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Abstract 

This paper describes the application of a first order regularization technique to the problem of 
reconstruction of curves and surfaces from sparse data. The reconstruction methods achieve 
approximate invariance, sharp preservation of discontinuities and are robust to the smoothing 
parameter A. The robustness property to X allows a free choice of the smoothing parameter X 
without struggling to determine an optimal X that provides the best reconstrilction. A new ap- 
proximately invariant first order stabilizing function for surface reconstruction is obtained by 
employing a first order Taylor expansion of a nonconvex invariant stabilizing function that is 
expanded at the estimated value of the squared gradient instead of at zero. The data compat- 
ibility measure used is the squared perpendicular distance between the reconstructed surface 
and the constraint surface. This combination of stabilizing function and data compatibility 
measure is necessary to achieve invariance with respect to rotations and translations of the 
surfaces being reconstructed. Sharp preservation of discontinuities is achieved by a weighted 
sum of adjacent pixels such that the adjacent pixels that are more likely to be in different 
regions are less weighted. The ideas employed for surface reconstruction are also applied to 
curve reconstruction. The results indicate that the proposed methods for curve and surface 
reconstruction perform well on sparse noisy range data. Curved surfaces (or curved sections 
in the case of curve reconstruction) are well reconstructed even though a first order model 
is employed. In addition, the volume between two surfaces normalized by the surface area 
is proposed as an invariant measure for the comparison of reconstruction results. Similarly, 
the area between two curves normalized by the arc length is proposed for comparing curve 
reconstruction results. 



Chapter 1 

Introduction 

Considerable research has been devoted to the problem of the reconstruction of curves [24] 

[25] [19] [4] [16] and surfaces [30] [31] [32] [2] [3] [4] [34] [6] [27] [26] [9] [14] [29] [28] [20] 

[17] [I] [23] [22] [8] [18] [5] [ l l ]  [19] [lo]. Reconstruction is necessary to derive a complete 

representation of a curve or surface from sparse noisy sets of geometric information, such as 

depth and orientation or other sources of information. A reconstructed curve or surface is an 

intermediate representation to bridge the gap between sensor data and a symbolic description 

of a curve or surface. An ideal algorithm for reconstruction should have several properties. 

First, reconstruction must be invariant with respect to viewpoint, that is, to rotations and 

translations of the curves and surfaces being reconstructed. This is especially important when 

reconstruction is part of an object recognition system. In this case a change in this interme- 

diate representation may cause a change in any symbolic description that is derived, resulting 

in failure to identify the objects in a scene. Second, it is desirable to firtd discontinuities 

both in depth and orientation. A reconstruction algorithm, if detection of discontinuities is 

not simultaneously carried out in the reconstruction process, should at least sharply preserve 

regions near discontinuities for a later stage of discontinuity detection. 

The general term regularization is used for any method to make an ill-posed problem well- 

posed. The main idea for restoring well-posedness from ill-posedness is to restrict the class of 

admissible solutions by introducing suitable a priori knowledge. Much research on the problem 

of surface reconstruction is found in the context of deterministic regularization [34] [6] (261 
[27] [l]  [22] [23] [30] [31] [32] [3] [4] [5] [I11 [19] and stochastic regularization [9] [14] [29] [28] [7] 

[18] [lo]. Deterministic regularization uses smoothness constraints on the possible solutions 

as a priori knowledge whereas, in stochastic regularization, a priori knowledge is represented 



in terms of probability distributions. A priori knowledge in stochastic regularization can 

be formulated in terms of a Markov random field (MRF) model of the surface within the 

Bayesian framework. In most cases, the result is a nonconvex problem. The solution to these 

nonconvex problems has been obtained by using simulated annealing [15], Gibbs sampler [lo], 

or by deterministic approximation to a statistical model such as the Mean Field approximation 

[9]. However, the methods suggested for finding a solution are either not guaranteed to 

converge to a global minimum or are computationally very expensive. From now on, the term 

regularization will refer to deterministic regularization. 

Invariant reconstruction of surfaces in the context of regularization has been investigated by 

approximating an invariant energy function. Second order models that are capable of invariant 

reconstruction are investigated in [3] [2] [27]. Blake and Zisserman [3] [2] used a convex ap- 

proximation to the explicit expression of a second order invariant form and Stevenson and Delp 

[27] made a convex approximation to the parametric form. However, a convex approximation 

to the first order invariant form has not been previously reported. In addition, these other 

approaches do not explicitly consider sharp preservation of discontinuities. Many researchers 

have attempted to reconstruct surfaces with sharp preservation of discontinuities [26] [23] [22] 

[6] [34] [20] [19] [32] [31]. Most efforts toward discontinuity-preserving reconstruction share 

a common property. Preservation of discontinuities is achieved by properly chosen weighting 

functions by which the adjacent pixels or the basis functions for spline that are more likely to 

belong to different regions are less or not weighted in the computation of a reconstructed pixel 

value. Discontinuities are detected during the reconstruction process by adding to an energy 

(cost) function a term that depends on the number or extent of the discontinuities [19] [3] [2] 
[4]. However, this makes the problem nonconvex and finding the solution is computationally 

expensive and not guaranteed to find a global minimum. Some researchers have detected dis- 

continuities as a preprocessing step for surface reconstruction [17] [32] [6]. However, none of 

these methods considers invariance of the reconstruction result at the same time. A detailed 

description of the past work on discontinuity-preserving reconstruction is found in chapter 4. 

Many ideas used for curve reconstruction are one dimensional analogs of those for surface 

reconstruction. For invariant reconstruction of curves, Stevenson and Delp [25I7s work is a 

one dimensional analog of [27]. For discontinuity-preserving reconstruction of curves, they 

conceived discontinuities as a deviation from the smoothness assumption and used the theory 

of robust statistics as in their corresponding surface reconstruction work [26]. Lee and Pavlidis 

[16] also used a cubic spline but they explicitly detected discontinuities. 

In this paper, we apply regularization techniques using first order convex energy functionals 



to the problems of curve reconstruction and surface reconstruction. We propose a novel 

form of energy functional for curve reconstruction and surface recon~truct~ion that achieves 

approximate invariance, sharp preservation of discontinuities, and robustness of reconstruction 

performance with respect to the smoothing parameter A. That is, reconstruct ion results are 

almost the same for various smoothing parameter X's in a wide range. This property is 

significant in that we can freely choose the smoothing parameter X without struggling to 

determine which X provides the best reconstruction result. In the past, some researchers 

have proposed methods to compute an optimal smoothing parameter X according to a chosen 

criterion. However, most researchers have selected their smoothing parameter X's in an ad hoc 

way because of the difficulty in finding an optimal A. In order to compute an optimal A, it is 

necessary to accurately characterize and estimate the noise in the data. This difficulty makes 

the problem of finding an optimal X difficult to solve. Various ways of choosing an optimal 

X in the case of quadratic regularization criteria are discussed in [33]. The effort to compute 

an optimal X can be saved if the reconstruction method is robust. A first order model was 

employed instead of a second order model because a first order model entails significantly less 

computational effort than a second order model. Surface reconstruction results are compared 

using an invariant quantitative measure together with visual displays of the reconstruction 

results. The volume between two surfaces normalized by surface area is used as an invariant 

quantitative measure for comparing surface reconstruction results. This measure is invariant 

with respect to an arbitrary coordinate system, that is, it provides the same measures for 

reconstruction results of a surface in different coordinate systems. Similarly, we employ the 

area between two curves normalized by the arc length as an invariant measure for comparing 

curve reconstruction results. The ideas for curve reconstruction are not described separately. 

Curve reconstruction uses the same ideas as those applied to surface reconstruction, i.e., the 

ideas for curve reconstruction are one dimensional analogs of those for surface reconstruction. 

Stevenson and Delp's work, [25] and [24] are just one dimensional cases of [27] and [26] 

respectively. Blake and Zisserman's work on curve reconstruction is found with their surface 

reconstruction work. 

