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ABSTRACT 

111 recent years there has been increasing interest in nonlinear speech modeling. 

In our approach, a speech signal is modeled as a sum of jointly amplitude ( A M )  

and frequency (FM) modula.ted cosines with slowly-varying ce~lt~er frecluencies. The 

key problem is to extra.ct the center frequency ancl the a.inplitucle and frecluency 

modu.lations for each forma,nt in t,he nlodel from the inea,sured speech signa,ls. 

In this study, we describe the speech signal in terms of stcatistical inoclels and 

apply statcistical nonlinear filtering techniclues (Extended I<alma.n Filter) t,o esti- 

mate the amplitude a,nd frequency. The Ahl and Fbl signals are estimated for a,ll 

the fclrmants simulta~neously in an efficient and comy>utationally t.ract.sble manner. 

Using Cra,mer-R.ao 11ound techniques, we ca.n compa.re t'lle performanc(- of our com- 

putationally feasible estima.tors relative to the perfornlance of the coniput,a.tionally 

intra.cta,ble optimal estima.tor. Recoml~ination of the amplitude aad frequency sig- 

nals g;enerat.ed by our approach results in fa,it'hful recollstruction of speech in both 

the t i  me a.nd frequency c1oma.ins. 

We consider two applications. The first a.pl~lication, ~: l l ich is forma.11t tra,cl;ing, is 

a direct application of our non1inea.r filters since the fonna.nt frecluencies are a pa.rt. 

of our nonlinear model. The a.pplica,t'ion of our entire frame\vorl; to speech coding 

is also discussed. 





1. INTRODUCTION 

There has been extensive recent interest in inodeliilg a speech resonance us- 

ing a signal y(t) with time-varying amplitude a( t )  and phase $(t) .  i.e., y ( t )  = 

a ( t )  cos(4(t)), where a ( t )  is an amplitude-modulation (AM) and d( t )  is a phase- 

modulation (PM). If b ( t )  is the integral of a more fundameiltal sigllal, then PM 

is really frequency-modulation (FRfI). The initial nlotivation for modeling a speech 

resonance using an AM-PM or AM-FM structure is Teager's work on nonliilear 

modeling of time-varying speech resonances [l, 21. 

In this chapter, we first provide a brief description of speech production mech- 

anisrr~ and linear speecll illodeling ideas. Then we present evidence of nonlinear 

effects in speech. .4 ~lonlinear speecll model and an existing demodulation methocl 

are introduced next. The potential applications of the ~lonlineai- model is also dis- 

cussetl. Finally we provide an overview of this study and an outline of the tecllilical 

reporl,. 

1.1 Speech Productioil 

Speech is produced by voca,l organs which coilsist of lungs aad trachea., la,ryns. 

and vocal tract. Lungs supply coillpressed a,ir to the system which is delivered 11y 

way of the trachea. The larynx is a complicated systenl of ca.rtilages and muscles 

containing and controlling the voca.1 cords whose ol~ening a.nd closiilg call for111 a. 

qua.si-periodic pulse tra.in. The glott'al pulse tra,in, which is the princip,le escita.tion 

source for speech, is then modula.ted or filtered 11y the voca.1 t,ra,ct. 

Acoustica.lly, the vocal tract is a tuhe of nonuniform cross sect'ion, a.pproximately 



17 crn long in adult males, which is usua.lly ope11 a.t one end and nearly closed a,t 

the other. Such a tube is a. distributed-para.meter structure and tl-(us ha,s nla,ny 

natural frequencies. The term "speech resonances" refers to the oscillator syst,eills 

formed by loca,l cavities of the voca,l t,ra.ct which em11ha.size cel-t'a,in frt:quencies a,ild 

de-emphasize other frequencies during speech production. These resonances, also 

known a,s formants, a.re the most important a,coust,ical chara.cteristic2; of the vocal 

tract. The glottal pulse train is rich in harmonics and these harmonics intera.ct 

stron,sly with the voca.1 t,ra.ct resonances to a.ffect the tone quality of the voice. For- 

mants thus provide the listener's priinary source of inforimation about the positioli 

of the speaker's vocal organs [3]. 

1.2  Linear Speech Models 

In linear speech modeling, speech is clescribed by a. liilea,r predictio~l (LP) nlodel 

where y(.) is the discrete-time speech signa,l, p is the model order: a l , .  . . : a,  are tlie 

prediction coefficients a,nd e ( -  ) is the precliction error. 

y(-)  can also be viewed as the output of an all-pole linear filter with u l , .  . . . cr, 

as the filter coefficients and e(.)  a.s the input. Whei~ the order p is prol?erly chosen, 

the all-pole filter, soinetinles referred to as a. vocal tract filter, is a, plausible illode1 

of the voca.1 tra,ct. The poles of the linear filter tra,nsfer fuilctioil chara.cterize speech 

formants. In the 1inea.r moclel, the moclel coefficients, and hence the f'ornlants. a're 

assumed constant over ea.ch short-time a.na,lysis frame (about 10-30 m!~) .  Thus t,his 

classic: approach assumes some local sta.tiona.rity of the speech signa.1. 

1.3 Nonlinear Effects I11 Speech 

Experimental evidence in Tea.ger's \vork [l,  21 ha,s motivated researc:hers [;2? 51 t,o 

investigate the possibility of rela.xing this local stat.iona,rity a.ssuinption a.nd using a 



more refined model where variations of the phase and amplitude of speech resoilailces 

can be modeled and detected on an instantaneous-sample time scale. 

Teager found evidence that speech resonances exhibit more complicated modu- 

lation structure than a linear model could possibly describe. Consider the all-pole 

linear filter model introduced above. Each pair of complex conjugate poles cor- 

respclnds to  a second-order resonator with an exponentially-damped cosine as its 

impulse response: 

where w, is the center (forma,nt) frequency and rr > 0 coil$rols the formant band- 

width. If a signal represeilting a speech resona,nce were produced by a second-order 

lineal. resonator, which is inferred in liilea,r speech modeling, then the signal would 

ha,ve a exponentia.lly decag~ing envelope. In contra,st, Tea.ger found that I~a,ndpa.ss 

filtering speech vowel sigilals around forma.nts resulted in signals with several enve- 

lope "bumps" per pitch period ( [4] Figures 5-7, [I] Figure . 5 ) .  These bumps indicate 

some kind of modulation in each forma.nt. 

Teager's work has a,lso provided indica,tiolls and p1ausil)le explanations of how the 

speech resonances can change rapidly both in frequency a,nd amplitude even witlliil 

a single pitch period, ba.sed on ra,pidly-varying and sepa.rated airflows in the vocal 

tract. It is known tha.t slow time va,ria,t,ions of t,he elements of a simple second-order 

oscillator can result in a.mplitude or frequency modulation of the simple o~cillat~or's 

cosine response. To see this, co~lsicler a.11 undriven, ~uldamped oscillat'or consisting 

of a mass m and a spring with stiffiless coefficient k.  The equation of lnotion is 

where x ( t )  is the displacement. If 717 or k are time varying, then the frecluency w, is 

also time-varying. For example, assume it call be lnodeled as 



If w ,  << w, and w f  << w,,  it ha,s been shown [GI that the approximate solution of 

Eq. (1.2) is 

which is an FM signal. Similarly se

c

ond-order oscillators with time-var,ying da.mping 

generate responses that contain ampli t,ude modulatioll 171. Thus, during speech 

production, the rapid variation due to separated airflow of air ma.sses and effecti~~e 

cross-.sectional a.reas of vocal tract cavities can ca.use modula.t,ions of the pressure 

and velocity fields. 

1.4 Nonlinear Speech Model 

All these consideratiolls lead to the lllodeling of a single speech res'onance by an 

AM-FM model [4] 

where O ( k )  - R,k + 0 ,  q ( n )  + H for some fuilct,ioil q ( . )  alld c:onstant,s O,., 

R,, and H and R, is the formant frequency of the resonance. The instantalleous 

frequency is defined as RinSt (k)  = R,  + R,,q(k) .  The total speech signal y ( k )  is then 

modeled as a linear superpositio~l of such AM-FM terms 

where I is the number of speech forma.ilts which are indexed by i .  

Obviously, in order to apply the nonlinea,r speech model to anji speech processing 

problems, it is necessary to estiina.te the a,inplitude a ; ( k )  a,ild pha.se p ; ( k )  modula- 

tions from the measured speech signa,l y ( k ) .  One such estimation a,lgorithm is the 

energy seprat ion a.lgorithn1 based on Tea,ger's energy opera,tor [5: 41. 

The discrete-time Teager energy operator !l?, a.pplied to a signa.1 z ( k ) ,  is tle- 

fined 14, Eq. ( S ) ]  to  be Q [ z ( k ) ]  : ' (A : )  - z ( k  - 1 ) z ( k  + 1 ) .  ( A  corresl)ondiilg 

continuous-time operator exists but t,he current study is restricted to discrete-time 



problems). Let y(k),  representing a single speech resonance, he modelecl as in 

Eq. (1.5). Then the DESA-1 algorithm [4, Eqs. (107)-(108)] for computing csti- 

mates of Oinst(k) and la(k)l fro111 the signal ~ ( k )  is defined by the fclllowing three 

equa1,ions: 

when: "hat" (i .e. ,^) indicates an estimate. 

Single resona.nces a.re extra,cted froin mea.sured speech by ba,ndpa,s:; filt.ering the 

speech signal with a ba.nk of 11anclpa.s~ filters, such a.s Gabor filters, with center 

frequencies a,t the forina.nt frequencies selectecl from the short-time speech spec- 

trum [4]. Ea,ch filter is responsible for one pa,rticula,r term a,nd the 1)andwidt.h of 

the i th bandpass filter is determined 11y the l~andwidth of the tern1 ai(k)  cos(di(k)). 

Thus resonances are assumed to be rela.t8iveljr independeilt of ea.c.11 other. The energy 

operator is then applied to the output of ea.ch handpass filter to extract the envelope 

and instantaneous frequency signa.1~. 

In [4], an importa.nt issue is the l~aadwidth of the 11andpa.s~ filter for estra,cting 

speech resonances. It should not be too wide 11eca.use then significant cont~ibutions 

from neighboring formants will be included. On the other 11a.ncl: the handpa,ss filt,er 

shoultl not have a very na.rrow passbaad because sonle informa.tion in the resona.nce 

ca.n be either missed 01. deempha.sized. h/Ietl~ods which optimize the trade-off be- 

tween these t.wo consitlera.tions in choosing t,he filt,er ba.~iclwidt,h rec1ui:t.e a,clclit~ional 

study. 

The case of one resonance observed in noise is considered in [S]. The 011sel.ved 

signal is first passed through a lmnk of bandpa,ss filters. At ea,ch instant, the energy 

operaior is applied to the channel response that has the largest energy. The band- 

width of the filters are determined by the tra.de-off between suppressing the noise 



and passing as lnuch signal energy a.s possible and the single signal is tra.cliec1 ( 1 ) ~ .  

an energy measure) as it moves from filter to filter. 

1.5 Application Of Nonlinear Speech Model 

The nonlinear speech model can he applied to many speech processing taslis, 

inclulding speech recognition, speech restora~tion, and speech coding. 

The AM and FM signals extracted froin the nolllinear inodel can be incorporated 

as new features into current speech recognition frameworks, e.g., hildden Ma.rl<ov 

models (HMM). Since the nonlinear speech model is capable of charac.terizing ra.pid 

va.riations in speech, incorporating such idem should genera,te interesting results. 

The :nonlinear model can he especially useful in phoneme transitions where t,he 

vocal tract changes its shape rapidly and conventiona.1 analysis methods basecl on 

1inea.1. models a're insufficient [9> 10, 11, 121. 

Speech restoration is another a.rea where the lloillinear lrloclel can b'e useful. The 

idea. is to  estimate AM a,nd FM signa.1~ in the presence of a. de.ta.ilec1 noise inodel 

that realistically describes the clegra.clec1 speech signal, e.g., a moclel for cockpit noise 

sources. Then these estiinat,ecl signals can Ile combined t.o yield the restored speech. 

This approa.cl1 is particula.rly promising whe~l the moclula~t.ions are exi;tactecl using 

statistical estimation met~hocls, since t,heil the design of the algorit,hms for reject'ing 

noise can be simplified. 

If the nonlinear model more accurately reflects physical reality than a. linea,r 

mode:l, then coding ba.sed on the non1inea.r inodel will provide better performa~nce 

for a given hit rate t11a.n coding based on a. linea,r model. One possibil.ity [12] is t'o 

adopt techniques simila,r t o  the forrna,nt [13] and the pha,se [14] vocoders and comhine 

their itdvantages. Another possibility, which is loosely ba,sed upon sinu:;oidal coding 

idea.s [15, 16, 171, is t o  incorpora.te solrle linear sl~eech coding methods, such a.s LPC! 

and CIELP, in the nonlinea,~ speech cocler. Of t,hese t,hree broa,d a.pplica,t,ion a,rea.s, 

we haire focused on the speech coding a,rea, in this study a,iid our result's are reported 

in Chapter 5. 



1.6 Overview 

I:n this study, we present a novel den~odulatioi~ algorithin for the AM-FM non- 

linear speech model. We describe the signal in terms of statistical models for a;? 

$;, and the noise and apply nonlinea,~ filtering techniques (Extended I<a,lma.n Filter) 

to  estimate a; and 4; from the noisy signa,l. A linear superpositioil o f  terins (i.e., 

Eq. (1.6)) aad the presence of noise are considered simultaneously. 

The statistical point of view of our approa,ch simplifies the design of algoritllllls 

for the rejection of noise in the speech signal a,nd allows the a,pplication of the 

estensive theory of sta,tistica.l estima.tioa. The AM and FM signals are estima.ted 

for all the forma,nt,s simult.aneously in a.n efficient, and computat.i~nitlly t'ra.ct,a.l~le 

manner. Using Cramer-Rao bound t'echniques, we can coillpa,re the ~>erforma.nce of 

our c~omputationally fea.sible estimators rela.tive to the performa.nce of the optinla,l 

estimator. Reconlbination of the alllplit,ude a,nd frecpency signals genc:ra.tecl 11y our 

approach results in faithful reconstruction of speech in 110th t . 1 ~  time and frecluency 

domains. 

