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ABSTRACT

In recent years there has been increasing interest in nonlinear speech modeling.
In our approach, a speech signal is modeled as a sum o jointly amplitude (AM)
and frequency (FM) modulated cosines with slowly-varying center frequencies. The
key problem is to extract the center frequency and the amplitude and frequency
modulations for each formant in the model from the measured speech signals.

In this study, we describe the speech signal in terms o statistical models and
apply statistical nonlinear filtering techniques (Extended Kalman Filter) to esti-
mate the amplitude and frequency. The AM and FM signals are estimated for all
the formants simultaneously in an efficient and computationally tractable manner.
Using Cramer-Rao bound techniques, we can compare the performance of our com-
putationally feasible estimators relative to the performance o the computationally
intractable optimal estimator. Recombination d the amplitude and frequency sig-
nals generated by our approach results in faithful reconstruction of speech in both
the time and frequency domains.

We consider two applications. Thefirst application, which is formant tracking, is
adirect application d our nonlinear filters since the formant frequencies are a part
o our nonlinear model. The application o our entire framework to speech coding

is also discussed.
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1. INTRODUCTION

There has been extensive recent interest in modeling a speech resonance us-
ing a signal y(¢) with time-varying amplitude a(¢) and phase ¢(t). i.e., y(t) =
a(t)cos(¢(t)), where a(t) is an amplitude-modulation (AM) and ¢(t) is a phase-
modulation (PM). If ¢(t) is the integral d a more fundamental signal, then PM
is really frequency-modulation (FM). The initial motivation for modeling a speech
resonance using an AM-PM or AM-FM structure is Teager's work on nonlinear
modeling of time-varying speech resonances (1, 2].

In this chapter, we first provide a brief description of speech production mech-
anism and linear speech modeling ideas. Then we present evidence of nonlinear
effects in speech. A nonlinear speech model and an existing demodulation method
are introduced next. The potential applications of the nonlinear model is also dis-

cussed. Finally we provide an overview d thisstudy and an outline of the technical

reporl,.

1.1 Speech Production

Speech is produced by vocal organs which consist of lungs and trachea., larynx.
and vocal tract. Lungs supply compressed air to the system which is delivered by
way o the trachea. The larynx is a complicated system o cartilages and muscles
containing and controlling the vocal cords whose opening and closing can form a
quasi-periodic pulse train. The glottal pulse train, which is the principle excitation
source for speech, is then modulated or filtered by the vocal tract.

Acoustically, the vocal tract is a tube df nonuniform cross section, approximately



17 cm long in adult males, which is usually opell at one end and nearly closed at
the other. Such a tube is a distributed-parameter structure and thus has many
natural frequencies. The term "speech resonances” refers to the oscillator systems
formed by local cavities of the vocal tract which emphasize certain frequencies and
de-emphasize other frequencies during speech production. These resonances, also
known as formants, are the most important acoustical characteristics of the vocal
tract. The glottal pulse train is rich in harmonics and these harmonics interact
strongly with the vocal tract resonances to affect the tone quality o the voice. For-
mants thus provide the listener's primary source d information about the position

of the speaker's vocal organs [3].

1.2 Linear Speech Models
In linear speech modeling, speech is clescribed by a linear prediction (L P) model
y(k) = ay(k =1+ -+ apy(k —p) + e(k),

where y(-) is the discrete-time speech signal, p is the model order: a,,-..,a, are the
prediction coefficients and e(-) is the precliction error.

y(-) can also be viewed as the output of an all-pole linear filter with a;,-...«,
as the filter coefficients and e(-) as the input. When the order p is properly chosen,
the all-pole filter, sometimes referred to as a vocal tract filter, is a plausible model
o thevocal tract. The poles d the linear filter transfer function characterize speech
formants. In the linear moclel, the mocld coefficients, and hence the formants. are
assumed constant over each short-time analysis frame (about 10-30 ms). Thus this

classic approach assumes some local stationarity of the speech signal.

1.3 Nonlinear Effects In Speech

Experimental evidence in Teager’s work [1, 2] has motivated researchers [4. 5] to

investigate the possibility of relaxing this local stationarity assumption and using a



more refined model where variations of the phase and amplitude of speech resonances
can be modeled and detected on an instantaneous-sample time scale.

Teager found evidence that speech resonances exhibit more complicated modu-
lation structure than a linear model could possibly describe. Consider the all-pole
linear filter model introduced above. Each pair of complex conjugate poles cor-
respcnds to a second-order resonator with an exponentially-damped cosine as its

impul se response:
hin(t) = Ae " cos(w.t +6), (1.1)

wherew, is the center (formant) frequency and & > 0 controls the formant band-
width. If asignal representing a speech resonance were produced by a second-order
linear resonator, which is inferred in linear speech modeling, then the signal would
have a exponentially decaying envelope. In contrast, Teager found that bandpass
filtering speech vowel signals around formants resulted in signals with several enve-
lope "bumps" per pitch period ( [4] Figures 5-7, [1] Figure 5). These bumps indicate
some kind of modulation in each formant.

Teager’s work has also provided indications and plausible explanations of how the
speech resonances can change rapidly both in frequency and amplitude even within
a single pitch period, based on rapidly-varying and separated airflows in the vocal
tract. It is known that slow time variations of the elementsof a simple second-order
oscillator can result in amplitude or frequency modulation of the simple oscillator’s
cosine response. To see this, consider an undriven, undamped oscillator consisting

o amass m and a spring with stiffness coefficient k. The equation of motion is

d*z .
W—}-wi)r:o, w?:k/m, (1.2)

where z(t) is the displacement. If m or k are time varying, then the frecluencyw, is

also time-varying. For example, assume it can be modeled as

2w

= cos(wyt)] (1.3)

C

wi(t) = W1+



If wy € w, and wy < w,, it has been shown [6] that the approximate solution o
Eg. (1.2) is

z(t) = ACOS[th+w—mSiH(Wft)], (1.4)
Wy

which isan FM signal. Similarly se ond-order oscillators with time-varying damping
generate responses that contain amplitude modulation [7]. Thus, during speech
production, the rapid variation due to separated airflow o air masses and effective
cross.sectional areas of vocal tract cavities can cause modulations of the pressure

and velocity fields.

1.4 Nonlinear Speech Model

All these considerations lead to the modeling of a single speech resonance by an

AM-FM model [4] ¢
y(k) = a(k)cos(s(k)), (1.5)

where ¢(k) = Q.k + Q. TF_, q(n) T 6 for some function ¢(-) and constants Q,
.., and # and ). is the formant frequency of the resonance. The instantaneous
frequency is defined as Q"¢ (k) = Q. T Q,,.¢(k). The total speech signal y(k)is then
modeled as a linear superposition of such AM-FM terms

y(k) = ;ai(k)cos(qb,-(k)), (1.6)
where | is the number of speech formants which are indexed by z.

Obviously, in order to apply the nonlinear speech model to any speech processing
problems, it is necessary to estimate the amplitude «;(%k) and phase ¢;(k) modula-
tions from the measured speech signal y(k). One such estimation algorithm is the
energy separation algorithm based on Teager’s energy operator [5. 4].

The discrete-time Teager energy operator V¥, applied to a signal z(k), is de-
fined [4, EQ. (S)] to be U[z(k)] = z%(k) — z(k — 1)z(k + 1). (A corresponding

continuous-time operator exists but the current study is restricted to discrete-time




problems). Let y(k), representing a single speech resonance, he modeled as in
Eq. (1.5). Then the DESA-1 algorithm [4, Egs. (107)-(108)] for computing esti-
mates of Q"¢(k) and |a(k)| from the signal y(k) is defined by the following three

equations:

2(k) = y(k) —y(k—1) (1.7)
wotE) = arecos (1 2ER)]+ 9[z(k+1)] :
) = (1 40[y (k)] ) e

L Uly (k)]
alk)| = 9
|a(k)] J . W[z[kg]ﬁ[;}]kﬂn)? (1.9)

where "hat" (i.e.,”) indicates an estimate.

Single resonances are extracted from measured speech by bandpass filtering the
speech signal with a bank o bandpass filters, such as Gabor filters, with center
frequencies at the formant frequencies selected from the short-time speech spec-
trum [4]. Each filter is responsible for one particular term and the handwidth o
the 7 th bandpass filter is determined by the bandwidth of the term a;(k) cos(¢i(k)).
Thus resonances are assumed to berelatively independent of each other. The energy
operator is then applied to the output o each bandpass filter to extract the envelope
and instantaneous frequency signals.

In [4], an important issue is the bandwidth of the bandpass filter for extracting
speech resonances. It should not be too wide because then significant contributions
from neighboring formants will be included. On the other hand, the bandpass filter
should not have a very narrow passhand because some information in the resonance
can be either missed or deemphasized. Methods which optimize the trade-off be-
tween these two considerations in choosing the filter bandwidth require additional
study.

The case of one resonance observed in noise is considered in [3]. The observed
signal isfirst passed through a bank of bandpass filters. At each instant, the energy
operator is applied to the channel response that has the largest energy. The band-

width of the filters are determined by the trade-off between suppressing the noise



and passing as much signal energy as possible and the single signal is tracked (by

an energy measure) as it moves from filter to filter.

15 Application Of Nonlinear Speech M odel

The nonlinear speech model can he applied to many speech processing tasks,
including speech recognition, speech restoration, and speech coding.

The AM and FM signals extracted from the nonlinear inodel can be incorporated
as new features into current speech recognition frameworks, e.g., hidden Markov
models (HMM). Since the nonlinear speech model is capable of characterizing rapid
variations in speech, incorporating such ideas should generate interesting results.
The :nonlinear model can be especially useful in phoneme transitions where the
vocal tract changes its shape rapidly and conventional analysis methods based on
linear models are insufficient [9, 10, 11, 12].

Speech restoration is another area where the nonlinear model can be useful. The
idea.is to estimate AM and FM signals in the presence of a detailed noise inodel
that realistically describes the degraded speech signal, e.g., a model for cockpit noise
sources. Then these estimated signals can be combined to yield the restored speech.
This approach is particularly promising when the modulations are extracted using
statistical estimation methods, since then the design of the algorithms for rejecting
noise can be simplified.

If the nonlinear model more accurately reflects physical reality than a linear
model, then coding based on the nonlinear inodel will provide better performance
for a given hit rate than coding based on a linear model. One possibility [12] is to
adopt techniques similar to theformant [13] and the phase [14] vocoders and combine
their itdvantages. Another possibility, which isloosely based upon sinusoidal coding
ideas [15, 16, 17}, is to incorporate some linear speech coding methods, such asLPC
and CELP, in the nonlinear speech coder. Of these three broad application areas,
we have focused on the speech coding area in this study and our result'sare reported

in Chapter 5.




1.6 Overview

I:n this study, we present a novel demodulation algorithm for the AM-FM non-
linear speech model. We describe the signal in terms of statistical inodels for a;,
¢;, and the noise and apply nonlinear filtering techniques (Extended Kalman Filter)
to estimate a; and ¢; from the noisy signal. A linear superposition of terms (i.e.,

Eq. (1.6)) and the presence of noise are considered simultaneously.

The statistical point of view of our approach simplifies the design of algorithims
for the rejection of noise in the speech signal and allows the application o the
estensive theory of statistical estimation. The AM and FM signals are estimated
for all the formants simultaneously in an efficient, and computationally tractable
manner. Using Cramer-Rao bound techniques, we can compare the performance of
our computationally feasible estimators relative to the performance of the optimal
estimator. Recombination of the amplitude and frequency signals generated by our
approach results in faithful reconstruction of speech in both the timeand frequency

domains.

We consider two applications. Thefirst application, which isformant tracking: is
a direct application of our nonlinear filters since the formant frequencies are a. part
o our nonlinear model. The second application is speech coding. The ideais to use
our nonlinear filtering methods to estimate «;(&) and ¢;(k) for each formant in the
speech signal. These estimates are then coded, transmitted and decoded. Finally,
the speech is reconstructed from the decoded estimates. We have experimented with

avariety of techniques to code the estimated signals.

The remainder of the technical report is organized as follows: In Chapter 2 we
describe the statistical model and estimation problem and the Cramer-Rao bound
for the estimation problem. We also discuss parameter identification for the model
and a particular suboptimal nonlinear estimator, specificaly, the Extended Kalman
Filter.. In Chapter 3 we describe the applications of our approach to some synthetic

examples and formant tracking problems. In Chapter 4 we compare cur approach



with the energy separation algorithm. The application of the entire framework
to speech coding is described in Chapter 5. Finally, we summarize our results in

Chapter 6.



