However,
the original WH predictor has some limitations that could
impair its practical implementation.

First, WH only captures the behavior of branches encap-
sulated in loops with a constant number of iterations. It uses
the loop predictor to recognize the loop and extract the num-
ber of iterations of the loop. For instance, WH is not able to
track any branch if Mmax varies in the example illustrated
on Figure[I] Second, the WH predictor captures correlations
only for branches that are executed on each iteration of the
loop. Branches in nested conditional statements (i.e., branch
B4) are not addressed by the WH predictor.

Lastly, WH uses very long local histories. The specula-
tive management of these very long local histories is a major
design challenge as detailed in the next section.

The IMLI-based predictor components proposed in this
paper address these shortcomings.

2.3 A Major Challenge: The Management of
Speculative Local History

In order to compute the branch prediction, the predic-



tor states are read at prediction time; they are updated later
at commit time. On a wide superscalar core, this read-to-
update delay varies from a few tens to several hundreds of
cycles. In the meantime, several branch instructions, some-
times tens of branches, would have already been predicted
using possibly irrelevant information (i.e., stale branch his-
tories and predictor tables entries).

On the one hand, it is well known that the delayed update
of prediction tables has limited prediction accuracy impact
for state-of-the-art branch predictors [27, |I0]. On the other
hand, using incorrect histories leads to reading wrong entries
in the predictor tables and is very likely to result in many
branch mispredictions [28]]. Therefore, accurately managing
speculative branch histories is of prime importance. Below,
we contrast the simple management of speculative global
history with that of speculative local history.

2.3.1 Managing speculative global branch history

For any branch predictor using very long global histories
such as TAGE, GEHL or FTL, the management of the spec-
ulative global branch history can be implemented using a
single circular buffer with two pointers: a speculative head
pointer and a commit head pointer. When a branch is pre-
dicted, the predicted direction is appended to the head of the
buffer and the speculative head pointer is incremented. At
commit time, the commit head pointer is updated.

High-end processors repair mispredictions just after exe-
cution without waiting for commit time. To resume instruc-
tion fetch with the correct speculative head pointer, these
processors rely on checkpointing [[29]. The speculative head
pointer is stored in the checkpoint and retrieved in the event
of a misprediction. Then branch prediction and instruction
fetch can resume smoothly on the correct path with the cor-
rect speculative global history head pointer.

In practice, the width of the global history head pointer
to be checkpointed is small (e.g., 11 bits for the 256 Kbits
TAGE-SC-L predictor [11]).

2.3.2 Managing speculative local branch history and
speculative loop iteration number

Managing speculative local history is much more complex
than managing speculative global history. On a processor
with a large instruction window, distinct static branches can
have speculative occurrences in-flight at the same time. In
practice, speculative history can be handled as illustrated in
Figure[3] The local history table is only updated at commit
time. At prediction time of branch B, the local history table
is read and the window of all speculatively in-flight branches
is checked looking for occurrences of branch B (or more pre-
cisely of branches with the same index in the local history
table). If any in-flight occurrence of branch B is detected,
then the (speculative) local history associated with the most
recent of these in-flight occurrences is used.

This necessitates an associative search in the window of
in-flight branches. Local history must be stored with each in-
flight branch in this window. On a misprediction of branch
B, the branches fetched after B are flushed from the instruc-
tion window.

update at commit time

Local

History — 5] to prediction tables
Table

Speculative History for the most
recent occurrence of branch B

B |hd

B ' h3

B [h2

B |hil

Window of inflight branches

Figure 3:
branch B

Retrieving the speculative local history for

Managing the loop iteration number

When a loop predictor is used, the current speculative loop
iteration number can be managed just as described for spec-
ulative local history.

If a small loop predictor (e.g., 4 entries) is used, then an
alternative is to systematically checkpoint the overall loop
predictor (or at least the current loop iteration number from
each entry).

Speculative states for WH predictor

Managing the speculative states of the WH predictor is es-
sentially the same as managing the speculative local history
embedded in the WH predictor entries. Therefore, it necessi-
tates storing this long local history in the window of in-flight
branches. A complex associative search in this window has
to be executed on each fetch cycle.