We consider two applications. The first a.pplica.tion, ~ l l ~ i c h  is for~lla.~.~t tracking: is 

a direct applica.tion of our nonlinear filters since the formant frequencies a.re a. pa,rt 

of our nonlinear model. The second a.pplication is speech coding. The idea is to use 

our nonlinear filtering inethocls to estima.te a i ( k )  a,ild & ( k )  for each fornlant in the 

speech signal. These estimates are then coded, transmitted and decoded. Fina,lly, 

the speech is reconstructed from the decoded estima,tes. We have experimented ~v i th  

a variety of tecl~iliilues to code the estima.ted signa.1~. 

The rema.inder of the techllical report is orga,nized as follows: In (lhapter 2 we 

describe the st atistical model and estima.tion problem and the Cramer-R,a.o bound 

for thle estimation problem. We also discuss parmneter iclentificatioll for the inodel 

and a, particular suboptinlal nonlinear estima,tor: specifically, the Extended Iiallnan 

Filter.. In Chapter 3 we describe the applica.tions of our approach to some syilthetic 

exa.mples and formant tra,cking pro11lem.r;. In Cha.pter 4 we co111paa.e cur approa.ch 



with the energy separatioil algorithm. The applicatioil of t,he entire fra.meworl< 

to speech coding is described in Cha,pt,er 5. Fina,lly, we summa,rize our results in 

Chapter 6. 



2. MODEL-BASED DEMODULATION ALG0:RITHM 

R.ecently there has been substantial interest in taking a signal y(k) and extracting 

amplitude a(k)  and pha,se #(k) modula,tions using Tea.ger's energy op,era,tor 18, IS: 

12, 19, 4, 5, 21. More precisely, the signal is mocleled as y ( k )  = ct(k) cos(Q(k)) 

and the goal is to estimate a(k)  and #(kj (or the first difference clf Q(k)) from 

the measured signa.1 y(k). The purposes of this cha.pter a,nd next chapter are to 

propose a, corresponding ~ta~tistica.1 problein forinula.tion, a.na1yze the best-achieva.11le 

performance for tthis formula,tion by comput,ing the CI-amer-R.ao bou~ld, propose a. 

practica.1 ~uboptima~l estimator for this formula,t.ion, a.nd delnonstrate ,the estima.tol. 

on several speech a.na.lysis a.pplica,tions. 

In our approach, which we call t,he 11hclel-Based Dern.odulntion Algorithm. (h/lBDA), 

we siinultaneously consider a. linea,r superposition of t,erms, i.e., y = xi a, cos($;), 

and the presence of noise. We describe the signal in terms of sta,tistic,al models for 

a;, r$;, and the noise and apply nonliilea,r filtering t e c l ~ n i c ~ ~ ~ e s  to estimate u; a.iicl O, 

from the noisy signal. 

This chapter is organized as follows: In Sections 2.2 a,nd 2.3 we describe the 

sta.tis'tica1 model and estiinatioil prol~lem and the Cra,mer-Rao bound for the esti- 

mation problem. In Sections 2.4 a,nd 2.5 we describe para,ineter identification for the 

model and a. pa.rticular subopti~llal non1inea.r estima.tor, specifica.lly, the Estencled 

I(a1m.a.n Filter. In Chapter :3 we discuss t'he a.pplication of our approach to so~lle 

synthetic and real speech problems. 



2.1 Notation 

EIxpectation is denoted by "En. If x is a random secluence then m.,( k) E[x(  A:)] , 
R,(kl, k2) = E[x(kl)x(k2)], and Px(kl ,  X:2) A E [ ( z ( k l ) - 1 7 1 . , ( k l ) ) ( x ( k ~ )  --m,(k2))]. In 

the case where R,(kl, k2) is a function of only k1- k2, the discrete-time Fourier trans- 

form of R,(O, k) is denoted by S,(O), specifically, Sx(0) = ~k+!"_, ,!?,(O, k)e-jok. 

Independent and identically distributed is abbreviated by i.i.d. The Gaussia.n proh- 

ability density function (pdf) with mea.n In, and covariance A is denotecl by N(in,, 11). 

The notation "x - p" mea.ns that the random va.riable (RV) x is d'istributed a,c- 

cording to  the pdf p. If k1 a.nd k2 a,re time indices, let k< = min(kl, k2) and 

k, A max(kI, k 2 )  The Kronecker delta, function is denotecl I3y Sk, ,k2. !jupersc.ri~t T 

denotes transpose. 

2.2 Model And Signal Processiilg Goal 

For ea.ch formant ( i  labels the formant), there is a dyiiamical system which 

describes the time evolution of 4 signals: t,he Ihiser-Teager a.n~plitude signal (cl,(X:)): 

the h;a.iser-Teager frequency signal (i/;(X:)), the formant frequency j.fi(k)), a,ild t.he 

total phase signal (d;(k)) .  (The total phase signal is clefilled to be d ; ( k )  . . = d;(O) + 
27rT ~ i - 2 ~  [.f;(m) + v; (m )] where T is the sa,mpling interva.1). We have chosen silllple 

dynamics: The Kaiser-Teager amplitude a.nd frequency sigllals a;  and v; are ~~~oclelecl 

as first-order autoregressive (AR) processes wllicll a.llou~s inclel>endent control of the 

powel: and the ba,ndwiclth. The forma.nt, frequency f i  is moclelecl a,s a i~a.ndom n~alli. 

This choice wa.s made bemuse we expect the formant frecluency 110th to change 

values and to  rema.in nea,rly consta,ilt over periods of inilliseconds in dura,tioil. A 

rando'm walk model is att,ractive because if  x(k)  is a, ra,nclolll wa.11~ then E[x(k)]  is 

constimt and x(k)  = arg max,.k+l) p(n: (k  + 1 )I lz( k ) ) .  ,411 alterna.t,ive niodel? a.n A R  

process with a, nollzero n1ea.n p ,  is not as a,ttractive because the forma.nt freiluency 

will take and hold different values w~liile only one d u e ,  the lllea,ll p ,  is ava,ila,ble 

in the alterna.tive model. Generalizing the meaa t'o he time-va,rying i:s  impra.c.tica1 



because the  time-course of its variation is not known. Tlle  dynamic:^ of the  tota.1 

phase signa.1 $(k) are completely determined by its definition: $;(,k) = q$(O) + 
27rT ~ ~ ~ ~ [ f ~ ( r n . )  + v;(m)] where T is the  sampling interval. The  measured sigrlal, 

denoted by y (k) ,  is the  linear superposition of t he  contribution frorn each formant, 

specifica.lly, a;(k) cos($;(k)), plus additive measurement noise. The  complete inodel 

is therefore 

where t he  process noises ti!,, , ti!,, , ant1 zof, and the  observa.tion noise v a.re all 

i.i.d. N ( 0 , l )  sequences; the  covariailce of t.he ol~serva.tion noise is 7 '; the  init,ia.l 

conditions are a i (0 )  - N ( O , Q ) ~ , J ( ~  - a:,)), ui(0) - d A ~ ( O , q ~ , / ( l  - at,)), .f;(O) - 
N ( m f i , o l  P;i , o )  a,nd $;(0) - N ( 0 ,  11:,, ,o); a.nd tlle process noises, ohse~.vation noise. 

and initial conditions a,re all independent,. Notice t11a.t the initial coilditioils re- 

quire that  la, , /  < 1 and \av, ( < 1 (since otherwise the  stated varianl:es are  nega- 

tive) in which case a; and v; a.re wide sense sta.tionary random sequences. Define 

T 6 = ( ~ ~ a , ~ Q n , , ~ u , ~ ~ u , ~ ~ f i ~ ~ ~ ~ ~ ~ j , . ~ ~ ~ j , , ~ ~ ~ ) ~ , , ~ )  . 
In terms of the  model, the goa.1 of extracting a.mplitude a,rld pha.se moc1ula.tions 

from 1;11e observed signal corresponds to  estimating zi(X:) = ( a ; ( k ) ,  . f ; ( X : ) ,  v;(X:), g5 i (k : ) )T  

given the  mea.surements :y(0), . . . ,y(X-) Let 2;(X?ll), a fuilctiorl of y(O), . . . , y( l ) :  

be t he  estimate of z i ( k )  ba.sec1 on da.ta through tiine 1. Let c(kll) .- E[(z i (k )  - 

2;(bll))T(zi(X:) - Si(X:ll))] be t,he mean sclua,re error (MSE) .  We define as t,he op- 

t imal estima.tor, denoted by i f ( k ( l ) ,  that  estima.tor which nlillilllizes ~ ( k ( 1 )  with 

the  result tha.t : t(k(l)  = E[z;(k)ly(O), . . . , y(l:)] and the  achieved MSE: is c'(kI1) = 

E[(z;(k) - if(X:ll))T(zi(k) - $7 (X:I1))]. Except in Section 2.3, in this stud:y we a.re con- 

cerned with the  filtering prol~lem,  for which E = 1. rather than prediction proble~ns 



(k > I )  or smoothing problems (b < 1). Therefore, the goal of the signal processiilg 

is to compute the expectation in 2:(bJk) = E[z,(b)J y(0 ), . . . , y (k)] wliich, however, 

we are only able to approximate (Section 2.5). 

Kote that the MSE performance criteria is not natural for all problems. In 

particular, since y(k) is unaltered when $ , ( I ; )  is replaced by $,(k) + l,(k)27r. where 

I,(k) is an integer, the MSE perforinance of an estimator for $,(k) will degrade 

over time as more and more errors of magnitude '27r occur in the e., ..timate. In a 

frequency-modulated communication system, this is the well-known cycle-slipping 

phenomenon. However, the MSE performance of an estimator for a , ( k ) ,  f , ( k ) ,  and 

v , (b)  can be free of such problems. 

2.3 Cramer-Rao Bound 

In order to determine whether the result of an estima,tion problem will have suffi- 

cient accuracy for the intended a.pplicatbion independent of the estimation a.lgorithm 

used or to compa.re a prac,tica.l but suboptimal estima.tor to an a'bsolute standard 

of performance, it is helpful to have a lower bound on t*(klk). One such l~ouncl is 

the C'ra~ner-Rao bouncl (CRB) [20, Section 2.4][21, Chapter 3][22, Section 6..4][23. 

Section IV.C] which we compute in t.his section. In Al~pendis B we discuss an 

alternative ~erforma.nce houllcl ha'secl on ra,te distortioil theory. 

There a,re two closely-related forms of the CRB depeildiilg on wrhether prior 

knowledge is or is not available. The sca1a.r forms of these bounds? minus technical 

conditions, are 

1. Cramer-R.ao bound for non-raudoin parameters 120, 13. 661: Let 21 be the mea.- 

surement, a he the pa.rameter, and ?(y)  be an  unbia.sed estimate of 2 .  Then 

Va,r[i(y) - x] 2 a2 1n P,~.(Y I"! 
{-E I ax2 11' .  

This bound is a.ppropria.te when n: is a deterillinistic hut unk11ow.n para.meter 

since only the ma.rgina1 pl.ohal3ility density functCion pylZ is involved. (This is 

the hound that is traditionally ca.lled t,he CRB).  



2. Cra.mer-Rao bound for random parameters [2O, p. 721: Let y be the mea.sure- 

ment, x be the parameter, and i ( y )  be a.n estimate of x. Then 

This bound is appropriate when :t. is a rand0111 para.meter since the joint prob- 

ability density function y,,, is involved. 

Because of the importance of prior knowledge in the MBDA algorithin, we use the 

sec0n.d form of the bound in which prior knowledge is included. 

Let k = I< - 1 be the time at which the CRB 011 c'(X-1 k) is desired. The na.t,ura.l 

approach to computing the CRB is to consider the entire tra,jectory of c ~ ; ( k ) ,  fi(X:), 

vi(k)., a.nd di(X7) (;! = 1 , .  . . , I ,  k = 0 , .  . . , Ii - 1)  a,nd apply the usual CRB to this 

vector. The resulting bound is a CRB for t . 1 ~  fixed-interva.1 sinoother since a.11 of t'lle 

estimates are based on the entire data, vector y (0),  . . . , y (Ir' - 1). However, at  tinlc 

k = .K - 1, the fixed-interval smoother a.nd the filter a,re identical. The difficulty 

with this approach is the size of the Fisher informa.t~ion ma.trix J which must be 

inverted: If there are I = 4 formants and I< = 16000 samples (1 s i:n the TIMIT 

datahase [ 2 4 ] )  then J is 4 I K  x 4 I I i  = 256000 x 2.56000. The solution is to use the 

Iialma,n Filter ( K F )  to provide just the necessa.ry block of J-l [25, 26, 271. 

Let zi(k) = ( c ~ ; ( k : ) , . f ~ ( k ) , v ~ ( X : ) , $ ~ ( X r ) ) ~ ,  wi(k) = ( . ~ c ~ ~ , ( k ) , e c ~ , ( k : ) , ~ ~ u , , , ( X . ) ) ~ ,  c ,  = 

(1,0,0,  o ) ~ ,  aad c4 = (0 ,0 ,0 ,  I ) ~ .  Tllen the inodel (Eqs. (2.1)-(2.5)) has the form 

where 

0 0 0 Y o ,  0 0 

0 0 

27rT 27rT 1 j 0 0 

It is riot possible to  apply the results of Refs. [25. 26, 271 to  Eqs. (2.6) and (2.7) 

because the covariance of the process noise in Ecl. (2.6), which is (:,c::, is not 



full rank because G; E R4x3. However, the results of Ref. [27] a.lso a.pply to A R  

processes with order greater than 1 when driven by process noise with a full sa.nk 

covariance. Furthermore, it is possible to transform Eqs. (2.6)  a.nd (2 .7)  to such 

a form, while retaining the interpreta.tion of the internal variables in Eqs. (2.6) 

and (2 .7)  as formant frequency, etc. 