The algorithm for surface reconstruction consists of three steps: an initial reconstruction, 

partial derivative estimates from the initial reconstruction result, and then a second recon- 

struction which uses the estimated derivatives. We estimate the partial derivatives of a surface 

to be reconstructed in advance. The estimated derivatives are inserted as constants into an 

approximately invariant energy functional (second reconstruction) which is then convex. The 

importance of the estimated derivatives is that they improve the performance of the second re- 



construction with respect to invariance and discontinuity preservation. These derivatives need 

not be perfect to achieve a substantial improvement after the second reconstruction. In order 

to estimate the derivatives, we reconstruct the input surface using a regularization technique. 

However, any other appropriate method can be used to produce the derivative estimates. The 

entire algorithm proceeds by first reconstructing the input noisy range data (dense or sparse) 

using a simple membrane model. This energy model is not capable of producing invariant 

nor discontinuity-preserving reconstruction. It also does not have the ro1)ustness property 

to the smoothing parameter A. Second, partial derivatives 2, and 2, are estimated from the 

reconstruction result just obtained where 2, and 2, denote the partial derivative estimate with 

respect to x and y direction, respectively. Third, the original noisy range input data (dense 

or sparse) is reconstructed using our proposed energy function that achieves both invariance 

and preservation of discontinuities, with the use of the partial derivative estimates computed 

in the second step. 

A new first order stabilizing function is obtained by employing a first order Taylor expan- 

sion of a nonconvex invariant stabilizing function that is expanded at the estimated value 

of squared gradient instead of at zero. The new first order stabilizing function reduces the 

approximation error better than the commonly used membrane energy functional where sur- 

faces of an image are steep. The squared perpendicular distance between the reconstructed 

surface and the constraint surface is used as an invariant data compatibility measure. It is 

based on the assumption that they are roughly parallel 121. This assumption is related to 

the particular noise model employed. Here the assumption is that, in an image, more steeply 

inclined surfaces show greater noise than flatter surfaces. If noise is uniforn~ly distributed in 

the direction of the normal to a surface, when the surface is imaged from a particular view- 

point, then more steeply inclined regions will have greater uncertainty in their measurements. 

This agrees with the research result by Ikeuchi and Kanade [13] where they reported a noise 

model of typical light-stripe range finder. According to their findings, the larger the angle be- 

tween the surface normal and the illuminator direction of a light stripe, the larger uncertainty 

exists in the sensed z value. Combining the stabilizing function and the data compatibility 

measure, we obtain a novel form of energy function in which the gradient information is in- 

corporated. For simplicity, we will use forward finite diflerence in order to approximate the 

continuous surface although it is possible to discretize it using a variety of finite elements. 

Sharp preservation of discontinuities is achieved by a weighted sum of adjacent pixels in that 

the adjacent ~ i x e l s  which are more likely to be in different regions are less weighted. The 

estimates, 2, and 2, obtained from a reconstruction result using the simple membrane model 



are provided for the second invariant and discontinuity-preserving reconstruction. Given a 

novel form of the energy function with gradient information incorporated, another problem is 

how to estimate the derivative, 2, and 2, at the location of node (i, j) because the reconstruc- 

tion performance may degrade on the disagreement of the weighting pattern of the updating 

equation derived from the energy with the method of estimating the derivative. Two basic 

schemes that are commonly used are as follows. One is the forward difference which is a biased 

estimate of the derivative. Another estimate that is not biased is the central difference. We 

investigate two alternative reconstruction methods in order to see the effect of the method of 

estimating the derivative on the reconstruction results. One method is the use of the biased 

derivative estimate for the obtained novel form of energy. The other method is the use of 

the unbiased derivative estimate with an appropriate adjustment of the same energy for the 

purpose of preservation of discontinuities. Both methods achieve invariance and preservation 

of discontinuities. However, the latter method is recommended for surface reconstruction be- 

cause reconstruction using this method is also robust to the smoothing parameter A. One 

dimensional analogs of the ideas employed in surface reconstruction are derived for curve 

reconstruction in chapter 6. 

In chapter 7, the performance of three reconstruction methods for both curve reconstruction 

and surface reconstruction are compared. Let us denote these three reconstruction met hods 

as follows. 

FIT : ordinary reconstruction using the commonly used membrane energy model. Cor- 

responding energy function is found in chapter 2. 

IDFIT-BIASED : invariant and discontinuity-preserving reconstruction using the en- 

ergy (before adjustment) with the derivative estimated by the biased estimate method. 

Corresponding energy function and updating equations are found in section .4.1. 

IDFIT-UNBIASED : invariant and discontinuity-preserving reconstruction using the en- 

ergy (after adjustment) with the derivative estimated by the unbiased estimate method. 

Corresponding energy function and updating equations are found in section 4.2. 

It will be shown in chapter 7 that reconstruction results from best to worst are ordered as 

IDFIT-UNBIASED, IDFIT-BIASED, and FIT. For the invariance property, the performance 

of IDFIT-BIASED and IDFIT-UNBIASED do not show much difference while their perfor- 

mance is much better than that of FIT. IDFIT-UNBIASED performs very well on sparse noisy 



data for both curve reconstruction and surface reconstruction. In addition, curved surfaces 

(or curved sections in case of curve reconstruction) are well reconstructed although first order 

energy models are employed. 

The contributions of this work are as follows: First, a new technique is presented for recon- 

struction of curves and surfaces using a first order energy function that achieves invariance, 

preservation of discontinuities, and robustness to the smoothing (or equivalently scale) pa- 

rameter A.  Second, an invariant measure for comparing reconstruction results is proposed, 

and a computationally efficient method for computing the measure is presented. 

This paper is organized as follows. The development of the ideas behind t:he reconstruction 

algorithms will be presented for surface reconstruction alone. Chapter 6 will present the anal- 

ogous ideas applied to the curve reconstruction problem. Due to the similarity of the two 

methods, chapter 6 relies upon the theoretical development presented for surface reconstruc- 

tion. Chapters 2-5 will describe in detail the process of surface reconstruction. In chapter 

2, we will give a brief background on regularization theory necessary for explaining our work 

on surface reconstruction. Chapter 3 presents the invariant energy functio~ials employed for 

regularization. Chapter 4 describes how preservation of discontinuities is achieved using our 

new energy functional with the use of positionally unbiased derivative estimates. A compu- 

tationally efficient way of computing the volume between two surfaces normalized by surface 

area as an invariant measure for comparing the surface reconstruction results is presented in 

chapter 5. Curve reconstruction will be described in chapter 6 by obtaining one dimensional 

analogs similar to the equations derived for surface reconstruction. In chapter 7, experimental 

results will be given for both synthetic and actual range data. 



Chapter 2 

Regularization for surface 
reconstruction 

Regularization is a mathematical technique used to solve ill-posed problems that imposes 

smoothness constraints on possible solutions. In this chapter, we will briefly describe on 

regularization theory employed for our surface reconstruction work. 

Let an object have the parametric representation r'(u) = (x(u, v), y (u, v), z(u, v)), u = (u, v) c 
R2. Given a set of noise corrupted data, D = {c;,, lcij = ( q j ,  elj,  c;,)} from which we recover 

the solution r'(u), we define an energy function E(r'(u), D)  which measures the compatibility 

between the solution and the sampled data, 

where (i, j )  is the measurement location in u and p is an appropriate metric which is zero 

at (i, j )  where no data is given. D provides shape estimates which consist of constraints 

on location and/or surface normal at specific points on the surface. Thus, the measurement 

functional, I will have one of the following forms, 

where (u;, vj) is a location where a measurement is recored, and c ( u ) ,  <(u) represents the 

derivative of the vector with respect to the parameter, u and v respectively. The first form is 

a positional constraint, while the second is a constraint on the local surface normal. 



A stabilizing function E,(r'(u)) which embodies the desired smoothness constraints is added 

and the solution P ( u )  that minimizes the total energy (2.1) is found. 

E ~ ( ~ ' ( u ) )  = ~ ( r ' ( u ) ,  D) + X~ E, (r'(u)) (2.1) 

The regularization paramenter X controls the amount of smoothing performed. 