2. MODEL-BASED DEMODULATION ALGORITHM

Recently there has been substantial interest in taking asignal y (%) and extracting
amplitude a(%) and phase ¢(k) modulations using Teager’s energy operator [8, 18,
12, 19, 4, 5, 2]. More precisely, the signal is mocleled as y(k) = a(k) cos(¢(k))
and the goal is to estimate a(k) and @(k) (or the first difference of ¢(k)) from
the measured signal y(k). The purposes o this chapter and next chapter are to
propose a corresponding statistical problem formulation, analyze the best-achievable
performance for this formulation by computing the Cramer-Rao bound, propose a
practical suboptimal estimator for this formulation, and demonstrate the estimator

on several speech analysis applications.

In our approach, which we call the Model-Based Demodulation Algorithm.(MBDA ),
we simultaneously consider a linear superposition of terms, i.e., ¥y = 3, a, cos(;),
and the presence d noise. We describe the signal in terms o statistical models for
a;, ¢;, and the noise and apply nonlinear filtering techniques to estimate «; and ¢;

from the noisy signal.

This chapter is organized as follows: In Sections 2.2 and 2.3 we describe the
statistical model and estimation problem and the Cramer-Rao bound for the esti-
mation problem. In Sections 2.4 and 2.5 we describe parameter identification for the
model and a particular suboptimal nonlinear estimator, specifically, the Extended
Kalman Filter. In Chapter 3 we discuss the application of our approach to some

synthetic and real speech problems.
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2.1 Notation

Expectation is denoted by “E”. If x isarandom sequence then m,(k) = E[z(k)]
R, (ky, k2) = Elz(k1)z(k,)], and Py (ky, k) = E[(z(k1)—mz(k1)) ($(k2)‘—ma:(k2))]‘ In
thecasewhere R, (k, k;) isafunction o only &, — k2, thediscrete-time Fourier trans-
form of R.(0,k) is denoted by S.(0), specifically, S.(Q) = SF2° . R.(0, k)e 7%,
Independent and identically distributed is abbreviated by 1.i.d. The Gaussian prob-
ability density function (pdf) with mean m and covariance A is denoted by N (m,11).
The notation “z ~ p' means that the random variable (RV) z is distributed ac-
cording to the pdf p. If k& and k, are time indices, let k. = min(k;, k;) and

ks = max(ky, k2). The Kronecker delta,function is denoted by &y, 4,. Superscript T’

denotes transpose.

2.2 Model And Signal Processing Goal

For each formant (2 labels the formant), there is a dynamical system which
describes the timeevolution o 4 signals: the Kaiser-Teager amplitude signal (a;(k)),
the Kaiser-Teager frequency signal (v~ (%)), the formant frequency ( fi(k)), and the
total phase signal (¢;(k)). (Thetotal phase signal is defined to be ¢;(k) = ¢;(0) +
2T k- L[ fim + 4;(m)] where T is the sampling interval). We have chosen simple
dynamics: TheKaiser—Teager amplitudeand frequency signals a; and v; are modeled
asfirst-order autoregressive (A R) processes which allows independent control of the
power and the bandwidth. The formant frequency f; is modeled as a random walk.
This choice was made hecause we expect the formant frequency both to change
values and to remain nearly constant over periods d milliseconds in duration. A
random walk model is attractive because if (k) is a random walk then E[z(%)] is
constant and z(k) = arg max, 4, p(2(k + 1)|=(k)). An alternative model, an AR
process with a nonzero mean g, is not as attractive because the formant trequency

will take and hold different values while only one value, the mean u, is available

in the alternative model. Generalizing the mean to be time-varyving is impractical




because the time-course of its variation is not known. The dynamics of the total
phase signal ¢(k) are completely determined by its definition: ¢;(k) = ¢:(0) +
2rT S5 [fi(m) T vi(m)] where T is the sampling interval. The measured signal,
denoted by y(k), is the linear superposition of the contribution frorn each formant,
specifically, a;(k) cos(é;(k)), plus additive measurement noise. The complete model

is therefore

Gk +1) = aqai(k) + gowa (k) (2.1)
vk +1) = (k) + gy, (k) (2.2)
filk+1) = (k) + gpuop (k) (2.3)
Gilk+1) = &ilk)+2xT fi(k)+ 27T v(k) (2.4)

y(h) = 3 ailk)cos(di(k)) + ro(k) (2.5)

where the process noises w,,, w,,, and wy, and the observation noise v are all

2

1.i.d. A(0,1) sequences; the covariance of the observation noise is 72%; the initial

conditions are a;(0) ~ N(0,¢2 /(1 — a2)), »(0) ~ N(0,¢2 /(1 — a2)), f:(0)
N(mf.‘,Oap?f,;,o)s and ¢,(0) ~ J\"(O,pfiho); and the process noises, observation noise,
and initial conditions are all independent,. Notice that the initial conditions re-
quire that |a,,| < 1 and |a,,| < 1 (sinceotherwise the stated variances are nega-
tive) in which case a; and v; are wide sense stationary random sequences. Define
0 = (Qa,s Gass Qs Guus Uir T 24,100 P10 Pii0)

In terms of the model, the goal of extracting amplitude and phase modulations
from rhe observed signal corresponds toestimating z;(k) = (a;(k), fi(k), vi(k), #:(k))T
given the measurements y(0),...,y(k). Let %(k|/). a function of y(0), ..., y(.l),
be the estimate of z;(k) based on data through time 1 Let ¢(k|l) = E[(z;
(k)T (z:(k) — 2:(k|1))] be the mean square error (MSE). We define as the op-
timal estimator, denoted by Z27(k|{), that estimator which minimizes e(k|{) with
the result that 2X(k|{) = E[z(k)|y(0),...,y(l})] and the achieved MSE. is e*(k|l) =
E{(z:(k) = 37 (k|0 (z:(k) - 27 (k

cerned with the filtering problem, for which & = 1 rather than prediction problems

[)}]. Except in Section 2.3, in this study we are con-



(k > 1) or smoothing problems (b < 1). Therefore, the goal of the signal processing
is to compute the expectation in 2*(k|k) = E[z:(k)|y(0),...,y(k)] which, however,
we are only able to approximate (Section 2.5).

Note that the MSE performance criteria is not natural for all problems. In
particular, since y(k) is unaltered when ¢;(k) is replaced by (k) + L;(k)2r, where
l;(k) is an integer, the MSE performance of an estimator for ¢;(&) will degrade
over time as more and more errors of magnitude 27 occur in the estimate. In a
frequency-modulated communication system, this is the well-known cycle-slipping
phenomenon. However, the MSE performance of an estimator for a;(k), fi(k), and

v;(k) can be free of such problems.

2.3 Cramer-Rao Bound

In order to determine whether theresult of an estimation problem will have suffi-
cient accuracy for the intended application independent of the estimation algorithm
used or to compare a practical but suboptimal estimator to an absolute standard
of performance, it is helpful to have a lower bound on ¢*(k|k). One such bound is
the Cramer-Rao bound (CRB) [20, Section 2.4][21, Chapter 3][22, Section 6.4][23,
Section IV.C] which we compute in this section. In Appendix B we discuss an
alternative performance bound based on rate distortion theory.

There are two closely-related forms of the CRB depending on whether prior
knowledge is or is not available. The scalar forms of these bounds?minus technical

conditions, are

1. Cramer-Rao bound for non-random parameters [20, p. 66]: Let y be the mea-

surement, a he the parameter, and i(y) be an unbiased estimate of . Then

Pinpp! 11
Varlé(y) - ] > {—E lg—l(y}} |

This bound is appropriate when z is a deterministic but unknown parameter
since only the marginal probability density function p,, isinvolved. (Thisis

the hound that is traditionally called the CRB).




2. Cramer-Rao bound for random parameters [20, p. 72]: Let y be the measure-

ment, X be the parameter, and Z(y) be an estimate of x. Then

. 12 lnp,.(y,2)] "

This bound is appropriate when z is arandom parameter since the joint prob-

ability density function p, , isinvolved.

Because o the importance o prior knowledge in the MBDA algorithin, we use the
second form of the bound in which prior knowledge is included.

Let k = K — 1 be the time at which the CRB on €*(k|k) is desired. The natural
approach to computing the CRB is to consider the entire trajectory of a,;(k), fi(k),
vi(k), and ¢;(k) (: =1,....1, k=0,...,K — 1) and apply the usual CRB to this
vector. The resulting bound is a CRB for the fixed-interval smoother since all of the
estimates are based on the entire data, vector y(0),...,y(/X — 1). However, at time
k = K — 1, the fixed-interval smoother and the filter are identical. The difficulty
with this approach is the size of the Fisher information matrix JJ which must be
inverted: If thereare | = 4 formants and K = 16000 samples (1 s in the TIMIT
database [24]) then Jis4/K x 41K = 256000 x 256000. The solution is to use the
Kalman Filter (KF) to provide just the necessary block of J=! [25, 26, 27].

Let zi(k) = (ai(k), filk), vi(k), ¢i(k))T, wik) = (wa,(k),wy, (k) w, (k). ca =
(1,0,0,0)7, and ¢4 = (0,0,0,1)T. Then the model (Egs. (2.1)-(2.5))has the form

z(k+1) = Fizi(k)+ Giw;(k) (2.6)
y(k) = Z ¢, zi(k) cos( cz;:i(l:)) + ro(k) (2.7)
where
Q, 0 0O O
0 1 0O O 0 :
F = 45
0 0 a, 0 0 Qo
\ 0 277 277 1 ) k 0
It is not possible to apply the results of Refs. [25. 26, 27] to Egs. (2.6) and (2.7)

because the covariance of the process noise in Eq. (2.6), which is G;GT, is not



full rank because G; € R**3. However, the results o Ref. [27] also apply to AR
processes with order greater than 1 when driven by process noise with a full rank
covariance. Furthermore, it is possible to transform Egs. (2.6) and (2.7) to such
a form, while retaining the interpretation of the internal variables in Eqgs. (2.6)
and {2.7) as formant frequency, etc.

Thefirst transformation istoseparately sum f; and v; in thesystem of Egs. (2.1)-
(2.5). Specifically, we define ¢,(k) = 67, (0)T 27T Tk, fi(m), du. (k) = ¢.,(0) +
20T T5 1 vi(m), and ¢i(k) = ¢,(k)+ 6., (k)and rewrite the system of Eqgs. (2.1)-
(2.5) in the form

ailkt1) = agai(k)t guw, (k) (2.8)
vilk +1) = auui(k) + w0, (k) (2.9)
filk+1) = fi(k) + qpwy (k) (2.10)
¢nlk+1) = (k) +2aT fi(k) (2.11)
dui(k+1) = o, (k) +2xTw(k) (2.12)

y(k) = Y ai(k)cos(dy, (k) + ¢y, (k) + ro(k). (2.13)

i

Theinitial conditions are unchanged with tlie addition of ¢,(0) ~ N(6,p2 ,/2) and
$.,,(0) ~ J\/’(O,pﬁ,ho/;)). The second trausformation is to write the pairs ( f;. ¢;,) and

{1, ¢, ) as second-order AR processes, specificaly,

ai(k+1) = agai(k) + go,w,, (k) (2.14)
prk+1) = (1+tap)pn(k)—ayen(k—1)
+2rTqpwyp(k —1) (2.15)

bu (b + 1) = (1 + ay, )pu (k) — Q’u,¢u,(k ~1)
+ 27T ¢, w,,(k —1) (2.16)
v = B ailh) cos(on(k) + & (k) + ro(h




where ay, = 1. Theinitial conditions on the second-order ¢, process are
pi,,O/2 pi.‘,O/2
(277)*p%. (

(0
65,01 2nTmy,
f T 777f (1] +p;‘10/2

and likewisefor ¢,,. Becausethe process noise has a full-rank covariance, specifically,

SV
p—t
oL
~—

pin/‘?

diag(qZ,, (27nT)%q}, (27T)¢2,), the results o Ref. [27] can be applied to this system
to compute a lower bound on the MSE of any estimator #;(k|k) where z;(k) =

(ai(k)a ¢f-‘(k)v ¢ve(k)a ai(k - ]-]v ¢f.‘(k - 1), ¢V.‘(k - l))T'
Because we also desire CRBs for the frequency variables f; and v;, these variables

must be reconstructed from ¢y, and ¢,,. From Egs. (2.11) and (2.12) we have
fik) = (bp(k+1) = ¢5(k))/(2xT) (2.19)
vilk) = (¢u(k+1)— ¢, (k)/(2xT) (2.20)
S0 the optimal estimates and the resulting MSE are
fr(kIk) = (85, (k + 1]k) = 65, (k|k)/(27T) (2.
1 , - ;
65, (k1) = =Bl (k + 1) = &5, (k + 1)
= 2E[(6,(k + 1) = 7, (k + 1|k) (05, (k) — &, (k|k))]

(27T)?
+ El(65(k) - és;,,(uk))?]} (2.22)

Qv
O]
—_
~—

and likewise for v;. Notice that both the filtering (i.e., qu (k|k)) and the one step
ahead p edicting (i.e., ¢7 (k+1[k)) estimates of the phase variable ¢y, arerequired in
order to compute thefiltering estimate of thefrequency variable f; and l:ikewise for ;.
Let = bethe CRB for #;( ') given the data y(0), ..., y(N —1). Therefore, E[(a;( ')
27 (KK —1))(2:(K) = 22(K
positive semi-definite. Define ¢,, = (0,0,0,1,0,0)7, ¢, = (0,0,0,0,1,1)7, oy =

(0.0,0,0,1,0)7, eg, = (0,0,0,0,0.1)7, ¢, = (0,1/(2xT),0,0,=1/(277),0)T, e,, =
(0103 I‘/(QWT)’O)O’ _1/(27rT))T Fina’“Y’ for o E {a17¢2~ (.bf,s ¢U,‘) fi) I/i}« the CRBS

K —1))T] == > 0 where > 0 applied to matrices means

are

o
QW]
()
~—

(K — 1K —1) > elZe,. (2.2:
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Easy computation of = using thetechniquesd Ref. [27] requires a third and final
transformation of the system Egs. (2.14)-(2.17). Specificaly, Eq. (2.17) is replaced
by

y(k) = (1 = b)Y ailk) cos(dy, (k) + oy, (k)) + ro(k) (2.24)
which impliesthat thereis no inf(;rmation in the measurement at time /', or equiva
lently, conditioning on y(0),...,y(k) is thesame as conditioning on y(0),. .., y(K —
1).

