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The prol~lem of how to optimally traverse a spray applicator around a surface to be 

coated i~ formulated as a type of optimization problem known as a constrained varia- 

tional problem. An optimal trajectory for a spray applicator is defined to be one that 

results in minimal variation in accumulated film thickness on the surface. The trajec- 

tory for an applicator is characterized by a six-dimensional vector function that specifies 

the posi1,ion and orientation of the applicator at each instant of time. The surface to 

be coated is represented with a function. For each surface point and fclr each feasible 

position and orientation of the applicator, a value for the instantaneous rate of film ac- 

cumulat'lon is assumed to be known. Empirical data and/or estimates for these values 

can be readily incorporated in the formulation. By making realistic approximations, 

the proposed constrained variational problem is transformed into a finite dimensional 

constrained optimization problem. Numerical studies are included that illustrate the 

utility of the problem formulation and the effectiveness of applying standard nonlinear 

programming techniques for determining solutions. 



A. Background 

High quality paint finish is an important factor in the sales of many manufactured prod- 

ucts. The perceived quality of products such as automobiles, appliances, and furniture, 

can be strongly influenced by the quality of their painted surfaces. Spiray applicators 

are com~nonly used in industry to apply paint to the surfaces of manufac1,ured products. 

The task of consistently achieving high quality finishes from spray applicator systems is 

complicated by the sensitivity of the coating process relative to environmental conditions 

(e.g., ambient temperature, barometric pressure, and relative humidity) and parameters 

associated with the spray system itself (e.g., position and orientation of the applicator, 

paint injection pressure, and paint viscosity). 

In very general terms, the process of spray coating involves first the atomization 

and the11 the spraying of a coating material (e.g., paint) toward a surface to be coated. 

Paints typically contain some type of solvent. As the solvent evaporates, liquid paint 

becomes, more viscous; it eventually becomes solid when all solvent has evaporated. As 

atomized droplets of paint are transported through the air from the applicator to the 

surface, a relatively large fraction of solvent evaporates from the droplets, because the 

ratio of surface area to volume is relatively high for small droplets. Therefore, by the 

time drclplets strike the surface, the viscosities of the droplets are substantially larger than 

they were immediately after atomization. This increase in viscosity helps to prevent the 

paint from running and/or sagging on the surface [:I]. However, if tolo much solvent 

is lost during the transportation phase, then the droplets will be too "tiry" when they 

impact the surface and thus may not flow together well to form a uniform film. If too 

much scllvent is present in the surface film, then as the paint dries, an undesirable effect 

known ;is solvent popping may occur whereby excessive solvent and occluded air in the 



film escape by erupting through the surface [I]. Thus, solvent concentrations and solvent 

types art: important factors to consider to achieve high quality finishes. 

The 1,ypes of solvents used in industry for spray painting have been the topic of much 

environmental and political concern in recent years. Since the signing of' the Clean Air 

Act of 1!370, the Environmental Protection Agency (EPA) has issued nunierous ambient 

air standards. Among the many factors of air quality regulated by the EPA over the 

past two decades is the air's concentration of hydrocarbons and photochemical oxidants, 

which aIe present in some industrial solvents [IS]. 

The complex interactions among the many parameters in a spray painting system 

are not well understood. Even heavily automated spray painting processes, such as 

those found in the automotive industry, are typically designed and/or tuned based on 

"rules o'F thumb" [20]. It is common practice for such painting facilities to initially set 

some of the system parameters (such as shaping air pressure, injection pressure, solvent 

concentl-ation, and applied electrostatic voltage) by spraying several dozen "test panels" 

under various values for these parameters. A jury of paint experts then convene to 

examine the painted test panels and vote to establish a rank ordering of the panels based 

on a weighted collection of quality at tributes. The parameter settings (associated with 

the panel with the highest overall ranking are then used as set points on the production 

line for that day (or shift). Because a human's ability to make consistent judgments 

regardir,g paint quality are strongly influenced by his/her mood, levels of fatigue, and 

other factors, some facilities incorporate the use of optical/image sensing devices and 

signal processing techniques to automate the process of judging test panels [2, 111. 