In order to define an invariant stabilizer, an invariant characteristic of the surface is integrated 

over the surface to  form a measure of surface consistency. The measure is defined so that the 

more consistent the surface is with our ideal model of a reconstructed surface, the smaller its 

value. The following is an example of a first order invariant stabilizing function that represents 

the small deflection energy of a surface: 

0 c R2 denotes the image domain. This stabilizer, however, is not convex, making the 

solution using (2.2) computationally expensive. 

The explicit form can be thought of as a special case of the parametric form that is; 

4 %  v) = x Y(U, v) = Y and r'(x7 Y)  = (x, Y,  4x7 Y)). 

When the Euclidean metric is used, the metric p for the data compatibility term becomes, 

p = (z(x;, yj) - ctj)2 + (x; - qj)2  + (y. 3 - c
y 
*,3 .)I (2.3) 

Although this metric is invariant, its practical application often requires that 

Y X; = qj and yj = c;j, 

resulting in 

2 
p =  xi, yj) - c;,jl or (z(xi7 yj) - c;,j) 

which is not invariant with respect to rotations of the coordinate system. 

When the explicit form is used, equation (2.2) is expressed as 

A convex approximation to the nonconvex and invariant stabilizing function (2.5) is desired 

for computational efficiency. The following is a commonly used convex approximation to (2.5), 

called the membrane model, which assumes z, = 0 and zy = 0: 



To find the minimum energy solution, it is necessary to discretize the domain of the surface 

using a finite number of nodal variables, ziti. For simplicity, we choose to discretize the problem 

using finite difference methods, however, finite element analysis is a more flexible approach 

than the finite difference method. A brief summary of the finite element method that is 

related to visual surface reconstruction is found in [32]. A number of relazation methods such 

as Jacobi, Gauss-Seidel, and simultaneous over-relaxation (SOR) are used to solve the large 

sparse linear system that results from the overall energy (2.1). Convergence of the Jacobi 

method (or the method of simultaneous displacement) is usually very slow. The Gauss-Seidel 

method (or the method of immediate displacement) is faster than the Jacobi method by 

using the newly updated values in subsequent computations immediately after they become 

available. The simultaneous over-relaxation (SOR) method is obtained by accelerating the rate 

of convergence of the Gauss-Seidel method by the so-called overrelazation parameter. Gauss- 

Seidel is used by Terzopoulos [30] while SOR is used by Blake and Zisserman [4]. SOR is used 

for FIT while Gauss-Seidel is used for IDFIT-BIASED and IDFIT-UNBIASED because of 

the difficulty in determining the overrelazation parameter. However, the updating equations 

for the three reconstruction methods are presented in SOR form for ease of comparison. 

Relaxation has two advantages over direct methods such as Gaussian elimination and LU 

decomposition. It needs to store only nonzero entries of the system matrix and is readily 

parallelizable. See [32] and [21] for a brief survey of relaxation methods. 



Chapter 3 

Viewpoint invariant reconstruction of 
surfaces 

As mentioned in chapter 1, surface reconstruction that is not invariant with respect to view- 

point may produce different symbolic descriptions, resulting in failure to identify an object in 

a scene. In this chapter, we develop the invariant energy functions that are employed for the 

data compatibility measure (section 3.1) and the stabilizing function (section 3.2). 

If the energy functional EA has a unique global minimum and it is invariant to rotations 

and transformations of the constraints, then the reconstructed surface will also be invariant. 

We can easily verify this by considering a collection of constraints D and any surface r'(u). 

Invariance of the functional EA implies that 

EA(r'(u), D) = E A ( 7 ( u ) ,  D*) 

where P ( u )  and D* denote the rotated and translated surface and constraints respectively. 

Then 

EA(<(u) ,  D) = inf EA(r'(u), D) = E A ( 7 ( u ) ,  D*) = EA(&(u), D*) 
flu) 

Since EA has a unique global minimum, 

.i (u) = q u ) .  

Then, the surface reconstruction algorithm will be invariant to rotations and translations. The 

invariance of EA can be achieved by finding an invariant stabilizer and an invariant metric on 

the constraint space. 



3.1 Invariant metric on D 

The depth constraint data in the explicit form is used in our work. As pointed out in chapter 

1, the commonly used metric (2.4) is not invariant to rotations. Unfortunately, the invariant 

metric (2.3) cannot be used unless one uses the parametric form of energy [27]. When the 

parametric form is employed, the same reconstruction process must be carried out for each 

x, y, and z component in order to obtain the reconstruction result, making this approach 

computationally expensive. Fortunately, for the explicit form, the perpendicular distance 

)z  - cIcosq5 is invariant under the assumption that the surface, z and the coristraint surface, c 

are roughly parallel, where cosq5 is the surface slant [2]. The squared distance, (z - ~ ) ~ c o s ~ q 5 ,  

which is also invariant is used in our work. The data compatibility term E(z:, D) is as follows. 

For surface reconstruction, 

where z, and z, are the first order derivative at the location of (i, j). The estimates, ?, and 

zj of z, and z, are inserted as constants in the computation. 

Equation (3.1) describes our assumption about the noise in range images saying that noise is 

greater in regions with high slope. This noise model can be justified by the result reported 

in [13] claiming that the larger the angle between the surface normal anti the illuminator 

direction of a light stripe range finder, the larger uncertainty exists in the sensed z value. 

3.2 Approximately invariant first order stabilizing func- 
tion 

We present a first order stabilizing function that is both convex and approximately invariant 

by examining Taylor expansions of the invariant stabilizing function (2.5) which are different 

from the first order expansion used for the membrane model (2.6). Figure 3.1 shows the 

approximation errors when the first, second, third, and fourth order Taylor expansions are 

employed respectively to approximate the invariant stabilizing function (2.5). The membrane 

model approximation (2.6) to the invariant stabilizing function (2.5) is a reasonable choice 

because it gives a smaller approximation error than higher order expansions as the slope, 

z: + zt, increases. But the approximation error of first order expansion is not ignorable when 
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Figure 3.1: approximation errors for various orders of Taylor expansions 

the slope, 22 + 2; is large, i.e. surfaces of an image are steep. Our goal is to reduce this 

approximation error. One obvious choice is to use a higher order expansion of Taylor series 

at g = i j .  If we can come up with a reliable estimate of i j  over an image, where g is 22 + 2; 
and i j  is its estimate, then we can reduce the approximation error and achieve an invariant 

function. However, employing a high order expansion not only produces a nonlinear system 

but also causes approximation error to be amplified in those higher order terms. The error 

is especially pronounced in noisy situations. Therefore, our choice of approximation is to use 

a first order expansion of the Taylor series at g = ij instead of at g = 0. Tlle approximation 

becomes: 

IDFIT-BIASED and IDFIT-UNBIASED employ a stabilizing function using (3.2). The per- 

formance of IDFIT-BIASED and IDFIT-UNBIASED with respect to invariance will be better 

than FIT because their stabilizing functions better approximate the invariant energy (2.5) 

than the stabilizer (2.6) of FIT. The stabilizing functions used for IDFIT-BIASED and IDFIT- 

UNBIASED reduce the approximation error to the energy (2.5) when 22 + 2: is large, i.e., 



surfaces of an image are steep. This theoretical performance difference with respect to invari- 

ance will be verified in the result section. 



Chapter 4 

Discont inuity-preserving 
reconstruct ion of surfaces 

In this chapter, we present how preservation of discontinuities and robustness to the smooth- 

ing parameter A are achieved using our new energy functional. Section 4.1 describes the 

discretized form of the energy functional and two basic schemes of estimating derivatives (bi- 

ased and unbiased). The effect of the two different methods of estimating derivatives on the 

reconstruction results is presented in section 4.2 and 4.3. We start this chapter with a brief 

review of the previous research on discontinuity-preserving surface reconstruction. 