For the computation of the CRB there is no reason to restrict attention to the
system described by Egs. (2.14), (2.15), (2.16), and (2.24) since moregeneral systems

can be considered with no additional complexity. In particular, we consider a system

of theform
Ty = 140$k+A1;1?k_1 +qwk,1\': D,...,I( -1 (225)
ye = hilag)+rop, k=-1,... K (2.26)

where 7, € 'R y € R wy is id.d. N(0,1,); vy is iid. N(0,1); (af,2T)T is
N(mO,AO); wg, vk, and (z7,27)T are independent; and Q = ¢¢7 is full rank.
Equivalently, the system can be written in state variable form as

\ Ao Aq|, q )
Tht1 = T+ wg,k=0,...,N —1 (2.27)
L, 0, 0
Y = hk((lna(]n]i\xk) + Uk, k= —1,.... K (228)

where x = (z},2]_|)T. The correspondence with the system of Eqgs. (2.14), (2.15),

(2.16), and (2.24) isn = 31, ax = (ar(k), 05, (k). 04, (K) ..., ar(k), ¢y, (K), 0., (K))T,
Ao = diag(AY | A A® = diagla,,, 1+, 1+a,,), A = diag(ADY, ..., A,
A = diag(o,—afv ~a,.), ¢ = diag(qr.....q1), ¢ = diag(qs,.277q;,.277q,,).
hi(z) = (1 — Sk.ic) P, (d¥ ) cos(e] 2), (d;), = bj3ip fore=1,...,1; j=1,...,31.
and (e;); = 6;3i1 + §;zifor i =1,...,1:j = 1,...,3] where (d;); denotes the
7 th element o the vector d; and likewise for (e;};. The system of Egs. (2.14),
(2.15), (2.16), and (2.24) also specifies m® and A but the details of the indexing

are somewhat complicated and so the results are described in Appendix .4.




After extensive calculations in order to evaluate the general expressions con-
tained in Ref. [27], wefind that the Fisher information matrix for the fixed-interval
smoothing problem for the system of Egs. (2.25) and (2.26) is equal to the Fisher
information matrix for the fixed-interval smoothing problem for the following linear

Gaussian system:

Tiy1 = Aorp+ A12py +qui,k=0,..., K —1 (2.29)
Uk = Crep+7t, k=-1,... K (2.30)
where z, € R"; 3 € R"; wy is i.i.d. N(0,1,); o is 1.i.d. N(0, 1,2l 2T )T

T

is M(m® A%); wy, o, and (2,27)T are independent; # € R"™*" is defined by

# = diag(r,...,r); and Cy € R"*" is defined by

Cr = #H (2.31)
where
1
Hi = SRVl () (Vahe) (24)], (2.32)
(Vzhi)(zk) = (%ﬁ;, 6@"&)"-), and (x1), denotes the m th component of the

vecter z;. Thesystem of Egs. (2.29)and (2.30) can be written in state vector form:

the state equation is Eq. (2.27) and the observation equation is
Ur = (Ck,on).’i‘k-}-f"f)k, k= -1,..., K. (233)

We now compute H; for the system of Egs. (2.14), (2.15), (2.16), and (2.24). Let
X be A (m, A). Then it is straightforward to establish the following ex pectations:

1
go(v;m,A) = EE[COS(UTX)]

1
= 5 cos(va)exp(—%vTAv) (2.34)

< Z

1
gi(s,vim,A) = gE[(.ST:L‘)SiD(UT;L‘”
1 1
= 5 [(sTm) sin(vT'm) + (STA’U) cos(va)] exp(—;vTAv) (2.35)
. 2
g2(u, s, v;m, A) = EE[(UT:L*)(STQ:) cos(vT )]

r4



-1 (sTAu) + (sTm)(uTm) — (sTAv)(uTAv)| cos(vTm)
2
— [(sTm)(vTAu) + (uTm)(vTAs)] sin(va)} exp(—%vTAv). (2.36)
Let m; and A, be the mean and covariance sequences for Eq. (2.219). By evalu-
ating; dhi/0(zx); and taking expectations we find that

1—6
H, kK

J gk

i‘i [€: eTh,J,C —€ dTh”k — d;eThee
+ d,-d?hf{‘;k] . (2.37)
where
heS o = E [(d7ay) sin(el20)(dT i) sin(e! 2]

= g2(di,dj,e; — €5;myp Ar) — goldi. dj, e + €55my, Ag)

(2.38)
het = E [(dT:Lk)sm(e:‘r 1) cos(e f.lk)]
= gi(di, ei + e5;mu, Ap) + gr(di, 65 — e53mp, Ay) (2.39)
h” = E [cos(e?xk)(df.u) sill(efmk)]
= gi1(d;,e; +ejimy. Ay) — g1(d;, e; — €j;mp, Ag) (2.40)
h.?j’k =E [COS( T2) cos(e flk)]
= gole: — €;3me, Ar) + goler + €55mu, Ay). (2.41)
The algorithm for computing the CRBs is
1. Fix K.
2. Compute m; and Ay for &k = , I[{ by using Eq. (2.27) and standard

linear system formulae.
3. Compute C for £ = —1,..., K by using Egs. (2.31)and (2.37)-(2.41).

4. Apply standard Kalman filtering formulae to the system of Eqs. ('2.27)and (2.33)
to derive the MSE for time & = K. This 6/ X 6/ matrix is the CRB for




the filtering problem at time & = II* for the nonlinear system of Egs. (2.27)

and (2.28).

5. From the matrix resulting from Step 4, use Eq. (2.23) to compute CRBs for

the filtering problem for f;(K'), etc.

When K is changed, most of this work does not need to be redone because H; is
independent of K except at k = li".

For parameters typical of the speech models used in Sections 3.2, 3.3, and 3.4,
the CRBs as a function of time are shown in Figure 2.1. The model has 1 formant
and parameters T = 1/16000 s, a, = a,, = .99, ¢,, = 50, ¢,, = 12, g5, = 2,
mys 0 = 500 Hz, r = \/'—l—/—lg, P} , = Ol (essentially zero), P} , = 4000. The
oscillations in the CRB standard deviation for a; occur at about twice the formant
frequency of 500 Hz and are due to the fact that when the cosine of a,(k) cos(¢;(k))
passes through 0 there is no information in y(k) about a;(k) while when the cosine
passes through +1 thereis maximal information. Relativeto the precision needed in
the speech application and relative to the a priori (i.e., no measurements) standard
deviations of the various signals, these CRB standard deviations are small: (1) The
CRB standard deviations for the f; and v, frequencies are less than 10% of the
500 Hz formant frequency. (2) The CRB standard deviation for v, is also much
smaller than the steady-state a priori standard deviation of 85.1 Hz. (3) For f;
there is no steady state and, in fact, the a priori standard deviation grows as vk,
so the CRB standard deviation is dramatically lower. (4) The parameters used in
this example are appropriate for the TIMIT database [24] where typical large signal
values are 10® and therefore the CRB standard deviation for a; is less than .| %60
typical large signal values. (5) Furthermore, the CRB standard deviation for «; is
much less than the steady-state a prioristandard deviation of 354. Because the CRB
bounds are lower than the estimation standard deviations required by the speech
application, it is worthwhile to design nonlinear filters based on this statistical model

and, in Section 2.5, we describe nonlinear filters which, as shown in Sections 3.1-3.4.
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Fig. 2.1. Cramer-Rao bounds for (a) a;(k}, (h) fi(k), and (c) v; (k). The standard
deviation, rather than variance, is shown. The bound for estimation o f;(k)
(r1(k)) decreases to 45.151 (46.5) at 62.5 ms (62.5 ms).



achieve good performance.

2.4 System Identification

In order to use the model o Egqs. (2.1)—(2.5), it is necessasy to determine the
parameter vector §. In view of the importanced spectral ideas in speech processing,
we choose 8 by fixing the center frequency, bandwidth, and power of each formant.
Therefore we need to compute S,(?), the spectrum of the model (Egs. (2.1)-(2.5)),
as a function o the parameters 8, which is the subject o the following two para-
graphs.

Let a(k) and ¢(k) be random sequences where ¢ is Gaussian. Let y» he a RV
that is distributed uniformly on [—n,n]. Let a, ¢, and ¥’ be independent. Define
y(k) = a(k) cos(p(k) + ). 1t follows that m (k) = 0 and

Ry(ky, ko) = Py(ky, k2)

cos(m (k1) — me(ka))
2

—_
o
e
8]

1 N\
= Ry (k1 ks) exp (—5Q¢(k1, )

where Qg(kr. k2) = Py(ki, ki) — 2Py(k1, ko) F Py(ky. ky). More generaly, if y(k) =
Y yilk)+rv(k) where yi(k) = a;(k) cos(¢i(k)+4); @, ¢4, ; and v are independent;
and, tor each ¢, the quantities a;, ¢;, and ¥, are as above, then it follows that m, (k) =
rmy(k) and Py (ki, k2) = ¥; Py, (ky, k2)+72P, (k1. ko) where P,, isgiven by Eq. (2.42).
Since Q4 ( k1, k2) can alternatively be expressed as Qs ( k1, ko) = E[{[¢(k)) —ms(k1)] -
[d(k2) — mg(k2)]}?] it follows that Qg4(ky, ko) > 0.

For the system of Eqs. (2.1)-(2.5) with |a,,| < 1 and |a,,| < 1, it follows that
Ra (ki k2) = (¢2/(1 — a2 ))alk=8l my (k) = 22 Tmy, ok, Ry(ki, k2) = bk, 1y, and

Quilh, k) = (27 T)?{p?,..o(k? ~ ke )?

qj2',-|k2 — ky|(ks (ks — 1) — kc(ke — 1))
+ >
g (ke = kil + Dlky = k| ([k2 — k| = 1)
6 .
qz [(1 +ay,)|ke — k1| 20,(1 - Of!fz_kll)]}

l—a,, (1—a,)?

+1—aﬁx




Using these results in Eq. (2.42) provides the necessary R,(ki, k;) for the system of
Egs. (2.1)-(2.5).

Because of the second term in the braces, Q4,(k1, k) is not a functiond %, — k,
and therefore R, (k1, kz) is not wide-sense stationary. This reflects the fact that the
speech signal itself is not stationary except over short intervals o time. Therefore.
for choosing parameters, we set g;, = 0 and then, for use in the nonlinear filter, we
reset ¢y to the maximum desired change in the z th formant frequency per sample.

We take ps, 0 = 0 and py, 0 = 0. The value of r is set from a priori knowledge
of the observation noise process. For signals from the essentially noise-free TIMIT
database [24], the observation noise is just the quantization noise which, under a
uniform +1/2-bit model, has standard deviation r = m

For stability we require that 1a,,| < 1 and |e,,| < 1 and to minimize the band-

width we desire a,, =~ 1 and «,, = 1. We have taken «,, = a, = .99 where the
equality a,, = a,, is motivated by the error bounds of Refs. [5,4].