The "excellence of appearance" for a painted surface is somewhat subjective and the 

desired features of a finish generally depend on the nature and/or intended use of the 

product. For instance, it may be desirable to produce a finish with an "orange peel" 

texture when coating the doors of a refrigerator (to hide fingerprints), 'however, such a 



finish is highly undersirable for the surface of an automobile hood. For a comprehensive 

study of chemical formulations and properties of coating materials used ill the appliance 

and automotive industries, refer to  [19] and [14], respectively. Basically, formulators of 

paint try to  select properties of a paint's components to match the intend,ed application. 

For instance, if a very smooth finish is desired, then resinous components are sought that 

atomize easily (for efficient spray application) and whose atomized droplets coalesce into 

continuclus level films. 

The hue of a surface that is coated with a colored paint depends (to a degree) on the 

film thickness of the paint. In particular, the film should be sufficiently thick so as to 

"hide" the influence of the color associated with the underlying primer coating (or the 

color of the surface itself if no primer coating is present). Thus, one wa,y to produce a 

uniform hue across a surface is to accumulate a sufficient amount of film thickness at each 

surface :point, i.e., enough thickness at  each surface point to hide the primer. However, 

this approach can result in wasted paint if film thickness is not kept uniform across the 

surface. Also, those portions of the film that are too thick have the undesirable tendency 

to crack in use [17]. Thus, minimizing the variation in film thickness not only produces 

a more uniform hue across the entire surface, it also can also improve the "structural 

integrity" of the finish. 

When painting hundreds or thousands of products per day, minimizing the amount 

of paint expended for each surface is important from both an environmental and an 

econom~cal perspective. The United States automobile manufacturing indlustry expended 

over 183 million liters of paint to coat the 7.3 million passenger cars produced in 1983 

(for an average of about 25 liters/car) [I]. Given the relative sensitivity and tightness 

of profit margins in the automotive industry, there is potential for increasing returns 

substantially with just a slight decrease in the amount of expended paint. 



B. Automated Spray Painting 

Robots are often used in large-scale production lines to position and/or move spray appli- 

cators around surfaces to be painted. To specify a trajectory for the robotic manipulator, 

it is common practice for an operator to literally "teach" the robot a path by grasping the 

end-effector and manually moving the end-effector around the part t o  be painted while 

the robclt's control computer records position and orientation information [17]. Having 

stored tlie path information, the robot can then repeatedly traverse the "learned" path 

using a ;speed profile specified by the operator. 

In this paper, the question of how to optimally traverse a spray applicator around a 

surface to be coated is formulated as a type of optimization problem known as a con- 

strained variational problem. An optimal trajectory is defined here as one that results 

in mini~nal variation in film thickness on the surface. While other factors besides uni- 

formity of film thickness also contribute to the overall quality of the finish, minimizing 

variatioil in film thickness is known to  be a desirable property for many a,pplications, see 

for example [2, 171. 

The trajectory for an applicator is defined by a six-dimensional vector function that 

specifies the position and orientation of the applicator at each instant of time. The surface 

to  be coated is assumed to be represented with a function. For each surface point and 

for each feasible position and orientation of the applicator, a value for the instantaneous 

rate of jilm accumulation is assumed to  be known. Empirical data and/or estimates for 

these values can be readily incorporated in the formulation. 

To illustrate why it is important to be able to incorporate empirical data for film 

accumulation rates, consider the utilization of electrostatic paint sprayers, which are 

heavily used in the automotive industry. Electrostatic painting is facilitaked by charging 

atomized droplets of paint and using an electric field to enhance the transport of the 

drops to the work piece [20]. While the use of electrostatic painting can increase transfer 



efficiency, it can also cause film to build in a nonuniform and/or nonintuitive manner. 

For example, a common effect known as "wrap-around" occurs when the lines of force 

(associated with the electric field) bend around the edges of the surface and cause droplets 

to be attracted to the edges and to the reverse side of a surface [17]. While this general 

effect is desirable for some applications, the precise nature of the effect is difficult to 

predict analytically because of the complicated interactions among the hydrodynamic, 

aerodynamic, and electrostatic forces on the particles of paint and the impact of the 

position and orientation of the applicator relative to the geometry of the! surface. 

Fronn a practical viewpoint, it is desirable for a trajectory optimization technique 

to be able to utilize empirical data for film accumulation rates because such data can 

be obtained through off-line experimentation. For example, based on a representative 

collection of positions and orientations for the spray applicator relative to a given surface, 

corresponding film thickness measurements could be made to estimate the rate of film 

accumulation at each surface point. That is, film thickness measurement!; could be taken 

after spraying paint for a small (and known) amount of time from each feasible position 

and orientation. Both dry- and wet-film gauges can be used to measure film thickness. 