Many researchers have attempted to reconstruct surfaces with sharp preservation of disconti- 

nuities [26] [23] [22] [6] [34] [20] [32] [31]. In most of this work, preservation of discontinuities 

is achieved by properly choosing weighting functions by which the adjacent pixels that are 

more likely to belong to different regions are less or not weighted in the computation of a 

reconstructed pixel value. For spline based methods, the equivalent idea is to weight the 

basis functions in a similar fashion. However, these approaches do not consider invariance 

of the reconstruction result at the same time. Cubic spline fitting was used by Stevenson 

and Delp [26]. They conceived discontinuities as a deviation from the smoothness assump- 

tion and used the theory of robust statistics to deal with outliers. The form of stabilizing 

function was changed by a weighting function which varies quadratically for values below 

the threshold and linearly for values above the threshold. A Huber minirnax function [12] 

was used as a convex weight function. Blake and Zisserman's [2] [4] energy function was 

not derived in the same fashion as in Stevenson and Delp' s work, but the effect is similar 

in that a quadratic and a constant weighting function resulted below and above a threshold 



respectively. Unfortunately, the resulting functional minimization problem is nonconvex. The 

GNC (Graduated NonConvex) algorithm, which is a deterministic algorithm and equivalent 

to the Mean Field algorithm [9], was used to solve the minimization problem. However the 

computation is expensive like other techniques that minimize nonconvex functionals and is 

not guaranteed to find the global minimum. Sinha and Schunck [23] [22] used a weighted 

B-spline in order to  achieve preservation of discontinuities. B-splines are weighted according 

to  the gradient values. The current work presented here extends the work of Yi and Chelberg 

[34] by including reconstruction of curves and investigating the property of robustness to the 

smoothing parameter X as well. The idea of anisotropic diffusion using divergence was em- 

ployed in Perona and Malik's work [2tl]. It is a first order model without a data compatibility 

measure and the invariance property was not considered. In Perona and Malik's work [20], 
,-(llvzll/KZ) and , (K  is a constant) are adopted as weights. VZ are computed by 

I+(-) 
\ Z, / 

zi-l,j - Z;,j, Zi+l , j  - Z;,j, Z;,j+l - Z;,j, and t;,j-l - z;,j for four adjacent pixels in North, South, 

East, and West directions respectively. In contrast, our weighting function will be presented 

in the following section as where VZ represents an estimate of squared gradient at 

each adjacent pixel's location. We recommend the use of our weighting scheme when both 

invariance and preservation of discontinuities are desired because our weighting function is 

obtained by explicitly considering the invariance property. Terzopoulos [31] used a mixture of 

membrane model and plate model with continuity-control weighting functions. The idea was 

basically to inhibit smoothing across discontinuity boundaries. Discontinuities are introduced 

gradually at the locations of high curvature during iterative reconstruction of a piecewise- 

continuous surface. Invariance was not considered and determination of the threshold values 

in each iteration appears to be difficult. 

4.1 The discrete equations 

For simplicity, we will use the following forward finite difference in order to approximate the 

continuous surface although it is possible to  discretize it using a variety of finite elements. 

1 1 
iz = - (z ; ,~+~ - z;,j) and 2, = - ( z ;+~ ,~  - z;,~). 

hz h, 

This discretization follows a regular Cartesian sampling pattern typical of images. The image 

domain R C R2 is tessellated into rectangular subdomains with sides of h, and h, in the x 

and y directions respectively. Nodes are located at subdomain corners where they are shared 

by adjacent subdomains. 



Combining the stabilizing function and the data compatibility measure described in the pre- 

vious section, we obtain 

where ij;,, is the estimate of z i  + z,2 at the location of node (i, j) and I;,j is zero where no 

data is provided at the location of (i, j). We get the following energy form by discretizing the 

energy (4.2) using the finite difference (4.1). 

where the constant terms in (4.2) are ignored. The resulting SOR updating equations for 

inside pixels are as follows. 

If there is data at node (i, j), i.e, I;$ = 1, 

z"t' = 
,3 Z: ,3 - --[(a a+bXz + bX2)rej  - k c ; , ,  

otherwise, i.e, Ijgj = 0, 

b =  1 1 1 where a = - + h ; , / k  + h: J- + h i d =  and w is the overre- 
l + i i , j  7 h: 4- 

laxation parameter of the SOR method. The SOR updating equations when the ordinary 

membrane (2.6) is used are found in [3]. 

Given a novel form of the energy function (4.3), another problem faced is how to estimate 

the gradient, ij;, = 2: + i; at the location of node (i, j ) .  This problem can be conceived as a 

tuning problem because the reconstruction performance may degrade on the disagreement of 

the weighting pattern of the updating equation with the method of estimating the derivative. 

Two basic schemes that are commonly used are as follows. One is the forward difference which 

is a biased estimate of the derivative. It computes 2, and iy at the location of (i, j) as 

A 1 1 
zz = -(z;,,+~ - z;,,) and 5, = -(z;+lj - ~ i , j ) .  

hz h Y 



This is the scheme used in the discretization of the energy (4.2). Another estimate that is not 

biased is the central difference obtained as 

1 1 

= i j +  - i - )  and 5, = - ( z ~ + ~ $  - zi-l,j). 2hx 2hv 

In the next two subsections, we will investigate the preservation of discontinuities and overall 

reconstruction performance for two alternative reconstruction methods in order to see how 

these two different method of estimating the derivative affect the reconstruc:tion results. One 

method is the use of the biased derivative estimate (4.6) for the energy (4.3). The other 

method is the use of the unbiased derivative estimate (4.7) with an appropriate adjustment of 

the energy (4.3) for the purpose of preservation of discontinuities. In short, the latter is the 

recommended method for surface reconstruction. 

4.2 Preservation of discontinuities 

The energy function (4.3) will be investigated in this section for discontinuity-preserving re- 

construction. A weighted sum of four adjacent pixels should be chosen such that the pixels 

adjacent to discontinuities are weighted less than those further away in order to sharply pre- 

serve discontinuities. The estimates, i, and i, computed from the reconstruction result using 

the ordinary membrane model (2.6) are provided for the second reconstruction that achieves 

both invariance and preservation of discontinuities. 

It is easy to see that the biased estimate (4.6) is more appropriate than the unbiased esti- 

mate (4.7) for the purpose of preservation of discontinuities when the updating equations (4.4) 

and (4.5) from the energy (4.3) are adopted for reconstruction of surfaces. Figure 4.1 shows 

a simple example where the weighting pattern in the case of the biased estimate (4.6) will 

more sharply preserve discontinuities than in the case of the unbiased estimate (4.7) when the 

updating equations (4.4) and (4.5) from the energy (4.3) are used. In the case of the unbiased 

estimate (4.7), uniform averaging of the adjacent nodal values occurs resulting in blurring 

across discontinuities. Simply put, if the updating equation for the case of liIj = 0 and the 

Guass Seidel algorithm (w = 1) is considered, the updated value of the current node at (i, j) 

in Figure 4.1 (b) is 0.62 whereas the updated value is 1.25 in Figure 4.1 (a). To insure sharp 

preservation of discontinuities, this value should be as close to zero as possible. 