2.3.3 Are local history components worth the com-
plexity?

The prediction accuracy benefit that can be obtained from
local history components is relatively small. For instance,
deactivating the local history components and the loop pre-
dictor in the 256 Kbits TAGE-SC-L predictor increases the
misprediction rate by only 4.8 % on CBP4 traces and by
6.5 % for CBP3 traces. A 16-entry loop predictor reclaims
about one-third of these extra mispredictions.

To the best of our knowledge [30], no recent x86 proces-
sor from Intel nor AMD implements any local history com-
ponents apart from the loop predictor on Intel processors.

3. EXPERIMENTAL FRAMEWORK

Throughout this paper, trace-based simulations of the branch
predictors are used in order to motivate and validate the pro-
posed designs. Misprediction rates measured as Mispredic-



tions Per Kilo Instructions (MPKI) will be used as a metric
of accuracy.

Trace-based branch prediction simulations are assuming
immediate updates of the prediction tables and branch his-
tories. On real hardware, branch histories are speculatively
updated ensuring that the same prediction tables entries are
read at fetch time and updated at commit time. The predic-
tion tables are updated at commit time; thus in a few cases,
a prediction table entry is read at prediction time before a
previous branch in the control flow commits and updates
it. However, for the state-of-the-art global history predic-
tors considered in this paper, the delayed update of predictor
tables has very limited impact on accuracy [10, 27]. More-
over, this impact can be mitigated [10]].

3.1 Application Traces

To allow reproducibility of the experiments presented in
this paper, all the simulations are performed using the two
sets of traces that were distributed for the two last branch
prediction championships in 2011 (CBP3) and 2014 (CBP4).
Each set of traces features 40 traces. Traces from CBP3
were transformed in order to be compatible with simulations
through the CBP4 framework.

These 80 traces cover various domains of applications in-
cluding SPEC integer and floating-point applications, servers,
client and multimedia applications.

3.2 Branch Predictors

The IMLI predictor components presented in this paper
improve branch accuracy when combined with any of the
two families of state-of-the-art branch predictors: the TAGE
predictor family [9] and the neural-inspired predictor fam-
ily [1} 24} |6} |8]. We consider one global history predictor
from each of the two families as base references. As a rep-
resentative of TAGE-based global history predictors, we use
the TAGE-GSC predictor (i.e. the global history components
of TAGE-SC-L [11]], the winner of CBP4). As a represen-
tative of neural-inspired global history predictors, we use a
GEHL predictor [S§].

3.2.1 TAGE-GSC

The TAGE-SC-L predictor presented at CBP4 consists of
three different functional components: a TAGE predictor [9],
a statistical corrector (SC [10]) predictor featuring both local
history and global history components, and a loop predic-
tor [15}/14]). Our reference TAGE-GSC predictoﬂ (Fi gure
is the exact same predictor presented at CBP4 except the
loop predictor and the local history components in the SC
are deactivated.

The TAGE predictor is a very effective global branch his-
tory predictor and provides the main prediction. The TAGE
prediction is then used by the global history statistical cor-
rector (GSC) predictor, whose role consists of confirming
(general case) or reverting the prediction. In practice, GSC
(illustrated in Figure [3) is a neural predictor featuring sev-
eral tables indexed with global history (or a variation of the
global history). Two predictor tables are indexed through

"We coined TAGE-GSC for TAGE + Global history Statistical Cor-
rector in order to conform with the denomination TAGE-LSC intro-
duced in [[10] for TAGE + Local history Statistical Corrector.