The first transformation is to  sepa.ra.tely suin .fi a.nd v; in the system of Eqs. (2.1)-  

(2.5).. Specifically, we define 4jt ( k )  = 4, ( 0 )  + 27rT ~ k - 1 ~  . f ; (nz) ,  4,; ( 1 ; )  = ( 0 )  + 
~ T T  vi(i iz) ,  and d i ( k )  = 4 j i  ( k )  + 4 ,  ( k )  and rewrite the system of Eqs. (2.1)-  

(2.5) in the form 

a ; ( k  + 1 )  = a.,ci;(k) + q,,tu,, ( k )  (2.8) 

The initial conditions are unchanged with tlie addition of d j , ( O )  h ' ( 0 , p ~ , . 0 / 2 )  and 

4.,(0:1 - h f ( O ,  p ~ , , 0 / 2 ) .  Tlle second traiisfornlation is to write the pairs ( . f z .  Q,,) and 

( v a ,  dl,,) as second-order AR processe\, specifically, 



where afi = 1. The  initial conditions on the second-order Qft  process are 

and likewise for & .  Because the process noise has a, full-rank cova.ria.nce, specifically, 

diag(q&, ( 2 ~ T ) ~ q ; ~ ,  ( ' S T T ) ~ ~ , ~ , ) ,  the results of Ref. [27] can be a.pplied t.o this systeill 

t o  compute a. lower bound on the MSE of a,ny estima.t,or i i (k Ik)  where 5;(k) = 

(ai(k)7 4j , (k)?4ut(k) ,a i (k  - 1 - 1 7  4j , (k  - 11, 4u,(k - I ) ) ~ .  

Because we also desire CRBs for the frecluency va.ria,bles fi a.nd I / ; ,  these va.ria,bles 

must be reconstructed from ~ f ,  a,nd d , .  Froin Eqs. (2.1 1) a,ild (2.12) we lmve 

so the optimal estimates and the resulting MSE are 

and likewise for u,. Notice that hot11 the filtering (i.e., $ j , ( t l k ) )  and the one step 

aheacl p

r

edicting (i.e., dj, (X,+l I/,*)) estimates of the pllase variable of, are recluired in 

order to  compute the filtering estinla,t,e of the frequency va,riahle .fi a,ilcl 1i:kewise for v;. 

Let Z be the CRB for x;(I<)  given the da,ta. y (O)? .  . . , y(I<-1) .  Therefore, E[(n:;(I<)- 

ir(l i ' I(  - l ) ) ( .~ i ( I{)  - .tf (I<l I< - I ) ) ~ ]  - Z > O where > 0 a,ppliecl t o  matrices illea,lls 

positive semi-definite. Define e,, = (0 ,0 ,0 ,1 ,0 ,  o ) ~ ,  em,  = (0 ,0 ,0 ,0?  l ~ ,  1 )T ,  c # ~ ,  = 

(0 ,0 ,0 ,0 ,1 ,  o ) ~ ,  em., = (O,0,0,0. 0. I ) ~ .  ej, = (0 ,1/(27rT)~0.0.  - 1 / ( 2 ~ ~ ) , 0 ) ~ ,  e,, = 

(0,0,  :1/(2aT), 0,O, - l / ( f l a ~ ) ) ~ .  Fina.lly, for cu E {a;? $;? Qf,, &, fi, v i } ,  the  CR.Bs 

a.re 



Elasy computatioil of Z using the techniques of Ref. [27] requires a. t,hird and final 

transformation of the system Eqs. (2.14)-(2.17). Specifically, Eq. (2.17) is replaced 

~ ( k )  = (1 - 6~,1i) C ai(k) cos($j, (k)  + d v ,  (k)) S rv(k) (2.24) 
I 

which implies that there is no information in the measurement at time I<, or equiva- 

lently, conditioning on (0), . . . , (Ir') is the same as conditioning on ( 0 ) ,  . . . , y (I< - 

For the of the CRB there is no rea.son to restrict a.tt.ention to the 

system described by Eqs. (2.14), (2.15), (2.16), and (2.24) since more general syst,eins 

can be considered with no aclditiona.1 complexity. In particula,r, we consider a sg;st.eni 

of the form 

where xk E 'Rn; yk E 'R; u)k is i.i.d. ,$f(O, I,); l ) k  is i.i.d. N ( 0 ,  1); (x:, . I .? , )~  is 

N ( m O,  A'); I O ~ ,  vk, and (x:, .x?,)~ are independent; and Q qqT is full ranl;. 

Equivalently, the system can be writt,eil in state variable form a.s 

where kk = (x:? x:-'_,)~. The correspondence with the system of Eqs. (2.14), ('.Is), 

T (2.1611, and (2.24) is 11. = 31, xk = ( r c l (k ) ,  pj, (k):  Q,,, ( k ) ,  . . . , c l r ( k ) ,  dj,(k), ~ , , , ( k ) )  , 

(0) (0) ( 1 )  Ao = diag(Al . . . , A ), A!'' = dia,g(o,, , 1 +aj , ,  1 + a ,  ), Al = c1iag(~i1): . . . , AI ). 

A!'' = diag(0, -oj,. -a,,, ), q = dia,g(ql,. . . I ) ,  q = diag(q,,, 27r:r1qj,, 2aTq, );  

T hk(x) = (1 - 6k,l,-) C;I=,(~; .T)COS(C~ .I-), (nil, = s ~ , ~ ~ - ~  for i = 1 , .  . . , I ;  j: = 1 , .  . . , u .  
and (e;)j = 6j,3i-1 + 6j.3i for i = 1 , .  . . ,I: j = 1 , .  . . ::3I where (d;)j  denotes t,he 

j th element of the vector d; and likewise for (e;)j. The system of Eqs. (2.14). 

(2.15), (2.16), and (2.24) also sl~ecifies m0 a.nd R0 but the details of the indexing 

are somewhat complica,ted a,nd so the results a.re clescri bed in Appendix .4. 



A.fter extensive calculations in order to evaluate the general ex]>ressions con- 

tained in Ref. [27] ,  we find that the Fisher information matrix for the fixed-interva.1 

smoothing problem for the system of Ecls. (2.25) and (2.26) is equal to the Fisher 

informatio~l matrix for the fixed-int,erva.l silloothiilg problem for the fo'llowing lii1ea.r 

Gaussian system: 

where xk E Rn; Gk E Rn; wk is i.i.d. N ( 0 ,  I,); i l k  is i.i.d. hr(O, I,!); ( x i ,  X T ~ ) ~  
is N(llzO, A'); wk ,  7ik, ancl (z:, . L . T , ) ~  are independent; ? E Rfnn is definecl by 

f = cliag(r, . . . , r ) ;  ancl C'k E RrtXn is defined by  

( V X h r ) ( x i )  = (a:x:l::*), , . . . a(.rn),, " h *  ) , aild (T*) , ,  denotes the m th component of the 

vectosr xk .  The system of Eqs. (2 .29)  a.nc1 (2.30) ca,n be writsten in sta.tc: vector form: 

the state equation is Eq. (2 .27)  a.nd the observation eclua.tion is 

We now compute 'Hk for the system of Eqs. (2 .14) ,  (2 .15) .  (2.16), and (2.24).  Let 

x be N(m,  A ) .  Then it is straightfor\varcl to establish the follo~ving e l  pectations: 

1 T 
go(z7; m, 11) -E[cos(v x ) ]  

2 

1 T 
gl(s,  z,: m, A )  = _ ~ [ j s ~ : r )  sin(z, s)] 

3 - 



Let mk and Ak be the mea.n and cova.ria.nce sequences for Eq. (2.219). By evalu- 

ating; dhk/d(xk) j  and taking expecta.tions we find that 

where 

The algorithm for computil~g the CR.Bs is 

1. Fix K. 

2. Compute tnk a.nd .Ak for k = - I ? .  . . , Ii' by using Ecl. (2.27) a.nd stancla.rd 

linear system forn1ula.e. 

3.  Compute Ck for k = -1,. . . , Ii 11-j using Ecls. (2.31) and (2.37)--(2.41). 

4. Apply standard I<a,lma.n filteriilgformu1a.e to the syst.en1 of Ecls. ('2.27) and (2.:33) 

to derive the RISE for time A: = I { .  This 6 1  x 6 1  nmtrix is the CR,B for 



the filtering problem a.t time k = Ii' for the nonlinear system of Eqs. (2.27) 

and (2.28). 

5. From the matrix resulting from Step 4, use Eq. (2.23) to  compute CRBs for 

the filtering problem for fi(Ii'), etc. 

When Ii' is changed, most of this work does not need to be redone because 'Hk is 

independent of Ii' except a.t k = Ii'. 

For parameters typical of the speech models used in Sections 3.2, 3.3, and 3.4, 

the ClRBs as a function of time a.re shown jn Figure 2.1. The model has 1 forinailt 

= '3 and parameters T = 1/16000 s, a,, = a,, = .99, q,, = 50, q,, = 12, qj, ,, 

mh,o = 500 Hz, r = J1/12, P i l f l  = .O1 (essentially zero), P i , ,  == 4000. The 

oscillations in the CRB standard deviation for a l  occur a t  about twice the formant 

frequency of 500 Hz a.nd a.re due to  the fa.ct that when the cosine of al(:k) C O S ( @ ~  ( A : ) )  

passes through 0 there is no information in ~ ( k )  about a l (k )  while when the cosine 

passes through f 1 there is inaxiinal information. Relative to the precision needed in 

the speech application and relative to the n priori (i.e., no measurements) standa,rcl 

clevia.tions of the va.rious signals, these CRB standard deviations a,re small: (1)  The 

CRB standard deviations for the .f1 and vl frequencies are less t,hail 10% of the 

500 Hz formant frequency. ( 2 )  The CR.B standa.rd deviation for vl js also much 

sma.ller than the steady-sta.te n pr.~:ol-i stanc1a.rd cleviatioil of 85.1 Hz. ( 3 )  For f l  

there is no stea,dy state and, in fa,ct, t,he n pliori st,anda,rd devia.tion grows a,s \Lrlfl , 

so the CRB standard deviation is dra.ma,tically lower. (4) The parairteters used in 

this example are appropriate for the TIMIT database [24] where typical large signa.1 

values are lo3 and therefore the CRB standard deviation for a1 is less than .l% of 

typical large signal values. ( 5 )  F~irtherinore, the CRB standard deviakion for a l  is 

much. less than the steady-sta,t,e a pr.io1.i standard c1evia.tion of 354. Beciwse the CR.B 

bounds a,re lower than the estima,tion standa.rd deviations required by the speech 

application, it is worthwhile to  design iloillinear filters based on this statistical illode1 

and, in Section 2.5, we describe nonliilea,r filters which, as shown in Sectioils 3.1-3.4. 



Fig. 2.1. Cramer-Rao houncls for ( a )  ccl(k), (h) f l (k ) ,  and (c) vl (k) .  'rhe sta~lclarcl 
deviation, rather than variance, is shown. The hou~lcl for estimation of f l ( k )  

( v l ( k ) )  decreases to  4.5.151 (46.5) a t  62..5 111s (62..5 ms). 



achieve good performance. 

2.4 System Ideiltificatioil 

In order to  use the model of Ecls. (3.1)-(2.5), it is necessasy to determine the 

parameter vector 8. In view of the importance of spectral ideas in speech processing, 

we choose 8 by fixing the center frequency, ba.ndwidth, and power of each forma.nt. 

Therefore we need to compute SY(O),  the spectrum of the model (Eqs. (2.1)-(2.5)), 

as a function of the parameters 8, which is the subject of the following two pa.ra- 

graphs. 

Let a ( k )  and @ ( k )  be randonl secluences where 4 is Gaussian. Let .IC, he a RV 

tha.t is distributed uniformly on [-n, n]. Let a ,  4, a.nd be independent. Define 

y(k) -= a(k)  cos(4(k) + II,). It follows t,ha.t my(k) = 0 and 

where Q4(k1,k2) PS(kl ,k l )  - 2PG$(kl,k2) + P4(k2,k2).  More generally, if y ( k )  = 

Xi y;(:k) + rv(k)  where y;(k) = ai(k)  C O S ( ~ ; ( ~ )  ++;); a; ,  +;, Q~ and 21 a,re indepencleilt; 

and, tor each i ,  the cluantities a,, d,,  and $, are as above, then it follows that nz,(k) = 

rm,,(k) and P, (k l ,  k2) = C, P,, ( k l ,  k2)+7*2P,,(kl, k2) where Py, is given 1137 Eq. (2.42). 

Since Qb(kl ,  k2)  can alternatively be expressed as Qd(kl,  k2)  = E[{[$(kl ) - n ~ , ~ ( k ~ ) ]  - 

[$(kz) - mb(k2:~])2] it follows that Q6(kl ,  k2) 2 0. 

For the systenl of Eqs. (2.1)-(2.5) with la,,J < 1 and Jau,J < I ,  i t ,  follows that 

I k z - ' 1 1 ,  1i2+,(k) = 2 ~ T n ? ~ , , ~ k ,  R,(kl, kz) = 6k1,k2, and Ra,(kl,k2) = idt/(l - a : , ) ) ~ , ,  

Qm. (k1, k2) = ( ~ T T ) ~  2 



Using these results in Eq. (2.42) provides the necessary R,(kl, k2) for the systenl of' 

Eqs. (2.1)-(2..5). 

Because of the second term in the braces, Q 4 , ( k l ,  k2)  is not a function of kl - 

and therefore R,(kl, F 2 )  is not wide-sense stationary. This reflects the fact that the 

speech signal itself is not stationary except over short intervals of time. Therefore. 

for choosing parameters, we set qj, = 0 a.nd then, for use in the nonlinear filter, we 

reset q f ,  to the ma,ximum desired chailge in the i th formant frequency per sa,mple. 

We ta,ke p f , , ~  = 0 and pd,,o = 0. The value of 1- is set from n priori knowleclge 

of the: observation noise process. For signa,ls from the essentially noist:-free TIMIT 

da.ta,ba.se [24], the observa.t,ion noise is just the qua,iltiza,tion noise wl~ich: under a, 

unifol-m -tl/2-bit model, has sta.nclarc1 devia,tion r = J1/1?. 
Fc~r stability we require that la',,, I < 1 a,ild (a,,t 1 < 1 a.nd to ininiinize the ba.nd- 

width we desire a,, z 1 and aUi z 1. We have ta,lieil amz = a,, = .!39 where the 

equality ani = a,, is nlotivated by the error bounds of Refs. [ 5 ,  41. 