When unbiased estimates (4.7) are used with the energy form (4.3), however, the asymmet- 

rical distribution of weighting pattern around the node to be updated in the equations (4.4) 



Figure 4.1: A straight step edge with the edge magnitude of 5 is represented as a thick line. 
The textured circles denote the nodes with data value 0 and the dark circles the nodes with 
data value 5. The weights are shown in bold and the updated node value in parenthesis. When 
the updating equations (4.4) and (4.5) are used, (a) the weighting pattern for the unbiased 
estimate (4.7) and (b) the weighting pattern for the biased estimate (4.6) are illustrated. 
Perfect reconstruction would yield a value of 0 at (i, j). 

and (4.5) is not optimal for the purpose of preservation of discontinuities. Note that ,z:~+, 

and z:+,,~ are weighted by the gradient information at (i, j )  which is not the gradient informa- 

tion at their own locations. Figure 4.2 illustrates a simple example where the asymmetrical 

weighting pattern is not optimal. When this asymmetric weighting pattern from the updat- 

ing equations (4.4) and (4.5) is used with (4.7) in Figure 4.2, all four weights are the same, 

resulting in blurring at the current node. We resolve this problem by using l j ; , j+l  = l j i j  and 

= l j ; , j  assuming a smooth surface. Then the energy becomes 

The convexity property is not changed because the energy is still expressed as a sum of positive 

squared terms. The resulting SOR updating equations for the inside pixels are as follows: 

If there is data at node (i, j), i.e, l j j  = 1, 



Figure 4.2: A straight step edge with the edge magnitude of 5 is represented as a thick line. 
The textured circles denote the nodes with data value 0 and the dark circles the nodes with 
data value 5. The weights are shown in bold and the updated node value in parenthesis. When 
the unbiased estimates (4.7) are used, (a) the weighting pattern for the updating equations 
(4.4) and (4.5), (b) the weighting pattern for the updating equations (4.9) and (4.10) 

otherwise, i.e, = 0, 

1 where a = - 1 
l +B i , j  ' '==+&+&+& . If the updating 

equation for the case of~li t j  = 0 and the Guass ~e ide l  algorithm (& = 1) is considered, the 

updated value of the current node at (i, j) in Figure 4.2 (b) is 0.87 whereas the updated value 

is 1.25 in Figure 4.2 (a). We state here again the three reconstructions to be compared that 

are introduced in chapter 1. 

FIT : ordinary reconstruction using the ordinary membrane model (2.6) 

IDFIT-BIASED : invariant and discontinuity-preserving reconstruction using the updat- 

ing equations (4.4) and (4.5) with the biased estimates (4.6) 

IDFIT-UNBIASED :invariant and discontinuity-preserving reconstruction using the up- 

dating equations (4.9) and (4.10) with the unbiased estimates (4.7) 

IDFIT-UNBIASED is our choice for reconstruction of surfaces because its reconstruction 

(IDFIT-UNBIASED) not only achieves both invariance and preservation of discontinuities 



but also is robust with respect to the smoothing parameter A. The property of robustness to 
the smoothing parameter X will be described in the following section. 

We have computed the weighting patterns of the edge pixels for the cases of IDFIT-BIASED 

and IDFIT-UNBIASED for various patterns of discontinuities. A simple example of this was 

illustrated in Figure 4.1 (b) and Figure 4.2 (b). The comparison of the weighting patterns for 

the edge pixels may lead to a careless conclusion that IDFIT-BIASED is better at preservation 

of discontinuities than IDFIT-UNBIASED because, in Figure 4.1 (b) and Figure 4.2 (b), the 
updated value of the current node (edge pixel) for IDFIT-BIASED and IDFIT-UNBIASED is 

0.62 and 0.87 respectively for the same image. However, the weighting patterns of the pixels 

next to the edge pixels plays a more important role than those of the edge pixels in overall 

reconstruction performance as well as in the reconstruction of pixel values at the edge locations. 

In short, IDFIT-UNBIASED produces less reconstruction error than IDFIT-BIASED due to 

the reasons to be described in section 4.3. 

Both IDFIT-UNBIASED and IDFIT-BIASED perform better than FIT. All three methods 

reconstruct a surface by averaging neighboring pixel values. IDFIT-UNBIASED and IDFIT- 

BIASED employ a weighted averaging scheme so that neighbor pixels that are more likely 

to belong to different regions are less weighted in computation while FIT uses averaging of 

neighboring pixel values without an appropriate weighting. 

4.3 Robustness 

A. Robustness to directions of discontinuities 

We have evaluated the reconstruction performance of FIT, IDFIT-BIASED, and IDFIT- 

UNBIASED as the direction of a step discontinuity is varied from 0" to 90" with respect 

to the horizontal direction. Figure 4.3 shows the result using an 11 x 11 image array where 

the discontinuity contrast was 10.0. The performance of the three reconstruction methods, 

FIT, IDFIT-BIASED, and IDFIT-UNBIASED does not show much difference with respect to 

robustness to direction of discontinuity. However, their performance at each direction shows 
that IDFIT-BIASED and IDFIT-UNBIASED are much better than FIT and IDFIT-BIASED 

performs worse than IDFIT-UNBIASED. Based on the results of section 4.1, we could expect 

that the performance of IDFIT-BIASED and IDFIT-UNBIASED would be better than FIT 

because of the use of weighted vs. unweighted averaging of the neighbor nodes. The reason 
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Figure 4.3: The performance of FIT, IDFIT-BIASED, and IDFIT-UNBIASED for various 
directions of discontinuity 

why IDFIT-UNBIASED performs better than IDFIT-BIASED will be described immediately 

in the following section. This performance result will be verified for the test images used in 

the experiments presented in the result section. 

B. Robustness to the smoothing parameter X 

Figure 4.4 shows a simple example for the purpose of explaining why IDFIT-UNBIASED 

performs better than IDFIT-BIASED. This example can be considered as one data point 

of Figure 4.3 for which the direction of discontinuity is 90'. The main role is played by 

the nodes (textured circles) next to the edge nodes (filled circles). Figure ,4.4 (c) (d) shows 

the weighting pattern for the neighbor nodes of the current node z;,j (textured. circle) for 

the algorithms IDFIT-BIASED(c) and IDFIT-UNBIASED(d) respectively. When the edge 

node z;,j+l (filled circle) is blurred during reconstruction, the blurring effect propagates to 

the neighboring nodes. When the current node z ; j  is updated at  the next iteration, different 

weighting patterns of IDFIT-BIASED and IDFIT-UNBIASED for the neighbor nodes of z ; j  

make a difference in determining how much blurring effect z;,j will get from ;zi j+l.  In the case 

of IDFIT-BIASED, the blurred edge node z;,j+l has full effect on z ; j  when t ; , ,  is updated 

because of the uniform weighting pattern of IDFIT-BIASED for the neighboring nodes of t ; j .  

On the other hand, z;,j of IDFIT-UNBIASED get much less blurring effect from z;,j+l than 



Figure 4.4: (a) an image array where the thick line represents a straight step discontinuity with 
magnitude of 10.0 (b) i-th row of the image (c) weighting pattern (weights in bold) in the case 
of IDFIT-BIASED (d) weighting pattern (weights in bold) in the case of IDFIT-UNBIASED 



would be the case for a;$ of IDFIT-BIASED. Notice that this effect contiriues to propagate 

to the immediate four neighbors of z;,j and all the other nodes in the sequel. The updated 

node z;,j has an effect on the edge node z;,j+l when z;,j+l is updated at the next iteration. 

The edge nodes of IDFIT-UNBIASED can maintain sharper contrast than those of IDFIT- 
BIASED because the the nodes next to the edge nodes are less blurred in the previous iteration 

in the case of IDFIT-UNBIASED than IDFIT-BIASED. This local phenomenon propagates 

throughout the entire image and this is the reason for the better reconstruction. of IDFIT- 

UNBIASED than that of IDFIT-BIASED. This self-tuning like behavior is responsible for the 

robustness property of IDFIT-UNBIASED to the smoothing parameter X as well. The same 

behavior is observed for other directions of discontinuity as seen in the results of Figure 4.3. 

The robustness to X of IDFIT-UNBIASED allows the free choice of the smoothing parameter 

X without struggling to  determining the X that provides the best reconstruction. Much effort 

has been devoted to  computing an optimal scale parameter X for other alg~orithms. Various 

ways of choosing an optimal X in the case of quadratic regularization criteria were discussed 

[33]. Our method avoids these difficulties. 



Chapter 5 

Invariant measure of the difference 
between two surfaces 

In this chapter, we present a computationally efficient way of computing the volume between 

two surfaces normalized by the surface area as an invariant measure for comparing surface 

reconstruction results. 