For a detailed description of such devices, refer to [17]. 

C. Oyyanization of the Paper 

The remainder of the paper is organized in the following manner. In Section 11, a model 

for the spray coating process is described and some associated notations are introduced. 

The ma.thematica1 formulation of the optimal trajectory planning problem is developed 

in Section 111. In Section IV, solution techniques for the formulated optimization problem 

are developed for two classes of the assumed feasible set of applicator trajectories. Section 

V includes simulation studies that demonstrate the effectiveness of standard numerical 

techniques in providing solutions that achieve the desired objective. A summary and 



some concluding remarks are included in the final section. 

11. MODELING A N D  NOTATION FOR SPRAY COATING 

A. The Surface Model 

The object to be coated is assumed to be stationary and its location and slurface geometry 

in three-dimensional euclidean space are described relative to a fixed reference frame 

XYZ. The surface is assumed to be representable by a function z = h(x, y), where 

the mapping h : D -+ !R and its domain D c !R2 are specified. Applying standard set 

notation, the surface associated with the function h is defined as 

Sh = {(x, y, z )  : z = h(x, y), for all (x, y) E D). 

The assumption of having a functional representation for the surface of the object, 

i.e., h(x, y), is not unrealistic for many applications. For instance, in the automobile 

manufacturing industry, CAD models for surfaces are often a result of the design phase, 

and the:refore a mathematical representation for the surface may already be known. There 

are several popular methods for representing geometric surfaces including the use of 

Coons/lE;'erguson patches, Bezier surfaces, and B-splines. For a more detailed description 

of these and other geometric modeling techniques, refer to [4,15]. As it is not the intended 

thrust c ~ f  the present paper to discuss how to convert various types of CAD models into 

the fornn z = h(x, y), the existence of a function h(x, y) will henceforth be assumed with 

the real.ization that in practice some extra effort may be required for converting any 

particular CAD description into this form. 

The assumption that each Z coordinate value on the surface is representable as an 

explicit function of its X Y  coordinate values (i.e., that z = h(x, y )) can be relaxed by 

making use of the implicit function theorem [8]. That is, the more genera,l representation 

for a surface, which is to define surface points according to values that satisfy an equation 



of the form s(x, y, z) = 0, where s : .!R3 -+ 92, could be accommodated in the formulation. 

However, to do so unnecessarily complicates the notational burden without really adding 

new insight. Thus, without loss of generality, only surface geometries of the form z = 

h(x, y) aae considered in this paper. 

B. Tht! Applicator Trajectory 

The spatial position and orientation of the applicator with respect to the fixed reference 

frame is defined by six values: three coordinate values for its position and three angular 

values for its orientation. These six values are defined at time t by a vector function: 

The values a,(t), a,(t), and a,(t) represent the applicator's position at time t with 

respect 1;o the fixed euclidean reference frame XYZ. The values a+(t) ,  ae(t), and a&(t), 

describe the applicator's angular rotation with respect to the X, Y, and Z axes, re- 

spectively. This particular system of eulerian angles of rotation about the axes of the 

fixed reierence frame is usually referred to as the "roll, pitch, and yaw"' system. It is 

a simple matter to define a rotation matrix based on these angular values that can be 

used to transform the fixed reference frame to a rotated reference frame attached to the 

applicator 171. 

C. Tht: Rate of Film Accumulation 

In order to determine an optimal applicator trajectory for a given surface, information 

about tlie rate at which the film accumulates at each surface point (measured, for ex- 

ample, in ~ m / s e c )  is assumed to be known. For the purposes of this paper, the rate at 

which film accumulates at each surface point is assumed to be dependent only on the 

geometry of the surface and the position and orientation of the applicato~r relative to the 



surface. While the rate of film accumulation at each surface point is also a function of 

other parameters such as the flow rate of the coating material, the atomizing pressure, 

electrostatic voltage (if applicable), viscosity of the coating material, and solvent concen- 

tration, for the study here, these other parameter values will assumed to be fixed. Thus, 

only the interaction between the geometry of the surface and the position and orientation 

of the applicator will be considered in the formulation. 