It remainsonly to pick my, o, ¢.,, and ¢,,. The center frequency of' the formant
ismy, 0. Theonly effect of ¢,, istoscale R,, and so it does not effect the bandwidth
o the formant. Therefore, we use ¢,, tofix the bandwidth of the formant, according
to the plot of Figure 2.2. The resulting S,, are shown in Figure 2.4 for a variety
of choices of ¢,,. Once ¢,, is fixed, we use ¢,; to fix the power o the formant: use
the plot of Figure 2.3 to determine the power that would be present if ¢,, equaled 1
and set g,, to scale this to the desired value. Finally, for use in the nonlinear filter
o Settion 2.5, the value of ¢y, is reset to the maximum desired change in the | th
formant frequency per sample. In al calculations we have computed S, from £,

by computing the DFT o the sequence R,, (0,k) for £ = —4096,.. ., $4096.

2.5 Nonlinear Filters

If «;(k) was constant then Egs. (2.1)-(3.5) describe a frequency modulated com-
munication system, the Extended Kalman filter (EKF) [28, Section 8.2] is essentially

a phase-locked loop (PLL), and the PLL is an excellent estimator. Therefore, we
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compute the estimates &;(k|k), i(k[k), fi(k|k), and ik

k) (hereafter, me will not
indicate the conditioning which is always k|k) by using the EKF for this more corn-
plicated model. The computational requirements are minimal: the state equation is
alreacly linear, the one-step state transition matrix (denoted by F)is block diagonal
(1 bleck per formant) and each block is sparse so multiplication by Fisinexpensive,
and the observation is a scalar so the one matrix inversion is actually division by a
scalar. Theresult of the EKF are the estimates a;(k), 7:(k), fi(k), and qfn(k.). From
these estimates we can compute a.reconstructed speech signal, denoted by (%), by

§(k) = ¥ @i(k) cos(di()).
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3. APPLICATIONS OF MBDA

In this chapter, we apply the statistical model and the nonlinear estimator
discussed in the previous chapter to some synthetic and real speech problems. We
consider three synthetic examples (Section 3.1), decomposition of speech into AM
and FM signals (Section 3.2), two formant tracking problems: transitions to stops
(Section 3.3) and tracking formants through a sentence (Section 3.4), and application

to unvoiced speech (Section 3.5).

3.1 Application To Synthetic Examples

In thefirst example we demonstrate the effectivenessdof the EKF by successfully
processing a synthetic signal that is a realization of the model Eqgs. (2.1)-(2.5). The
model has 1 formant with initial condition my, ¢ = 1000 Hz. The other parameters

al'e T = 1/16000 S! an = au = 99‘ qa] = 27 qfl = 27 y” = 15’ an(l ro== \/1/12'

In Figures 3.1 and 3.2 we show theoriginal and reconstructed signals in the time
and frequency domains respectively. In Figure 3.3 we show the true and estimated
trajectories for a,(k), v (k), fi(k), and ¢,(k) over an interval of 100 ms.

In the second example we apply EKF to a chirp signal patterned after [4, Fig-

ure 2|
y(k) = cos(2m fokT) cos(2m( fr + fRT)ET), (3.1)

where T =1/16000 s, f, = 30 Hz. f,, =500 Hz, f. = 2000 Hz/s and k isin therange
from 1 to 1600 (i.e., 100 ms). We use the model of Eqgs. (2.1)-(2.3)with 1 formant.

The parameters are a,, = a, = .99, ¢,, = 0.1, ¢, = 3. ¢, = 0.1, » = {/1/12
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Fig. 3.4. The original (y(k)) and reconstructed (j(k)) one-chirp synthetic signals.

and my, o = fn. In Figure 3.4 we show the original ancl reconstructed signals. In
Figure 3.5 we show the 4 EKF outputs. Note the instantaneous frequency in the
signal is fn + 2f.kT while the instantaneous frequency in our model is f(k) + u(k).
The results, shown in Figure 3.5, are excellent: after an initial transient. the filter
accurately tracks the increasing formant frequency f(k), the zero IKaiser-Teager
frequency v(k), and the oscillating amplitude a(k).

In the third example, we show the results of applying the model (Eqgs. (2.1)-
(2.5)) and EKF to a double chirp signal [29] patterned after the single chirp signal

of Maragos, Kaiser, and Quatieri. The signal is
Y (k) = cos(2m fokT') cos(2m( fru1+ fohTYKT)+0.2 cos(2m fo kT) cos(27( frnz— [k TYKT)

where T = 1/16000 s, f, = 30 Hz, fm1 = 200 Hz, fnp = 2000 Hz, and f. =
6000 Hz/s. The EKF has parameters a,, = a,, =.99,a,, =a, =.99, ¢, = v.001,
o, = VOO X 04, ¢, = qp, = V12, b, = @, = V0L, 7 = 1LOX 1077, mp 0 = fmr.
my, 0 = fmz, and al the other initial condition means and all the initial condition
variances equal to zero. ldeal performance of the EKF in this example would lead
to ay(k) = cos(2r fokT), fi(k) = fau T 2fkT, aa(k) = 0.2cos(2x fukT), faolk) =

fm2 — 2fkT, and 0,(k) = Do(k) = 0. The actual results, shown in Figures 3.6-3.8,
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Fig. 3.5. EKF estimates for the one-chirp synthetic signal.




Fig. 3.6. Theorigina (y(k)) and reconstructed {g(&)) two-chirp synthetic signals.

are quite good.

3.2 Application To Speech

In this section we show the results of applying the moclel (Eqgs. (2.1)—(2.5)) ancl
EKF to a speech signal. The signal is the phoneme /ee/ of the word “m/ee/ting”
from the TIMIT database [24, dr2/mdbh0/sx295]. The model has 4 formants with
initial contlitions my, o of 390, 2200, 2800, and 3600 Hz for : = 1. 2, 3, and 4
respectively. For all 4 formants, a,, = a, = .99. ¢;, = V/S, pro =0, and pg, 0 = 0.
The values of ¢,, and ¢, vary from formant to formant: ¢,, = 158,20,11,7; and
q,, = 14,14,21.21 for « = 1, 2,3, 4 respectively. Finally, r = \/I/T

In Figures 3.9 and 3.10 we show the origina and reconstructed speech in the
time and frequency domains respectively. The only visible differences are in the
frequency domain in two frequency bands: the band near 1500 Hz, where the signal
strength isdown by 40 dB from nearby formant peaks, and in the frequencies greater
than 7 kHz, where the highest frequency formant in the moclel is at much, lower
frequency, specifically, at 3.6 kHz. and the signal strength is down by 40 dB. In
Figures 3.11, 3.12 and 3.13 we show the estimates from the EKF. If smoother

estimates are desired, they coulcl be achieved either by post-processing [4] or by
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Fig. 3.7. EKF estimates for the two-chirp synthetic signal..
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Fig. 3.8. EKF estimates o the frequencies for the two-chirp synthetic signal.

increasing a,; and a,, and decreasing ¢,, and ¢,, , which changes the mocld so that the
model describes signals of the same power but longer correlation time, and increasing
r, which relaxes the penalty on non-exact decomposition (i.e., y(k) # g(k)). As
in Ref. [4], the major observation is the pitch-synchronous pulse structure of the
Kaiser-Teager amplitude (a;(k)) and frequency (#;(k)) signals. Because the MBDA
algorithm estimates a;(k) while the DESA-1 algorithm [4] based on Teager's energy
operator estimates |a;( k)|, the pulsesin theestimatedf a;(k) in Figure 3.11 and 3.12
are of alternating sign whilethe pulses in the estimate o |a;(k)| from DESA-1 {e.g.,

Figures 5-7 of Ref. [4]) are all positive-going.

3.3 Formant Tracking: Transitions To Stops

One application of formant tracking isto aid in the classification of stops [9, 10,
11]. In this section we apply the rnodel (Egs. (2.1)-(2.5))and EKF to this problem
and show the results for the phoneme /u/ o the word “c/u/ps” frorn the TIMIT
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Fig. 3.13. EKF estimates for the phoneme /ee/ of the word m/ee/ting: the four
formant signals fi(k), f2(%), fa(k), and fi(k) (from bottom to top).

database [24, dr3/mctw0/si743]. The model has 4 formants with initial conditions
my, 0 Of 670, 1100, 2400, and 4000 Hz for = 1, 2, 3, and 4 respectively. For all
4 formants, a,, = a,;, = .99, ¢, = 2, ps;0 = 0, and ps, 0 = 0. The values of g,;
and ¢,, vary from formant to formant: ¢,, = 50,14,3,1; and ¢,, = 17,17,15,20 for
¢ = 1,2,3,4 respectively. Finaly, r = m In Figure 3.14 we show the first 2
formants at the transition. The trend is for the frequencies d both the first and
second formantsto decrease. A similar trend of decreasing frequencies for the lowest
two formants during the transition to the unvoiced stop consonant /p/ was found
by Nathan, Lee, aad Silverman [9, Figure 7a]. In the second formant, the same
trend was found by Foote, Mashao, and Silverman [11, Figure 3] using the DESA-1
agorithm [4] based on the Kaiser-Teager energy operator.



- 40 -

Frequency(Hz)

Fig. 3.14. Formant tracks for the stop transition o the word “c/u/ps”: Fik)
(lower curve) and f,(k) (upper curve).

3.4 Formant Tracking: An All Voiced Sentence

In thissection we apply the model (Egs. (2.1)-(2.5)) and EKF to the problem o
tracking the formants through an entire sentence. The sentenceis "Where were you
while we were away." from the TIMIT database [24, drl/msjs1/sx9]. The model has
4 formants with initial conditions my, ¢ of 450, 1300, 2000, and 3100 Hz for : = 1,
2, 3, and 4 respectively. For all 4 formants, a,, = a,, = .99, ¢, =12, p;,0 =0, ancl
ps;0 = 0. Thevaluesd ¢,, ancl g5, vary from formant to formant: ¢,, == 50, 30, 10, 1;
and q;, = v/.5,v/22,2,2 for « = 1,2,3,4 respectively. Finally, r = \/ﬁ The
spectrogram of the original speech with superimposed plots of the estimates f;(k) is
shown in Figure 3.15(a). [Thespectrogram is computed by dividing the signal into
8 ms frames (each contains 128 samples) with 4 ms (64 sample) overlap between
adjacent frames and then computing the magnitude (in dB) of the 128 point FFT

of each frame]. In Figure 3.15(a), the formant tracks extend through regions of
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Fig. 3.15. The sentence “Where were you while we were away." (a) Original
spectrogram and estimated formant tracks. (b) Reconstructed spectrogram.



the spectrogram where there is little energy because at sample &£ we plot the ; th
formant track f,-(k) even when the energy in the: th formant (essentially the energy
in a;(k)) is small. To show the distinction, the signal has been divided into frames
of duration 20 ms and the : th formant track for a particular frame is plotted as a
solid line if and only if the square root of the average energy in a;(k) in the frame
is greater than .3 times the standard deviation of &;(k) computed over the entire
sentence. Figure3.15(a) demonstrates good tracking of theformantsin this sentence
in spite of large and rapid variation in the formant frequencies.

From the EK F outputs we compute the reconstructed speech signal (k). In Fig-
ure3.15(b) we show the spectrogram of (k) which is very similar to the: spectrogram
o y(k) shown in Figure 3.15(a).

3.5 Application To Mixed Voiced-Unvoiced Speech

In this section we apply the model (Egs. (2.1)-(2.5)) and EKF to a portion of
speech that contains both voiced and unvoiced phonemes. The speech is "Alice's
ability to work" from the TIMIT database (24, drl/msjs1/sx279]). (The sentence
IS cut short to approximately 1 s). Since it is spoken by the same speaker as the
all-vciced sentence in Section 3.4, we use the same parameters except for initial
conditions my, o which are 560, 1400, 2300, and 3200 Hz for i = 1, 2, 3, and 4
respectively. The spectrogram of the original speech with superimposed plots of the
estimates f;(k) is shown in Figure 3.16(a). The formant tracks lose their interpre-
tation as format frequencies at the unvoiced phoneme /s/ arouhd 200 ms. Both
f},(k) and f4(k) increase rapidly driven by the energy concentration around 5000 Hz
while f1(k) and f3(k) extend through regions that seem to have the second largest
energy concentration in the phoneme. After the plosive /b/, f}(k) tracks the second
formant.