PC >
Global
History TAQE _ >
predictor prediction
—>

Confidy, Statistical
corrector

>
»
>

Figure 4: The TAGE-GSC predictor: a TAGE predictor
backed with a Global history Statistical Corrector predictor

Global =
_ .|.+. sign
PC > | =
pred.
TAGE\ Y i U
_n~t >
IMLIcount + o, >
IMLI hist 8 >

Figure 5: The Statistical Corrector predictor for TAGE-GSC
with IMLI-based components

hashes of the PC concatenated with the TAGE prediction. In
most cases, these later tables strongly agree with the TAGE
prediction and dominate the GSC prediction. However, the
GSC reverts (corrects) the prediction when it appears that
in similar circumstances (PC, branch histories, etc.), TAGE
has statistically mispredicted. Since TAGE is generally quite
accurate, predictions are rarely reverted.

For a more complete description of the predictor configu-
ration, please refer to [11]].

Our reference TAGE-GSC predictor achieves 2.473 MPKI
on CBP4 traces and 3.902 MPKI on CBP3 traces respec-
tively. It features 228 Kbits of storage.

3.2.2 GEHL

The GEHL predictor [8] is one of the most effective neural
global history predictors. Other representatives of this pre-
dictor family are SNAP [5] and the hashed perceptron [4].
GEHL is illustrated in Figure[6]

The predictor considered in this paper features a total of
17 tables with 2 K entries of 6-bit counters, indexed with
global branch history. The maximum global history length
is 600. This predictor features a total budget of 204 Kbits.
It achieves 2.864 MPKI on CBP4 traces and 4.243 MPKI on
CBP3 traces.

No specific optimizations were performed to achieve op-
timal misprediction rates on this base design.

3.3 Wormbhole Prediction on top of TAGE-GSC
and GEHL

We simulate WH as a side predictor in conjunction with
TAGE-GSC or GEHL to evaluate its potential at exploiting
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Figure 6: GEHL augmented with IMLI-based components

branch outcome correlations in multidimensional loops. The
WH predictor necessitates the loop predictor to determine
the number of iterations in the inner loop, but since we aim to
isolate the potential of WH, the loop predictor outcome was
not used for prediction but only for determining this number
of iterations.

For an extra storage budget of 1413 bytes, TAGE-GSC+WH

achieves 2.415 MPKI on CBP4 traces (-2.4 %) and 3.823
MPKI on CBP3 traces (-2.2 %). GEHL+WH achieves 2.802
MPKI (-2.2 %) and 4.141 MPKI (-2.5 %) on CBP4 and
CBP3 traces respectively.

This accuracy benefit from the WH predictor comes from
only 4 benchmarks out of a total of 80: SPEC2K6-12 and
MM-4 from CBP4, and CLIENT02 and MMO07 from CBP3.
However, on these 4 benchmarks, the benefit is substan-
tial: more than 1.5 MPKI for SPECK6-12, CLIENTO02 and
MMO7 (which are hard-to-predict benchmarks with more
than 11, 15 and 20 MPKI respectively on both predictors),
and more than 0.3 MPKI reduction for MM-4 (with initial
misprediction rates around 1 MPKI; see Figure [T3)).

4. IMLI PREDICTOR COMPONENTS

In this section, we propose the IMLI-based components,
which are alternative approaches to predicting the class of

hard-to-predict branches encapsulated in two-dimensional loops

identified by Albericio et al. [[16L[17].

The two IMLI-based prediction components can be added
to the statistical corrector in TAGE-GSC or in the GEHL pre-
dictor (or any neural-inspired branch predictor) as illustrated
for TAGE-GSC in Figure 5| and for GEHL in Figure[6] Both
components exploit the Inner Most Loop Iteration (IMLI)
counter, a simple mechanism that tracks the number of the
current iteration in the inner most loop. The first component,

IMLI-SIC (Same Iteration Correlation), captures a completely

different correlation than the WH predictor. The second
component, IMLI-OH (Outer History), essentially captures
the same correlation as the WH predictor.

Since the branches that we intend to address are encapsu-
lated in multidimensional loops, throughout this section, we
will use the same notation as in Section 2.2.2]

e B is a branch in inner loop IL encapsulated in outer
loop OL.

o Out[N][M] is the outcome of branch B in iteration M
of IL and in iteration N of OL.