Let ,f;,(a(t),x, y , t )  denote the rate of film accumulation at time t a t  the point 

(x, y, h(:c, y)) on the surface Sh, with the applicator trajectory defined t ~ y  a ( t ) .  As the 

notation suggests, for a given surface Sh, the rate of film accumulation at a point on the 

surface depends on the "a, y" coordinates of the surface point and on time "t," which cap- 

tures the position and orientation information for the applicator through the trajectory 

vector o(t) .  For the reasons indicated in the pl-evious section, values for ,fs,(a(t), x, y, t) 

may be derived from tabulated data (based on experimental measurerneni;~) and not nec- 

essarily expressed as an analytic function. An implicit assumption made here is that the 

rate of film accumulation does not explicitly depend on the velocity of the applicator, i.e., 

a ( t ) .  This is based on the practical presumption that the maximum feasiblle translational 

speed for the applicator is much smaller than the velocity of the paint droplets. 

A .  The Objective of the Optimal Trajectory Planning Problem 

The objective of the optimal trajectory planning problem is to determine a trajectory that 

results in minimal variation in accumulated film thickness on the surface. The specific 

objective used here is the mean squared error between actual film thicknless and average 

film thickness across the surface. 

For a trajectory a ( t )  defined over a time interval [0, TI, the film thickness accumulated 



during the time interval [0, TI at each point (x, y, h(x, y)) on the surface Sh is given by 

Due to the integration over time, the accumulated film thickness fsh(a(t:), x, y) does not 

depend explicitly on t; however, it does depend on the vector function tz(t). The total 

volume of paint deposited onto the surface is given by 

If the values for fsh ( a ( t  ), x,  y , t )  are derived from a collection experimentally measured 

data values and/or not expressed analytically, then the integration required in Eqs. (3) 

and (4) can be approximated numerically by using standard numerical integration tech- 

niques. 

The area of the surface is given by [8]: 

where it is implicitly assumed that the functional description of the surface, i.e., h(x, y), 

can be partioned into a finite number of smooth sub-surfaces. The average film thickness 

over the surface, denoted as f:lg(a(t)), is defined as the total volume of paint deposited 

onto the surface divided by the area of the surface: 

The variation in film thickness for the surface, denoted by Vsh(a(t)), is defined as the 

mean squared error between film thickness at each point and average filnn thickness: 

1 
vsh(a(t)) = JJD (fSh(a(t), ~1 Y )  - f ; ~ ~ ( a ( t ) ) ) ~  dx dy. (7) 

The optimal trajectory problem involves finding a trajectory a ( t )  that minimizes the 

variation in film thickness defined by Eq. (7). 



B. Constraints for the Optimal Trajectory Planning Problem 

In practice, there are constraints on the set of trajectories that are feasible because 

of constraints associated with realistic robotic manipulators. In particular, there are 

constrai.nts on the set of positions and orientations that are "reachable" by a given robotic 

system. Also, there are limits associated with the velocities and/or accelerations that 

can be cleveloped to move the applicator along a reachable path. 

In addition to the constraints imposed by the robotic manipulator itself, in practice it 

may be desirable to actually further constrain the collection of feasible t.rajectories. For 

instance, in some applications it may be practical to consider only those trajectories where 

the applicator's positions are within a range of distance (e.g., between 8 and 12 inches) 

from the surface and/or consider only orientations where the centerline of the applicator's 

spray pattern is normal to the surface. Adding such intuitive constraints decreases the 

size of the search space and may improve the quality of the obtained solution and/or 

increase the possibility of attaining a globally optimal solution. 

Two classes of constraint sets for the assumed feasible trajectories are defined in 

the follc~wing two subsections. In the first, the desired spatial path for the trajectory 

is assumed to be specified. In the second, the spatial constraints for ithe trajectories 

are relaxed and thus the set of feasible trajectories is represented by a clollection of six- 

dimensional vector functions of time. 

C. Tht: Optimal Trajectory Planning Problem Along a Specified Spatial Path 

A spatial point for an applicator is characterized by a six-dimensional vector that defines 

the position and orientation of the applicator. The spatial path associated with an 

applicator trajectory is defined as the set of spatial points traversed by the applicator. 

In some applications, a desired spatial path for the applicator may be specified. In such 

cases, the question of interest is how to best traverse the specified sp,atial path as a 



function of time. 

