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Abstract

The Euclidean Traveling Salesperson Problem (E-TSP) is a useful task to study how hu-
mans optimize when faced with computational intractability. It has been found that
humans are capable of finding high-quality solutions for E-TSP in a relatively short time
and with seemingly little cognitive effort. This observation has led to two general pro-
posals: The high quality of performance on E-TSP reflects (a) the output of automatic and
innate perceptual processes or (b) a fundamentally intelligent approach to the task by
humans. An experiment was performed to compare performance of three age groups
(7- year-olds, 12-year-olds, and adults). Our findings provide corroborating evidence that
high-level performance on E-TSP is attainable with perceptual processing alone. At the
same time, the exceptionally high performance of adult participants suggests that they
additionally exploit their cognitive-analytic skills to improve upon what their visual sys-
tems provide.

Introduction

The notion of optimization is a recurring theme in cognitive science. Traditionally, opti-
mization has been seen as fundamental to human rationality (Edwards, 1954; Simon,
1957; von Neuman & Morgenstern, 1947). Also, some have proposed that, in a sense,
every cognitive system instantiates an optimal response to some problem situation
(e.g., Anderson, 1990; Marr, 1982) or, at least, that optimization is part and parcel of
human intelligence (Vickers, Butavicius, Lee, & Medvedev, 2001). The computation of
optimal responses sometimes exceeds the computational resources that humans have
available, and thus, human rationality is necessarily bounded (e.g., Oaksford & Chater,
1998; Simon, 1988; 1990). Nonetheless, humans (still) far exceed any computing machine
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in their ability to respond reasonably, flexibly, and adaptively in real-world, complex
problem situations. The desire to understand this admirable feat lies at the very foun-
dation of both cognitive science and artificial intelligence (e.g., Haselager, 1997;
Pylyshyn, 1987). It is in this context that the study of human performance on optimization
problems, such as the Euclidean Traveling Salesperson Problem, is of particular interest.

In the Euclidean Traveling Salesperson Problem (E-TSP), one is given a set of points
in the Euclidean plane and the goal is to determine an optimal tour; that is, to find a
closed path that visits each point in the set, starting and ending at the same point, such
that the total length of the path is minimized. E-TSP has several useful features for the
experimental study of human optimization. First, it instantiates a computationally in-

tractable1 task and, thus, captures something about the complexity of real-world tasks
that is not captured in other kinds of problem-solving tasks. Second, the task is con-
strained enough that it can be brought into the laboratory, allowing for a relatively high
degree of experimental control. Third, despite its computational complexity, the formu-
lation of the problem is simple and easy to understand for participants. For these reasons,
E-TSP constitutes a useful test-case in the empirical study of human optimization in the
face of computational complexity.

Several experimental studies of human performance on E-TSP have been performed
to date (Graham, Joshi, & Pizlo, 2000; MacGregor & Ormerod, 1996; MacGregor, Ormerod,
& Chronicle, 1999, 2000; Polivanova, 1974; Vickers et al., 2001). In these studies, partici-
pants are typically presented with a set of points on paper (or on a computer screen,
Graham et al., 2000) and are then instructed to draw the shortest possible tour through
the points (see Polivanova, 1974, for an alternative presentation format). It has been
found that, when presented in this form, participants are able to find close-to-optimal
tours in a relatively short time (Graham et al., 2000; Vickers et al., 2001) and with seemingly
little cognitive effort (MacGregor & Ormerod, 1996; MacGregor et al., 1999, 2000;
Polivanova, 1974). This finding contrasts with the apparent computational complexity
of E-TSP and has led to two general theoretical proposals.

MacGregor and colleagues have proposed that the high quality of human perfor-
mance on E-TSP reflects the workings of fixed, possibly innate, perceptual mechanisms
(MacGregor & Ormerod, 1996; MacGregor et al., 1999, 2000). More specifically, these
authors proposed that the task of finding the shortest tour coincides with a natural ten-
dency of the perceptual system to perceive minimum structure or good form (cf., Koffka,
1935). This idea has found further support in the study by Ormerod and Chronicle (1999),
who presented participants with predrawn tours and found that participants rated
shorter tours as “better figures.” In contrast, Vickers et al. (2001) have proposed that the
high quality of human performance reflects intelligent, adaptive, and task-specific cog-
nitive processing by participants. In support of their interpretation, they reported
systematic individual differences in task performance that also significantly correlated
with general intelligence tests.
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The two proposals, by MacGregor and colleagues on the one hand and by Vickers
and colleagues on the other, need not be seen as categorically opposing viewpoints. On
the contrary, part of an intelligent approach to E-TSP may be to flexibly and adaptively
exploit natural perceptual tendencies. Such a combined view is also more consistent
with Polivanova’s (1974) original proposal that both perceptual and analytical processing
contribute to human performance on E-TSP. In this paper, we set out to provide further
support for such a two-process view by studying specifically the performance of chil-
dren on E-TSP. We begin by explaining how we think the study of children’s performance
may provide insight into the bases of adult performance on E-TSP.

Rationale of the Study

In our experiment, we compared the performance of three different age groups. The
younger children were around the age of 7; the older children were around the age of

On the one hand, because perceptual (Gestalt) organization develops in infancy (Johnson
& Bremmer, 2000; Slater, 2000; Quinn & Bhatt, 2005), we can assume that perceptual
organization of point sets is the same for 7-year-olds, 12-year-olds, and adults. On the
other hand, these three age groups differ greatly in level of cognitive-analytic develop-
ment. According to Piaget’s stage theory of child development, at the age of about 7,
children make the transition from the preoperation stage to the concrete-operational
stage, and at the age of about 12, children make the transition from the concrete-
operational stage to the formal operations stage (Ginsberg & Opper, 1979; Inhelder &
Piaget, 1958). Although Piaget’s stage theory remains controversial, it is generally ac-
cepted by developmental psychologists that 7-year-olds, 12-year-olds, and adults differ
substantially in terms of cognitive-analytical abilities. In sum, the three groups are com-
parable with respect to perceptual resources but differ in cognitive-analytic skills that
they can bring to bear on the task. Reasonably, task performance of the youngest age
group will be driven mostly by perceptual processes. In this paper we will, therefore,
work under the assumption that (a) performance of the youngest group provides us with
an estimate of the level of performance attainable with little or no cognitive-analytic
processing and (b) any observed differences between the age groups reflect the relative
contribution of cognitive-analytic processing.

Our experiment can be seen as extending Experiment 1 in Vickers et al. (2001).
Vickers et al. compared performance of two groups of participants. The first group, the
Optimization group (O-group), received the standard E-TSP instruction to draw the short-
est possible tour. The second group, the Gestalt group (G-group), was instead instructed
to draw a tour that “looked most natural, attractive, or aesthetically pleasing” (Vickers et
al., 2001, p. 36), what in the Gestalt school of psychology is referred to as “good form” or
Prägnanz (see any introductory text, e.g., Nairne, Smith, & Lindsay, 2001). Vickers et al.
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found that (a) participants in both groups produced optimal tours about equally often;
(b) the shortest tour produced by the G-group for a given point set was, on average, not
systematically longer than the shortest tour produced by the O-group on the same point
set; (c) a sizable proportion of tours produced by the G-group (around 30.5% overall)
were identical to tours produced by the O-group; (d) there was larger variability in the
lengths of tours produced by the G-group as compared to the O-group; (e) tours pro-
duced by the O-group were on average shorter than tours produced by the G-group;
and (f) the G-group was on average faster than the O-group in constructing tours.