Figure 7: Backward branches are generally loop exit bran-
ches: B4 is the inner loop exit branch, B6 is the outer loop
exit branch

4.1 The Inner Most Loop Iteration Counter

In most cases, a loop body ends by a backward conditional
branch (Figure[7). Therefore, for the sake of simplicity, we
consider that any backward conditional branch is a loop exit
branch. We will also consider that a loop is an inner most
loop if its body does not contain any backward branch (e.g.,
branch B4 in Figure [7]is a loop exit branch of an inner most
loop).

We define the Inner Most Loop Iteration counter, IMLI-
count, as the number of times that the last encountered back-
ward conditional branch has been consecutively taken. A
simple heuristic allows us to track IMLIcount at fetch time
for the inner most loop for any backward conditional branch:

if (backward){if (taken) IMLIcount++;
else IMLIcount=0;}

In practice, IMLIcount will be 1 or O on the first iteration

depending on the construction of the multidimensional loop.
The IMLI counter can be used to produce the index of the

two IMLI-based predictor components presented below.

4.2 The IMLI-SIC Component

In some applications, a few hard-to-predict branches en-
capsulated in loops repeat or nearly repeat their behavior for

the same iteration in the inner most loop (i.e., Out[N][M]=Out[N-

1][M]) in most cases. For instance, this occurs when the
same expression dependent on the inner most iteration num-
ber is tested in the inner loop body. In the example in Fig-
ure[T] branches B3 and B4 represent this case.

To capture this behavior, we add a single table to the sta-
tistical corrector of TAGE-GSC and to GEHL. We will refer
to this table as the IMLI-SIC (Same Iteration Correlation)
table. IMLI-SIC is indexed with a hash of the IMLI counter
and the PC. With a 512-entries table, we capture most of
the potential benefit on this class of branches on our bench-
mark set. However, the benefit can be further increased by
inserting the IMLI counter in the indices of two tables in the
global history component of the SC.
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Figure 8: IMLI-induced MPKI reduction on the 80 bench-
marks; TAGE-GSC predictor
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Figure 9: IMLI-induced MPKI reduction on the 15 most
benefitting benchmarks; TAGE-GSC predictor

4.2.1 Managing the speculative IMLI counter

After the fetch of a given instruction block, the new specu-
lative IMLI counter is derived from the previous speculative
IMLI counter as well as the presence/absence of any forward
branches in the instruction fetch block and their predicted di-
rections. Checkpointing the speculative IMLI counter allows
for resuming branch prediction and instruction fetch with the
correct IMLI counter after a branch misprediction.

4.2.2 IMLI-SIC performance evaluation

Figures [8] and [J] illustrate the accuracy benefit obtained
from augmenting TAGE-GSC with the two IMLI-based com-
ponents on the whole set of 80 benchmarks and the 15 most
improved benchmarks respectively. The benefit of IMLI-
SIC alone is illustrated in the lowest bar.

IMLI-SIC reduces the average misprediction rate from 2.473

to 2.373 MPKI for CBP4 and from 3.902 to 3.733 MPKI
on CBP3 traces. This benefit is essentially obtained on a
few benchmarks: two CBP4 benchmarks — SPEC2K6-04
(-2.37 MPKI) and SPEC2K6-12 (-1.16 MPKI) — and three
CBP3 benchmarks — WS04 (-3.20 MPKI), MMO07 (-2.17
MPKI and CLIENTO2 (-0.64 MPKI). The accuracies of a
few other benchmarks (MM4 and WS03) are marginally im-
proved while the other benchmarks remain mostly unchanged.