From the EK F outputs we compute the reconstructed speech signal g(k). In Fig-
ure 3.16(b) we show the spectrogram of 7(k) whichisvery similar to the spectrogram

of y(k) shown in Figure 3.16(a). Therefore, even though the formant interpretation
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Fig. 3.17. Theoriginal and reconstructed unvoiced phoneme /s/. (a) and (b): time
domain. (c) and (d): frequency domain.

of a;(k) cos(¢;(k)) breaks down in unvoiced phonemes, the the superposition of the
a;(k) cos(¢;(k)) signals accurately represents the speech. In Figure 3.1'1 we show the
original and reconstructed unvoiced phoneme /s/ in the timeand frequency domains
while in Figures 3.18 and 3.19 we show the EKF estimates. These estimates seem

to be unstructured and mostly random as was also observed in [4, Figure §].
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4. COMPARISON OF DESA-1 AND MBDA

In this chapter we compare two approaches for extracting the modulating signals
from jointly amplitude (AM) and frequency (FM) modulated waveforms: DESA-1,
based on Teager’s energy operator, and MBDA, based on statistical nonlinear filter.
In Section 4.1 we briefly review the two algorithms with a focus on their differ-
ent characteristics. In the following sections, we apply DESA-1 and MBDA to two
examples: a speech phoneme (Section 4.2) and a synthetic two-chirp signal (Sec-

tion 4.3) [30].

4.1 DESA-1 And MBDA

DESA-1 is a demodulation algorithm [8, 18, 12, 19, 4, 5, 2] that extracts the
amplitude and frequency modulations from a jointly AM-FM signal, e.g., a signal
modeling a single speech resonance. Let y(k), representing a speech resonance, be
modeled as y(k) = a(k) cos($(k)), where ¢(k) = Q.k T Q,, T5_ q(n) T 6 for some
function ¢(-) and constants ., Q,,, and 0. Define the instantaneous frequency by

siinst(k) = Q. + Q,,.¢(k). Then the outputs of DESA-1, i.e., the estimates of |a(k)

and Q*t(k), are computed by Egs. (1.7)-(1.9) which are based on Teager energy
operator.

When the Teager energy operator is applied to signals with a superposition of
terms, i.e., y(k) = 3, a;(k) cos(¢:(k)), or additive noise, i.e., y(k) = a(k) cos(o(k))+
v(k), the operator is applied to each output of a bank of bandpass filters. In the
case of a superposition of terms, the bandwidth of the 2 th filter is determined

by the bandwidth of the term «a;(k)cos(¢:(k)) and the outputs of the : th energy
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operator are estimates of |a;(k)| and Qi"*(k). In the case of a single term in the
presence of noise, the bandwidths of the filters are determined by the trade-off
between suppressing the noise and passing as much signal energy as possible and

the single signal is tracked (by an energy measure) as it moves from filter to filter.

In MBDA, a linear superposition of jointly AM-FM terms and the presence
of noise are considered simultaneously. MBDA depends on a statistical model for
each signal and a simple choice of model [31, 32] is described in Section 2.2. For
each formant (i labels the formant), the outputs of MBDA are the estimates of the
Kaiser-Teager amplitude signal (a:(k)), the Kaiser-Teager frequency signal (;(k)),
theformant frequency (f;(k)), and thetotal phasesignal (¢;(k)) which are extracted
from the measured speech signal by extended Kalman filter (EKF). From these
estimates we can compute a reconstructed speech signal,denoted by 3(k), by g(k) =
i di((k) cos(¢i(k))-

In a qualitative sense, the nonlinear filter acts as a bank of bandpass filters
where the center frequency of the ¢ th filter tracks the instantaneous frequency
of the a;(k)cos(4i(k)) term and the bandwidth o the i th filter is set to achieve
the optimal trade-off between passing signal energy and rejecting noise based on
the statistical model. In this point of view, the parameters of the energy operator
approach (i.e., the bandwidth and center frequenciesof the Gabor filters) are seen to
qualitatively correspond to the parametersin the statistical model of the nonlinear
filtering approach.

Comparison of DESA-1 and MBDA is not easy. a(k) cos(é(k)) = a'(k)cos(¢'(k))
does not imply that a(k) = a'(k) and ¢(k) = ¢'(k). It followsthat estimation of a(k)
and ¢(k) requires prior information in addition to the measurements. Since the prior
inforination in DESA-1 and MBDA is quite different, it is not surprising that the
results can be quite different. Rather than comparing the estimates of a(k) and ¢(k)
from different methods, one might instead compare the speech signals that result
from reconstruction using the different estimates. While this is straightforward for

MBDA, it is not straightforward for DESA-1 because in the latter approach the




estimate iSOf |a(k)| rather than a(k) so asign islost.

4.2 The Phoneme /ee/

In thissection wecompare DESA-1 and MBDA on the phoneme /ee/ of the word
“m/ee/ting” processed in Section 3.2. For MBDA, we use the same parameters as
in Section 3.2. For DESA-1 we extract the first two formants using Gabor filters
with center frequencies of 390 Hz and 2200 Hz, « = 1000, and N = 55[4]. The
original signal in the time and frequency domains and the reconstructed signal from
MBDA in the time and frequency domains are shown in Figures 3.9 and 3.10. The
MBDA reconstructions are excellent. Because DESA-1 estimates |a(k)| rather than
a(k), it is not possible to compute a reconstruction for DESA-1. We also show the
instantaneous amplitude estimates |a15(\k.)| and aM (k) for : = 1,2, where superscripts
D and M refer to DESA-1 and MBDA respectively. The MBDA estimates are the
same as in Figure 3.11 and shown here for comparison. The DESA-1 estimates
tend to be smoother than the MBDA estimates. In both cases, structure within the
pitch period is visible. In the MBDA case, alternative pulses tend to have reversed
signs. Finally, we show the instantaneous frequency estimates Med7[Q§“/5‘\(k)) and
Med( fi(k) T &;(k)) for = 1,2 from DESA-1 and MBDA respectively where Med-
indicatesa 7 point median filter [4, Figure 6]. For thefirst bandpass filter (DESA-1)
or formant (MBDA) thereissubstantial structurewithin the pitch period. For higher

order formants (e.g., 2) the MBDA estimates tend to be relatively unstructured.

4.3 A Two-Chirp Signal

In this section we compare DESA-1 and MBDA on a double chirp signal pat-
terned after the single chirp signal of Ref. [4, Figure 2]. Two signals are considered.
Thefirst signal is the same y (k) used in Section 3.1 where it was defined by:

y(k) = cos(2m fokT) cos(2x( frm1 + fkT)ET)
+ 0.2 cos(27 fokT) cos(27( fmz — fKT)ET);
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Fig. 4.1. Phoneme /ee/: first formant.
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Fig. 4.3. Spectrogram of noise free chirp with fi(k) + #1(k) and fa(k) T da(k).

where T = 1/16000 s, f, = 30 Hz, f,.1 = 200 Hz, fn, = 2000 Hz, and f. =
6000 Hz/s. The second signal is y(%) plus additive white Gaussian noise with
standard deviation .1778 = /10-15> = 15 dB. The DESA-1 has 5 bandpass filters
with the specifications of Ref. [8, Figure 9]. The MBDA has the same parame-
ters as in Section 3.1 for the noise free case and for the noisy case the observa-
tion noise standard deviation r is set to be 1.778 = +/10-15. Ideal performance
would lead to @, (k) = cos(2r fokT), fi(k) = fum1 T 2fkT, aa(k) = 0.2 cos(2x f,kT),
fo(k) = fma — 2f.KT, and 91 (k) = b2(k) = 0.

The spectrogram of the noise free double chirp signal with superimposed plots
of the estimates fl(k) + v1(k) and fg(k‘) + Uy(k) are shown in Figure 4.3. (The
spectrogram is computed in the same way as in Section 3.4.) In Figure 4.4 we
show |aP(k)|, &M (k) (solid curve) and (k) (dashed curve), Med:(Qt(k)), and
fl(k)+ v1(k) (solid curve) and f}(k) + 9(k) (dashed curve) for the noise free chirp
signal. The corresponding plots for the noisy chirp are shown in Figure 4.5.

If z(k) isthetrue signal, (k) isthe estimate, and the signal is N samplesin du-
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Fig. 4.4. Noisefree chirp.
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Fig. 4.5. Noisy chirp.




Table 4.1.
Mean square error for the two-chirp signal.

MBDA DESA-1
lar(K)|  laa(k)| Fu(k) F a(k) folk) T wa(k) | lar(k)]  QP(k)
Nonoise | 0.0034 0.0027 237.57 6734.8 0.0207 2.0403 ¢ 10°
15 d.B noise | 0.0154 0.0086 669.14 1.7696 ¢ 10* | 0.0470 3.5770 ¢ 10°

ration then in Table 4.1 we report the mean square error performance ngol(ﬁ:(k) -
z(k))?/N. In DESA-1 we treat the low energy chirp as noise and only compute one
instantaneous amplitude and frequency whilein MBDA we compute two. Whether
the user regards the low energy chirp as noise or as a second signal is application
dependent and in the first instance DESA-1 may be more attractive while in the
second instance the energy-tracking ideas of DESA-1 [8] would have to be general-
ized and MBDA may be more attractive. In terms of mean square error, MBDA
performs better than DESA-1. From the plots, most of the error in Qi"t(k) occurs
at tirnes when ay(k) = cos(2x f,k7') goes through a zero and DESA-1 therefore se-
lects the band with the greatest noise energy which is usually the highest frequency
band because that band is broadest. More sophisticated logic in the energy-tracking
algor ithm would probably cure this problem.
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5. SPEECH CODING

The purpose o this chapter is to document the results of the nonlinear speech
coding ideas we proposed in Chapter 1. We will also discuss some alternative speech
coding schemes, such as schemes based on baseband coding and schemes based on

subband coding ideas.

5.1 MBDA-Style Coding Idea

The basic MBDA-style coding ideais to use the statistical model and nonlinear
filter proposed in previous chaptersand computeestimatesdf a;(k) and ¢;(k). Then
these estimates are coded, transmitted, and decoded. The speech is reconstructed
by combining the decoded estimates through the standard AM-FM nonlinearity
(Figure 5.1). If the coding is perfect, we have already shown that the reconstructed
speech signal is very close to the original speech in both the time domain and the
frequency domain.

In all the experiments involving real speech signals in this study, we have used
statistical modelswith I = 4 formants. However, wefound that among thefour for-
mants, thefirst two lowest formants have the most significant energy. The strength
of the estimated amplitude signals decreases from low formants to high formants
(Figures 3.11 and 3.12). Signals reconstructed using estimates from the first two
resoniances alone are very close to the original speech signals. Our casual listening
tests show that such signals are very good both in terms of quality and intelligi-
bility. In Figure 5.2, we show the wideband spectrogram o the reconstructed al
vowel sentence processed in Chapter 3 (Figure 3.15). Theonly differenceis that we
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Fig. 5.1. The blockdiagram of MBDA coding

use only &, (k), @2(k), ¢, (k), and ¢2(k) when reconstructing §(k). From Figure 5.2,
we observe that the spectrogram o the reconstructed speech is very similar to the
original speech in spite of the fact that only estimates of thefirst two formants are
used. Our casual listening tests support this observation. Thus, to achieve speech
coding at a low bit-rate, we will code only first two formants, i.e., we will code a, (%),
a2(k), di(k), and (k).

It followsfrom the sufficiency of two formants that in MBDA, the term a; cos(&si)
not only contains energy over frequencies around f;, but also carries information
over a much larger frequency range, especially when i =1 or 2. This should not be
surprising for two reasons: 1) Speech resonances are interwined with each other; and
2) In MBDA, the amplitude and frequency signals are estimated using statistical
models simultaneously for all the formants, as opposed to some other demodulation
approach (e.g., energy separation algorithm [5, 4]) where the speech signal is first
passed through a bank of bandpass filters before processing.

The relationship between ¢:(k), fi(k), vi(k), ¢:(k), fi(k), and &;(k) are impor-
tant for coding algorithms. From Eq. (2.4), it follows that

k-1

$i(k) = 6:{0) +2xT 3 _(fi()) + vi(0D))- (5.1)

=0
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Fig. 5.2. Spectrogram of reconstructed sentence using first two resonances.

There aretwo natural estimatesfor ¢;(k). Thefirst isé&i(k), which i1s the estimate

of ¢:(k) from the EKF. The second, denoted by ;(k), is defined by
_ B k-1 R ‘
gi(k) = :i(0) +2xT 3 (fill) + in(1)), (5.2)

=0

Wherefi(l) and 7;(1) arethe EKF estimates of theformant frequency and the Kaiser-

Teager frequency, respectively.

Then,
$i(k) = E{gi(k)|y(0), --,y(k — 1)} (5.3)
k—1
= E{¢:(0) + 20T S"(fi() + vi(1)|y(0),...,y(k = 1)}. (5.4)
=0

On the other hand, from Eq. (5.2), it follows that

_ k=1

$i(k) =~ :(0) + E{2xT > (f:(1) + vi(1)

=0

y(O),---,y(l—l)} (55)

since f;(1) ~ E{fi(1)|y(0),..-,y(l — 1)} and likewise for (D).