Findings (a), (b), and (c) support the notion that E-TSP coincides, at least to some
extent, with natural perceptual tendencies of the cognitive system (i.e., its propensity
for perceiving and producing good forms). Findings (d), (e), and (f) suggest, however,
that human performance on E-TSP cannot be understood solely in terms of such task-
independent perceptual processing. As discussed by Vickers et al. (2001, p. 40), findings
(d) and (e) were largely due to the G-group participants’ producing tours of qualitatively
different character than the tours produced by the O-group. That is, in addition to tours
that seemed to aim at minimizing tour length, the G-group also produced some tours
that seemed to aim at constructing spiral-like structures and maximizing tour length.
This suggests that very different kinds of tours may all be of a similarly “good form” (e.g.,
in terms of rotational symmetry and good continuation), and thus perceiving a good
form is not sufficient for deriving specifically short tours. Finding (f) further suggests that
the task of producing specifically short(est) tours requires a process that is more time-
consuming than Gestalt perception.

Notably, because of the difference in instructions to the G- and O-group, the findings
by Vickers et al. can be seen as consistent with the hypothesis that little or no cognitive-
analytical processing occurs in the O-group. Namely, it may be that participants in both
groups perceived multiple good forms in any given point set and that the G-group and
O-group differed only in that the latter specifically selected the shorter of these tours for
production. Such a simple selection mechanism, possibly entailing some search mech-
anism through a set of candidate tours, can also account for the difference in speed of
performance of the two groups. The manipulation of age in our experiment, albeit quasi-
experimental, has the advantage that all groups can receive the same instructions, and
thus differences between the age groups are not due to differences in task but, most
likely, due to differences in cognitive-analytic competence.

To facilitate differentiating child and adult performance we furthermore manipu-
lated the number of points in the point set (5, 10, or 15 points). Many studies manipulate

instance size,2 and consequently, effects of this manipulation are well-documented for
adult participants. The effect of instance size is of particular interest in the broader con-
text of the study of human optimization. A common criticism of many cognitive theories
has been that—even though they may successfully model how humans solve relatively
small and simple problems—they fail to scale up to problems of real-world size and
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complexity (Haselager, 1997; Pylyshyn, 1987). It is known that the computational re-
sources required to solve E-TSP grow extremely fast with instance size (Garey & Johnson,
1979). No known practical algorithm solves E-TSP optimally while avoiding an exhaustive

search on the 
(n – 1) !

2  possible tours for n points. Note that, even though there exist only

12 possible tours for any given 5-point instance, the number of possible tours for a

15-point instance already exceeds 4 × 1010. Without some way of limiting the space of
candidate solutions, solving E-TSP can be like searching for a needle in a haystack. For
this reason, it is of interest to study how human performance on E-TSP scales with in-
stance size. Furthermore, a comparison of the effect of instance size in the three age
groups provides us with useful information about the differences and commonalities in
the groups’ approaches to the task.

Measurement Issues

In order to describe the performance of each age group as precisely as possible, we used
several performance measures falling into three general classes: (a) measures of tour
quality, (b) between-subjects variability, and (c) violations of optimality rules. We discuss

presents an overview.

Measures of Tour Quality

All psychological studies on E-TSP use some measure of tour quality. Because the task of
E-TSP is to minimize tour length, tour quality is reflected by the degree to which partic-
ipants succeed in producing short(est) tours. A first possible measure of quality, then, is
simply the length of the tours produced by participants. The problem with this measure,
however, is that different point sets (possibly of different sizes) may afford tours of very
different lengths simply because of the particular locations of the points in the Euclidean
plane. To circumvent this problem, MacGregor and Ormerod (1996) used standardized
tour lengths instead, defined as:

where Lobs denotes the length of the observed tour (the participant’s response), and

μrand and �rand denote the mean and the standard deviation of the lengths of all possible

tours for the instance in question (estimated by a random sample of tours when the

number of possible tours is too large). MacGregor and Ormerod estimated μrand and

�rand from random samples of 10,000 tours per instance and found that participants’

absolute zL scores were larger for their 20-point instances than for their 10-point instances
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Table 1

Summary of Assessment Measures of Human Performance on the E-TSP.

Measure Definition Relevant Empirical Findings

Measures of Tour Quality

zL Increases with instance size n
(MacGregor & Ormerod, 1996)

dN Increases (almost linearly) with n
(Graham et al., 2000; MacGregor &
Ormerod, 1996; MacGregor et al.,
1999)

zd Nonlinear trend (Vickers et al., 2001).

popt Proportion of instances for
which the optimal tour was found

Decreases (slowly) with n (Graham et
al., 2000; MacGregor et al., 1999,
2000; Vickers et al., 2001)

Measures of Between-Subject Variability

Number of different tours Increases with n (MacGregor &
Ormerod, 1996)

H Increases with n (MacGregor &
Ormerod, 1996; Vickers et al., 2001)

HN
H

Hmax

Decreases with n (recomputed here
using the data from MacGregor &
Ormerod, 1996, and Vickers et al.,
2001)

Violations of Optimality Rules

Rule 1 Straight lines only Violations typically due to limited
motor precision; in rare cases
associated with non-physical
crossings (van Rooij et al., 2003)

Rule 2 No retraversals of edges Violations often precluded by
instructions (MacGregor et al., 1999;
Vickers et al., 2001)

Rule 3 No revisiting of points Violations often precluded by
instructions (MacGregor et al., 1999;
Vickers et al., 2001)

Rule 4 No crossing edges Violations relatively rare, occurring
in no more than about 6% of the
cases (van Rooij et al., 2003)
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A more commonly used measure of tour quality is the normalized deviation from
optimal, defined as:

dN =
Lobs – Lo pt

Lo pt
(2)

where Lopt denotes the length of the optimal tour for the instance under consideration.

It is consistently found that dN scores systematically increase with instance size (Graham

et al, 2000; MacGregor & Ormerod, 1996; MacGregor et al., 1999). Some authors have
drawn particular attention to the fact that the increase in dN seems to be roughly linear.

For example, MacGregor et al. argued, “This is an important outcome, since the com-
plexity of a TSP, in terms of the number of possible solutions [i.e., tours], increases as a
factorial function of the number of points” (MacGregor et al., 1999, p. 1421, emphasis in
original; see also p. 1425). We remark that this statement is misleading because there is
a crucial difference between the number of possible tours and their average length. We
performed an analysis and a Monte Carlo simulation study and found that the expected
value of dN for random tours (i.e., tours that visit points in random order) on randomly

generated instances (i.e., where points are sampled uniformly within a bounded area) in
fact increases more slowly rather than linearly with instance size. For details of this anal-

The above-mentioned concern suggests that a more meaningful description of the
instance size effect may be obtained when we evaluate the standardized tour length
relative to the expected deviation from optimal tour length of a random tour:

which is equivalent to the standardized deviation from optimal used by Vickers et al.
(2001). Vickers et al. observed that participants’ mean zd did not systematically increase

with instance size. In fact, they observed a nonlinear trend but suggested the result might
be spurious.