It remains only to picli nzj , ,o,  q,,. and q,,. Tlle cent.el. frequency of' the formant 

is r r z f , , ~ .  The only effect of q,,, is to sca.le Ra i  and so it cloes not effect the 11a.nclwidth 

of the forma.nt.. Therefore, \Ire use q,, to fix the ba.ndwidth of the forma,nt, accordiilg 

to the plot of Figure 2.2. The resulting ,S,, a,re shown in Figure 2.4 for a. variet,y 

of choices of qUt .  Once qUt is fixed, we use (la, to fix the ~ o w e r  of the formant: use 

the plot of Figure 2.3 to determine the power that would be presellt if q,, equaled 1 

and set q,, to scale this to the desired \-due. Finally, for use in the nonlinear filter 

of Set-tion 2.5, the value of qj,  is reset to t,he masimum desired change in the I th 

formant frequency per sample. In all calculations we have conlputed S,, froin R,, 

by computing the DFT of the sequence R,, (0, k )  for A- = -4096,. . . , $4096. 

2.5 Nonlinear Filters 

If a,(k) was constant then Eqs. (2.1)- (3.5) describe a frequency modulated conl- 

munication system, the Extended Icalman filter (EI<F) [2S. Section 8.21 is ~ssentially 

a phase-locked loop ( P L L ) ,  ailcl tflle P L L  is an excellent estimator. 'rhel.efore, we 



Fig. 2.2. Half-power (3  dB) bandwitlth of S,? as a function of y,,. The paralneters 
area , ,  = .99, q,, = l,a,, = .99, yf, = 0 ,  r = 0, p f , , ~  = 0, I+,," = 0, and 

T = 1/16000 s. n?f,," does not affect the bandwidth. 



Fig. 2.3. Peak power of ,S,, as a function of q,,.  The parameters are a,, = .99, 
qa, = 1,  a,,> = .99, q f ,  = 0, r = 0, pf,." = 0, pq,,o = 0, and T = 1/16000 s, I ~ J , , "  does 

not affect the peak power. 



Fig. 2.4. Exa.rnple S,, curves. The pa,rameters a,re a,, = .99, qa ,  = 1 ,  a u ,  = .99. 
qUi = -1, 1, 10, 15, 20, q f ,  = 0, = 0, = 1000 Hz, pf,," = 0, p*,,c = 0, and 

T = 1/16000 s, The peaks a.re broader a,s qui in

c

reases. 



compute the estimates iii(klk), b i (kk) ,  f i ( k l k ) ,  a,nd $;(1-1k) (hereafter, me will not 

indicate the conditioning which is alwa,ys klk) by using the EKF for this more corn- 

plicated model. The ~omputa~tional recluirements a.re minimal: t,he stat'e equa.t3ion is 

already linear, the one-step state tra,nsition matrix (denoted by F) is block dia.gona1 

(1 blclck per formant) and each block is sparse so multiplication by F is inexpensive, 

and the observa.tion is a scab so the one matrix inversion is a.ct,ua.lly division by a. 

sca,lar. The result of the EKF are the estimates iii(k), Di(k), f i (k) ,  and $i(k). Ron1 

these estimates we can compute a. reconstructed speech signal, denoted by $ ( k ) ,  by 

ij(rl-) .= zi ei(a) cos($i(k)). 



3. APPLICATIONS OF MBDA 

I11 this chapter, we apply the statistical model and the nonlinear estimator 

discussed in the previous chapter t,o some synthetic and real speech problems. We 

consider three synthetic examples (Section 3.1), decomposition of speech into AM 

and FM signals (Section 3.3), two forinant tracking prol~leins: transitioi~s to stops 

(Sect ion 3.3) and tracliing  formant,^ t,hrough a sentence (Section 3.4) ,  and application 

to  unvoiced speech (Section 3.5). 

3.1 Appl i ca t ion  T o  S y n t h e t i c  E x a i ~ ~ p l e s  

In the first exa.mple we clerllonstrate the effectiveness of the EI<F b:y successfully 

processing a, synthetic signa.1 that is a realizatioil of the illode1 Ecls. (2.11)-(2.5). The 

model has 1 formant with initia.1 conclition mf,,-, = 1000 Hz. The other pa.ra.n~eters 

are P = 1/16000 s, a,, = a,, = .XI, q , ,  = 2, yh = 2, y,, = 15, ancl 1- == J l / l2 .  

In Figures 3.1 and 3.2 we show the original a.nd reconstructed signals in the time 

and frequeilcy domaills respectively. In Figure 3.3 we show the true and estima.t,ed 

trajectories for cil(k), I / ~ ( X - ) ,  .fl(k): a.nd @l(k)  over a.n interva.1 of 100 ms. 

In the second example we a.pply EKF to a, chirp signa.1 pa.tterned after [4? Fig- 

ure 21 

wherc: T = 1/16000 s, f, = 30 Hz. .f,, = 500 Hz, .f, = 2000 Hz/s and k is in the raage 

from 1 to 1600 (i.e., 100 111s). We use the inoclel of Eqs. (2.1)-(2.3) with 1 formant. 

The parameters are a,, = a,, = .99, (I,, = 0.1, qj l  = 3. qvl = 0.1. 7 ,  = JTTi? 



(a,) Origiiml ( 11) Recoi~structed 

Fig. 3.1. The  original and recoilstructed synthetic signals in the time domain. 
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Fig. 3.2. The  synthetic signals in t,lle frequency domain: Power spectral densitj- 
(Welch method with a 256 point F F T  and 50% overlap) of the signals in Figure 3.1. 



(g)  ~ l ( 4  ( h )  

Fig. 3.3. True and estimated trajectories for the  syllt11et.i~ signal. 
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Fig. 3.4. The original (y(k) )  and reconstructed (Q(k)) one-chirp synthetic signals. 

and mfl,o = .fm. In Figure 3.4 we show the original ancl reconstructed signals. In 

Figure 3.5 we show the 4 E I iF  outputs. Note the instantaneous frequency in the 

signal is .fm + 2 j i k T  while the i~lstantaileous frequency in our liloclel is f ( k )  + r/(k). 

The  results, shown in Figure :3.5. are excellent: after an initial transient. the filter 

accurately tracks the increasing formant frequency f ( k ) ,  the zero Iiaiser-Teager 

frequency ~ ( k ) ,  and the  oscillating anlplitude a( / , - ) .  

In the  third example, we show the results of applying the model (Ecls. (2.1)- 

(2.5)) and EIW to  a double chirp signal [29] patterned after the single chirp signal 

of Ma-ragos, Kaiser, and Quatieri. The signal is 

y ( k )  := cos(27r,fukT) c0s(27r(.f,,,~ + f ,kT)kT) ~ 0 . 2  ~os(27r.f~ kT)  cos(27r( f,,,? -f ,kT)kT) 

where T = l/lG000 s, . f ,  = 30 Hz, -frill = 200 Hz, -f71,2 = 2000 Hz, a.nd f, = 

6000 Hz/s. The EICF has para.meters a,, = a,, = .99, a,, = a,, = .99, q,, = a: 

mf,,,-, = .fnLz, and all the other initial co~lditioll nleans a,nd all the  init;ial co~lclition 

variances equal t o  zero. Ideal performance of the E I iF  in this example would leacl 

t o  iil(k) = cos(27r f ,kT),  f l ( k )  = .f,,l + Pf,kT, B2(k) = 0.2cos(2r.futkT). .f2(k) = 

.fm2 -. 2.f,kT, and Cl(k) = C2(k) = 0. The  actual results, sliown in Figures 3.6-3.8, 



Fig. 3.5. EIiF estimates for the one-c11il.p synthetic signa,l. 



Fig. 3.6. The  original ( ! / ( I ; ) )  a,rltl reconstructed ($(A:)) two-chirp syntlletic sig~la,ls. 

are quite good. 

In this section we show the results of applying the moclel (Ecls. (2.1)-(2..5)) ancl 

E I iF  to  a speech signal. The  signal is the phonenle /ee/ of the word '-m/ee/tingW 

from the TIMIT database [24. dr2/mclbl10/ss29.5]. The  model has 4 formants with 

initial contlitions 11?,,,0 of 390, 2200, 2800, and 3600 Hz foi i = 1. 2, 3, and 4 

respectively. For all 4 formants, a,, = a,, = .99, q,, = &, P , , . ~  = 0, iind = 0. 

The  values of q,, ant1 q ,  vary from formant t o  formant: qOt = 1.58.20,ll. 7; and 

pUi = 14, 14,217 21 for i = 1,2 ,  H ,  4 respectively. Finally, r = J1/12. 

In Figures 3.9 a,nd 3.10 we show the original a.nd reconstructed :;peech in the 

t ime and frequency donlains respectively. The  only visible differences are in the 

frequency doma.in in t.wo frequency bands: the ba,nd nea.r 1500 Hz, where the signa.1 

strength is down by 40 clB from nea,rby for~na,nt pea,ks, aacl in the fretluencies grea,ter 

than 7 kHz, where the  highest frequency formant in the moclel is a,.t m u c l ~  lonier 

frequency, specifica,lly, a t  3.6 kHz: ancl the signal streilgtll is clo\crn l:,y 40 dB. I11 

Figures 3.11, 3.12 and 3.13 we sho\v the estinlat,es from the EI<F. If snloot~her 

estimates are desired, they coulcl be a.chieved ei tller by post,-pl.oces~ing [4] or by 



Fig. 3.7. EICF estimates for the two-chirp synthetic signal.. 



(k )  (solid curve) and ,fz(k) (dashed curve) 

Fig. 3.8. EI<F estimates of the frequencies for the two-chirp synthetic signal. 

increasing a,; and a,, and decreasing q,, and q , ,  which changes the moclel so that the 

model describes signals of the same power but longer correlation time, and increa.sing 

r,  which relaxes the penalty on non-exa.ct decomposition (i.e., y ( k )  # $(k)). As 

in Ref. [4], the major observation is the pitch-synchronous pulse structure of the 

Ka.iser-Teager amplitude (&;(k)) and frequency (C;(k)) signals. Because the MBDA 

algorithm estimates ai(k) while the DESA-1 algorithm [4] ba.sed on Teager's energy 

operakor estimates la;(k) 1 ,  the pulses in the estimate of a;(k) in Figure 3.11 a.nd 3.12 

are of alternating sign while the pulses in the estimate of Jai(k:)l froin IIES.4-1 (e.g., 

Figures 5-7 of Ref. [4]) are all positive-going. 

3.3 Formant Tracking: Transitions To Stops 

One application of formant tracking is to a.id in the classification of stops [9, 10, 

111. In this section we apply the rnodel (Eqs. (2.1)-(2.5)) and EI<F to this problem 

and show the results for the phoneme / u /  of the word "c/u/ps" frorn the TIMIT 



Fig. 3.9. The phoneme /ee/ of the word m/ee/ting in the time tloma,in. 
(a)  Original (solid curve) and reconstructed (dashed curve) speecli signals. 

(b) Square error, i.e., [y (k) - ij(k)12. 



Fig. 3.10. The phoneme /ee/ of the word m/ee/ting in the frequency doma,in: 
Power spectral density (Welch method wit11 a 128 point FFT and 50% overlap) of 

the signals in Figure 3.9. Original: solid curve. Reconstructed: dashed curve. 



Fig. 3.11. EKF estimates for the phoneme /ee/ of the word m/ee/ting: i = 1,2. 



4 3 ( k )  4 4 ( k )  

Fig. 3.12. EI<F estimates for the phoneme /eel of the word m/ee/ting: i = 3 ,4 .  



Fig. 3.13. EKF estimates for the phoneme /eel of the word m/ee/ting: the four 
formant signals j l  (k),  f2(k), .fs(k), and f4(k) (from bottom to top). 

database [24, dr3/mctwO/si743]. The model has 4 formants with initial conditions 

r n j , , ~  of 670, 1100, 2400, and 4000 Hz for i = 1, 2, 3, and 4 respectively. For all 

4 forinants, a,, = aui = .99, qj,  = 2, p j i , ~  = 0, and pb,,o = 0. The values of q,, 

and Q,,, vary from formant to formant: q,, = 50,14,3: 1; and qui = 17: 17,15,20 for 

i = 1,2,3,4 respectively. Finally, r = J1/12. In Figure 3.14 we show the first 2 

formants at the transition. The trend is for the frequencies of both the first a,nd 

second formants to decrease. A similar trend of decreasing frequencies for the lowest 

two f'ormants during the tra.nsition to the unvoiced stop consonant /]I/ was found 

by Nathan, Lee, aad Silverman 19, Figure 7a]. In the second formant, the same 

trend was found by Foote, Mashao, and Silverman 111, Figure 31 using the DESA-1 

algori thm [4] based on the Ihiser-Teager energy operator. 



Fig. 3.14. Formant tracks for the stop transition of the word "c/u/ps": fl(k) 
(lower curve) and f2(k) (upper curve). 

3.4 F o r m a n t  Tracking: A n  All Voiced Sentence  

In this section we apply the model (Eqs. (2.1)-(2.5)) and EIW to the problem of 

tracking the formants through an entire sentence. The sentence is "Where were you 

while we were away." from the TIMIT database [24, drl/msjsl/sx9]. The model has 

4 formants with initial conditions n z j , , ~  of 450, 1300, 2000, and 3100 Hz for i = 1, 

2, 3, and 4 respectively. For all 4 formants, a,, = a,, = .99, q,, = 12, p f , , ~  = 0, ancl 

p4,,o := 0. The values of q,,  ancl q f ,  vary from formant to formant: q,, =- 50,30,10,1; 

and r l f ,  = fi, m, 2,2 for r = 1,2 ,3 ,4  re~pect~ively. Finally, 1. = J1/1?. The 

spectrogram of the original speech with superinlposecl plots of the estimates f , ( k )  is 

show11 in Figure 3.15(a). [The spectrogram is computed by dividing the signal into 

8 ms frames (each contains 128 samples) with 4 ms (64 sample) overlap between 

adjacent frames and then computing the magnitude (in dB) of the 12!8 point FFT 

of each frame]. In Figure 3.15(a), the formant tracks extend through regions of 



Fig. 3.15. The sentence "Wllere were you while we were away." (a)  Original 
spectrogram and estimated formant tracks. (b) Reconstructed spe1ctrogra.m. 



the spectrogram where there is little energy because at sample E we plot the i th 

formant track fj(k) even when the energy in the i th formant (essentially the energy 

in a;(:k)) is small. To show the distinction, the signal has been divided into frames 

of duration 20 ms and the i th formant track for a particular frame i:; plotted as a 

solid line if and only if the square root of the average energy in ii;(k) in the frame 

is greater than .3 times the standard deviation of ii;(k) computed over the entire 

sentence. Figure 3.15(a) demonstrates good tracking of the formants in this seiltellce 

in s p ~ t e  of large and rapid variation in the formant frequencies. 