Thus, qAﬁ,-(k) # ¢;(k) in general because the expectations are conditioned on
different observation sequences. Since ¢;(k) is conditioned on more measurements
than ¢;(k), we expect that <;§,-(k) is a more accurate estimate o ¢;(k) than is ¢;(k).
This expectation is substantiated in the speech application in the sense that speech
reconstructed from &;(k) and ¢;(k) sounds much better than speech reconstructed
from @;(k) and ¢;(k). Therefore, we need to code ¢;(k) and not #(k) and f;(k).
Because ¢;(k) isa summation, it is natural to code its first-order difference denoted

by &;(k).

5.2 SNR Requirements On Speech Coders

In order to determine the effect of coding &;(k) and &;(k) on the reconstructed
speech (k) independent of coding methodsinvolved, i.i.d. white Gaussian noise was
added to a;(k) and &;(k) simultaneously. Let d;(k) and é;(k) denote the resulted

signals which are defined by
di(k) = (k) F ow,, (k) (5.6)
bi(k) = &i(k)t ows,(k), (5.7)
where w,, (k) and ws,(k) are i.i.d. , zero-mean, unit variance white Gaussian se-

guences independent of each other and o2 is the noise variance. The reconstructed
speech signal is therefore given by
i) = iai(k) (,Z (). (53)
Our casual listening tests indicate that in order for (k) to maintain reasonably
good quality, SNR of a;(k) and &(k) must be close to 15 dB.
It is obvious that a;(k) and Si(k) do not have to be equally well coded since
6, affects the speech quality through the cosine function which is highly nonlinear.
Because the speech is a function of cos(¢;(k)), it is difficult to control the effect on
the speech of errors in coding é;(k). Ideally, the noise variance in &(k) and (k)
should be allowed to be different. However?isis still helpful to use the 15 dB SNR.

value as a general guidance in designing coding schemesfor a;(k) and é;(k).




5.3 Linear Prediction-Based Coders

We first examine.coders where a;(k) and &-(k) are coded using linear predic-
tion ideas. Such ideas have been very successful in coding speech signals, e.g.,
LPC-10 [33] and CELP [34]. The basic ideais to partition the speech into frames,
compute a linear prediction model for the speech within each frame, and then trans-
mit the coefficients of the linear predictive model plus a coded version of the resid-
uals, where the residuals are the difference between the predicted and true speech.
Therefore there are two important issues: what order o linear prediction model
is required (this controls the number o coefficients that must be transmitted) and
whether the residuals can be efficiently coded. In the next subsection we investi-
gate necessary linear predictive model order, which we find to be very low, which
makes this approach attractive. Then, in the following two subsections, we examine
residual coding using the methods from the LPC-10 and the CELP coders. These
results are less attractive: thefixed excitation sequencedof LPC-10 isnot appropriate
for our signals and the codebooks in CELP appear to be too small for our signals
because our signals differ more from pitch period to pitch period than do speech

signals.

53.1 Linear prediction model order

We start with analysis by synthesis techniques using open-loop analysis. For
coding «;(k), we are considering linear predictive coding (LPC) techniques. The
remaining examples in this subsection are based on the phoneme /ere/ of the word
w/ere/ which we show in the time and frequency domains in Figure 5.3. (All power
spectral densities in this section were computed by the Welch method using a 256
point FFT and 50% overlap). In Figure 5.4 we show the residuals of the LPC
algorithms with order 1 and 10 applied to the speech signal of Figure 5.3. Notice
how non-white the residuals are when the order is 1 in comparison with order 10

(the choice of 10 was motivated by the LPC-10 algorithm [33]). In Figure 5.5 we
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Fig. 5.3. The Phoneme /ere/ of the Word w/ere/. (a) Time domain waveform.
(b) Fower spectral density (Welch method with a 256-point FFT and 50% overlap).

show @,(k) from the EKF and the residuals of LPC predictors of order 1 and 2
applied to a;(k). In Figure 5.6 we show the same quantitiesfor a;(k). Notice how
flat these spectra are. Therefore, we believe that LPC encoding at order 1 or 2 will
be sufficient. This is a large savings over the standard LPC-10 algorithm because
the LPC-10 algorithm uses 41 out of 54 bits/frame for the 10 LPC coefficients [33].
From the time domain waveforms notice that the energy decreases from formant 1
to formant 2 and notice that the impulsive pitch-synchronous behavior seen in the
residuals of the LPC-10 algorithm applied to the same speech signal (Figure 5.3)
is stronger in formant 1 than formant 2. For higher formants both the energy and
the pitch-synchronous behavior decrease further. Therefore: it may be possible to
model the residuals for higher formants as i.i.d. Gaussian sequences and code only
the variances. In any case, the pitch period is common to all of the signals being

coded.

In Figures 5.7 and 5.8 we show the corresponding results for §;(k) and &,(k).
In view of these results, we propose to code &(k) using similar LPC techniques.

However, in this instance, an LPC of order 0 may be sufficient.
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Fig. 5.4. The Residuals from applying an LPC predictor to the speech o
Figure 5.3. Residuals from the order 1 LPC predictor: (a) time domain waveform
and (b) power spectral density. Residuals from the order 10 LPC predictor:
(c) time domain waveform and (d) power spectral density. The power spectral
densities were computed by the Welch method with a 256-point FFT and 50%
overlap.
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Fig. 5.5. @;(k) and LPC residuals of a,(k) for the speech of Figure 5.3. ai(k):
(a) time domain waveform and (b) power spectral density. Residuals from the
order 1 LPC predictor of a;(k): (c)time domain waveform and (d) power spectral
density. Residuals from the order 2 LPC predictor of a,(k): (e) time domain
waveform and (f) power spectral density.
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Fig. 5.6. @,(k) and LPC residuals of a;(k) for the speech of Figure 5.3. éaq(k):
(a) time domain waveform and (h) power spectral density. Residuals from the
order 1 LPC predictor of a,(k): (c)time domain waveform and (d) power spectral
density. Residualsfrom the order 2 LPC predictor of az(k): (€)tirne domain
waveform and (f) power spectral density.




- 66 -

) Time (rm) Fv-u:w(nz)
(a) (b)

Magniaude(dB)

%%
Fraquency(Hz)
s}
10}

Magnitucie(dB)

] 1 N
(e) (f)

Fig. 5.7. Sl(k) and LPC residuals of Sl(k) for the speech of Figure 5.3. Sl(k):
(a) time domain waveform and (b) power spectral density. Residuals from the
order 1 LPC predictor of Sl(k): (c) time domain waveform and (d) power spectral
density. Residuals from the order 2 LPC predictor o 51(k): (e) tirne domain
waveform and (f) power spectral density.
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Fig. 5.8. 65(k) and LPC residuals of é,(k) for the speech of Figure 5.3. 65(k):
(a) time domain waveform and (b) power spectral density. Residuals from the
order 1 LPC predictor o Sg(k): (c) time domain waveform and (d) power spectral
density. Residualsfrom the order 2 LPC predictor of 32(13): (e) time domain
waveform and (f) power spectral density.




5.3.2 MBDA version of the federal standard 1015 (LPC-10)

Federal standard 1015 [33, 35| is a 2.4 kb/s voice coder based on a 10 th linear
predictive coding (LPC) model. Therefore, it is also called LPC-10. The input
speech issampled at 8 kHz and is partitioned into 180-sample frames, corresponding
to a time duration of 225 ms. The 10 th order LPC analysis is performed on
each frame. Pitch and voicing are also extracted. 54 bits are transmitted per
frame, including 41 bits for the 10 LPC coefficients (for unvoiced speech, only first
4 coefficientsare coded, and remaining bits are used for error protection), 7 bits for
pitch and voicing, 5 bitsfor amplitude, and 1 bit for synchronization. Therefore, in
LPC-10 more than 70% of the bitsare used to transmit the10 L PC coefficientswhen
the speech isvoiced. At the receiver, the pitch/voicing code is used to determinethe
excitation function to be used. If the speech is unvoiced, pseudorandom numbers
are generated and used for the excitation; if the speech is voiced, then a locally
stored waveform, representing one cycle d a plausible prediction residual, is used
as the excitation. This stored waveform [36] (Figure 5.9) is 40 samples long; it is
truncated or padded out with zeros as required to match the current pitch period.

As we discussed in the previous subsection, in order to code a;(k) and &;(k)
we propose to adopt standard coding ideas. Specifically, LPC-based techniques are
employed to code é;(k) and &(k). In Subsection 5.3.1 we showed that the advantage
of this approach isthat theorder o the LPC model can be dramatically reduced so
that fewer LPC coefficients need to be transmitted. When LPC is applied to a;(k),
order 2 is sufficient while order 0 is sufficient for &-(k). This is a large saving over
LPC-10 because the LPC-10 algorithm uses 41 out o 54 bits/frame for the 10 LPC
coefficients. It is also worth noticing that the pitch period is common to all four
signals, a;(k) and &;(k), 2 =1,2.

The bit allocation for our proposed MBDA version o LPC-10 is given below.

The sampling rate is 8 kHz and the frame length is 180 samples (22.5 ms).

e a;(k) and a4 (k) are coded using order 2 LPC with each coefficient using 5 bits
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Fig. 5.9. The excitation o voiced speech in LPG-10.

while §; (k) and é,(k) are coded with order 0 LPC.

Signal &1 &2 61 62

p |2]2|0]o0

bits/frame | 10 [ 10 | 0 | O

e The same pitch and voicing are used for all 4 signals for a total cost o 7

bits/frame.

e The amplitudes of a;(k) and Sl(k) are coded using 5 bits/frame, respectively.
The amplitude range o d,(k) and é,(k) is much decreased relative to (k)
and 51(k) and fewer bits are necessary. The amplitude of a,(k) is coded as

27" times the amplitude of a;(k) using 2 bits/frame and likewise for ba(k).

~ ~

Signal | a; | @ | 6; | 62
bits/frame | 5 | 2 | 5 2\

A ~ ‘

e 1 bit/frame is used for synchronization.
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This leads to 42 bits/frame, corresponding to a hit-rate of 1.87 kh/s.

Since there are no MBDA-style coders, we started the implementation o the
above ideas by modifying federal standard 1015 software. We first studied the
source codes in an effort to understand the function of each program with the help
of government publications. Then we modified the codes, paying special attention
to the order of the LPC model, perceptual weighting, prefiltering, and postfiltering.
The modified software, which is the MBDA version of LPC-10, is then applied to
a1(k), ao(k), 61(k), and é;(k). Figures 5.10 and 5.11 show the four signals for the
sentence "Where were you while we were away" processed in previous chapters. The
coded-decoded signals are illustrated in Figures 5.12 and 5.13. The SNRs d the
signals shown are —2.43 dB, —1.01 dB, —0.13 dB and 0.17 dB for &,(k), a,(k), & (k),
and 52(k), respectively. A significant amount of distortion has been introduced in
the coding of these signals. Overall, the SNRs are far below 15 dB.

The difficulties of the MBDA-style LPC-10 coder could be due to the fact that
a prestored waveform (i.e., Figure 5.9) is used as the excitation o the LPC model.
While the waveform may be suitable for speech signals, there is, indeed, no justifi-

cation to use it on non-speech signals such as a;(k) and é;(k).

In an LPC-based voice coder, two aspects are crucial in achieving low bit-rate:
small parameterization and pitch synchronous residuals that can be coded with
reasonably fidelity. We certainly have achieved thefirst goal by using an L PC model
of dramatically low order. Asfor thesecond goal, we do not see how amodified LPC-
10 can handle that, mainly because of the nature o the built-in waveform. Rather
than attempting to redesign the excitation waveform for each o the different a;(%)
and ¢;(k) signals, we instead searched the literaturefor a standard coder that did
not have built-in excitation sequences. Federal standard 1016, a code excited linear

predictive (CELP) voice coder, seems to merit investigation.
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5.3.3 MBDA version of the federal standard 1016 (CELP)

Federal standard 1016 [34, 37, 38, 39] is a 4.8 kb/s voice coder utilizing code-
excited linear prediction (CELP) ideas. Input speech sampled at 8 kHz is segmented
into framesd 240 samples (or 30 msin time) which are processed as one unit. CELP
coding is based on analysis-by-synthesis search procedures, perceptually weighted
vector quantization (VQ),and linear prediction (LP).A 10 th order LIP filter is used
to model the speech signal's short-time formant structure. Long-term signal peri-
odicity is modeled by an adaptive codebook VQ (also called pitch VQ). The error
from the short-term LP and pitch VQ is vector quantized using a fixed stochastic
code'book. The optimally scaled excitation vectorsfrom the adaptive and stochastic
code'books are selected by minimizing a time-varying, perceptually weighted dis-
tortion measure that improved subject speech quality. The stochastic codebook is
ternary valued (-1, O, +1) and has 512 codewords. The adaptive codebook has 256
codewords.