Finally, another commonly used measure is the proportion of instances for which
a participant finds an optimal tour (or, alternatively, the proportion of participants who
find an optimal tour for a given instance), denoted popt. It is consistently found that popt

decreases relatively slowly with instance size (Graham et al., 2000; MacGregor et al., 1999,
2000; Vickers et al., 2001). Because the number of possible tours grows factorially, the
relatively slow decrease in popt with instance size should perhaps not be regarded as a

decline in performance at all.
The preceding illustrates that how quality of performance is affected by instance

size seems to depend critically on how one defines quality. We show that a similar con-
clusion also holds for measures of between-subject variability.
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Between-Subjects Variability

Based on the notion that “good patterns have few alternatives,” MacGregor and Ormerod
(1996, p. 530) proposed that variability in the tours produced by different people for a
given instance might index the difficulty of that instance for humans. Although difficulty
is arguably better measured by the extent to which participants succeed (or fail) in pro-
ducing tours of minimum length, we agree that between-subject variability is of interest
as an index of the degree to which human tour construction is constrained by instance-
specific properties. As a first possible measure of between-subject variability, MacGregor
and Ormerod (1996) simply counted the number of different tours produced by partic-
ipants for a given instance. They found that this number was on average larger for their
20-point instances than for their 10-point instances. Because this measure is insensitive
to the degree of difference between tours, MacGregor and Ormerod also computed
response uncertainty. Response uncertainty H is analogous to Shannon’s information
theoretic formula (Shannon, 1948) for entropy, and is defined as:

where P2 denotes the set of pairs of points in the point set P, a � b, and pab denotes the

probability that edge (a,b) is in a tour produced by a participant. Here pab is estimated

by the proportion of tours produced by a group of participants that contain edge (a,b).
MacGregor and Ormerod (1996) and Vickers et al. (2001) found that H tends to

increase with instance size. The interpretation of this finding is complicated, however,
by the fact that H increases with instance size even if the set of tours produced by the
participants is a random sample from the set of all possible tours on that instance. Namely,
assuming that the tour visits every point exactly once, we know that, for a random tour,

pab =
n
N  for all (a,b) P2, where n denotes the number of points in P and N = ( n

2 ), and thus

the response uncertainty over a set of random tours is given by:

Clearly, Hmax is also an increasing function of instance size (n).

We propose to use normalized response uncertainty, HN, instead of H, when ana-

lyzing the effect of instance size:

HN =
H

Hmax
(6)

Note that HN = 1 means that H = Hmax, which indicates a maximum dispersion of observed

tours, whereas HN = 0 means that H = 0, and thus, all observed tours are identical. Using

Equations (5) and (6), we normalized the H-scores reported by MacGregor and Ormerod
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(1996) and Vickers et al. (2001). We found that for the 10- and 20-point instances of
MacGregor and Ormerod (1996) HN scores were on average 0.26 and 0.22, respectively,

and for the 10-, 25-, and 40-point instances of Vickers et al. (2001), the HN scores were on

average 0.24, 0.16, and 0.16, respectively. Interestingly, this pattern of results suggests
that response uncertainty decreases, rather than increases, with instance size.

Violation of Optimality Rules

Although E-TSP is a computationally intractable task, some simple rules can be used to
constrain the space of candidate solutions. First, because the shortest connection be-
tween any two points in the Euclidean plane is a straight line, an optimal tour will always
consist of straight-line segments only (Rule 1). Further, because E-TSP requires each point
(other than the starting point) to be visited no more than once, the number of straight-
line segments in an optimal tour is exactly the same as the number of points in the set.
In other words, an optimal tour never retraverses an edge (Rule 2) or revisits a point (Rule

3).3 Finally, an optimal tour also never contains line segments that cross in the plane (Rule
4; see also van Rooij et al., 2003). To understand these rules, no deep mathematical in-
sights are required; one may even contend that they are obvious. Note, however, that
the ability to see the validity of these rules does not imply an ability to apply this knowl-
edge successfully to the task of E-TSP.

Research shows that no more than about 6% of the tours produced by adult par-
ticipants violate one or more of Rules 2–4. Often, people do not draw perfectly straight
lines (hence, strictly violating Rule 1), but this is probably due to limited precision in motor
control. However, sometimes clearly curved line segments are observed in cases where
straight-line segments would lead to violations of Rule 4. Such situations are called non-
physical crossings and occur in fewer than 1% of all tours (see van Rooij et al., 2003, for
an overview).

Given the large number of possible tours for any given instance that violate at least
one of these rules, the low frequency of such violations means that humans solve the
E-TSP in such a way that tours violating Rules 1–4 are precluded. This observation allows
for at least two possible interpretations. First, it may mean that adult participants adopt
a cognitive-analytic strategy that embodies Rules 1–4 in some form. Alternatively, it
may be that tours that are perceived as good form happen to be those tours that do not
violate these rules. MacGregor and colleagues seem to argue the latter position (e.g.,
MacGregor et al., 1999). If their position were correct then we would expect children to
violate Rules 1–4 as infrequently as adults.

We briefly note that some researchers explicitly instruct their participants not to
produce tours that violate Rules 2 and 3. For example, Vickers et al. (2001, p. 36; see also
MacGregor et al., 1999) instructed their participants to produce tours that “passed
through each point once and only once.” Note that this instruction is logically (though
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not necessarily psychologically) redundant. In our experiment we did not explicitly in-
struct participants to produce tours that visit points exactly once. This allows us to test
whether children and/or adults spontaneously comply with Rules 2 and 3.

Overview

We set out to investigate how performance on E-TSP varies with cognitive development
(operationalized by different age groups) and to evaluate how instance size affects per-
formance as measured by the different dependent measures discussed above. In doing
so, we aim to distinguish between those aspects of performance that can be understood
in terms of perceptual processing and those aspects that indicate cognitive-analytic
processing. The use of many different dependent measures has several advantages. First,
it allows us to test whether previously reported effects are replicated in our adult group.
This not only serves to strengthen existing findings, but also serves to validate the use
of our adult group as a control group. Secondly, it allows us to pick up on subtle, quan-
titative and qualitative differences between age groups. Finally, bringing all these
measures together in one experiment also allows us to address the paradoxical effects
of instance size discussed above.

The remainder of this article is organized as follows. We start in the following section
on methods by describing relevant details of our empirical study: the participants, the
stimulus material used in our experiment, and the experimental procedure. The next
section reports on the results of the experiment. In turn, it discusses findings for three
different classes of dependent measures: measures of tour quality, between-subject
variability, and violations of optimality rules. We conclude with a general discussion in
which we explain how our results support both the hypothesis that humans capitalize
on natural perceptual organization of point sets in constructing solutions to the E-TSP
and the hypothesis that high-quality performance on the E-TSP by adult participants
reflects the use of cognitive-analytical skill.

Methods

Participants

A total of 59 participants volunteered for the experiment. Nineteen of the volunteers
were grade 2 students (M = 7.43 years, SD = 0.28), referred to as the Age7 group. Twenty-
three of the volunteers were grade 7 students (M = 12.53 years old, SD = 0.29), referred
to as the Age12 group. Participants in these two groups attended the same elementary
school and received a sticker for their participation. The remaining 18 volunteers
(M = 19.10 years old, SD = 0.65) were students at the University of Victoria enrolled in an
introductory psychology class who participated in the experiment for course credit. This
last group will be referred to as the Adult group. The experiment was undertaken with
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the understanding and consent of each participant and the understanding and consent
of the parents of each child participant.