From the EKF outputs we compute the reconstructed speech signal fj(k). In Fig- 

ure 3.15(b) we show the spectrogram of $(k) which is very similar to the: spectrogram 

of y(rlc) shown in Figure 3.15(a). 

3.5 Appl ica t ion  To  M i x e d  Voiced-Unvoiced Speech 

In this section we apply the model (Eqs. (2.1)-(2.5)) and EI<F to a portion of 

speech that contains both voiced and unvoiced phonemes. The speech is "Alice's 

ability to work" from the TIMIT database 124, drl/msjsl/sx279]. (The sentence 

is cul short to approximately 1 s). Since it is spoken by the same speaker as the 

all-voiced sentence in Section 3.4, we use the same parameters except for initial 

conditions rnj,,o which are 560, 1400, 2300, and 3200 Hz for i = 1,  2, 3, and 4 

respectively. The spectrogram of the original speech with superimposed plots of the 

estimates f,(k) is shown in Figure 3.16(a). The formant tracks lose their interpre- 

tation as format frequencies at the uilvoiced phoneme /s/ arouhd 2110 ms. Both 

f3(k) and j4(k) increase rapidly driven by the energy concentration around 5000 Hz 

while f l (k)  and f2(E) extend through regions that seem to have the second largest 

energy concentration in the phoneme. After the plosive /b/,  f2(li) tracks the second 

formant. 

From the EKF outputs we compute the reconstructed speech signal $(k). In Fig- 

ure 3.16(b) we show the spectrogram of $(k) which is very similar to the spectrogram 

of y(k) shown in Figure 3.16(a). Therefore, even though the formant interpretation 



Fig. 3.16. The  speech "Alice7s ability to work". (a) Original spectrogram and 
estimated formant tracks. (h) Reconstructed spectrogram. 



Fig. 3.17. The original and reconstructed unvoiced phoneme Is/.  (a) and (b): time 
domain. (c) and (d): frequency domain. 

of a;( k) cos($;(k)) breaks down in unvoiced phonemes, the the superposition of the 

a,(k) cos($;(k)) signals accurately represents the speech. In Figure 3.1'1 we show the 

original and reconstructed unvoiced phoneme Is/ in the time and frequency domains 

while in Figures 3.18 a,nd 3.19 we show the EI<F estimaies. These es.timates seem 

to be unstructured and mostly random as was also observed in [4, Figure 81. 



Fig. 3.18. EI<F estimates & ( E )  for the unvoiced phoneme /:;I. 



k ( k )  k ( k )  

Fig. 3.19. EKF estima.tes i . ; (k )  for the unvoiced phoneme /s/ .  



4. COMPARISON OF DESA-1 AND MBIIA 

In this chapter we compare two approaches for extracting the modulating signals 

from jointly amplitude (AM) and frequency (FM) modulated waveforms: DESA-1, 

based on Teager's energy operator, and MBDA, based on statistical nonlinear filter. 

In Section 4.1 we briefly review the two algorithms with a focus oil their differ- 

ent characteristics. In the following sections, we apply DESA-1 and JABDA to  two 

exa.rnlples: a speech phoneme (Section 4.2) and a synthetic two-chirp signal (Sec- 

tion 4.3) [30]. 

4.1 DESA-1 And MBDA 

LIESA-1 is a demodulation algorithm [8, 18, 12, 19, 4, 5, 21 that extracts the 

amplitude and frequency modulations from a jointly AM-FM signal, e.g., a signal 

modeling a single speech resonance. Let y(k) ,  representing a speech resonance, be 

rnodr:led as y(k) = a(k)  cos($(k)), where $(E) - Sl,E + 0, ~ k = ~  q(n)  + 0 for some 

function q(.) and constants O,, Om,  and 0. Define the instantaneous frequeilcy by 

Slinst(k) = 0, + Sl,,q(k). Then the outputs of DESA-1, i.e., the estirriates of J a ( k ) l  

and !Zinst(k), are computed by Eqs. (1.7)-(1.9) which are based on Teager energy 

oper- CL t or. 

When the Teager energy operator is applied to  signals with a superposition of 

terms, i.e., ~ ( k )  = C ,  a,(k)  cos(4,(k)). or additive noise, i.e., y(k) = a(k)  cos($(k))+ 

v(k),  the operator is applied to each output of a bank of bandpass filters. In the 

case of a superposition of terms, the bandwidth of the i t h  filter is determined 

by the bandwidth of the term n,(k)cos($,(k)) and the outputs of the i t h  energy 



operator are estimates of (a;(k)( and 0;2"St(k). In the case of a single term in the 

presence of noise, the bandwidths of the. filters are determined by the trade-off 

between suppressing the noise and passing as much signal energy as possible and 

the single signal is tracked (by an energy measure) as it moves from filter to filter. 

In MBDA, a linear superposition of jointly AM-FM terms and the presence 

of noise are considered simulta~neously. MBDA depends on a statistical model for 

each signal and a simple choice of model [31, 321 is described in Section 2.2. For 

each formant (i labels the formant), the outputs of MBDA are the est,imates of the 

Kaiser-Teager amplitude signal (hi( k)), the Kaiser-Teager frequency signal (C; (k)),  

the formant frequency (f,(k)), and the total phase signal (&(k))  which are extmcted 

from the measured speech signal by extended Kalman filter (EI<F). Fro~n these 

estimates we can compute a reconstructed speech signa1,denoted by ij(k), by $(I;) = 

E; hi(k) cos($i(k))- 

I ~ L  a qualitative sense, the nonlinear filter acts as a, bank of bandpa.ss filters 

where the center frequency of the i th filter tracks the instantaneclus frequency 

of th,e ai(k) cos(di(k)) term and the bandwidth of the i th filter is set to achieve 

the optimal trade-off between passing signad energy and rejecting noise based on 

the statistical model. In this point of view, the parameters of the energy operator 

approach (i.e., the bandwidth and center frequencies of the Gabor filters) are seen to 

qualitatively correspond to the parameters in the statistical model of the nonlinear 

filtering approach. 

Comparison of DESA-1 and MBDA is not easy. a (k)  cos(4(k)) = al(k) cos(@(k)) 

does not imply that a(k)  = al(k) a.nd 4(k) = @(k). It follows that esti~~nation of a(k)  

and g)(k) requires prior informa.tion in addition to the measurements. Since the prior 

inforination in DESA-1 and MBDA is quite different, it is not surprising tha,t the 

results can be quite different. Rather than comparing the estimates of cz(k) and 4(k) 

from different methods, one might instead compare the speech signals that result 

from reconstruction using the different estimates. While this is straightforward for 

MBDlA, it is not straightforward for DESA-1 because in the latter approach the 



estimate is of la(k)( rather than a(k) so a sign is lost. 

4.2 The Phoneme /ee/ 

111 this section we compare DESA-1 and MBDA on the phoneme /ee/ of the word 

"m/ee/tingV processed in Section 3.2. For MBDA, we use the same parameters as 

in Section 3.2. For DESA-1 we extract the first two formants using Gabor filters 

with center frequencies of 390 Hz and 2200 Hz, o = 1000, and N := 55[4]. The 

original signal in the time and frequency domains and the reconstructed signal from 

MBDA in the time and frequency domains are shown in Figures 3.9 and 3.10. The 

MBDA reconstructions are excellent. Because DESA-1 estima.tes la(k)(  rather than 

a(k) ,  it is not possible to  compute a reconstruction for DESA-1. We also show the 
n 

instantaneous amplitude estimates Iaf (k)l and ~ y ( k )  for i = 1,2 ,  wherle superscripts 

D and M refer to  DESA-1 and MBDA respectively. The MBDA estimates are the 

same as in Figure 3.11 and shown here for comparison. The DESA-1 estimates 

tend t o  be smoother than the NIBDA estimates. In both cases, s t ruct~lre  within the 

pitch period is visible. In the MBDA case, alternative pulses tend t o  have reversed 
n 

signs. Finally, we show the iilstantaneous frequency estimates Med7(RpSt(k)) and 

~ e d ? ( f i ( k )  + Gi(k)) for i = 1 ,2  from DESA-1 and MBDA respectively where Med7 

indicates a 7 point median filter [4, Figure 61. For the first bandpass filter (DESA-1) 

or formant (MBDA) there is substantial structure within the pitch period. For higher 

order formants (e.g., 2) the MBDA estimates tend to  be relatively un,structured. 

4.3 A Two-Chirp Signal 

In this section we compare DESA-1 and MBDA on a double chirp signal pa.t- 

terned after the single chirp signal of R.ef. [4, Figure 21. Two signals are considered. 

T h e  lirst signal is the same y(k) used in Section 3.1 where it was defined by: 
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Fig. 4.2. Phoneme /eel: second formant. 



Fig. 4.3. Spectrogram of noise free chirp with f l (k)  + Gl(k) and f2(k) + D2(lr.). 

wher'e T = 1/16000 s, fa  = 30 Hz, .f,,l = 200 Hz, fm2 = 2000 IIz, and f, = 

6000 Hz/s. The second signal is y(k) plus additive white Ga,ussia.,n noise with 

standard deviation .I778 = = 15 dB. The DESA-1 ha.s 5 bandpa.ss filters 

with the specifications of R.ef. [8, Figure 91. The MBDA has the same parame- 

ters as in Section 3.1 for the noise free case and for the noisy case the observa.- 

tion noise standard deviation r is set to be 1.778 = d m .  Ideal performance 

would lead to iil(k) = cos(2a fakT),  f l (k )  = f m l  + 2 fckT, ii2(k) = 0.2cos(2a fakT),  

f2(k) = fm2 - 2fckT, and t l (k )  = G2(k) = 0. 

The spectrogram of the noise free double chirp signal with superimposed plots 

of the estimates f l (k)  + G1(k) a,nd f 2 ( k )  + 4 ( k )  are shown in Figure 4.3. (The 

spectrogram is computed in the same way as in Section 3.4.) In Figure 4.4 we - - 
show laY(k) 1 ,  liY(k) (solid curve) and &tl(k) (dashed curve), Med7(!2pt(k)), a.nd 

.fl (k)  + GI ( k )  (solid curve) and f2(k) + G2(k) (dashed curve) for the noise free chirp 

signal. The corresponding plots for the noisy chirp are shown in Figure 4.5. 

If z (k )  is the true signal, i ( k )  is the estimate, and t,he signal is !V samples in du- 
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Fig. 4.4. Noise free chirp. 
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Fig. 4.5. Noisy chirp. 



Table 4.1. 
Mean square error for the two-chirp signal. 

L MBDA DESA-1 I 

1 15 d.B noise 1 0.0154 0.0086 669.14 1.7696 lo4 1 0.0470 3.5770 lo6 1 
N o  noise 1 

ratio11 then in Table 4.1 we report the mean square error performance ~ r = i ~  ( i ( k )  - 

x ( ~ ) ) ~ / N .  In DESA-1 we treat the low energy chirp as noise and only compute one 

instailtaneous amplitude and frequency while in MBDA we compute two. Whether 

the user regards the low energy chirp as noise or as a second signal is application 

dependent and in the first instance DESA-1 may be more attractive while in the 

second instance the energy-tracking ideas of DESA-1 [8] would have to be general- 

ized ,%nd MBDA may be more attractive. In terms of mean square error, MBDA 

performs better than DESA-1. From the plots, most of the error in R P t ( k )  occurs 

at tirnes when a l ( k )  = cos(2xfa k T )  goes through a zero and DESA-1 therefore se- 

lects the band with the greatest noise energy which is usually the highest frequency 

band because that band is broadest. More sophisticated logic in the energy-tracking 

algor I t hm would probably cure this problem. 

I a ~ ( k ) (  la z (k ) l  f ~ ( k )  + v l ( k )  f 2 ( k )  + v 2 ( k )  

0.0034 0.0027 237.57 6734.8 

l a l ( k ) (  0 Y t ( k )  





5. SPEECH CODING 

The purpose of this chapter is to document the results of the nonlinear speech 

codins ideas we proposed in Chapter 1. We will also discuss some alternative speech 

coding schemes, such as schemes based on baseband coding and schemes ba.sed on 

subbalnd coding ideas. 

5.1 MBDA-Style Coding Idea 

The basic MBDA-style coding idea is to use the statistical model and nonlinear 

filter proposed in previous chapters and compute estimates of a ; ( k )  anti 4;(k) .  Then 

these estimates are coded, transmitted, and decoded. The speech is ireconstructed 

by combining the decoded estimates through the standard AM-FM nonlinearity 

(Figu-re 5.1).  If the coding is perfect, we have already shown that the ireconstructed 

speech signal is very close to the origina,l speech in both the time doimain and the 

frequency domain. 

In all the experiments involving real speech signals in this study, we have used 

statistical models with I = 4 forma.nts. However, we found that ainong the four for- 

mant s, the first two lowest formants have the most significant energy. The strength 

of the estimated amplitude signals decreases from low formants to high formants 

(Figures 3.11 and 3.12).  Signals reconstructed using estimates from the first two 

resoriances alone are very close to the original speech signals. Our ca~sual listening 

tests show that such signals are very good both in terms of quality a.nd intelligi- 

bility. In Figure 5.2, we show the wideband spectrogram of the reconstructed all 

vowel sentence processed in Chapter 3 (Figure 3.15). The only difference is that we 



Fig. 5.1. The blockdia.gram of MBDA coding 

use only 61 (k),  dz(k), 81 (k)? and &(k) when reconstructing 9(k). From Figure 5.2, 
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we observe that the spectrogram of the reconstructed speech is very similar to the 

original speech in spite of the fact that only estimates of the first two formants are 
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used. Our casual listening tests support this observation. Thus, to achieve speech 
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coding at a low bit-rate, we will code only first two forma.nts, i.e., we will code C1(k), 

&z(k), $l(k),  and 4z(k). 