The impact of adding the IMLI-SIC table to GEHL is
very similar, reducing misprediction rate from 2.864 MPKI
to 2.752 MPKI for CBP4 traces and from 4.243 MPKI to
4.053MPKI for CBP3 traces. The same benchmarks as for
TAGE-GSC are improved by IMLI-SIC. This is illustrated
in Figures[I0]and[T1]

Interestingly, SPEC2K6-04 and WS04 are benchmarks that
were not improved by the WH predictor. In practice, as al-
ready pointed out, the structure of the WH predictor only
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Figure 10: IMLI-induced MPKI reduction on the 80 bench-
marks; GEHL predictor
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Figure 11: IMLI-induced MPKI reduction on the 15 most
benefitting benchmarks; GEHL predictor

captures correlations for branches that are encapsulated in
regular loops with constant iteration numbers and are exe-
cuted on each iteration of the inner loop. IMLI-SIC does
not suffer from these restrictions. On the other hand, bench-
marks that are improved by WH — SPEC2K6-12, CLIENTO02,
MMO7 and MM4 — are not as significantly improved by
IMLI-SIC as with WH.

The IMLI-SIC table allows for predicting the number of
iterations of the inner loop whenever the inner loop has a
constant iteration number. As a result, activating the loop
predictor when IMLI-SIC is enabled has limited impact. For
instance, with TAGE-GSC, the benefit of the loop predictor
is reduced from 0.034 MPKI to 0.013 MPKI on CBP4 and
from 0.094 MPKI to 0.010 MPKI on CBP3.

4.3 The IMLI-OH Component

As mentioned above, the IMLI-SIC component does not
capture all correlations that are captured by the WH predic-
tor. We experimented adding the WH component on top of
the two base predictors augmented with IMLI-SIC. This ex-
periment showed that the WH predictor captures extra cor-
relations that are not captured by IMLI-SIC. 2.323 (resp.
2.700) MPKI is achieved on CBP4 traces and 3.675 MPKI
(resp. 3.984 MPKI) on CBP3 traces for the TAGE-GSC pre-
dictor (resp. GEHL predictor). As expected, SPEC2K6-12,
MM4, CLIENTO2 and MMO7 are the only benchmarks that
benefit from the WH component.

The analysis of these benchmarks reveals that the WH
component exploits the correlation between Out[N][M] and
Out[N-1][M-1] for a few inner most loop branches on
SPEC2K6-12, CLIENTO02 and MMO7. This correlation can
not be captured by IMLI-SIC. On MM4, correlations of
the form Out[N][M]=1-Out[N-1][M] are missed by IMLI-
SIC. In order to track these correlations when predicting
Out[N][M] for a branch B, the outcomes Out[N-1][M-1] and



) PC .
(PC<<6) +IMLI — IMLI History IMLI OH l—
prediction
counter

PC .
E

Figure 12: The IMLI-OH component

Out[N-1][M] from the previous outer iteration have to be
memorized. In the WH predictor, these outcomes are mem-
orized in the local history associated with branch B in the
WH predictor entry. When predicting Out[N][M], these two
outcomes are then retrieved as bits Mmax+1 and Mmax of
the local history respectively, where Mmax is the number of
iterations of the inner loop as predicted by the loop predictor.

4.3.1 IMLI-OH architecture

The IMLI-OH (Outer History) predictor component, il-
lustrated in Figure [I2] is an alternative solution to track
Out[N-1][M-1] and Out[N-1][M] for the inner branches in
two-dimensional loops using the IMLI counter. It consists
of the IMLI-OH predictor table, which is incorporated in the
SC part of the TAGE-GSC predictor or in the GEHL predic-
tor. It also consists of two structures to store and retrieve the
history of the previous outer loop iteration: the IMLI history
table and the PIPE vector, described below.

The outcome of branches are stored in the IMLI history
table. We found that a 1 Kbit table is sufficient. The out-
come of a branch at address B is stored at address (B*64)
+ IMLIcount. This allows us to recover Out[N-1][M] when
predicting Out[N][M]. However, when predicting the next
iteration (i.e., Out[N][M+1]), Out[N-1][M] would have al-
ready been overwritten with Out[N][M]. Therefore, the PIPE
(Previous Inner iteration in Previous External iteration) vec-
tor is used to intermediately store Out[N-1][M]. This vector
only contains 16 bits, corresponding to the 16 distinct branch
addresses that the 1K-entry IMLI outer history table is able
to track.