Stimuli

The stimuli were 15 randomly and independently generated point sets, 5 for each of

for the point sets used in this experiment). The x and y values of each point (x,y) were
randomly and independently sampled from a uniform distribution on the interval
[0, 1], and scaled to an 8.7 × 8.7 cm square. All point sets were presented on paper (cut
to 14 cm × 11 cm). The points were 2 mm in diameter. The only restriction placed upon
the randomly generated instances was that no two points were to touch when presented
on the paper (i.e., each point needed to be clearly visually distinguishable).

Procedure

All participants in a given age group were tested together in a classroom. The partici-
pants were first given illustrated instructions specifying that, for each instance, the
participant’s task was to draw a line that connected all the points such that (a) the line
started and ended at the same point and (b) the total length of the line was as short as
possible. Participants were given an analogy in the form of the following story:

Each point represents a house, with one point representing your house. You
have been invited to visit all of your friends, and each one lives in one of the
houses. You want to go see each of your friends, but you do not want to have
to do any extra walking because you will be tired. So you want to choose the
path with the overall shortest distance. You start at your own house, and of
course you must end up back at your own house, making a complete tour.

The instructions were identical for the three age groups, with the following exception.
To help the Age7 group understand the concept of overall length, participants in this
group were presented with Piaget’s Matchstick Problem (see, e.g., Craig, Kermis, &

were two sets of straws. The first was composed of five straws joined together in a straight
line. The second was composed of six straws joined together at 45-degree angles making
a two-dimensional zigzag line. The straws were held up in front of the children, one above
the other. The row of straight straws started and ended farther apart than the row of bent
straws (i.e., the beginning to the end of the straight row was farther apart than the
beginning to end of the bent straws). The correct answer to the matchstick problem was
discussed, and the children were given a full explanation. This procedure was used in
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the Age7 group to ensure, as best as possible, that these participants understood what
was meant by total length in the instructions for the task of E-TSP.

Figure 1.
Illustration of the Matchstick problem. The 7-year-old participants were shown that the total
length of path A was shorter than the total length of path B.

A

B

Each participant was given a booklet containing the 15 instances (each presented
on a separate page). To control for practice effects, the order of the instances in the
booklets was randomized as follows. The 15 pages of the booklet were divided into five
blocks, each block consisting of three consecutive pages. The instances were randomly
assigned to a block with the constraint that each block contained one instance of each
size (i.e., one 5-point instance, one 10-point instance, and one 15-point instance). Within
each block, the instances were randomly ordered (i.e., 5, 10, 15 points, or 5, 15, 10 points,
etc.) Within each age group, the order of instances differed for each participant. Across
age groups, participants were randomly matched (as much as possible given the unequal
sample sizes) so that the same order of presentation would be shown once to an Age7
participant, once to an Age12 participant, and once to an Adult participant.

Participants were instructed to solve the instances in the order that they appeared
in their booklet. Participants used pencil (or pen) to draw the tours, and were allowed to
use erasers (or receive a new copy of the instance) in order to revise their tours. Upon
completion of the booklet, the experimenter checked each instance to ensure that every
point was visited at least once and that a closed path (i.e., a tour) was drawn. If either of
these instructions was not followed for a particular instance, the participant was asked
if s/he wanted to redo the task for that instance. If the participant agreed, s/he was given
a new copy of the respective point set. Testing was self-paced and occurred in one session
(for each age group) lasting between 30 to 60 minutes.
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Results

Data from one Age7 participant were excluded from analysis because the unsystematic
nature of this participant’s tours suggested that s/he was not following task instructions.
Of the remaining 870 tours, seven (by six different participants) failed to visit every point
in the point set. These were instances 8 and 13 in the Age7 group; instances 8, 10, and
12 in the Age12 group; and instances 2 and 3 in the Adult group. These tours were
excluded from the analyses. For analyses requiring tour length estimates for every cell
in the design (as in the ANOVAs reported below), we replaced the seven empty cells by
the relevant age-group average tour length for that particular instance.

Measures of Tour Quality

For each observed tour, tour length was computed in the unit square (with precision to
four decimal places). Although participants did not always draw perfectly straight line
segments to connect the points, tour length was always computed as the minimum
distance required to visit the points in the order visited by the drawn tour. Some tours

unambiguously implied by the line drawing. In these ambiguous cases we gave the
participant the benefit of the doubt and computed the shortest possible tour over the
drawn line segments.

Because the experimental design was a 3 × 3 × 5 mixed-factorial design, with one
between-subjects variable AgeGroup (with three levels, Age7, Age12, and Adult) and
two within-subjects variables of Size (three levels with n = 5, 10, and 15) and Instance (5
instances for each Size), the appropriate statistical analysis to assess how each of these
variables affected the measures zL, dN, and zd, is an analysis of variance (ANOVA) for mixed

designs (see, e.g., Kirk, 1995). However, because effects of Instance are not of interest,
we do not report them (they are merely included in the analyses for statistical control).
For the popt measure, which is the proportion of the five instances on which an optimal

response was given, the appropriate analysis is a 3 (AgeGroup) × 3 (Size) mixed-factorial
ANOVA, with Size as the repeated measure. Where necessary, post-hoc analyses were
performed on pairs of means, with an overall Type I error rate held at .05 and controlled
by using the Bonferroni adjustment: This led to all post-hoc comparisons being tested
with a per-comparison  adjusted to 0.025.

For each of the dependent measures of tour quality, zL, dN, zd, and popt

presents an overview of the results with the mean and standard error of the means

in turn.
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revisited points and retraversed edges in the tour (see also the section on violations of
optimality rules). For those tours the order in which points were visited was not always

plotted for each condition. We will discuss the results for each measure of tour quality

, Figure 2



Standardized Tour Length

For each 5-point instance (n = 5), we computed the �rand and �rand of the 12 possible

tours. Because the number of possible tours is very large for 10- and 15-point instances

(recall that the number of tours on n points is given by 
(n – 1) !

2 ), we estimated μrand and

�rand for these instances based on random samples of 10,000 possible tours. Using these

values in Equation 1, the standardized tour length, zL, was computed for each observed

tour. Figure 2a shows that, in terms of zL, performance is relatively good for all age groups,

with all age groups producing tours that are on average more than three standard
deviations below the expected length of a random tour. The ANOVA on the zL scores

Figure 2.
Measures of tour quality plotted against instance size (5, 10, 15 points) for each of the age groups
(Age7, Age12, Adult) separately. (a) Plots mean standardized tour length (zL); (b) plots mean
normalized deviation from optimal (dN); (c) plots mean standardized deviation from optimal
(zd); (d) plots mean proportion of optimal tours (popt). Error bars represent the standard error of
the mean (for the measure zL, the error bars are too narrow to be clearly visible).
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revealed a significant main effect of AgeGroup, F(2, 56) = 18.46, p < .001, partial 2 = 0.397,

with zL scores being significantly higher for the Age7 group (MAge7 = -3.363, SEM = .029)

than for the Age12 group (MAge12 = -3.518, SEM = .026) and significantly higher for the

Age12 group than for the Adult group (MAdult = –3.610, SEM = .029). The assumption of

sphericity was violated for the factor Size, but because the corrected statistics supported
exactly the same conclusions as the uncorrected statistics, we simply report the uncor-
rected results here. The main effect of Size was found to be significant, F(2, 112) = 9160.0,

p < .001, partial 2 = 0.994, with zL being significantly higher for the 5-point instances

(M5 = –1.134, SEM = .031) than for the 10-point instances (M10 = –3.733, SEM = .021), and

the 10-point instances significantly higher than 15-point instances (M15 = –5.625, SEM

= .021). There was no significant AgeGroup × Size interaction, F < 1. In sum, performance
in terms of zL gets better with instance size and does so for all three age groups equally.