It follows from the sufficiency of two formants that in MBDA, the term Bi cos(&) 
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not only contains energy over frequencies around f;, but also carries informa,tion 

over iL much larger frequency range, especially when i = 1 or 2. This should not be 
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$(k) = C & ; ( k )  cos(&(k)) 
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surprising for two reasons: 1) Speech resonances are interwined with each other; a.nd 

&i(k) 
4 

4 
Ji(k) 

2) In MBDA, the amplitude and frequency signa.1~ are estimated using statistical 

models simultaneously for all the formants, as opposed to some other tiemodulation 

approach (e.g., energy separa.tion algorithm [5, 41) where the speech signa,l is first 

passed through a bank of bandpa.ss filters before processing. 

The relationship between $i(k), fi(t), vi(k), &(k), f i (k) ,  and i i ( k )  are irnpor- 

tant for coding algorithms. From Eq. (2.4), it follows that 



Fig. 5 .2 .  Spectrogram of reconstructed sentence using first two resonances. 

There are two natural estimates for $ ; ( k ) .  The first is $ ; ( k ) ,  which is the estimate 

of $;l:k) from the EKF. The  second, denoted by $ ; ( I ; ) ,  is defined by 

where i ( l )  and t i ( l )  are the EIW estimates of the formant frequency and the I<aiser- 

Teager frequency, respectively. 

Then, 

k-l 
= E{$i (O)  + 2*T C(fi(1) + . i ( l ) ) l y ( O ) ,  . . . , y ( k  - 1 ) ) .  ( 5 . 4 )  

l = O  

On the other hand, from Eq. ( 5 . 2 ) ,  it follows that 

since f i ( 1 )  % E { f i ( l )  ly(O),  . . - , y ( l  - 1 ) )  and likewise for k(l) .  



Thus, &(k) # B;(k) in general because the expectations are conditioned on 

different observation sequences. Since d;(k) is conditioned on more ineasurements 

than &(k), we expect that &(k) is a more accurate estimate of q5;(k) than is &(k). 

This expectation is substantiated in the speech application in the sense that speech 

reconstructed from l ;(k)  and &(k) sounds much better than speech reconstructed 

from d;(k) and $;(k). Therefore, we need to code &(k) and not C;(k) and fi(k). 

Because &(k) is a summation, it is natural to code its first-order difference denoted 

by S;(k). 

5.2 SNR Requirements On Speech Coders 

In order to determine the effect of coding &(k) and bi(k) on the reconstructed 

speec:h C(k) independent of coding methods involved, i.i.d. white Gaussian noise was 

added to di(k) and &(k) simultaneously. Let 4 ( k )  and &(k) denote: the resulted 

signals which are defined by 

( k )  = ii;(k) + ow,, (k) 

&(k) = &(k) + aw6,(k), 

where w,,(k) and ~ ~ ~ ( k )  are i.i.d. , zero-mean, unit variance white Gaussia,n se- 

quences independent of each other and a2 is the noise variance. The reconstructed 

speec.h signal is therefore given by 

Our casual listening tests indicate that in order for $(k) to maintain reasona.bly 

good quality, SNR of i ; (k)  and 6;(k) must be close to 15 dB. 

It is obvious that l i (k )  and b;(k) do not have to  be equally well coded since 

6; a.ffects the speech quality through the cosine function which is highly non1inea.r. 

Because the speech is a function of cos(d;(k)), it is difficult to control the effect on 

the speech of errors in coding &(k). Ideally, the noise variance in hi(k) and &(k) 

should be allowed to be different. However? is is still helpful to use the 15 dB SNR. 

value as a general guidance in designing coding schemes for l ; ( k )  and S;(k). 



5.3 Linea r  Predic t ion-Based C o d e r s  

ilr, first examine .coders where &(k) and &(k) are coded using linear predic- 

tion ideas. Such ideas have been very successful in coding speech signals, e.g., 

LPC-.10 [33] and CELP 1341. The basic idea is to partition the speech into frames, 

compute a linear prediction model for the speech within each frame, and then trans- 

mit the coefficients of the linear predictive model plus a coded version of the resid- 

ua.ls, where the residuals are the difference between the predicted ancl true speech. 

Therlefore there are two important issues: what order of linear prediction model 

is required (this controls the number of coefficients that must be transmitted) and 

whether the residuals can be efficiently coded. In the next subsection we investi- 

gate necessary linear predictive model order, which we find to be very low, which 

makes this approach attractive. Then, in the following two subsection:j, we exa.mine 

residual coding using the methods from the LPC-10 and the CELP coders. These 

results are less attractive: the fixed excitation sequence of LPC- 10 is not appropriate 

for our signals and the codebooks in CELP appear to be too sma.11 for our signals 

because our signals differ more from pitch period to pitch period than do speech 

signals. 

5.3.1 Linea r  predic t ion  illode1 o r d e r  

VVe start with analysis by synthesis techniques using open-loop analysis. For 

coding ai(k),  we are consideriilg linear predictive coding (LPC) techniques. The 

remaining examples in this subsection are based on the phoneme /ere/ of the word 

w/ert:/ which we show in the time and frequency domains in Figure 5.3. (All power 

spectral densities in this section were computed by the U'elch method using a 256 

point FFT and 50% overlap). In Figure 5.4 we show the residuals of the LPC 

algorithms with order 1 and 10 a.pplied to the speech signal of Figure 5.3. Notice 

how non-white the residuals are wheil the order is 1 in comparison with order 10 

(the choice of 10 was motivated by the LPC-10 algorithm [33]). In Figure .5.5 we 



Fig. 5.3. The Phoneme /ere/ of the Word w/ere/. (a,) Time domaill waveform. 
(b) F'ower spectral density (Welch method with a 256-point FFT and 50% overlap). 

show i i l (k )  from the EI<F and the residua.1~ of LPC predictors of order 1 and 2 

applied to iil(k). In Figure 5.6 we show the same quantities for &(k). Notice how 

flat these spectra are. Therefore, we believe that LPC encoding at order 1 or 2 will 

be sufficient. This is a large savings over the standard LPC-10 algorithm because 

the L,PC-10 algorithm uses 41 out of 54 bits/frame for the 10 LPC coefficients [33]. 

From the time domain wa.veforms notice that the energy decrea.ses from formant 1 

to  formant 2 and notice that the impulsive pitch-synchronous behavior seen in the 

residuals of the LPC-10 algorithlll applied to the same speech signal (Figure 5.3) 

is stronger in forlnant 1 than formant 2. For higher formants both tl-~e energy and 

the pitch-synchronous behavior decrea,se further. Therefore: it nlay I)e possible to 

model the residuals for higher formants as i.i.d. Gaussian sequences and code only 

the variances. In any case, the pitch period is common to all of the signals being 

coded. 

In Figures 5.7 aad 5.8 we show the corresponding results for S1(k) and S2(k). 

In view of these results, we propose to code & ( k )  using similar LPC techniques. 

However, in this instance, an LPC of order 0 may be sufficient. 
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Fig. 5.4. The Residuals from applying an LPC predictor to the s'peech of 
Figure 5.3. Residuals from the order 1 LPC predictor: (a) time domain waveform 

a:nd (b) power spectral density. Residuals froin the order 10 LPC predictor: 
(c) time domain waveform a,nd (d) power spectral density. The power spectral 
densities were computed by the Welch method with a 256-point F F T  a.nd 50% 

overlap. 
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Fig. 5.5. iil(k) and LPC residuals of iil(k) for the speech of Figure 5.3. c?l(k): 

(a)  time domain waveform and (b)  power spectral density. Residuals from the 
orde;r 1 LPC predictor of i i l ( k ) :  ( c )  time domain waveform and (d )  power spectral 

density. Residuals from the order 2 LPC predictor of l i l ( k ) :  (e) tirne domain 
waveform and (f)  power spectral density. 



Fig. 5.6. ii2(k) a.nd LPC residuals of ii2(k) for the speech of Figure 5.3. ii2(k): 
(a,) time domain waveform a.nd ( h )  power spectral density. Residuals from the 

ordeir 1 LPC predictor of iiz(k): (c)  time domain waveform a.nd (d) power spectral 
densit,y. Residuals from the order 2 LPC predictor of iiz(k): (e)  tirne domain 

wa.veform and ( f )  power spectral density. 



Fig. 5.7. & ( k )  and LPC residuals of &(k)  for the speech of Figure 5.3. &(k): 
(a:~ time domain waveform and (b) power spectral density. Residuals from the 

order 1 LPC predictor of il(l;): (c) time domain waveform and (d) power spectral 
density. Residuals from the order 2 LPC predictor of Jl(k): (e) tirne domain 

waveform and ( f )  power spectral density. 



Fig. 5.8. i2 (k )  and LPC residuals of i2(k)  for the speech of Figure 5.3. b2(h): 
( a )  time domain wa.veform and (b) power spectral density. Residuals from the 

order 1 LPC predictor of i2(k):  (c) time domain waveform and (d) power spectral 
density. Residuals from the order 2 LPC predictor of ci',(k): (e) time domain 

waveform and (f) power spectral density. 



5.3.2 MBDA version of the  federal  s t a n d a r d  1015 (LPC-10) 

Federal standard 1015 [33, 351 is a 2.4 kb/s voice coder based on a 10 th linear 

predictive coding (LPC) model. Therefore, it is also called LPC-10. The input 

speech is sampled at 8 kHz and is partitioned into 180-sample frames, corresponding 

to a time duration of 22.5 ms. The 10 th order LPC analysis is performed on 

each frame. Pitch and voicing are also extracted. 54 bits are transmitted per 

frame, including 41 bits for the 10 LPC coefficients (for unvoiced speech, only first 

4 coefficients are coded, and remaining bits are used for error protection), 7 bits for 

pitch and voicing, 5 bits for amplitude, and 1 bit for synchronization. Therefore, in 

LPC-10 more than 70% of the bits are used to transmit the 10 LPC coefficients when 

the speech is voiced. At the receiver, the pitch/voicing code is used to determine the 

excitation function to be used. If the speech is unvoiced, pseudorandom numbers 

are generated and used for the excita.tion; if the speech is voiced, then a. locally 

stored waveform, representing one cycle of a pla.usible prediction residual, is used 

as th.e excitation. This stored waveform [36] (Figure 5.9) is 40 samples long; it is 

truncated or padded out with zeros as required to match the current pitch period. 

A.s we discussed in the previous subsection, in order to code &(k) and &(k) 

we propose to adopt standard coding ideas. Specifically, LPC-based techniques are 

employed to  code Q;(k) and &(k). In Subsection 5.3.1 we showed that the advanta,ge 

of this approa,ch is that the order of the LPC model can be drama.tically reduced so 

that fewer LPC coefficients need to be tran~mitt~ed.  When LPC is a.pplied to ci.;(k), 

order 2 is sufficient while order 0 is sufficient for & ( k )  This is a large saving over 

LPC-10 because the LPC-10 algorithm uses 41 out of 54 bits/frame for the 10 LPC 

coefkients. It is also worth noticing that the pitch period is common to a.11 four 

signals, G,;(k) a.nd 6;(k), i = 1,2. 

The bit allocation for our proposed MBDA version of LPC-10 is given below. 

The sampling rate is 8 kHz and the frame length is 180 samples (22.5' ~ n s ) .  

iil(k) and &(k) are coded using order 2 LPC with each coefficieilt using 5 bits 



Fig. 5.9. The excitation of voiced speech in LPG-10. 

while & ( k )  and b 2 ( k )  are coded with order 0 LPG. 

The same pitch and voicing are used for all 4 signals for a total cost of 7 

bitslframe. 

The amplitudes of i i l ( k )  and & ( k )  are coded using 5 bitslframe, respectively. 

The amplitude range of i 2 ( k )  and b 2 ( k )  is much decreased rel.ttive to E l ( k )  

and b l ( k )  and fewer bits are necessary. The amplitude of B2(k )  is coded as 

2-" times the amplitude of i i l ( k )  using 2 bits/frame and likewise for b 2 ( k ) .  

1 bit/frame is used for synchronization. 
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This leads to 42 hits/frame, corresponding to a hit-rate of 1.87 kh/s. 

Since there are no hlBDA-style coders, we started the implementation of the 

abov'e ideas by modifying federal standard 1015 software. We first studied the 

source codes in an effort to understand the function of each program with the help 

of government publications. Then we modified the codes, paying special a.ttention 

to the order of the LPC model, perceptual weighting, prefiltering, and postfiltering. 

The modified software, which is the MBDA version of LPC-10, is then applied to 

hl(k:i, h2(k), bl(k), and g2(k). Figures 5.10 and 5.11 show the four signals for the 

sentence "Where were you while we were away" processed in previous c:hapters. The 

coded-decoded signals a.re illustra.ted in Figures 5.12 and 5.13. The SNR.s of the 

signals shown are -2.43 dB, -1.01 dB, -0.13 dB and 0.17 dB for hl(k),  d2(k), bl(k), 

and b2(k). respectively. A significmt amount of distortion has been introduced in 

the coding of these signals. Overall, the SNRs are far below 15 dB. 

The difficulties of the MBDA-style LPC-10 coder could be due to the fact tha.t 

a prestored waveform (i.e., Figure 5.9) is used aa the excita.tion of the LPC model. 

While the waveform ma.y be suitable for speech signa.ls, there is, indeed, no justifi- 

cation to  use it on non-speech signa.1~ such as ;;(A:) and 6 ; ( k ) .  

111 an LPC-based voice coder, two aspects are crucial in achievint; low bit-rate: 

small parameterization and pitch synchronous residuals that call be coded with 

reasonably fidelity. We certainly have achieved the first goal by using an LPC model 

of dramatically low order. As for the second goal, we do not see how a modified LPC- 

10 can handle that,  mainly because of the nature of the built-in waveform. Rather 

than attempting to redesign the excitation waveform for each of the different &,(k) 

and &(k) signals, we instead searched the literature for a standard coder that did 

not have built-in excitation sequences. Federal standard 1016, a code- exci ted linear 

predictive (CELP) voice coder, seeins to merit investigation. 