A good quantitative measure for comparing reconstruction results should have several prop- 

erties. The measure must be invariant with respect to an arbitrary coordinate system. If a 

measure is not invariant with respect to a coordinate system, then it is possible to obtain 

inconsistent performance measures. For example, two reconstruction methods A and B are 

to be compared. Suppose that a surface is reconstructed by methods A and B in two differ- 

ent coordinate systems. A noninvariant performance measure may lead to a conclusion that 

method A is better than method B in one coordinate system but is worse in the other coordi- 

nate system. It is also desirable to use a measure that produces consistent results for different 

sizes of images. Finally, the value of the measure should be able to be computed simply and 

efficiently with reasonable accuracy. We propose the volume between two surfaces normalized 

by the surface area as an invariant measure for comparing reconstruction results. In addition, 

we present a computationally simple and efficient method of computing the volume between 

two surfaces and the surface area. The time complexity of our method to cornpute the volume 

and the area is O(number of pixels). 

The metrics induced by the L1, L2 or Loo norms have been popularly usecl in order to give 

a quantitative measure for comparison of reconstruction results. The use of these metrics 

has often naturally resulted because some reconstruction methods employ minimization tech- 



niques of L1, L2 or L" error between the true or target data set and the measurement data set 

(constraints) to compute the reconstruction results. In Chu and Bovik's work [8], the recon- 

struction results were computed by minimizing the L" error (maximum absolute error) and 

the normalized L1 (average absolute error) and L" error were used as performance measures. 

On the other hand, the L2 metric has mostly been used as a reasonable performance measure 

irrespective of reconstruction methods [27] [18] [22]. L2 and L" measures were computed 

in [27]. Sinha and Schunck [22] employed a RMS error measure which is t:he normalized L2 

metric for comparison of two different reconstructions. The following is the discrete form of 

L1 and L2 metrics normalized by the number of the sampled points and L" metric for two 

functions, f and g in the two dimensional case. 

Limetric = x x 1 f (i, j) - g(i, j)l 
nm i=1 j=1 

Limetric = x x { f (i, j) - g(i, j)I2 

LTmetric = sup 1 f (i, j) - g(i, j)l 
i,j 

where f (i, j) and g(i, j), i = 1,2, ..., n, j = 1,2, ..., m are sampled ~ o i n t s  of two functions, 

f (x, y) and g(x, y) respectively. The L1, L2 and L" metrics, however, are not invariant with 

respect to a coordinate system, resulting in different measures in different coordinate systems. 

It is clear that if the L2 metric is used as a difference measure, where the slope is high, the 

difference value is emphasized more than in flat regions. 

In order to compute the volume and the surface area, we approximate each surface patch 

defined on a rectangular grid defined by (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1) by the least- 

square-fit plane obtained from those four points. The the volume, V between two surfaces is 

computed as follows assuming a (n, m) rectangular grid. 

where ztj,  k = 1,2 represents two surfaces. 

The surface area, A is calculated as 

A = E;;o' Ei"=o1 



Therefore, the volume between a known surface and its reconstructed surface normalized by 

the known surface area becomes 

v - 
A. 

Knowing that a reconstructed surface is an approximated surface and the surface shape is 

ambiguous in regions between pixels, the described method of the least-square-error fit plane 

approximation gives good estimates of the volume between two surfaces and the area of a 

surface. The advantage of our method lies in that computation is extremely simple and 

efficient. See [35] for details. 



Chapter 6 

Viewpoint invariant and 
discont inuity-preserving 
reconstruction of curves 

In this chapter, we describe viewpoint invariant and discontinuity-preserving reconstruction 

of plane curves which is a one dimensional analog of the surface reconstruction method (two 

dimension) presented in earlier chapters. 

Accurate estimates of position and distance along a single slice of range data often need to be 

made very quickly, for example, in order for a robot arm to align objects in the scene or for a 

visual inspection system to check weld seams. Reconstruction of curves of the form z = z(x) 

that achieves viewpoint invariance and preservation of discontinuities will be presented in this 

chapter. Curve reconstruction is carried out along a direction x where x denotes any direction 

along a single slice of range data. 

The same noise model as in the two dimensional range data for surface recorlstruction applies 

to a single slice of range data for curve reconstruction. That is, more noise is assumed in the 

high sloped part of the curve. The following is the invariant energy function chosen for the 

data compatibility term. 

where D is a collection of data and x is, again, any direction along which a single slice of 

data is obtained. c; denotes noise corrupted data at a location i. For the stabilizing function, 

we approximate the following first order invariant energy which represents a small deflection 



energy of a string. 

E,(z) = jn(JG - l)dx 

where 52 c R denotes the curve domain. A convex approximation to the nonconvex and 

invariant stabilizing function (6.2) is desired for computational efficiency. One simple choice 

is a convex approximation to (6.2) similar to the ordinary membrane approximation (2.6) 

made for surface reconstruction, assuming z, z 0. 

The approximation error of (6.3) to (6.2) is not ignorable when z: is large, i.e., where the 

curve is steep. By arguments similar to those made in section 3.2, we employ the following 

stabilizing function for curve reconstruction. 

Combining the stabilizing function (6.4) and the data compatibility measure (6. I), we obtain 

1 2 1 
EA(z)  = El;-(z; - c;) + X 

; l + g ;  

where ij; is the estimate of z: at the location of i and I; is zero where no data is provided at the 

location of i. When the above energy is discretized by the finite difference, z, = i(zi+l - z,), 

the energy becomes 

where h is the sampling interval in the direction x and the constant terms i r i  (6.5) is ignored. 

The resulting SOR updating equations for inside pixels are as follows. 

If there is data at node i, i.e, 1; = 1, 

W 1 n+l 
zp+l = z; - [(a + bX2)z; - - 2,-1 .;"+I 

a + b~~ I +jici  - x2( h 2 ~ ~  + h 2 , / = ) J  (6.7) 

otherwise, i.e, I; = 0, 

1 1 and w is again the acceleration parameter. 
where a = x, = h2,/% + h 2 m  



Initially, the estimate i, computed using (6 .3)  is provided for the invariant and discontinuity- 

preserving reconstruction. Again, two choices are considered to estimate the derivative i, at 

the location of 2 .  The following is a biased and an unbiased derivative estimate respectively. 

The biased estimate (6 .9)  is the same forward difference scheme used in the discretization of 

the energy (6 .5) .  It is easy to see that the biased estimate (6 .9)  is more appropriate than the 

unbiased estimate (6.10) for the purpose of preservation of discontinuities when the updating 

equation (6 .7 )  and (6 .8)  from the energy (6 .6)  are adopted for reconstruction of curves. When 

the unbiased estimate (6.10) are used, however, the asymmetrical weighting pattern around 

the pixel to be updated in the equations (6 .7)  and (6 .8)  is not optimal for the purpose of 

preservation of discontinuities. Note that z;"+, is weighted by the slope inforination at i which 

is not the slope information at its own location. We can make an adjustment to the energy (6 .6)  

similar to that made in section 4 so that the new energy can provide the updating equations 

with a symmetric weighting pattern. The adjusted energy is as follows. 

The convexity property is not changed because the energy is still expressed as a sum of 

positive squared terms. This energy function with the unbiased derivative estimate (6.10) is 

our choice for curve reconstruction. It will be shown for curve reconstruction that the use of 

the energy (6.11) with the use of the unbiased derivative estimate (6.10) not only achieves 

invariance and preservation of discontinuities, but also robustness to the smoothing parameter 

X in the reconstruction results. 

The resulting SOR updating equations from (6.11) for the pixels which are not end points are 

as follows: 

If there is data at node i, i.e, I ;  = 1, 

W 
z;+l = 1 z;-+1' 

z, - [ ( a  + bX2)z;" - - z;"+1 
a + b~~ l + b c i -  X 2 ( h 2 ~ -  + h2 J- 11 (6.12) 

otherwise, i.e, 1; = 0, 



1 1 1 where a = m, b = 
h Z , / i T G  + h Z , / G .  