The IMLI-OH predictor table is indexed with the PC has-
hed with bits Out[N-1][M] and Out[N-1][M-1] retrieved as
described above. Using a 256-entry IMLI-OH predictor ta-
ble was found to be sufficient to cover all the practical cases
in our set of 80 traces.

4.3.2 Dealing with IMLI-OH speculative states

The IMLI PIPE vector is a small structure (16 bits in our
study). It can be checkpointed for each instruction fetch
block.

At first glance, the speculative management of the IMLI
outer history appears to be very complex, since there may be
tens of speculative instances of the same branch progressing
in the pipeline.

However, in practice, precise management of the IMLI
outer history is not required. Analysis of simulations shows
that the IMLI-OH component essentially captures correla-
tion for branches that are encapsulated in loops with a large
number of iterations. In practice, for these branches, when
iteration M of IL in iteration N of OL is fetched, the oc-
currences around iteration M of the inner most loop IL and
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Figure 13: IMLI-OH vs WH prediction accuracy on top of
the GEHL predictor
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iteration N-1 of the outer loop OL have been committed for
a long time. For these branches, the correct Outer History is
used. For the other branches that do not exhibit IMLI counter
correlations, using the incorrect Outer History has very lim-
ited impact. For these branches, IMLI-OH does not signifi-
cantly contribute to the prediction but rather adds some noise
to the prediction. For these branches, the leading compo-
nents for the prediction compensate for this noise via weight
reinforcement.

We checked that using delayed update on the IMLI history
table has virtually no impact on prediction accuracy through
the following experiment. We ran a simulation assuming
that up to the next 63 conditional branches are fetched be-
fore the current branch updates the IMLI history table, thus
accounting for the delayed update of the IMLI history ta-
ble that would occur with a very large instruction window.
The predictor experienced virtually no accuracy loss (0.002
MPKI).

4.3.3 Performance evaluation of IMLI-OH

First, we compare the benefits of IMLI-OH and WH when
added to the base predictors. This is illustrated in Figure[T3]
for the GEHL predictor; results for TAGE-GSC are simi-
lar. As expected, the two predictors enhance the accuracy
of the benchmarks that were enhanced by WH. IMLI-OH
slightly enhances the accuracy of a few other benchmarks
(e.g., SPECK6-04 and WSO03) that are also enhanced by
IMLI-SIC.

The total benefit of IMLI-SIC and IMLI-OH is illustrated
as the full bar in Figures [§and [ for TAGE-GSC and in Fig-
ures [I0] and [T1] for GEHL. These benefits are obtained only
on a few benchmarks but are significant for these bench-
marks. Note that the benefits of IMLI-OH and IMLI-SIC
are not always cumulative, as illustrated by SPECK6-04.

The overall benefits from IMLI-OH over the base predic-
tors augmented with IMLI-SIC are proportionally smaller
than the ones from IMLI-SIC alone: 2.0 % MPKI reduction
on CBP4 traces (resp. 2.2 %) and 2.3 % (resp. 2.3 %) on
CBP3 traces for TAGE-GSC (resp. GEHL).

4.4 Synthesis

The IMLI counter is a very simple mechanism for tracking
the iteration number of the dynamic inner loop in a program.
It is a graceful means of tracking the correlation between the



outcome of a branch with the outcomes of the same branch
in neighboring iterations in the inner most loop, but in the
previous outer iteration. IMLI-OH and IMLI-SIC capture
this correlation for some branches that are hard-to-predict
with global history predictors.

These two predictor components can be simply added as
extra tables in the statistical corrector predictor of TAGE-
GSC or in the GEHL predictor. The overall storage budget
for implementing the two IMLI-based components is low:
a total of 708 bytes (i.e., 384 bytes for the IMLI-SIC ta-
ble, 128 bytes for the IMLI outer history table, 192 bytes the
IMLI OH predictor table, 4 bytes for the PIPE vector and the
IMLI counter). Moreover, managing the speculative states
of IMLI-SIC and IMLI-OH is as simple as that of specula-
tive global history; it can be implemented by checkpointing
only two small structures: the IMLI counter (10 bits) and the
IMLI PIPE vector (16 bits).