Fig. 5.10. The estimated amplitudes for "Where were you while we were away". 



Fig,. 5.11. The estimated pha,se differences for "Where were you while we were 
away". 



(a) Decoded 61 (k )  
3000 I r I I I 

(b)  Decoded &(k) 

Fig;. 5.12. The LPC decoded iLi(k) for "Where were you while we were away". 



(a)  Decoded &(k)  

3k 

(13) Decoded &(k)  

Fig. 5.13. T h e  LPC decoded g i ( l i )  for "Where were you while we were away". 



5.3.3 MBDA version of the federal standard 1016 (CELP) 

Federal standard 1016 [34, 37, 38, 391 is a 4.8 kb/s voice coder utilizing code- 

excit'ed linear prediction (CELP) ideas. Input speech sampled at 8 kH:a is segmented 

into frames of 240 samples (or 30 ms in time) which are processed as 0n.e unit. CELP 

coding is based on analysis-by-synthesis search procedures, perceptl-tally weighted 

vector quantization (VQ), and linear prediction (LP). A 10 th order LIP filter is used 

to model the speech signal's short- time formant structure. Long-terin signal peri- 

odicity is modeled by an adaptive codebook VQ (also called pitch VQ). The error 

from the short-term LP and pitch VQ is vector quantized using a fixed stocha,stic 

code'book. The optiillally scaled excitation vectors from the adaptive and stochastic 

code'books are selected by mi ninlizing a time-varying, perceptually weighted dis- 

tortion measure that improved subject speech quality. The stochastic codebook is 

terna.ry valued (-1, 0, $1) a,nd ha.s 512 codewords. The a.da.ptive codebook ha.s 256 

codewords. 

PJe modified the CELP softwa.re in the sa.me way a.s we did the LPC-10 softwa.re. 

Spec'ifically, we reduced the order of the LP analysis from 10 to 2 for &(k) a,nd 

to  0 for &(k). In addition, some of the perceptually weighting and bandwidth 

expansion features were removed because the modified CELP is intenlded to run on 

EKF estimates rather than on actual speech signals. 

The optimal way to use CELP to code MBDA estimates would be to run 

CELIP jointly on 6; and 6; with a closed-loop cost that measures the distortioil in 

C;(k) cos(&(k))). Howev

e

r, the resulted algorithm is very complicated! a,nd requires 

a tremeildous alnount of computation. A suboptillla1 solutioll is to apply CELP 

t o  & ( k )  with a closed-loop cost that measures the distortion in &(k) and indepen- 

dently apply CELP to &(k) with a closed-loop cost that measures the distortion in 

cos(&(k)) since &(k) contributes to the speech through the cosine function. 

Let x(') be the optimal vector being searched for a.nd gl be the c:orresponding 

optimized gain. Let column vectors 6:') and d( ' )  denote the decoded bi and error 

signal over a frame as a result of dl) and gl. Let $1') be the pha,se corresponding to 



6('). Furthermore, let H denote the LP filter. Then 

where y(') = HZ(') is the filtered codeword. 

If we apply CELP to a cost which measures the distortion in co~(~r$~(k)),  then 

where A is a lower triangular matrix of appropriate size with all I entries, and 
.. - 4; = Ah;, d!') = A&!') for column vectors 4;) $!'), S;, and 6:') over a frame. 

Let E(/) denote the norm or total squa,re error for codeword 1: 

Thus, 

a ~ c ' )  No closed-form solution for gr exists to the equation - 
ag1 

= 0. Numerical solution 

must be used and the computationa.1 requirements of codebook search are very 

expensive. 

Another alternative suboptimal approach is to apply CELP to a clost that mea- 

sures the distortion in bi(k), revise 6; based on the decoded bi, and apply CELP to 

the revised 6;. Let 6, denote the revised 6; which is defined by 

where $i is the phase corresponding to t.he decoded bi. 
Fiigures 5.14 and 5.15 show the results of modified CELP applied to the signals 

in Figures 5.10 and 5.11. The corresponding SNRs are 9.66 dB, 10.21 dB, 7.36 dB 



and 13.35 dB for 21, 22, 81, and 8 2 ,  respectively. While the coding of the two am- 

plitudes has improved substantially, a significant amount of distortion still exists in 

the coding of the phase signals. This is especially unfavorable due tcl the fact that 

&(k) needs to be summed up to yield &(k) and therefore distortion will be accu- 

mulated. Figure 5.16 shows the ratio cos(& (k))/ cos(&(k)) for the same sentence. 

The dynamic range is large. It is evident that some of the coherent structure in iil 

will be destroyed as a result of the revision and therefore the performance of CELP 

on the revised signal iil will decrease. To successfully apply this revision idea, it 

seems crucial to code the two phase signals with reasonably good fidelity. 

VIIe believe that in order for CELP-based techniques to generate reasonably good 

results on MBDA outputs, relatively large codebooks will be required to  represent, 

the I,P residuals. This is especially true when the residuals of the two phase sigiials 

do not exhibit strong pitch synchronous behavior. But the codebooks of the federal 

stantlard 1016 and its variations [40, 411 are relatively small and highly structured. 

The nonlinear cosine function also makes the issue more complicated. 

5.4 Other Ideas On Coding  MBDA Outputs 

We have experimented with several ideas for coding EI<F estimates other than 

the 1,PC and CELP approaches described above. Our main focus is on the phase 

signah. 

In MBDA, the observation noise has standard deviation r (Eq. (2.5)). Since all 

the speech data in this study come from TIMIT which is essentially noise free, the 

observation noise is assumed to be the quantization noise which, under a. uniform 

*1/2!-bit model, ha,s standard deviakion r = 41/12. With this r ,  we have been 

able to process speech in such a way that the reconstructed signal accurately tracks 

the original speech in both the time domain and the frequency domain. While this 

is very impressive from the point view of MBDA, it actually poses iz problem for 

coding: the estimated signals vary rapidly in time. If r is increased, the non1inea.r 

estirrlator would tend to  attribute more variations to the observatioii noise rather 



(a) Decoded hl (k)  

(b) Decoded hz(k) 

Fig. 5.14. T h e  CELP decoded &(k) for "Where were you while we .were away" 



(a)  Decoded i1 (6)  

(b) Decoded &(k) 

Fig. 5.15. T h e  CELP decoded &(k)  for "Where were you while we  were away". 



Fig. 5.16. The ratio 
cos(41(k)) 

for "Where were you while we were away" 
cos(41(k)) 

than attributing all of the variations to the signals being estimated. Therefore, by 

increasing r ,  we attempt to  make a trade-off between the quality of the reconstructed 

speech and the suitability for coding of the MBDA estimates. Figure 5.17 shows the 

resulted estimates for r = 10 for the phoneme /ee/ of the word m/ee/l;ing processed 

in previous chapters (Figure 3.9). (The rest of the para.meters remain the sa.me.) 

These estimates appear to be "smoother" than they used to be. But the improve- 

ment is not substa,ntial and the pitch synchronous behavior is not strengthened. 

In our real speech experiments, the estimated phase signals appear to  be q u a i -  

linear or piecewise linear, e.g., the results displayed in Figure 3.11. Thus a very 

simple coding idea is to code and transmit every L th  sample of 4;(k) and then, at 

the receiver, recover the missing sa.mples through linear interpolation. Figure 5.18 

shows the error signal for the linearly interpolated d l (k)  for the sentence "Wllere 

were you while we were away" when L = 30 samples. Unfortunatel:~, the error is 

noise like a.nd is not pitch synchronous a.s we would like to observe. In addition the 



(4 & 2 ( k )  (4 fi2 ( k )  

Fig. 5.17. EI<F est.ima.tes for the phoneme /eel of the word nl/ee/ting: r = 10. 



Fig. 5.18. The error for linearly interpolated &(k): L = 30. 

error is of large amplitude relative to T .  It would require a fair amount of effort to 

code this signal. 

VVe have also experimented with a baseband coding approach. The idea is to shift 

the term B2(k) cos(J2(k)) to baseband to generate an inphase signal and quadrature 

signal. Based on the inphase and quadrature signals, we can compute the envelope 

and phase which are subsequently coded (Figure 5.19). We are interested in this 

apprfoach because LPC- or CELP-based schemes seem to be much less effective on 

estimates from the second resonance. If Q2(k)  cos(J2(k)) is well behaved at baseband, 

it is then possible to code its envelope a,nd phase efficiently. Figure 5.20 shows the 

estimated second resonance of the phoneme lee/ of the word m/ee/ting in the time 

and frequency domains. The lowpass filter is shown in Figure 5.21 and the resulted 

envellope and phase signals are give11 in Figure 5.22. These signals are observed to be 

very erratic and the phase signal does not exhibit strong pitch synchronous pa.ttern. 

Therefore, this approach wa,s not pursued. 

So far, we have encountered substantial difficulties in coding MRDA outputs. 



LPF Jm 
B2 cos(d2) cos(2w fit) 

LPF arctan(., a )  

Phase 

Fig. 5.19. The blockdiagram of baseband coding. 

In fact, after the AM-FM model and its demodulation algorithms emerged, the 

applilcation of the model to  speech coding has been a very active research area [12]. 

However, no major breakthrough has been reported. We believe the difficulties 

come from several aspects: 1) The model is a nonlinear model. Our main efforts 

have been on coding amplitudes and phases. It is very difficult to control the effect 

of the phase signal on speech; and 2 )  The coding schemes that our experiments are 

based upon, i.e., LPC and CELP, are designed for speech signals rather than for 

MBIIA estimates. This is manifested by the prestored excitation waveform in LPC- 

10 arid the highly structured c,odebooks in CELP. This la,tter ~bservat~ion prompted 

us to  search for a coding scheme that is not speech specific, e.g., subband coding. 

5.5 S u b b a n d  Coding  Approach 

Generally in subband coding [42, 43, 441, a signal is passed through a bank of 

bandpass filters. The output of each filter is then coded and transmitted. Decima- 

tion is often involved. The idea of combining MBDA and subband coding approach 

for speech coding is shown in Figure 5.23. A speech signal is first passed through 

a bank of analysis filters. MBDA with one formant and a fixed formant frequency, 

i.e., , f i ( k  + 1) = fi(k), is a,pplied to the output of each filter to generate an ampli- 

tude and a phase for each band. These signa.1~ are then down-sa.mpled, coded, and 

transmitted. A reverse process is performed at the receiver. 

The approach is interesting because, in theory, the ba,ndwidth of ilL(k) and &(k) 



(a) Time domain 

(b) Frequency domain 

Fig. 5.20. The estimated second resonance of the phoneme /ee/ of the word 
m/ee/ting. 



Fig. 5.21. The lowpass filter in baseband coding. 

(or i l (k ) )  is much narrower than that of y(k) where y(k) = dl (k)  cos((el(k)) (291. In 

othei. words, the iloillinear system exhibits bandwidth expailsioil analogous t o  the 

bandwidth expansion of a frequency-modulated communication system. In order 

t o  easily deinoilstrate bandwidth expansion, it is convenient to  have a wide-sense 

stationary R, (Eqs. (2.1)-(2.5)) and therefore we set q j ,  = 0. Unfortunately, we 

are unable to  analytically compute S,(SZ). Therefore, we give an  numerical exainple 

using one formant and evaluating S,(SZ) numerically after truncating the infinite 

+4096 sum t o  Ck=-4096. The parameters of the example are a,, = .99. q,, =- 1, a,, = .99, 

q,, =: 20, q j l  = 0, r = 0, m j l , o  = 1000 Hz, T = 1/16000 s, p j , , ~  = 0, and p4,,0 = 0. 

In F ~ g u r e  5.24 we show the power spectral densities for a l (k)  and r / l (  k), which are 

identical except for a constant scaling by 202, and the power spectral density for y(k). 

Depending on the details of the defiriitiori of bandwidth, a bandwidth expansion of 

roughly 3 times has taken place in this example. Thus, this MBDA-subband coding 

idea is promising since down-sampling of a large rate could be achieved. 

T h e  coding method based on subband ideas is quite different from that based on 



(a,) Envelope 

(b)  Phase 

Fig. 5.22. The envelope and phase at baseband for the phoneme /ee/ of the word 
m/ee/ ting. 



Y d k )  
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Fig. 5.23. The blockdingram of MBDA-subband coding 

LPC or CELP. In modified LPC or CELP, MBDA is applied to the entire speech. In 

the s-ubband-based a.pproach, MBDA is a.pplied to the bandpassed speech with one 

formant and a fixed forma,nt frequency. Both LPC and CELP assume a underlyillg 

1inea:r prediction model while no model is assumed in subband coding. 



Fig. 5.24. Bandwidth Expansion: solid curve is S,(R); dashed curve is the power 
spectral density of al(k)  shifted in frequency to m f , , ~  and scaled in amplitude to 

match S, (R)? i.e., (Sg(,mfl,o)/Sa; (mrl ,o))&; (0) where 
a i (k)  = al(k)  cos(2nmf, ,OkT). S,, (R)  is proportional to S,, {(R). 



6. DISCUSSION 

111 this study we propose a statistical approach to the decomposition of a signal 

into sums of jointly amplitude- and frequency-modulated subsignals. More specifi- 

cally, we propose a model and an estimation problem, we compute the Cramer-R.a,o 

bound for the estimation problem, and we propose and demonstrate a practical 

nonlinear estimator. This fraillework is then applied to speech probleims. 

This approach has several attractive features: (1) The approachi can analyze 

signals containing multiple formants directly without first having to decompose into 

subsignals each containing zero or one formant. (2) The presence of interfering 

signals (i.e., "noise") is naturally included in the approach, both in the model and 

in thce processing where, for instance, no derivatives or first differences of the noisy 

signal a.re required. (3) The target signals a.re precisely described. For instance, 

the bandwidths of the AM and FM subsignals can be independently controlled 

and the rate of change of the formant frequency can be controlled c,r the current 

form,ant-frequency model can be replaced by a more sophisticated   nod el, e.g., a 

model which enforces spline-like snloothness const,ra.ints on the form;r.nt frequency. 