Also, performance gets systematically better with age.

Normalized Deviation from Optimal

Optimal tour lengths were computed for each instance using a branch-and-bound
algorithm (see, e.g., Papadimitriou & Steiglitz, 1998) implemented in Java (to obtain a

from optimal, dN, was computed using Equation 2 for each observed tour. The ANOVA

on the dN scores revealed a significant main effect of AgeGroup, F(2, 56) = 22.73, p < .001,

partial 2 = 0.448 (with MAge7 = 0.063, SEM = .005; MAge12 = 0.036, SEM = .004; and MAdult

= 0.020, SEM = .005), a significant main effect of Size, F(2, 112) = 18.94, p < .001, partial
2 = 0.253 (with M5 = 0.026, SEM = .002; M10 = 0.036, SEM = .004; and M15 = 0.057, SEM

= .005), and a significant AgeGroup × Size interaction, F(4, 112) = 3.33, p < .05, partial 2

= 0.106. To probe the interaction we tested the effect of Size for each age group sepa-
rately. The simple main effect of Size was present for each age group (though only
marginally significant for the Adult group), but its effect size decreased systematically

with age (partial η2 = 0.361, 0.244, and 0.123 for the Age7, Age12, and Adult groups
respectively).

Standardized Deviation from Optimal

Using Equation 3, the standardized deviation from optimal, zd, was computed for each

observed tour. The ANOVA on these zd scores indicated a significant main effect of

AgeGroup, F(2, 56) = 18.46, p < .001, partial 2 = 0.397. Pairwise comparisons showed that

zd scores were significantly higher for the Age7 group (MAge7 = .400, SEM = .029) than for

the Age12 group (MAge12 = .245, SEM = .026) and significantly higher for the Age12 group

than for the Adult group (MAdult = .153, SEM = .029). Again the assumption of sphericity
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was violated for the factor Size, but as before, we report the uncorrected results.

The main effect of Size was significant, F(2, 112) = 18.43, p < .001, partial 2 = 0.248.

Interestingly, the nature of the Size effect was somewhat counterintuitive: Although zd

scores were significantly higher for the 5-point instances (M5 = .376, SEM = .031) than for

the 15-point instances (M15 = .244, SEM = .021), the mean of the 10-point instances was

significantly smaller (M10 = .177, SEM = .021) than that of both the 5- and 15-point in-

stances. This general nonlinear relationship between zd and instance size was replicated

Thus, consistent with both the analyses of zL scores and dN scores, the analysis of zd scores

shows that older participants performed better than younger participants. Inconsistent
with those analyses, however, performance was best for the 10-point instances (or at
least not different for 10- and 15-point instances). This nonlinear relationship between
instance size and zL scores mirrors Vickers et al.’s (2001) unexpected result and will be

discussed later.

Proportion of Optimal Tours

For each instance size, we computed the proportion of instances (out of the five) for
which a participant found the optimal tour. The ANOVA on these popt scores revealed

a significant main effect of AgeGroup, F(2, 56) = 16.94, p < .001, partial 2 = 0.377. The

Age7 participants (MAge7 = .204, SEM = .027) found optimal tours less frequently than

the Age12 participants (MAge12 = .270, SEM = .024), and the Age12 participants found

optimal tours less frequently than the Adult participants (MAdult = .419, SEM = .027). Fur-

ther, the main effect of Size was significant, F(2, 112) = 42.29, p < .001, partial 2 = 0.430.

Not surprisingly, optimal tours were found significantly more often for 5-point instances
(M5 = .454, SEM = .027) than for 10-point instances (M10 = .258, SEM = .022), and more

often for 10-point instances than for 15-point instances (M15 = .180, SEM = .020). Again,

no significant interaction between AgeGroup and Size was found, F < 1.

Between-Subjects Variability

In these analyses, variability in participants’ performance on the 15 instances is exam-
ined as a function of participants’ age and instance size. For each instance, the following
three measures were obtained: (a) Pdiff, the number of different tours produced by dif-

ferent participants (divided by the number of participants contributing to the count),
(b) H, the raw response uncertainty computed using Equation 4, and (c) HN, the normal-

ized response uncertainty (see Equations 5 and 6), which controls for the fact that
response uncertainty increases with instance size even for random tours.
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for all age groups (see also Table 1). There was no AgeGroup × Size interaction, F < 1.



In Equation 4, to accommodate the fact that some people traversed some edges
twice, we treated first-time and second-time traversals of an edge as two different events;
that is, a second traversal of an edge (a,b) was coded as the traversal of a hypothetical
edge (a’,b’). For each possible first-time and second-time edge for a given instance the
proportion of tours in a given age group containing that edge was computed. These
proportions served as the probabilities to compute response uncertainty (zero proba-
bilities were taken to add zero uncertainty). Treating first- and second-time traversals
as the same kind of event would inflate response uncertainty. Namely, response uncer-
tainty would, for example, be lower if half of the participants traversed an edge (a,b)
once and the other half traversed it twice than it would be if all participants traversed
the edge exactly once. Clearly, in the latter situation there is a stronger consensus
among participants.

For HN and Equation 6, despite the fact that participants sometimes visited points

more than once, for simplicity we chose to base the normalization constant Hmax on

random tours that visit each point exactly once. The alternative of computing Hmax based

on random tours that can visit points more than once would make Hmax grow even

faster with n and, hence, would only serve to strengthen the observed effect of instance
size for HN.

For each of these measures, a 3 (AgeGroup) × 3 (Size) mixed-factorial ANOVA was
performed, with AgeGroup as the repeated measure on the instances and Size the

parisons were tested with a per-comparison  adjusted to 0.025.
For all three of these measures, there was a strong and significant main effect of

AgeGroup, with the youngest participants producing more different tours and exhib-
iting the largest amount of response uncertainty, that decreased with increasing age.

Specifically, for Pdiff, F(2, 24) = 18.11, p < .001, partial 2 = 0.601, with the Age7 group

producing significantly more different tours (MAge7 = 0.531, SEM = .069) than the

Age12 and Adult groups, which did not differ (MAge12 = 0.377, SEM = .051; MAdult = 0.333,

SEM = .035). For both response uncertainty measures, H and HN, uncertainty decreased

with age: For H, F(2, 24) = 14.01, p < .001, partial 2 = 0.539, and for HN, F(2, 24) = 6.10,

p < .01, partial 2 = 0.337.
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between-instance factor. Figure 3 presents an overview of the results. All post-hoc com-



Figure 3.
Measures of between-subject variability plotted against instance size (5, 10, 15 points) for each
of the age groups (Age7, Age12, Adult) separately. (a) Plots the mean number of different tours
divided by the number of participants (Pdiff); (b) plots mean response uncertainty (H); (c) plots
mean normalized response uncertainty (HN). Error bars represent the standard error of the mean.
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All three measures also showed a strong and significant main effect of instance
size. Not surprisingly, for Pdiff, the number of different tours produced by the partici-

pants increased with instance size, F(2, 12) = 10.03, p < .01, partial 2 = 0.626, although

only the difference between M5 and M15 reached significance. Given the fact that the

number of possible tours grows factorially with instance size, the slow (almost linear)
increase in Pdiff is quite remarkable. Correspondingly, response uncertainty, H, also in-

creased across instance size, F(2, 12) = 11.70, p < .01, partial 2 = 0.661. For HN, however,

the significant main effect of Size, F(2, 12) = 9.63, p < .01, partial 2 = 0.616), showed a

different pattern: while HN did not differ for 10- and 15-point instances (M10 = .286,

SEM = .024, and M15 = .210, SEM = .020), it was significantly larger for the smallest, 5-point

instances (M5 = .537, SEM = .056).