The area between two curves normalized by the arc length is used as an invariant quantitative 

measure for comparison of curve reconstruction results. By normalizing the area by the arc 

length, the value of the measure can be compared for different size of curves. In order to 

compute the area and the arc length, we approximate a curve segment on each interval h by 

a linear segment. Then the area, A between two curves is computed as follows assuming a n 

points on a curve. 
n-1 

where 

h 2 + Z; - z:+~ - Z! ( if two line segments do not intersect 
(zi')'-zz; z ; + ( ~ ; ) ~  ( ~ ; + ~ ) ~ - 2 z ; + ~  + ( z ; + ~ ) ~  
2; -zttl -z2 -z? 

I I t 1  1 + 1  2; -zit -2; -2 1) otherwise 
I t 1  

and z:, k = 1,2 represents two curves. 

The arc length, L is calculated as 

Therefore, the area between a known curve and its reconstructed curve normalized by the 

known arc length becomes 

Knowing that a reconstructed curve is an approximated curve and curve shape is ambiguous 

between two sampled points, the described method of approximating each curve segment by a 

linear segment gives good estimates of the area between two curves and the length of a curve. 

The advantage of the method lies in that computation is extremely simple and efficient. See 

[35] for details. 

Again for curve reconstruction, we name three reconstructions to be compared as follows. 

FIT: ordinary reconstruction using (6.3) 

IDFIT-BIASED: invariant and discontinuity-preserving reconstruction using the updat- 

ing equations (6.7) and (6.8) with the biased estimates (6.9) 



IDFIT-UNBIASED: invariant and discontinuity-preserving reconstruction using the up- 

dating equations (6.12) and (6.13) with the unbiased estimates (6.10) 

It will be shown in the result section that our new energy functional with the unbiased deriva- 

tive estimates for curve reconstruction performs well on sparse noisy data. Portions of the 

curve with high curvature are well reconstructed even though a first order model is employed. 



Chapter 7 

Experiment a1 results 

In this chapter, we report the performance of our new energy functional for invariance, preser- 

vation of discontinuities, and robustness to the smoothing parameter X on dense and sparse 

images that are noisy. Results for surface reconstruction will be presented first followed by 

results for curve reconstruction. 

Two synthetic range images and two actual range images are used for surface reconstruction 

experiments. Strips of these images are taken as input data for curve reconstruction exper- 

iments. Figures 7.1, 7.6, and 7.7 are used to test for the discontinuity-preserving property. 

The curved-inclined image in Figure 7.1 has three flat, two inclined (slope 1 and i) and two 

curved surfaces (curvature & and $). N(0, l )  is added in the direction of surface normal 

vector where N(0, l )  denotes Gaussian noise with mean 0.0 and standard deviation 1.0. Fig- 

ure 7.2 shows a section of the curved-inclined image after noise is added. Results showing 

the robustness of the method to various X (for the ranges of (0.0 w 5.0) and (0.0 w 30.0)) 

are reported using this curved-inclined image for FIT, IDFIT-BIASED, IDFIT-UNBIASED 

for both surface reconstruction and curve reconstruction. Two actual range images, "jum- 

ble2" and "foot2" from the MSU PRIP Lab are shown in Figure 7.6 and 7.7, respectively. 

They have flat and curved surfaces. To test for invariance, we use DATAl in Figure 7.3 and 

DATA2 in Figure 7.4. These two images have two inclined planes of which the slopes are 

tan 15" and tan 75". DATA2 in Figure 7.4 is obtained by rotating DATAl in Figure 7.3 by 60 

degree about the y-axis. Figure 7.5 shows a section of DATAl and DATA2 after N(O,1) is 

added in the direction of the surface normal vector. In order to show the invariance property, 

dense and sparse DATAl and DATA2 that are noisy are reconstructed and the reconstructed 

result for DATA2 is rotated back into correspondence with DATAl. The difference between 



the two reconstructed surfaces is examined by computing the volume between them divided 

by the average surface area of the two reconstructions. Similarly an invariance test on curve 

reconstruction is carried out for two corresponding slices of DATA1 and DATA2. The re- 

construction result of the slice of DATA2 is rotated back and the difference between the two 

reconstructed curves is compared by computing the area between them divided by the average 

arc length of the two reconstructions. 

Synthetic noisy range images are generated by the equation, 

where N(0, u2) represents Gaussian noise with mean 0 and standard deviation u and z(x, y) 
and zl(x, Y) denotes noiseless and noisy images respectively. sec 4, which is the inverse of the 

surface slant cos 4, is multiplied to N(0, u2) in order to add noise in the direction of the surface 

normal vector, which is in agreement with our assumption about noise described in an earlier 

section of the paper. The effect is that more noise is added to regions with high slope. Sparse 

noisy images (or curves) are generated by randomly deleting pixels of a noisy image (or curve). 

For clear visual comparison of reconstruction results, a section of the reconstruction results are 

displayed for the original noiseless data, IDFIT-BIASED, and IDFIT-UNBIASED methods. 

FIT is not shown on these plots because the performance of FIT is always worse than the 

other two methods. The performance of FIT compared to the other two methods is shown in 

Figures 7.16, 7.17 for surface reconstruction and Figures 7.25, 7.26 for curve reconstruction. 

The tables (Table 7.1 and Table 7.2) also show a comparison of all three algorithms based on 

our performance measures V/A and A/L. 

7.1 surface-reconstruction 

The reconstruction results of the curved-inclined image for IDFIT-BIASED and IDFIT- 

UNBIASED are shown in the case of a dense image in Figures 7.8, 7.9 and a sparse image in 

Figures 7.10, 7.11 where 80% of the pixels are missing. For both cases, IDFIT-UNBIASED 

better preserves discontinuities than IDFIT-BIASED and is capable of reconstruction of in- 

clined and curved surfaces although it is a first order model. The reconstruc.tion results when 

X = 30.0 indicate the robustness property of IDFIT-UNBIASED to the smoothing parameter 

A. IDFIT-BIASED results in more and more blurring as X gets large in contrast to the per- 
formance of IDFIT-UNBIASED whose performance does not appreciably degrade. Figures 



Figure 7.1: Three-dimensional display of curved-inclined image 



curved-inclined image : noiseless vs. noisy 
60 

noiseless data -- 

Figure 7.2: A section of curved-inclined image: noiseless vs. noisy. N(0,l) is added in the 
direction of surface normal vector. 



Figure 7.3: Three-dimensional display of invariance test data, DATA1 



Figure 7.4: Three-dimensional display of invariance test data, DATA2 



DATAl : noiseless vs. noisy 
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Figure 7.5: A section display of DATAl and DATA2: noiseless vs. noisy. N(0 , l )  is added in 
the direction of surface normal vector. 
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Figure 7.6: Three-dimensional display of "jumble2" 



Figure 7.7: Three-dimensional display of "foot2" 



7.16 and 7.17 show the performance measure (VIA) for FIT, IDFIT-BIASED, and IDFIT- 

UNBIASED for X(O.0 5.0) and X(O.0 - 30.0), respectively. The robustness property of 

IDFIT-UNBIASED is clearly demonstrated for a wide range of A. The da.ta (VIA) plotted 

in Figure 7.17 is listed in Table 7.1. Figures 7.12 and 7.13 illustrate the results of invariance 

tests for one slice of the image. The invariance performance of IDFIT-UNBIASED and IDFIT- 

BIASED is not much different from each other. On the other hand, FIT performs worse than 

IDFIT-UNBIASED and IDFIT-BIASED with respect to invariance. When the data is dense, 

the reconstructed surface follows the data closely for all three reconstructions as shown in Fig- 

ure 7.12. See VIA values in Figure 7.12. However, the difference in the invariance property 

between FIT and IDFIT-UNBIASED and IDFIT-BIASED is still visible. As the sparseness of 

input image increases (i.e. when there are fewer data points), the invariance performance of 

FIT gets much worse than that of IDFIT-UNBIASED and IDFIT-BIASED. See Figure 7.13 

where 90% of the pixels are missing. Invariance of IDFIT-UNBIASED (V/'A = 0.2971) and 

IDFIT-BIASED (VIA = 0.3340) is much better than FIT (VIA = 0.7070). Figures 7.14 and 

7.15 show the reconstruction results of the actual images "jumble2" and "foot2", respectively. 