Specification of the ta,rget signals then implies the structure and ],ara,meters of 

the 11onlinea.r filter. Furthermore, this level of control in the specification of the 

target signals allows the incorporation of additional a,coustical knowledge a,s such 

knowledge becomes available. (4) The statistical framework allows the computa,tion 

of bclunds on the performance of an optima,l estimator. For instance, in this study 

we c'ompute the Cramer-Rao bound which is a lower bound on the mean squa,re 

error between the unknown signals a,nd their estimates and therefore is a,n upper 



bounld on the performance of the estimator. Using such bounds, the performance of 

practical suboptimal estimators can be compared against an absolute standa.rd of 

performance. 

The application of this approach to speech coding is also discussecl. The idea is 

to code and transmit the amplitude and phase signals generated by lour nonlinear 

filtering methods. We have experimented with a variety of techniques to  code these 

estimlated signals. It is shown that when standard linear prediction-based techniques 

are adopted, the advantage of this approach is that the necessary linear prediction 

model order is dramatically reduced so that fewer coefficients need to bc: transmitted. 

However, coding the residuals of the lineaa predictor is not stra.ight€orwa,rd since 

the methods embedded in sta,nda.rd speech coders (e.g., FS-101.5 a.nd FS-1016) are 

specialized for speech signals (e.g., the prestored excitation sequence in FS-1015 

and ,the small and highly structured codebooks in FS-1016). We believe that a 

non-speech specific technique, such as subband coding, will generate better results 

because no underlying linear prediction model is assumed and the de~modulat,ion is 

through MBDA with a fixed formant frequency where less ambiguity can occur. 
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A. INITIAL CONDITIONS FOR EQ. (2.25) 

In this appendix we describe the values for m0 and A0 which itre the initial 

conditions for Eq. (2.25). Define pjt - (2.;rrTrnj,,o, o ) ~ ,  I,,, % (0, o ) ~ ,  pat (0, o ) ~ ,  

= ;u$,,o/2, P = d , / ( l  - a;,), 17 = sB,/(l - a:,), 

P1 A (Pa,, pj,, P , , ) ~ ,  At diag(A,, , A , ,  A,,), p = (PI , .  . . ,  PI)^, A = diag(Al, . . . . A I ) ,  

and A (a1(1). a1(0)7 djl(l)7 djI(O), 4 u 1  (1))  dVl(O), . - , al(1)) a1(0), djI( l) ,  djI(0)) 

dvI(]), duI(0))T. Then X -N(P,  A) .  Define[ ( a l ( l ) ,  Qjl( l) ,  $,,(1), . . ) u1(1), q j I ( l ) ,  

dVI(l), ai(0),dj1(0),dV1(0), . . . ,  ~ ~ I ( O ) , Q ~ ~ ( O ) , ~ , ~ ( O ) ) ~  which is a permutation of X 

and define P E R"'" which is the corresponding permutation matrix. P has values 

and satisfies J = PA. Therefore, m0 = E[J] = P p  and A0 = E[(E - E[J])(( - 

E[<])lT] = P A P T .  



:B. AN ALTERNATIVE PERFORMANCE BOUND 

In  this appendix, we describe an alternative to the Cramer-Rao bound, specif- 

ically, a lower bound on mean square error performance based on rate distortion 

theory. We also describe a Monte Carlo method for evaluating the bound. 

PJe consider the following discrete time model [45]: 

where xk E Rn,  yk E Rm, ?uk is i.i.d. N ( 0 ,  I,), vk is i.i.d. N ( 0 ,  I,), .I:, is N(mo, Co), 

and lo, v, and xo are all independent. Notation: XI = {xi, X ,+ I , .  . . , xj ) and likewise 

for y!, vi and wj. R ( j )  = N ( j ) N ( j ) T .  E is expectation and Ex* is conditional 

expectation given xk. 

In general, the design of a filter that estimates xk as a function of the observations 

{yo, cr 5 k) is a nonlinear filtering problem. The goal is often to minimize t,he mean 

square error measure of distortion: 

where is the estimate of xk. 

The optimal solution that minimizes the mean square error is 

with the associated optimal error 



1:n practice, the optimal estima.tor can not be built, nor is it possiblle to compute 

the optimal error. However, there exist some lower bounds on on the mean square 

error which provide an indication of whether accuracy requirements are realistic 

before undertaking a suboptimal filter design. One such bound based on rate dis- 

tortion theory and the Bucy-Mortensen-Duncan representation theorem [46,47, 481 

is originally suggested in [45] and subsequently corrected in [49]. The bound is given 

by Theorem 1. 

The'orem 1 Consider the discrete tim,e filtering problem. defined by Eqs. (B .  1 )  and 

(B.2). A lower bound on the optimal mean square error ~ * ( k )  of Eq. (B.3) is given 

b y 

where h(p,) den,otes the diflerentinl entropy of a random vector :r with 

density function (pdf) p,, i.e., 

where z; is a deterministic vector of the same dim.ensions as y,k, and 

Prooj: See Appendix C. 



The difficulty with applying Theorem 1 to a particular problem is that Eq. (B.5) 

involves conditional expectations in function space. For a limited class of problems, 

we now describe a Monte Carlo method for evaluating Eq. (B.5) and consequently 

the bound in Eq. (B.4). Specifically, we describe a method for sampling from the 

conditional distribution (in the Gaussian case) and an importance sampling method 

which accelerates the convergence of the Monte Carlo sums. Though the Gaussian 

restriction is limiting, there exist applications, such as analog angle modulation 

systems [50] and speech processing problems of this report [32], wliere the state 

process is linear and Ga,ussian but the measurement equation is nonlinea.r, and 

these methods are oriented toward such problems. 

A.ny practical sampling algorithm must operate by transforming a set of i.i.d. 

N ( 0 , l )  samples. The sampling method we propose is based on the following ob- 

serva.tion. If x is N(5, C) and x is partitioned x = (x:,~:)~ (and likewise for 

Z and C) then [2S, p. 3211 px,lxb(xalxb) = N(?ialb(xb), c ~ ~ ~ ) ( x ~ )  where Zalb(xb) = 

5, $ CabCi1(5b - 2b) and Calb = Caa - C a b ~ i l ~ r b .  The conditional mean estima- 

tor of xa based on xb, denoted by galb,  is 2.1~ = "lb and the errol-, denoted by 
- 
xalb, is defined to be Zalb = xa - ialb and has the properties that E{?alb) = 0 and 

Var{%alb) = Calb. Therefore, samples can be drawn from . / ( z ~ ) ~ ( z ~ ) ,  Calb)  for a 

particular value of s b  (denoted by x i )  by using the following algorithm: 

1. Choose xc. 

2. Pick a realization of x. 

3. Compute 2alb.  

4. Compute 2.1~. italb is distributed N(0,  Calb) .  

5 .  Compute ma = ~ , ~ ~ ( x ; ) .  (This would actually be done only once during an 

initialization procedure). 

6. Compute z = Zalb  + ma. z is distributed ,/(:t.alb(x;), Calb)  a,s desired. 



In the case where x is the sequence of states of a dynamical system (:jpecifically, s, 

is the first M time-steps and xb is the M + 1 st time-step), this process can be done 

efficiently because 

1. The process noise w is a white sequence and therefore is easy to1 sample from, 

and the realization of x can easily be computed from the realizidon of 10. 

2. The conditional mean can easily be computed by a Kalman s,moother once 

an observation equation, with measurement matrix H and measurement noise 

covariance matrix R, is defined by 

A forward-backward two-filter algorithm [28, p. 1891 is attractive because the 

forward pass is very simple. 

Let x be a ra.ndom variable with probability density function y. Computa.tion of 

I = E[f(x)] using Monte Carlo and importance sampling [51, Section 2.51 requires 

the computation of fq = (1/L) ~f..'..: f(y;)p(y;)/q(yi) where y; are i.i.d. samples from 

the probability density function q .  We apply these ideas to the complitation of the 

conditional expectation in Eq. (B.5). (The complete computation of the first term of 

Eq. (lB.5) requires Monte Carlo for the outer expectation also). Though the optimal 

q is known, we use a simple sub-optimal choice: p is Gaussian and we choose q to be 

Gaussian with the same covariance but a, different mean. The new mean is chosen 

as a compromise between the xk trajectory that maximizes exp ((k (xi, 2;)) (which 

corresponds to f in I = E[f (x)] above) and the mean of p, which maximizes y. The 

compromise is a time-step by time-step convex combination of the two trajectories, 

which are denoted r n ~  and m, respectively. The weight in the collvex combina.tion 

at  step i on the mean of p is az/(ai + a:) where a~ is the width, as a function 

of xi, of the maximum of exp (G (16, 26)) at  the trajectory rn( and ni is the i th 



diagonal element of the covariance of p. The width is defined as the value of Sx; 

such that & (m,(, 2;) - G (6mf, 2;) = 2 where (6rnc)k = (m()k fur k # i and 

(6mc)k = (m.()k + fix; for k = i [ ( - ) k  means the value at time step k]. Because of the 

form of 5, which is due to the fact that the observation noise is white, it is easy to 

find the trajectory x t  that maximizes exp(Ck) because it can be done time-step by 

time-step. 

In order to  demonstrate these ideas, we have examined a sca,la,r linear-Ga.ussian 

example: xk+l = axk+bwk and yk = gxk+Nvk where a = 0.5, b = 0.5, g = 2, N = 1, 

and xo is N(0,20).  The exact mean-square error at k = 50, compu.ted using the 

Kalnlan Filter, is C50150 = 0.132s. Pencil and paper evaluation of the rate distortion 

bound (i.e., Eq. (B.5)) Ref. [45]) gives the same result. The Monte Carlo value based 

on L = 1000 terms in each inner integral and in the outel- integral and without using 

impo'rtance sampling is 0.0438 f 0.0358 which is clearly far from convergence. (The 

sample mean of the bound plus/minus 1 sample standard deviation of the hound 

based 011 10 runs is reported). Fina,lly, if the calculatioil is unaltered except for the 

use of importance sa.mpling, t,hen the d u e  is 0.1044 f 0.0370 which is substa,ntially 

c1ose:r to  the exact value. 

Overall, compared to the Cramer-Rao hound described in Section 2.3, the bound 

basecl on the rate distortion theory is computationa.lly more burdensome a.nd there- 

fore was not pursued. 



C. PROOF OF THEOREM 1 

The bound proposed in [45] is more attractive than the bound of Theorem 1 in 

Appendix B because in [45] there are no conditional expectations in function space. 

However, as described in [49], there is an error in the proof in [45], which invalidates 

the hound. While the original bound is incorrect, an intermediate result is correct 

and that result is Theorem 1. Therefore, we only describe the error in [45] that 

invalidates the more attractive but incorrect bound. 

In [45], Theorems 2 (continuous time) and 3 (discrete time) have p,a.rallel proofs. 

An error occurs in the final step of the common proof between Eqs. (A.9) and (A10) 

in Appendix A and is of the following general type. Let r and s be scalar ra,ndom 

variables on the same probability spa.ce and let z E R be a deterministic pa,ra.me- 

ter. Let h be a scalar random variable derived from r and s .  Define two functions 

f(s) := (E{h(r ,z)))  I,=, and g(s)  = E{h(r,s)ls).  In general, f ( s )  # g(s).  Further- 

more., while E{lz(r, s ) )  = E{E{h(r , s )Js) )  = E{g(s)),  in general it is not true that 

E{h(:r, s)) equals E{ f (s)) .  The error leading up to  Eq. (A10) is an assertion of the 

type .that E{h(r, s ) )  = E{ f (s)).  A concrete example follows: 

Let 7- E {0,1), s E {0,1), p,.,s(O,O) = Po,o, Pr,s(O,l) =  PO,^, pr,s(l, 0) = Pl,0, 

prPs(l., 1) = 1 - PO,O - po,~ - p l , ~ ,  and h(r, s )  = I-s. Then f (s)  = (E{h(r,  2) ) )  I,=, = 

4 1  - Po,o -  PO,^) .3nd g ( s )  = E{h'(r, 41s) = s ( l  - Po,o - P0,l - Pl,0)/(1 -- Po,o - P1,o). 

Therefore, E[g(s)] = 1 - po.0 - po,~  - p l , ~  = E[h.(r, s)] and E[ f (s)] == (1 - p o , ~  - 

P0,l )(:I - Po,o - ~ 1 ~ 0 )  so tha,t E[f (s)] # E[g(s)] = E[h(r,  s)]. 

We focus on the discrete-time ca.se where for each equation we give both the 

abstract f o r ~ n  in terms of expecta,tiolis and the coilcrete form in terms of integrals 



and probability density functions (which we assume exist). We consider the same 

modlel given in Eqs. (B. 1) and (B.2). 

The Bucy-Mortensen-Duncan representation theorem in discrete time is 

where z i  is a deterministic vector of the same dimensions as ygk and Ck(s;, y,") is 

given in Eq. (B.6). (There is a typographical error in Eq. (26) of Ref. [45]: the 

"N(3:)" factor in Eq. (B.6) is missing). More explicitly, the Bucy-Mortensen-Dunca.n 

representation theorem is 

Eq. (A10) of Ref. [45] is a bound on the mut,ual informa.tion I (xk ;  y,") based 

on the Bucy-Mortensen-Duncan represent,ation theorem. The derivation is correct 

through 

(The second step is Jensen's inequality). The final step leading to Eq. (A10) of 

Ref. [45] is the assertion that E{[Ex* {exp(G(x,", zgk))}]4=y; } equals E{ttxp(G (11, ~gk))} 

which, unlike E{E"k{exp(Ck(z;, ygk))}} = ~ { e x p ( ( ~ ( x ; ,  y,"))}, is incorrect. More ex- 

plicitly, the bound is 



and the incorrect assertion is that 

equals 

?'he incorrect assertion is important because, if it were true, then these would 

be no conditional function space expectations which are inore difficult to evalua,te 

than unconditional expectations. In the absence of the assertion, Eq. (C. I ) ,  which 

is identical to Eq. (B.5) of Appendix B, provides a tighter bouncl than Eq. (C.2) 

and, at least in a Monte Carlo approach, requires essentially the sa,ine amount of 

coml>utation. 
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