The AgeGroup × Size interaction was marginally significant for two of the three

measures: Pdiff [F(4, 24) = 2.66, p < .10, partial 2 = 0.307] and H [F(4, 24) = 2.72, p < .10,

partial 2 = 0.312]. For both of these measures, the differences between age groups were

somewhat larger for the larger instances, likely reflecting the fact that the number of
possible solutions grows factorially with instance size. Notably, the AgeGroup × Size
interaction was not significant for the normalized measure, HN, F < 1.

Violations of Optimality Rules

Each of the observed 863 tours was coded for the frequency of occurrence of four kinds
of violations of the optimality rules: (a) two drawn line-segments crossed in the plane at
a point that is not part of the instance; (b) two line-segments would have crossed in the
plane had the participant drawn them as straight line-segments (called a non-physical
crossing); (c) a point in the instance is revisited in the tour; and (d) an edge is retraversed
in the tour. Because (a)–(d) cover all situations in which a tour intersects itself in one or
more points, we call tours for which none of (a)–(d) applies crossing-free. Recall that an
optimal tour is always crossing-free, and thus (a)–(d) are all violations of this optimality

with which they occurred.

Figure 4.
Illustrations of the different types of crossings.
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rule. Figure 4 illustrates each type of crossings and Table 2 summarizes the frequency



Table 2
For Each Age Group (Age7, Age12 and Adult) and for Each Instance Size (n = 5, 10, or 15),
the Percentage of Tours that are Crossing-free and the Frequency with which a Particular
Type of Crossing Occurred (and in How Many Tours).

Crossed
line-

segments

Non-
physical

crossings

Revisited
points

Retraversed
edges

AgeGroup Size Total
no. of
tours

Crossing-
free tours

(%)

Freq.
(tours)

Freq.
(tours)

Freq.
(tours)

Freq.
(tours)

     Age 7 5   90 82.2 5 (5)   8 (6)   8 (7)   7 (7)

10   89 83.1 7 (6)   5 (3)   12 (6)   8 (4)

15   89 76.4 4 (2) 10 (9) 28 (11) 16 (9)

Age12 5 115 87.0 3 (3)   3 (3)   9 (9)   8 (8)

10 113 93.8 0 (0)   1 (1) 12 (6) 11 (6)

15 114 96.5 1 (1)   0 (0) 10 (3) 10 (3)

Adult 5   88 95.5 1 (1)   0 (0)   3 (3)   3 (3)

10   90 95.6 1 (1)   0 (0)   3 (3)   1 (1)

15   90 97.8 0 (0)   0 (0)   3 (2)   3 (2)

All age groups produced many more crossing-free tours than could be expected
by chance alone, indicating that participants in all age groups tend to avoid crossings.
However, there were age differences: The Age7 group produced substantially more
tours with crossings (19.4%) than the Age12 group (7.6%), and the Age12 group in turn
more than the Adult group (3.7%). A significant percentage of crossings were revisited
points: 55% (Age7), 80% (Age12), and 82% (Adult). The majority of these revisited
points also involved edge retraversals; 64% (Age7), 94% (Age12), and 77% (Adult).
Interestingly, most retraversals were part of what we call a tail: If points p1, p2, . . . pk, with

k ≤ 1, are visited twice by first traversing the edges (p1, p2), (p2, p3), . . . (pk–1, pk) in order

and then immediately (without visiting any other points first) retraversing the same
edges in the reversed order, we call the sequence of edges (p1, p2), (p2, p3), . . . (pk–1, pk) a

(Adult) of the edge retraversals were part of a tail. Finally, we also note that the young
participants produced non-physical crossings (29% of all crossings for Age7 group and
10% for the Age12 group), whereas Adults did not (0%).

We remark that our experiment has, as a side-product, produced some results that
are relevant for the continuing debate about the role of the convex hull in human per-
formance on E-TSP (see, e.g., MacGregor & Ormerod, 1996, 2000; Lee & Vickers, 2000;
van Rooij et al., 2003). This rather specialized debate falls outside the main scope of this
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tail (see Figure 4 for an example). As many as 55% (Age7), 97% (Age12), and 100%



paper, and the interested reader is referred to Appendix C for the presentation and dis-
cussion of those results.

Conclusion

With our experiment we set out to address two general questions. Is overall level of
performance on E-TSP a function of level of cognitive-analytic development, and how
does quality of performance at each level of cognitive-analytic development scale with
instance size? We observed that even the youngest children produced tours that were,
on average, more than three standard deviations shorter than a random tour and within
about 7% of the optimal tour length. Further, even for the 15-point instances, the
youngest children found the optimal tour as often as 10% of the time, on average, com-

pared to a 1 in 4 × 1010 chance of finding it by chance. The performance of young children
shows that high quality of performance is attainable with little or no analytical process-
ing. This finding supports MacGregor, Ormerod, and Chronicle’s hypoth-
esis that the task of E-TSP coincides with natural perceptual tendencies in humans
(MacGregor & Ormerod, 1996, MacGregor, Ormerod, & Chronicle, 1999). On the other
hand, we have also found significant and systematic improvements in performance with
age, with older participants producing on average shorter tours than younger partici-
pants. This finding suggests that older participants are successfully exploiting their
analytical resources to perform the task better than younger participants.

We investigated how often participants produced tours containing violations of
different types of optimality rules, collectively called “crossings”. We found that even
the youngest children produced relatively few tours with crossings (about 19.4% of all
tours). This finding suggests that a high level of crossing-avoidance is attainable with
little or no analytical processing and is consistent with the idea that perceived good forms
tend be crossing-free. At the same time, however, we found that the number of tours
with crossings systematically decreased with age, indicating that older participants use
strategies that go beyond perceptual processing to avoid crossings in tours.

We have replicated the effects of instance size for all dependent measures reported
in the literature in the adult group. Interestingly, all these effects are also present in the
data for the 7- and 12-year-old participants. Our finding that performance scales with
instance size in a similar way across the age groups suggests that most cognitive pro-
cessing on E-TSP is common across the age groups. Although we did find that the
deviation from optimal (dN) grew somewhat faster with instance size for the younger

age groups and some qualitative differences in performance (types of crossings), we also
found that, relative to the length and number of all possible tours for an instance, per-
formance improved with instance size (viz., zL increases; zd does not increase; and popt

grows relatively slowly with n) and did so for all groups equally.
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We interpret the pattern of results as follows: Participants of all ages are able to
exploit a computationally cheap and cognitively low-level process to significantly reduce
the psychological problem space for E-TSP, hence avoiding much of the computational
complexity inherent in the task. This explains how even 7-year-olds are able to attain a
relatively high level of performance. Importantly, the nature of this process is such that
the relative gain in problem-space reduction grows with instance size (also reflected in
the decrease for all age groups in the normalized response uncertainty, HN, as a function

of instance size). Note that the perceptual process of finding good form, as hypothesized
by MacGregor and colleagues, can perform the role of this hypothesized computationally
cheap process because, arguably, the proportion of possible tours that are good form
decreases drastically with instance size. Consider, as an illustration, the restriction that
the good forms are (typically) crossing-free (see also Ormerod & Chronicle, 1999): For
5-point instances, about 28% of all possible tours are crossing-free, while for 10-point
instances, no more than 0.2% of all possible tours are crossing-free. Given that there are
likely more rather than fewer restrictions (i.e., not all crossing-free tours are necessarily
good form), the proportion of tours that are good form decreases probably even faster
with instance size.