We modified the CEL P software in the same way as we did the LPC-10 software.
Specifically, we reduced the order o the LP analysis from 10 to 2 for a;(k) and
to 0 for 3,-(19). In addition, some o the perceptually weighting and bandwidth
expansion features were removed because the modified CELP is intended to run on
EKF estimates rather than on actual speech signals.

The optimal way to use CELP to code MBDA estimates would be to run
CELP jointly on a; and é; with a closed-loop cost that measures the distortion in
a:(k) cos(di(k))). Howev r, the resulted algorithm is very complicated! and requires
a tremendous amount of computation. A suboptimal solution is to apply CELP
to a;(k) with a closed-loop cost that measures the distortion in @;(k) and indepen-
dently apply CELP to 3,-(k) with a closed-loop cost that measures the distortion in
cos(¢:(k)) since §;(k) contributes to the speech through the cosine function.

Let 2 be the optimal vector being searched for and g; be the corresponding
optimized gain. Let column vectors 8 and &é® denote the decoded &; and error

signal over aframeas a result of =) and g;. Let ¢” be the phase corresponding to
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5,(1). Furthermore, let H denote the LP filter. Then
8O = Hgz® = gy, (5.9)

where y¥) = Hz® is thefiltered codeword.

If we apply CELP to a cost which measures the distortion in cos(gf);(k)), then

e = COS((%,‘)—COS(C%I)) (5.10)

A

= cos(Ad;) — COS(A5§I)), (5.11)

where A is a lower triangular matrix of appropriate size with al | entries, and

¢ = Ab;, ¢ = A8 for column vectors ¢,, ¢, &, and 8 over a frame.

IR

Let £® denote the norm or total square error for codeword 1

EO = Jep

= cosT(Ab;) cos(Ab;) — 2cosT (Ab;) cos(AgiyV) + cosT (Agiy™) cos(Agiy™).

Thus,
9ED) T( 4§ T( AoV diag( Av®) si 0 »
5 = 2[cos” (Aé;) — cos’ (Agiy")|diag(Ay')) sin(Agiy"”). (5.12)
g1 , ‘
No closed-form solution for g; exists to theequation Qfg—(t” = 0. Numerical solution

must be used and the computational requirements d codebook search are very
expensive.

Another alternative suboptimal approach isto apply CELP to a cost that mea-
sures the distortion in 3,-(k), revise 6; based on the decoded &;, and apply CELP to
therevised a;. Let a; denote the revised a; which is defined by

ai(k) = ai(k)cos(@i(k))/ cos(¢i(k)), (5.13)

where ¢; is the phase corresponding to the decoded b
Figures 5.14 and 5.15 show the results of modified CELP applied to the signals
in Figures 5.10 and 5.11. The corresponding SNRs are 9.66 dB, 10.21 dB, 7.36 dB



and 13.35 dB for a,, as., 31, and é,, respectively. While the coding of the two am-
plitudes has improved substantially, a significant amount of distortion still existsin
the coding of the phase signals. This is especially unfavorable due te the fact that
6:(k) needs to be summed up to yield ¢;(k) and therefore distortion will be accu-
mulated. Figure 5.16 shows the ratio cos(¢;(k))/ cos(¢1(k)) for the same sentence.
The dynamic range is large. It is evident that some of the coherent structure in a,
will be destroyed as aresult of the revision and therefore the performance of CELP
on the revised signal @, will decrease. To successfully apply this revision idea, it
seems crucial to code the two phase signals with reasonably good fidelity.

We believe that in order for CEL P-based techniques to generate reasonably good
results on MBDA outputs, relatively large codebooks will be required to represent
the L.P residuals. This isespecially true when the residuals of the two phase signals
do not exhibit strong pitch synchronous behavior. But the codebooks o the federal
stantlard 1016 and its variations [40, 41] are relatively small and highly structured.

The nonlinear cosine function also makes the issue more complicated.

5.4 Other Ideas On Coding MBDA Outputs

We have experimented with several ideas for coding EKF estimates other than
the .LPC and CELP approaches described above. Our main focus is on the phase
signals.

In MBDA, the observation noise has standard deviation r (Eq. (2.5)). Since all
the speech data in this study come from TIMIT which is essentially noise free, the
observation noise is assumed to be the quantization noise which, under a uniform
+1/2-bit model, has standard deviation r = \/m With this , we have been
able to process speech in such away that the reconstructed signal accurately tracks
the criginal speech in both the time domain and the frequency domain. While this
is very impressive from the point view of MBDA, it actually poses a problem for
coding: the estimated signals vary rapidly in time. If r is increased, the nonlinear

estimator would tend to attribute more variations to the observation noise rather
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than attributing all of the variations to the signals being estimated. Therefore, by
increasing r, we attempt to makea trade-off between thequality o the reconstructed
speech and the suitability for coding of the MBDA estimates. Figure 5.17 shows the
resulted estimates for r = 10 for the phoneme /ee/ o the word m/ee/ring processed
in previous chapters (Figure 3.9). (The rest of the parameters remain the same.)
These estimates appear to be "smoother" than they used to be. But the improve-

ment is not substantial and the pitch synchronous behavior is not strengthened.

In our real speech experiments, the estimated phase signals appear to be quasi-
linear or piecewise linear, e.g., the results displayed in Figure 3.11. Thus a very
simple coding idea is to code and transmit every L th sample o ¢;(k) and then, at
the receiver, recover the missing samples through linear interpolation. Figure 5.18
shows the error signal for the linearly interpolated éﬁl(k) for the sentence “Where
were you while we were away" when L = 30 samples. Unfortunately, the error is

noise like and is not pitch synchronous aswe would like to observe. In addition the
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error is o large amplitude relative to . It would require a fair amount o effort to
code this signal.

We have also experimented with a baseband coding approach. Theideaisto shift
the term é, (k) cos(¢2(k)) to baseband to generate an inphase signal and quadrature
signal. Based on the inphase and quadrature signals, we can compute the envelope
and phase which are subsequently coded (Figure 5.19). We are interested in this
approach because LPC- or CELP-based schemes seem to be much less effective on
estimates from the second resonance. If ay(k) cos(,(k)) iswell behaved at baseband,
it is then possible to code its envelope and phase efficiently. Figure 5.20 shows the
estimated second resonance of the phoneme /ee/ o the word m/ee/ting in the time
and frequency domains. The lowpass filter isshown in Figure 5.21 and the resulted
envelope and phase signals are givellin Figure 5.22. These signals are observed to be
very erratic and the phase signal does not exhibit strong pitch synchronous pattern.
Therefore, this approach was not pursued.

So far, we have encountered substantial difficulties in coding MRDA outputs.
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Fig. 5.19. The blockdiagram o baseband coding.

In fact, after the AM-FM model and its demodulation algorithms emerged, the
application of the model to speech coding has been a very active research area[12].
However, no major breakthrough has been reported. We believe the difficulties
come from several aspects:. 1) The model is a nonlinear model. Our main efforts
have been on coding amplitudes and phases. It is very difficult to control the effect
o the phase signal on speech; and 2) The coding schemes that our experiments are
based upon, i.e., LPC and CELP, are designed for speech signals rather than for
MBDA estimates. Thisis manifested by the prestored excitation waveform in LPC-
10 and the highly structured codebooks in CELP. This latter observation prompted

us to search for a coding scheme that is not speech specific, e.g., subband coding.

5.5 Subband Coding Approach

Generally in subband coding [42, 43, 44], a signal is passed through a bank o
bandpass filters. The output of each filter is then coded and transmitted. Decima-
tion is often involved. Theideadf combining MBDA and subband coding approach
for speech coding is shown in Figure 5.23. A speech signal isfirst passed through
a bank o analysis filters. MBDA with one formant and afixed formant frequency,
ie., fi(kt1) = fi(k), is applied to the output of each filter to generate an ampli-
tude and a phase for each band. These signals are then down-sampled, coded, and
transmitted. A reverse process is performed at the receiver.

The approach is interesting because, in theory, the bandwidth o (k) and Sl(k)
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Fig. 5.21. The lowpass filter in baseband coding.

(or 21(k)) is much narrower than that of y(k) where y(k) = a,(k) cos(,(k)) [29]. In
other words, the nonlinear system exhibits bandwidth expansion analogous to the
bandwidth expansion o a frequency-modulated communication system. In order
to easily demonstrate bandwidth expansion, it is convenient to have a wide-sense
stationary R, (Egs. (2.1)-(2.5)) and therefore we set g5, = 0. Unfortunately, we
are unable to analytically compute S,(£2). Therefore, we give an numerical example
using one formant and evaluating S,(€?) numerically after truncating the infinite
sum to YF2%%¢ .. The parameters of the example are a,, = .99. ¢,, = 1, &, = .99.
gy, = 20, g5, =0, 1 =0, my, o = 1000 Hz, T = 1/16000 s, ps,,0 = 0, and pg,0 = 0.
In Figure 5.24 we show the power spectral densitiesfor a,(k) and »,(k), which are
identical except for a constant scaling by 20?, and the power spectral density for y(k).
Depending on the details of the definition of bandwidth, a bandwidth expansion of
roughly 3 times has taken place in this example. Thus, this MBDA-subband coding

idea is promising since down-sampling of a large rate could be achieved.

The coding method based on subband ideas is quite different from that based on
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LPC or CELP. In modified LPC or CELP, MBDA is applied to the entire speech. In
the subband-based approach, MBDA is applied to the bandpassed speech with one

formant and afixed formant frequency. Both LPC and CELP assume a underlying

linear prediction model while no model is assumed in subband coding.
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6. DISCUSSION

In this study we propose a statistical approach to the decomposition of a signal
into sums of jointly amplitude- and frequency-modulated subsignals. More specifi-
cally, we propose a model and an estimation problem, we compute the Cramer-Rao
bound for the estimation problem, and we propose and demonstrate a practical

nonlinear estimator. This framework is then applied to speech problems.

This approach has several attractive features: (1) The approach can analyze
signals containing multiple formants directly without first having to decompose into
subsignals each containing zero or one formant. (2) The presence o interfering
signals (i.e., "noise") is naturally included in the approach, both in the model and
in the processing where, for instance, no derivatives or first differences of the noisy
signal are required. (3) The target signals are precisely described. For instance,
the bandwidths of the AM and FM subsignals can be independently controlled
and the rate of change of the formant frequency can be controlled or the current
formant-frequency model can be replaced by a more sophisticated model, e.g., a
model which enforces spline-like smoothness constraints on the formant frequency.
Specification of the target signals then implies the structure and parameters of
the nonlinear filter. Furthermore, this level of control in the specification of the
target signals allows the incorporation of additional acoustical knowledge as such
knowledge becomes available. (4) Thestatistical framework allows the computation
of bounds on the performance of an optimal estimator. For instance, in this study
we compute the Cramer-Rao bound which is a lower bound on the mean square

error between the unknown signals and their estimates and therefore is an upper




bound on the performance o the estimator. Using such bounds, the performance o
practical suboptimal estimators can be compared against an absolute standard o
performance.

The application of this approach to speech coding is also discussed. The ideais
to code and transmit the amplitude and phase signals generated by our nonlinear
filtering methods. We have experimented with a variety of techniques to code these
estimated signals. It isshown that when standard linear prediction-based techniques
are adopted, the advantage of this approach is that the necessary linear prediction
model order isdramatically reduced so that fewer coefficients need to be transmitted.
However, coding the residuals of the lineaa predictor is not straightforward since
the methods embedded in standard speech coders (e.g., FS-101.5 and FS-1016) are
specialized for speech signals (e.g., the prestored excitation sequence in FS-1015
and the small and highly structured codebooks in FS-1016). We believe that a
non-speech specific technique, such as subband coding, will generate better results
because no underlying linear prediction model is assumed and the demodulation is

through MBDA with a fixed formant frequency where less ambiguity can occur.
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A.INITIAL CONDITIONS FOR EQ. (2.25)

In this appendix we describe the values for m® and A° which are the initial
conditions for Eq. (2.25). Define uy, = (27Tmy,0,0)7, pu, = (0,0)7, pa, = (0,0)7
=05.0/2,0=a/(1 —al),n=q2 /(1 —al),

Ay, = R27{T)2p}"°+ﬁ " )
K K
A, = _(27TT)2p+/~: K ,
K K
A, = — n Qq;M ’
X1 7
i = (fags s i) T> As = diag(Aa,, A LA, 1= (s, )T, A =diag(Ah...-A1),
and A= ( (1) al(O) ¢f1( ¢f1( ) ¢U1(1)7¢U1(0)7 ey al( ) ¢f1 1) ¢f1
¢u1( ) )T' ThenA N-N(ﬂaA)~ Deﬁne€ = (al(l),qﬁfl 1),915,,1 ), Ly Ay 1),¢f1(1 ,

¢, (1), al( ), #7(0),9.,(0), ..., ar(0), ¢5,(0), ¢,,(0))” which is a permutation of X
and define P € R®'*8! which is the corresponding permutation matrix. P has values

b4z, 1 L2031
Pi,j =
61'__31’]'/2, 3] + ]. S Z S 6]

and satisfies ¢ = PA. Therefore, m® = E[¢] = Py and A° = E[(¢ — E[¢])(€ -
E[¢))7] = PAPT.