They clearly show that IDFIT-UNBIASED performs better that IDFIT-BIASED in preserva- 

tion of discontinuities. The value of VIA measure for FIT in the case of "jumble2" is 0.0658 

and 0.1201 in the case of "foot2" although the sections of the reconstructed surface are not 

displayed in Figures 7.14 and 7.15. 



surface reconstruction of dense curved-inclined image, = 3.0 
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Figure 7.8: Surface reconstruction of dense curved-inclined image for X = 3.0. 



surface reconstruction of dense curved-inclined image, A = 30.0 
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Figure 7.9: Surface reconstruction of dense curved-inclined image for A = 30.0. 



surface reconstruction of 80% sparse curved-inclined image, = 3.0 
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Figure 7.10: Surface reconstruction of 80% sparse curved-inclined image for X = 3.0. 



surface reconstruction of 80% sparse curved-inclined image, = 30.0 
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Figure 7.11: Surface reconstruction of 80% sparse curved-inclined image for X = 30.0. 



invariance of FIT for surface reconstruction(dense) A = 3.0, V/A=0.1191 
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invariance of IDFIT-BIASED for surface reconstruction(dense) A = 3.0, V/A= 0.1169 
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invariance of IDFIT-UNBIASED for surface reconstruction(dense) A = 3.0, V/A=0.0780 
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Figure 7.12: Invariance performance of FIT, IDFIT-BIASED, and IDFIT-UNBIASED for 
dense surface 



invariance of FIT for surface reconstruction(90% sparseness) = 3.0, V/A=0.7070 
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invariance of IDFIT-BIASED for surface reconstruction(90% sparseness) A = 3.0, V/A=0.3340 
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invariance of IDFIT-UNBIASED for surface reconstruction(90% sparseness) A = 3.0, VIA= 0.2971 
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Figure 7.13: Invariance performance of FIT, IDFIT-BIASED, and IDFIT-UNBIASED for 
90% sparse surface 
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Figure 7.14: Surface reconstruction of "jumble2" (dense) for X = 5.0. 



surface reconstruction for foot2, X = 5.0 
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Figure 7.15: Surface reconstruction of "foot2" (dense) for X = 5.0. 



Table 7.1: V/A measure for surface reconstruction of the curved-inclined image for various X 
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Figure 7.16: Robustness of surface reconstruction to X 



7.2 curve-reconstruction 

Slices of images used for surface reconstruction are adopted as input data for curve reconstruc- 

tion. Results similar to  those in surface reconstruction are obtained for curve reconstruction. 

However, curve reconstruction turns out to be harder than surface reconstruction for the data 

of the same percentage sparseness because one dimensional data of the same percentage sparse- 

ness has fewer neighbors with data than two dimensional sparse data, and so there are fewer 

constraints for reconstruction. Figures 7.18-7.21 show the reconstruction results of a section 

of the noisy curved-inclined image. IDFIT-UNBIASED better preserves discontinuities than 

IDFIT-BIASED and is capable of reconstruction of inclined and curved surfaces although it is 

a first order model. In Figures 7.25 and 7.26, the robustness property of IDFIT-UNBIASED to 

the smoothing parameter X is shown for curve reconstruction. While IDFIT-BIASED results 

in more and more blurring as X gets large, the performance of IDFIT-UNBIASED does not 

appreciably degrade. The plot data (AIL) for Figure 7.26 is listed in Table 7.2. Figures 7.22 

and 7.23 illustrate the results of invariance tests for curve reconstruction. When the data is 

dense, the reconstructed surface follows the data closely for all three reconstructions as shown 

in Figure 7.22. However, the difference in the invariance property is still visible. For a sparse 

image of which 80% of the pixels are missing, the performance with respect to  invariance 

of IDFIT-UNBIASED (AIL =0.7921) is much better than that of IDFIT-BIASED (AIL = 

1.0931) and FIT (AIL = 1.4286). Figure 7.24 shows the reconstruction results of a slice taken 

from the actual range image "jumble2". It clearly shows that IDFIT-UNBIASED performs 

better that IDFIT-BIASED in preservation of discontinuities. The value of' A/L measure for 

FIT is 0.0917 although the reconstructed curve is not displayed in Figure 7.24. 



robustness to X for surface reconstruction(curved-inclined image, dense) 
1.4 

1.2 

1 

V /A 0.8 
measurq, 6 

0.4 

0.2 

0 
0 5 10 15 20 25 30 

smoothing parameter X 

I I I 1 I 2 

- 
FIT - 

IDFIT-BIASED - ' 
IDFIT-UNBIASED - - 

- 
- 

I I I I I 

robustness to X for surface reconstruction(curved-inclined image, 50% sparseness) 
1.4 

0.8 measure 

0.6 

0.2 
0 5 10 15 20 25 30 

smoothing parameter X 

I I I I 1 

- 
FIT - 

IDFIT-BIASED - - 
IDFIT-UNBIASED - - 

- 
- 

robustness to X for surface reconstruction(curved-inclined image, 80% sparseness) 
1.2 
1.1 

1 
0.9 

V /A 0.8 
measura.7 

0.6 
0.5 
0.4 
0.3 

0 5 10 15 20 25 30 
smoothing parameter X 

I 

FIT - - 
IDFIT-BIASED - - 

IDFIT-UNBIASED - - 
- 
- 
- 
- 
- 

I I I I 

Figure 7.17: Robustness of surface reconstruction to X 



curve reconstruction of dense curved-inclined image, = 5.0 
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Figure 7.18: Curve reconstruction of a slice of dense curved-inclined image for X = 5.0. 



curve reconstruction of dense curved-inclined image, = 30.0 
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Figure 7.19: Curve reconstruction of a slice of dense curved-inclined image for X = 30.0. 



curve reconstruction of 50% sparse curved-inclined image, A = 5.0 
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Figure 7.20: Curve reconstruction of a slice of 50% sparse curved-inclined image  for X = 5.0. 



curve reconstruction of 50% sparse curved-inclined image, =: 30.0 
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Figure 7.21: Curve reconstruction of a slice of 50% sparse curved-inclined image for X = 30.0. 
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invariance of IDFIT-BIASED for curve reconstruction(dense) A = 6.0, A/L=0.3846 
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invariance of IDFIT-UNBIASED for curve reconstruction(dense)A = 6.0, A/L=0.2960 
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F i g u r e  7.22: Invariance performance of FIT, I D F I T - B I A S E D ,  and IDFIT-UNBIASED for  
d e n s e  c u r v e  



invariance of FIT for curve reconstruction(80% sparseness) A = 6.0, A/L=1.4286 
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Figure 7.23: Invariance performance of FIT, IDFIT-BIASED, and IDFIT-UNBIASED for 
80% sparse curve 



curve reconstruction for jumble2, = 5.0 
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Figure 7.24: Curve reconstruction of a slice of "jumble2" (dense) for X = 5.0. 
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Table 7.2: AIL measure for curve reconstruction of the curved-inclined image for various X 
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Figure 7.25: Robustness of curve reconstruction to X 
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Figure 7.26: Robustness of curve reconstruction to  X 



Chapter 8 

Conclusion 

In contrast to previous work, the first order energy functionals with unbiased derivative es- 

timates presented here for curve reconstruction and surface reconstruction are the first to 

achieve both preservation of discontinuities and approximate invariance. They also have the 

important property of robustness to the smoothing parameter A. These properties enable the 

proposed methods for reconstruction of curves and surfaces to perform much better than other 

existing methods on dense noisy data and work especially well on sparse noisy range data. 

Curved surfaces (or curved sections in the case of curve reconstruction) are well reconstructed 

although a first order model is employed. In addition, the new first order reconstruction meth- 

ods for curve reconstruction and surface reconstruction can be used for dense data simply as 

a noise filter without causing the problem of loss of resolution. 
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