Let j ~ ( p )  denote a six-dimensional vector function that parameterizes a spatial path 

for the a.pplicator. The scalar variable p E [O, 11 parameterizes all points along the spatial 

path. Assume that the parameterization is such that p(p) is a continuous function of the 

parameter p. 

Consider a scalar function of time X(t), where X : [0, TI -t [O,:l]. By replacing the 

scalar pitrameter p with the scalar function X(t), the resulting vector functional p(X(t)) is 

a characterization of trajectories that have spatial points along the spatial path p(p). For 

practical reasons, it is generally necessary to constrain X(t) to be a continuous function 

in order to  prevent discontinuous movements of the applicator (recall that p(p) is also 

assumecl to  be continuous in p). It may further be necessary to limit the values of the 

first and/or second derivatives of X(t) in order to  constrain the speed and/or acceleration 

of the applicator. Finally, constraining X(t) to  be monotone increasing is tantamount to 

considering only those trajectories that do not backtrack along the specifiled spatial path. 

For notational convenience, the incorporation of all such desired constraints on X(t) are 

assumecl to  be included in a set of scalar functions denoted by A(t). 

Thuc;, the optimal trajectory planning ~ r o b l e m  along a spatially ~ara~meterized path 

p(p) is an optimization problem of the form 

The search space for the above optimization problem, i.e., A(t), is a set of scalar functions 

of time. 

D. The Optimal Trajectory Planning Problem With General Constrainis 

In the general case, the feasible constraint set can include trajectories that do not share 

the same spatial path. Let d ( t )  denote a general set of feasible applica1;or trajectories. 

Thus, /L(t) is a set of six-dimensional vector functions of time. In practice, the union of 



all spatial points associated with all vector functions in A( t )  is constrained by the region 

that is reachable by the robotic manipulator. Also, the translational and/or rotational 

ve1ocitic:s of the trajectories in 4 t )  may be constrained. 

Therefore, the optimal trajectory planning problem with general constraints is an 

optimizittion problem of the form 

min i V s h  (a(t)))' 
a(t)~&t) 

(9) 

In contrast to the optimal trajectory planning problem along a specified spatial path 

(where the search space is over a set of scalar functions of time) the optimization prob- 

lem defined in Eq. (9) generically requires a search over a set of six-dimensional vector 

functions of time. 

E. Classification of Optimal Trajectory Planning Problems 

The optimal trajectory planning problem along a specified spatial path and the opti- 

mal trajectory planning problem with general constraints both belong to a general class 

of optinlization problems known as constrained variational problems 161. Constrained 

variational problems are analogous to, but more general than, problems tohat involve op- 

timizing an ordinary function of several variables with constraints. Unlike the problem of 

optimizing an ordinary function f ( x )  over a constraint set X (where the objective is to 

determine a vector x*  E X such that f (x*) _< f (x) ,  for all x E X) variational problems 

involve determining functions that minimize a given function of functions. Thus, in vari- 

ational l?roblems vector functions are sought that minimize a given func.tiona1. For the 

optimal trajectory planning problem of Eq. (a), a scalar function X(t) E A(t) is sought 

to minimize the functional Vs,(p(X(t))). For the optimal trajectory planning problem of 

Eq. (9), a vector function a ( t )  E A( t )  is sought to minimize the functional Vsh(a(t)). 

Analogous to how an extremum for an ordinary function can be determined by setting 

the gradient of the function to zero, the extremum of a functional can be determined by 



setting the "variation" of the functional to  zero. While the precise definition for the 

variation of a functional shall not be given here (because it is not required for the solu- 

tion techniques used in this paper) it  is noted that an extremum function of a functional 

is the solution to a set of nonlinear differential equations that results firom setting the 

variation of the functional to zero. Determining solutions for nonlinear differential equa- 

tions is generally more complicated than determining solutions for the nonlinear algebraic 

equations associated with setting the gradient of an ordinary function to zero. 

Became the differential equations associated with setting the variation of a functional 

to  zero are easily integrated only in exceptional cases, other more practical approaches 

have been devised in the literature. One way to  determine solutions to  vi~riational prob- 

lems is t o  employ a so called direct method. The basic idea underlying direct methods 

is to consider a variational problem as a limit problem for some problem of extrema of a 

function of a finite number of variables [6]. The techniques described in the next section 

for solving the optimal trajectory problem are examples of direct methotls. 