B. AN ALTERNATIVE PERFORMANCE BOUND

In this appendix, we describe an alternative to the Cramer-Rao bound, specif-
ically, a lower bound on mean square error performance based on rate distortion
theory. We also describe a Monte Carlo method for evaluating the bound.

We consider the following discrete time model [45):

Ty = a(ze, k) + b(x, k)wy (B.1)
ye = g(@, k) + N(k)vi (B.2)

where zx € R", yr € R™, wy isi.id. N(0,1,,), vy isiid. M(0,1), zo is M(Ze, Lo),
and w, v, and zy are al independent. Notation: z} = {z;, i41,...,2;} and likewise
for yi, v/ and w!. R(j) = N(5)N(j)T. E is expectation and E** is conditional
expectation given .

Ingeneral, thedesign of afilter that estimates z, as afunction of the observations
{¥0.0 < k) isanonlinear filtering problem. The goal is often to minimize the mean

square error measure of distortion:
(k) = E{(zx— &) (zx — 24},

where %, is the estimate of zy.

The optimal solution that minimizes the mean square error is

& = Ef{zilys,o0 <k}
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In practice, the optimal estimator can not be built, nor isit possible to compute
the optimal error. However, there exist some lower bounds on on the mean square
error which provide an indication o whether accuracy requirements are realistic
before undertaking a suboptimal filter design. One such bound based on rate dis-
tortion theory and the Bucy-Mortensen-Duncan representation theorem [46, 47, 48]
isoriginally suggested in [45] and subsequently corrected in [49]. The bound is given
by Theorem 1.

Theorem 1 Consider the discrete time filtering problem. defined by Egs. (B.1) and

(B.2). A lower bound on the optimal mean square error e*(k) of Eq. (B.3) is given

by
() 2 oo {She) prexp {21}, (B4

where h(p;) denotes the differential entropy of a random vector = with probability

density function (pdf) p,, i.e.,

hp:) = = [ loglpz(n)lps(n)dn,

Iz yl) = E{log [E”“ {exp (Ck (xg, Zg))}]z(’)‘:yk

0

— log [E {exp (Ck (mg, zg))}]zgzyg} (B.5)

where 2§ is a deterministic vector of the same dimensions asyg, and

k

Ct(l']oc’ y(I)C) = Zg(xj’j)TR_l(j)yj

k
Z_:g(%y YR (5)g(z:7)

k
+ Eg(ﬂfj,j)TR_l(j)N(j)vj(xj,yj)- (B.6)

Proof: See Appendix C. a
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The difficulty with applying Theorem 1 to a particular problem is that Eq. (B.5)
involves conditional expectationsin function space. For a limited class of problems,
we now describe a Monte Carlo method for evaluating Eq. (B.5) and consequently
the bound in Eq. (B.4). Specifically, we describe a method for sampling from the
conditional distribution (in the Gaussian case) and an importance sampling method
which accelerates the convergence of the Monte Carlo sums. Though the Gaussian
restriction is limiting, there exist applications, such as analog angle modulation
systems [50] and speech processing problems of this report [32], where the state
process is linear and Gaussian but the measurement equation is nonlinear, and
these methods are oriented toward such problems.

Any practical sampling algorithm must operate by transforming a set o i.i.d.
N(0,1) samples. The sampling method we propose is based on the following ob-
servation. If z is M(z,C) and z is partitioned z = («f,zf)T (and likewise for
Z and X) then [28, p. 321] pryje,(TalTs) = N(Tap(@s), Zap)(za) Where Zqp(zs) =
To + TapZpy (z5 — ) @and Zap = Taa — Zav iy ©7,- The conditional mean estima-
tor of z, based on z;, denoted by Z.p, is Talp = Z,p and the error, denoted by
Tapbs is defined to be Zap = T — Zop and has the properties that E{Z,;} = 0 and
Var{Z,»} = Zap. Therefore, samples can be drawn from N (Z,p(xs), Eaps) for a

particular value o z, (denoted by z;) by using the following algorithm:
1. Choose z;.
2. Pick a realization of x.
3. Compute ..
4. Compute Zajp. Zqp is distributed (0, Z,pp ).

5. Compute m, = Zqp(z;). (Thiswould actually be done only once during an

initialization procedure).

6. Compute z = Zqp + m,. z is distributed N(Zap(23), Eap) as desired.



In the case where x is the sequence of states of a dynamical system (specifically, z,
is thefirst M time-steps and z; is the M +1st time-step), this process can be done

efficiently because

1. The process noise w is a white sequence and thereforeis easy to samplefrom,

and the realization of x can easily be computed from the realization of w.

2. The conditional mean z,p can easily be computed by a Kalman smoother once
an observation equation, with measurement matrix H and measurement noise

covariance matrix R, is defined by

0, £=0,1,...,. M -1
b = {

I, k=M

I, k=0,1,... . M—1
Re = {

0, k=M

A forward-backward two-filter algorithm [28, p. 189] is attractive because the

forward pass is very simple.

Let x be arandom variable with probability density function p. Computation of
| = E[f(x)] using Monte Carlo and importance sampling [51, Section 2.5] requires
the computation of fq = (1/L) S50 f(4)p(%)/9(7i) wherey; arei.i.d. samplesfrom
the probability density function q. We apply these ideas to the computation of the
conditional expectation in Eq. (B.5). (Thecompletecomputation of the first term of
Eq. (IB.5) requires Monte Carlo for the outer expectation also). Though the optimal
g is known, we use a simple sub-optimal choice: pis Gaussian and we choose q to be
Gaussian with the same covariance but a different mean. The new mean is chosen
as a compromise between the z¥ trajectory that maximizes exp (Ck (m’g, 25)) (which
corresponds to f in | = E[f(x)] above) and the mean o p, which maximizes p. The
compromise is a time-step by time-step convex combination of the two trajectories,
which are denoted m, and m, respectively. The weight in the convex combination

at step ¢ on the mean o p is 62/(c? T o2) where o is the width, as a function

of z;, o the maximum of exp (g‘k (ré,z(’j)) at the trajectory m, and <r;‘)’ isthe: th



diagonal element of the covariance of p. The width is defined as the value of éz;
such that G (m¢, 28) — Gk (6me, 28) = 2 where (6m¢)e = (m¢)s fur k # i and
(bm¢)e = (me)e + 6z; for k = ¢ [()x means the value at time step &]. Becaused the
form o (, which is due to the fact that the observation noise is white, it is easy to
find the trajectory zf that maximizes exp((x) because it can be done time-step by
time-step.

In order to demonstrate these ideas, we have examined a scalar linear-Gaussian
example: x4 = axp+bw and yx = gz + Nv, wherea=05b=05g=2,N =1,
and zg is M(0,20). The exact mean-square error at k = 50, computed using the
Kalman Filter, is X550 = 0.1328. Pencil and paper evaluation of the rate distortion
bound (i.e., EQ. (B.5)) Ref. [45]) gives thesameresult. The Monte Carlo value based
on L = 1000 termsin each inner integral and in the outer integral and without using
impartance sampling is 0.0438 £ 0.0358 which is clearly far from convergence. (The
sample mean of the bound plus/minus 1 sample standard deviation of the bound
based on 10 runs is reported). Finally, if the calculation is unaltered except for the
use of importance sampling, then the value is0.1044 £ 0.0370 which is substantially
closer to the exact value.

Overall, compared to the Cramer-Rao hound described in Section 2.3, the bound
basecl on the rate distortion theory is computationally more burdensome and there-

fore was not pursued.



C. PROOF OF THEOREM 1

The bound proposed in [45] is more attractive than the bound of Theorem 1in
Appendix B because in [45] there are no conditional expectationsin function space.
However, as described in [49], thereis an error in the proof in [45], which invalidates
the bound. While the original bound is incorrect, an intermediate result is correct
and shat result is Theorem 1. Therefore, we only describe the error in [45] that

invalidates the more attractive but incorrect bound.

In [45], Theorems 2 (continuous time) and 3 (discrete time) have parallel proofs.
An error occurs in thefinal step o the common proof between Egs. (A.9) and (A10)
in Appendix A and is o the following general type. Let r and s be scalar random
variables on the same probability space and let z € R be a deterministic parame-
ter. Let h be a scalar random variable derived from r and s. Define two functions
f(s) = (E{h(r,2)})|.=s and ¢(s) = E{h(r,s)|s}. In general, f(s) # g(s). Further-
more.,while E{i(r,s)) = E{E{A(r,s)|s}} = E{g(s)}, in general it is not true that
E{h(r,s)) equals E{f (s)). Theerror leading up to Eg. (A10) is an assertion of the
type that E{h(r,s)) = E{f (s)). A concrete examplefollows:

Let » € {0,1}, s € {0,1}, p,s(0,0) = pogo, Prs(0,1) = po1, prs(1,0) = p1o,
prs(1.1) =1 — poo — po1 — P10, and h(r,s) = rs. Then f (s) = (E{h(r,2)}) [1=s =
5(1 — poo — pop) and g(s) = E{h(r,s)|s} = s(1 — pop — poy — P10)/(1 — Pop — Pr0)-
Therefore, E[g(s)] = 1 — poo — pos — pro = E[h(r,s)] and E[f (s)] = (1 - poo —
poa)(1 — poo — p1o) so that E[f(s)] # Elg(s)] = E[A(r, s)].

We focus on the discrete-time case where for each equation we give both the

abstract form in terms of expectations and the concrete form in terms of integrals




and probability density functions (which we assume exist). We consider the same
model given in Egs. (B.1) and (B.2).

The Bucy-Mortensen-Duncan representation theorem in discrete timeis

P(fﬂk|yk) — [Erk {exP (Ck (:LJ(;’ Zg))}] h=yk P(:L'k)
[ {exp (¢4 (25.26))} s,
k

where 2§ is a deterministic vector of the same dimensions as y§ and (i(z§, y8) is

given in Eqg. (B.6). (There is a typographical error in Eq. (26) of Ref. [45]: the
“N(jy)” factor in Eg. (B.6) ismissing). Moreexplicitly, the Bucy-Mortensen-Duncan
representation theorem is
[fuer p(ab ™ |zx) exp (G (5, v6) ) dab ™| plas)

(Lo p(zb) exp (G (28, 4) ) dah]

Eq. (A10) of Ref. [45] is a bound on the mutual information I(z; y5) based

plzilys) =

on the Bucy-Mortensen-Duncan representation theorem. The derivation is correct

Hawyl) = {log [E=* {exp (¢ (25, 2)) }] sk
~tog B {exp (6 (s )}, (C1)

< togB{ [ fexp (s (o5 )],
~ B {iog [B {exp (G (af, )} N (C.2)

(The second step is Jensen's inequality). The final step leading to Eq. (A10) o
Ref. [45] isthe assertion that E{[E=* {exp((k(z¢, z25))}] k_uk} equalsE{exp((i(zX, y5))}
which, unlike E{E®* {exp((i(2%, v&))}} = E{exp((i(zE, y&))}, isincorrect. More ex-
plicitly, the bound is

I(zk;y5)

= /; xk,yo )log {/P ~!ay) exp (C (xo,yo)) dxé‘l} dapdys

kyo

st ocfes
0
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< log/k

- /y" p(ye) {log /.rk p(z&) exp (Ck (mg,y(’j)) d;p’g} dyk

0

P(ak, yb (6" =) exp (Ge (ab, ut) ) dabdys
Yo

and the incorrect assertion is that
[, pleeb)p(z =0 exp (G (o6,45) ) dabdy
Tg1¥%
equals
L, a5, u8yexp (¢ (ab.v5)) dabed
oY
The incorrect assertion is important because, if it were true, then these would
be no conditional function space expectations which are more difficult to evaluate
than unconditional expectations. In the absence of the assertion, Eq. (C.1), which
is identical to Eqg. (B.5) d Appendix B, provides a tighter bouncl than Eq. (C.2)
and, at least in a Monte Carlo approach, requires essentially the same amount of

computation.
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