Despite this low storage budget and hardware complexity,
the IMLI-based components significantly reduce the mispre-
diction rate for several benchmarks when added to TAGE-
GSC and GEHL. For TAGE-GSC, the misprediction rate is
improved by 6.8 % from 2.473 MPKI to 2.313 MPKI on
CBP4 traces and by 6.1 % from 3.902 MPKI to 3.649 MPKI
on CBP3 traces. For the GEHL predictor, the mispredic-
tion rate is improved by 6.0 % from 2.864 MPKI to 2.694
MPKI on CBP4 traces and 6.5 % from 3.902 MPKI to 3.649
MPKI on CBP3 traces. This misprediction reduction is most
prominent for seven benchmarks: SPEC2K6-04, SPEC2K6-
12 and MM-4 from CBP4 as well as CLIENT02, MMO07,
WS04 and WS03 from CBP3 (Figures[9and[IT). Most of the
other benchmarks neither benefit nor suffer from the IMLI
components as illustrated in Figures [§]and

S. POTENTIAL BENEFIT OF LOCAL HIS-
TORY

Up to now, we have considered IMLI-based components
for branch predictors featuring only global history compo-
nents. State-of-the-art academic branch predictors feature
both local and global history components, but most real
hardware processors only use global history predictors. In
this section, we show that the potential accuracy benefit from
using local history is further limited when using IMLI-based
components.

The two base predictors, TAGE-GSC and GEHL, can
be augmented with local history components. These local
history components can be inserted in the SC predictor of
TAGE-GSC and can be added as a local history GEHL pre-
dictor in GEHL, which yields FTL [6]. We consider aug-
menting both predictors with a local history component. For
TAGE-GSC, we activate the local history components and
the loop predictor in TAGE-SC-L [11]]. For GEHL, we add
1) 4 tables of 2K 6-bit counters and a 256-entry table of 24-
bit local history counters, and 2) a 32-entry loop predictor,
thus yielding a FTL predictor [6].

We run simulations selectively activating the different
components: Base, Base+I (I for IMLI), Base+L (L for
local) and Base+I+L. The results for the 25 most affected
benchmarks (out of 80) are illustrated in Figures[T4]and [T3]
The average misprediction rates are reported in Tables|l|and

| | TAGE-GSC| +L | +I1 [+I+L|

size (Kbits) 228 256 234 261
CBP4 2473 2.365 | 2.313 | 2.226
CBP3 3.902 3.670 | 3.649 | 3.555

Table 1: Average misprediction rate (MPKI) for TAGE-
GSC-based predictors.

GEHL +L +1 +I+L
size (Kbits) 204 256 209 261

CBP4 2.864 | 2.693 | 2.694 | 2.562
CBP3 4.243 | 3.924 | 3.958 | 3.827

Table 2: Average misprediction rate (MPKI) for GEHL-
based predictors.

Overall, adding the local history predictor components
and the loop predictor to the IMLI-augmented base predic-
tors leads to lower accuracy gains than adding them to the
base predictors. For TAGE-GSC, the benefit shrinks from
0.108 MPKI without IMLI to 0.087 MPKI for CBP4 traces
and from 0.232 MPKI to only 0.094 MPKI for CBP3 traces.
For GEHL, we observe a very similar trend with an accu-
racy benefit of 0.132 MPKI instead of 0.171 MPKI on CBP4
traces and 0.131 MPKI instead of 0.319 MPKI on CBP3
traces.

The IMLI components capture part of the correlations that
are captured by the local history components and the loop
predictor. Figures[T4]and [I3]show this phenomenon. When
IMLI components are very effective (i.e., MM-4, SPECK2-
04, SPECK6-12, CLIENT02, WS04 and MMO07), the lo-
cal history components are often somewhat effective, (e.g.,
MMO07, WS04, WS03 and CLIENTO02). However, their im-
pact is only partially cumulative. On the other hand, Fig-
ures [T4] and [I3] also show that the benefit of local history
components is more evenly distributed on the overall set of
benchmarks than that of the IMLI-based components.