Our interpretation also naturally reconciles the seemingly conflicting results of in-
stance size reported in the literature and replicated here. On the one hand, the obser-
vation that performance (as evaluated relative to the length of optimal tours) worsens
with instance size reflects that the cost of analytical processing increases simply because
the complexity of the task grows (i.e., the size of the problem space grows with instance
size). On the other hand, the observation that performance improves and response-
uncertainty decreases (as evaluated relative to random tours) with instance size can be
understood as an increasing payoff of perceptual processing with increasing n (i.e., the
reduction in the problem space based on good form also increases with instance size).

In sum, we conclude that both MacGregor and colleagues and Vickers and col-
leagues are probably right: Perceptual processing, aided by little or no analytical skill, is
sufficient to produce relatively high-quality solutions for visually presented E-TSP, as is
evidenced by the high level of performance in children, but at the same time, adults seem
to be using their analytical skills intelligently so as to improve upon what their visual
systems provide. It seems to us that this kind of strategy may be adaptive not only for
visual problem-solving tasks but also for complex optimization tasks in general. Possibly,
the ability of humans to behave near-optimally in many complex real-world tasks may
be similarly understood in terms of them intelligently capitalizing on computationally
cheap, low-level processes provided to them by evolution and/or development (cf. Todd
& Gigerenzer, 2000).
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Notes

1. A computationally intractable problem is a problem for which no algorithm exists that
solves the problem in polynomial time (see, e.g., Garey & Johnson, 1979).

2. The size of an E-TSP instance is the number of points in the instance. This manipulation
is often referred to as problem size in the psychological literature on E-TSP. To avoid
confusion between “problem” and “instance,” we choose to use the term instance size
instead. Following convention in computer science, we use the word instance to refer
to a particular instantiation of the E-TSP problem (i.e., a particular set of points for which
one is to find the shortest tour), and the word problem to refer to the generic problem,
called E-TSP.

3. An edge retraversal implies that a point is revisited, but the reverse is not necessarily
true.

Appendix A

Expectations for Random and Optimal Tours on Random Instances

First, we define the terms random tour, random point, and random instance. Let P be a
point set consisting of n points, P = {p1, p2, ..., pn}. A random tour on P is a tour, T, that visits

each point in P exactly once and in a random order (sampled without replacement). The
last point visited is joined with the first point visited to complete tour T. A random point
(in the unit square) is a point p = (px, py), where the coordinates px and py are independent

uniform random variables, with 0 ≤ px, py ≤ 1. A random instance is a point set P where

every point p∈P is a random point.
We note that, if the area in which points can be located is fixed (as is the case in the

psychological studies), then the expected tour length is a linearly growing function of
n for random tours on random instances. Specifically, if T is a random tour and P is a
random instance with |P| = n, then the expected length of T, E(LT), is a linearly increasing

function of n. The basic rationale is that any tour with n points has n edges, with each
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edge (p,q) having the same expected length, E(distpq). Because E(LT) is the sum of the

expected values of the individual lengths of each edge, we get E(LT) = nE(distpq). For a

formal proof, see Lazoff and Sherman (1994). Furthermore, Lazoff and Sherman (1994)

have shown that if the points in P are restricted to lie in the unit square [0,1]2 then
E(distpq)  0.5214, and thus, E(LT) is approximately 0.5214n.

For any given instance P, exactly one optimal tour length (Lopt | P) exists and remains

constant across all random tours on P. This means that the tour length of any random
tour, T, on given random instance, P, is a random variable (Lobs | P) that it is independent

of (Lopt | P). This observation is useful in deriving the expected value of the tour-length

measure dN for random tours T on random instances P, E(dN). Note that while (Lopt | P) is

constant for a given P, for all random instances of the same size n, (Lopt | n) is itself a random

variable across the Ps.

From Equation 2 we have dN =
Lobs
Lo pt

– 1 for an observed tour of length Lobs . We next

clarify the notation for Lobs: For a given random instance P and a given random tour T

for P, Lobs = LT . Further, we can write  . Next, we first determine E(dN | P,T),

and then we derive E(dN) for all possible random tours T on all possible random instances

P of a given size n on the unit square.
For a given random instance P and a given random tour T for P,

We could, if we wished, further reduce Equation A1 by noting that E(LT | P) = C n, where

C is given above as approximately 0.5214 for the unit square. To take the expectation
over all possible random instances of size n, we have:

because (LT | P) and (Lopt | P) are independent.

We now consider how E(Lopt | n) grows as a function of n. It has been shown that

the expected tour length of optimal tours on a random instance of size n, E(Lopt | n),

converges in probability to some constant times the square root of n (Diaz, Petit, &

Serna, 1998). That is, there exists a constant β, such that:

E L n n nopt( | ) , for , a.s. (almost surely) (A3)→ → ∞

Using this result in Equation A2, we conclude that,

PERCEPTUAL OR ANALYTICAL PROCESSING? 69



Thus, in the limit of n, E(dN) grows slower than a linear function of n, viz., as a square-root

function of n.
Unfortunately, the limit in Equation A4 shows convergence in probability as n goes

to infinity, but it does not exactly specify E(Lopt | n) for finite n (Diaz, Petit, & Serna, 1998).

Instance size in psychological experimentation is typically small, on the order of 5 ≤ n ≤
40. To get an idea for how E(Lopt | n) grows as a function of n for small n, we performed a

Monte Carlo simulation study to estimate the E(Lopt | n). Because E-TSP is an NP-hard

problem, we chose to limit the simulation to n ≤ 15. For every n, a set of random instances

on [0,1]2 were generated; 10,000 instances for each n ≤ 10, 1,000 instances for n = 11, 12,
and 100 instances for n = 13, 14, 15. For each instance the optimal tour length was found
using a branch-and-bound algorithm implemented in Java (to obtain a copy of the pro-

opt | n) was estimated by computing

the average optimal tour length over the 10,000 (or 1,000 or 100) random instances for
each level of n.

The simulation results, given in Table A1, show that for these small, finite values of
n, E(Lopt | n) grows, at worst, linearly as a function of n. Note that there is a slight hint of

a negative acceleration in these estimated functions, which is consistent with our finding
in Equation A4 that as n goes to infinity E(dN) will increase with n, almost surely, as a

square-root function of n.

Table A1
Expected Tour Length, E(LT | n), Expected Optimal Tour Length, E(Lopt | n), and
Expected Normalized Deviation from Optimal, E(dn | n), for Random Tours as a Function
Instance Size, n, for Random Instances in the Unit Square. (Here E(Lopt | n) and
E(dn | n) are estimated by Monte Carlo simulation.)

           N 5 6 7 8 9 10 11 12 13 14 15

     E(LT | n) 2.61 3.13 3.65 4.17 4.69 5.21 5.74 6.26 6.78 7.30 7.82

E(Lopt | n) 2.13 2.32 2.48 2.61 2.74 2.88 2.99 3.10 3.17 3.30 3.35

E(dn | n) 0.23 0.35 0.47 0.60 0.71 0.81 0.92 1.02 1.13 1.21 1.33
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Appendix B

x,y-Coordinates in [0,1]2 of the Points Sets in the Experiment.

         Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

         x y x y x y x y x y

     0.982 0.377 0.591 0.666 0.637 0.209 0.683 0.018 0.092 0.249

0.682 0.385 0.578 0.798 0.746 0.970 0.533 0.385 0.138 0.625

0.037 0.111 0.201 0.840 0.531 0.542 0.086 0.624 0.329 0.480

0.841 0.474 0.700 0.831 0.429 0.686 0.308 0.473 0.042 0.195

0.615 0.288 0.518 0.752 0.190 0.247 0.728 0.932 0.487 0.824

         Instance 6 Instance 7 Instance 8 Instance 9 Instance 10

         x y x y x y x y x y

     0.439 0.322 0.453 0.232 0.451 0.108 0.850 0.583 0.024 0.707

0.831 0.439 0.419 0.349 0.166 0.686 0.988 0.661 0.746 0.337

0.554 0.563 0.858 0.676 0.822 0.093 0.761 0.443 0.985 0.636

0.452 0.110 0.445 0.036 0.079 0.360 0.768 0.133 0.767 0.389

0.599 0.569 0.101 0.120 0.736 0.646 0.382 0.581 0.597 0.861

0.251 0.380 0.107 0.252 0.845 0.747 0.454 0.021 0.976 0.158

0.034 0.584 0.238 0.217 0.454 0.978 0.235 0.112 0.883 0.184

0.357 0.095 0.750 0.832 0.327 0.791 0.921 0.040 0.144 0.011

0.307 0.553 0.634 0.828 0.159 0.046 0.796 0.131 0.462 0.089

0.550 0.505 0.741 0.588 0.004 0.920 0.290 0.136 0.501 0.076

         Instance 11 Instance 12 Instance 13 Instance 14 Instance 15

         x y x y x y x y x y

      0.585 0.791 0.447 0.423 0.100 0.349 0.087 0.035 0.975 0.611

0.916 0.537 0.939 0.889 0.665 0.486 0.867 0.756 0.766 0.345

0.101 0.962 0.413 0.528 0.257 0.187 0.638 0.394 0.885 0.294

0.540 0.467 0.245 0.940 0.707 0.323 0.302 0.787 0.560 0.900

0.945 0.460 0.334 0.313 0.028 0.790 0.169 0.162 0.834 0.703

0.510 0.804 0.556 0.729 0.701 0.275 0.372 0.300 0.968 0.301

0.969 0.427 0.185 0.014 0.590 0.165 0.987 0.182 0.321 0.362

0.063 0.969 0.455 0.284 0.837 0.199 0.028 0.354 0.677 0.503
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         Instance 11 Instance 12 Instance 13 Instance 14 Instance 15

         x y x y x y x y x y

0.519 0.994 0.287 0.652 0.698 0.768 0.556 0.141 0.350 0.787

0.689 0.625 0.624 0.977 0.466 0.267 0.606 0.944 0.884 0.195

0.932 0.300 0.444 0.986 0.333 0.166 0.679 0.155 0.781 0.759

0.341 0.611 0.203 0.112 0.022 0.834 0.013 0.780 0.318 0.749

0.007 0.769 0.807 0.487 0.436 0.856 0.012 0.516 0.709 0.817

0.174 0.227 0.758 0.214 0.858 0.669 0.187 0.137 0.868 0.437

0.222 0.043 0.527 0.699 0.635 0.908 0.950 0.964 0.753 0.389

Appendix C

The Role of the Convex Hull in Children’s Performance on E-TSP

The convex hull of a point set in the Euclidean plane is the smallest convex polygon that
contains all the points in the set. A point on the convex hull is called a convex-hull
point. MacGregor and Ormerod (1996) have proposed that, because people can spot the
convex hull via some automatic perceptual process and optimal tours always visit points
on the convex hull in order of adjacency, people may use a strategy that specifically aims
to produce tours that connect adjacent convex-hull points in order of adjacency (Pre-
diction 1), as well as connect adjacent convex-hull points to each other (Prediction 2).
Van Rooij et al. (2003) have argued that these hypotheses do not find support in the
available data for adult participants. Given the presumed perceptual bases of these pre-
dictions, we would expect these predictions to be borne out at least in children’s
performance data. We report our relevant results below.

Test of Prediction 1

Because crossing-free tours necessarily visit points on the convex hull in order of adja-
cency, they do not bear on the hypothesis that people aim at producing tours that visit
points on the convex hull in order of adjacency (see van Rooij et al., 2003, for a complete
argument). Thus we need to specifically inspect tours with crossings to test this hypoth-
esis. In our data, 52 tours for the Age7 group, 26 tours for the Age12 group, and 10 tours
for the Adult group contained one or more crossings. Of these tours 19%, 58%, and 70%
followed the convex hull for the Age7, Age12, and Adult groups respectively. We realize
that these percentages are not very reliable for the Age12 and Adult groups, given the
small numbers of cases. However, in the case of the Age7 group, clearly the majority of
tours with crossings do not visit points on the convex hull in order of adjacency. If any-
thing, this finding is evidence against the convex-hull hypothesis for the youngest age
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group. Because performance in this group is presumably driven most by perceptual
processing, this observation casts doubt on the idea that perceptual processing in E-TSP
specifically induces tours that visit points on the convex hull in order of adjacency.

Test of Prediction 2

We first determined for each age group separately the average number of indenta-

tionsi observed for each instance (Iobs). For each instance we computed the expected

mean (Iexp) and standard deviation (�I) of the distribution of indentations for random

tours, as well as the number of indentations in the optimal tour for that instance (Iopt)

(Because instances 2 and 5 had only one interior point, and thus �I = 0, these instances

were excluded from this analysis). Then we computed two indentation scoresii: (a) the
standardized difference between observed and expected number of indentations,
D = (Iobs – Iexp)/�I and (b) the standardized difference between observed and optimal

number of indentation, Dopt = (Iobs – Iopt)/�I.

We performed one-sample t-tests for each age group separately and found that D
was significantly smaller than zero for the Age7 group (MAge7 = –.487, SEM = .194),

t(12) = –2.66, p < .05, but not for the Age12 group (MAge12 = –.351, SEM = .224) or for the

Adult group (MAdult = –.299, SEM = .230), both ps > .10. Similarly, Dopt was significantly

smaller than zero for the Age7 group (MAge7 = –.515, SEM = .331), t(12) = – 2.25, p < .05.

For the Age12 group and the Adult group, means of Dopt were marginally smaller than

zero (MAge12 = –.397, SEM = .176; and MAdult = –.327, SEM = .128), both ps < .10. Hence,

despite the strictures of van Rooij et al. (2003), we find that our participants showed some
tendency to connect adjacent convex-hull points to each other. In line with its presumed
perceptual basis, this effect was most pronounced in the youngest age group.

Notes to Appendix C

i. An indentation in a tour occurs every time the tour visits at least one interior point
between two convex hull points.

ii. Note that the finding by MacGregor and Ormerod (1996, Experiment 1) that participants
produced tours with fewer indentations than expected by chance (viz., on average,
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1.8 versus 2.2 indentations, respectively) is confounded by the fact that their partici-
pants tended to find (close to) optimal tours (viz., optimal tours for their instances
had, on average, 1.5 indentations). To control for such a possible confound we com-
pare the number of observed indentations to the number of indentations in both
random and optimal tours.
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