Summary

The accuracy benefits of using local history components and
a loop predictor on top of a predictor implementing global
history and IMLI-based components is limited. These re-
duced benefits further argue against the cost-effectiveness of
local history predictor components when the predictor al-
ready features IMLI-based components.

Setting a New Branch Prediction Record

The TAGE-GSC-IMLI predictor presented in the previous
sections outperforms the 256 Kbits TAGE-SC-L predictor —
winner of CBP4 — despite using only 234 Kbits of storage.

Removing our self-imposed constraint of not using local
history and merely adjusting the table sizes in the SC com-
ponent of the TAGE-SC-L predictor, we were able to de-
fine a configuration of TAGE-SC-L enhanced with the two
IMLI-based components. This configuration respects the
256 Kbits CBP4 constraint and achieves 2.228 MPKI, which
is 5.8 % lower than the the record 2.365 MPKI of the original
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256 Kbits TAGE-SC-L predictor [11].

6. CONCLUSION

Since the introduction of two-level branch prediction [12],
academic branch predictors have been relying on two forms
of branch history: global branch or path history and lo-
cal branch history. However, local history branch predictor
components bring only limited accuracy benefit over global
history predictors, yet they introduce very complex hardware
management of speculative histories. Therefore, most effec-
tive hardware designs only use global history components
and sometimes a loop predictor [[15}|14].

Albericio et al. [16, [17] recently demonstrated that, in
some cases, the outcome of a branch in the inner most loop
is correlated with the outcome(s) of the same branch in the
same iteration or neighbor iterations of the inner loop but in
the previous outer loop iteration. They introduced the worm-
hole (WH) predictor to track this correlation. Unfortunately,
the hardware implementation of WH is even more challeng-
ing than that of local history predictor components.

The IMLI-based predictor components build on the fun-
damental observation from Albericio et al. We show that the
Inner Most Loop Iteration counter can be used to track two
types of correlations. The IMLI counter can be simply mon-
itored at instruction fetch time. IMLI-SIC tracks the (statis-
tical) repetition of the same outcome for the same inner most
loop iteration number for a given branch. IMLI-OH uses the
correlation of the outcome of branch B with neighbor iter-
ations in the inner loop but in the previous iteration of the
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outer loop. The two proposed IMLI-based predictor compo-
nents can be incorporated into a neural-inspired global his-
tory predictor (e.g., GEHL) or a hybrid TAGE-neural global
history predictor (e.g., TAGE-GSC). The speculative man-
agement of the predictor states of IMLI-SIC and IMLI-OH
is as simple as that of the predictor states of global history
components.

IMLI-based components significantly reduce the mispre-
diction rate of several hard-to-predict benchmarks. On av-
erage, they contribute a reduction in misprediction rate that
is in the same range as that of local history components, but
at much lower hardware complexity: smaller storage bud-
get, smaller number of predictor tables and much simpler
management of speculative states. Moreover, IMLI-based
components capture part of the correlation that is captured
by local history components.

As a result, IMLI-based components could be preferred
over local history components for effective hardware imple-
mentation in future generation processors.

While global history predictors are efficient at tracking the
branch outcome correlations when the number of paths lead-
ing from the correlator branch to the branch to be predicted
is not too large, there are still applications that suffer sig-
nificant branch misprediction rates. In most cases, most of
these mispredictions are encountered due to a small num-
ber of hard-to-predict branches. The approach proposed for
the WH predictor [[16}17], that we extend and enhance with
the IMLI-based components, isolates this correlation for the
particular case of correlators within the previous iteration of



the outer loop. Future developments in branch prediction re-
search may identify other typical correlation situations and
propose hardware mechanisms to exploit these correlation
scenarios for other hard-to-predict branches.

Reproducibility of Simulations

The simulator used in this study can be downloaded
from http://www.irisa.fr/alf/downloads/seznec/TAGE-GSC-
IMLI tar.
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