IV. ~$OLUTION TECHNIQUES FOR OPTIMAL TRAJECTORY PLANNING PROBLEMS 

A.  Solving the Optimal Trajectory Planning Problem Along a Specified Spatial Path 

The prclposed technique for solving the optimization problem of Eq. (8) is based on 

approxi~nating X(t) as a piecewise constant function. Divide the interviil [0, TI into N 

subintervals, each of width A = TIN. Let bk(t) denote a "boxcar" function, which is 

defined .for each k E [l, 2, . . . , N] as follows: 

1 if t E [(k - l ) A ,  kA] 
bk(t) = 

0 otherwise. 

Thus, a piecewise constant approximation for X(t) is given by 



where X k  E [0, 11 represents the constant value of i ( t )  over the subinterva:l [(k - 1)A, kA]. 

By replacing a ( t )  with p( i ( t ) )  in the right side of Eq. (3), it is straightforward to 

verify the following expression for film thickness 

where A, = [XI X~ . . XN]'. 

Likewise, the corresponding expression for the variation in film thickness is given by 

where 

The function Vsh (A)  represents an approximation to the functional objective associ- 

ated with the original variational problem of Eq. (8). Of course the constraints on the 

allowable set of functions from the original variational problem, i.e., A ( t ) ,  must also be 

transfor.med into a suitable constraint set for the vector A. Clearly, the range of values 

for X k  is bounded by 0 < X k  5 1, for all k E [I, 2, . . . , N]. Also, in order to limit the speed 

among the feasible applicator trajectories, constraints may be placed on IXk - Xk+l 1, for 

each k <! [I,  2,.  . . , N - 11. Denote the set of vectors that include all such constraints on 

the vector A by A. 

Thus, the nonlinear programming approximation to the optimal trajectory planning 

problem along a spatially parameterized path p(p) has the form 

min {V;, (A)) .  
AE A 

Provided that the function vsh(A) is differentiable, then standard nonlinea,r programming 

techniques (e.g., gradient descent algorithms) can be employed to provide solutions to the 

optimization problem stated in Eq. (15) [3]. If the gradient of the objective function, i.e., 



- 
VVs,(X), can not be expressed analytically, then it can be approximated numerically. An 

instance of this problem is solved in Section V by employing the quasi-Newton method 

with a finite-difference approximation for the gradient. 

B. Solving the Optimal Trajectory Planning Problem With General Constraints 

Analogolus to the technique of the previous subsection, the technique proposed here for 

solving the optimization problem of Eq. (9) is based on approximating a ( i )  as a piecewise 

constani, vector function. Again, the interval [0, TI is divided into N subintervals, each 

of width A = TIN. The boxcar function bk(t) of Eq. (10) is used to define a piecewise 

constant approximation for a( t ) :  

where 

Thus, the vector a k  represents the position and orientation of the applicator during the 

time interval [(k - l ) A ,  kA]. 

By replacing a ( t )  with a ( t )  in the right side of Eq. (3),  it is straightforward to verify 

the following expression for film thickness 

I I 

where a = [a, a, - . - a;]'. 

Likewise, the corresponding expression for the variation in film thickriess is given by 

where 



The function vsh(a) represents an approximation to the functional objective asso- 

ciated with the original variational problem of Eq. (9). In contrast to the analogous 

approximation given in Eq. (13), which depends on the N-vector A, the function vsh(a) 
generica,lly depends on 6N variables because each of the N "components" of a, i.e., a k ,  

is actually a six-dimensional vector. 

The constraints on the feasible set of functions from the original variakional problem, 

i.e., A(li), must be transformed into a suitable constraint set for the vector a .  Clearly, 

the range of values for a k  is bounded by the set of reachable spatial points of the robotic 

manipulator. Also, constraints may be placed on translational and rotational speeds by 

bounding [(az,k - az , t+~)2  t (ay,k - a , , k + ~ ) ~  + (a,,k - a , ,k+~)~] f  and [(a,!+ - ais+l)2 + 
(ag,k - ( t ~ , k + i ) ~  + (ar,r - adr+l)2]i,  respectively. Denote the set of vectors that include 

all such constraints on a by A .  

Thus, the nonlinear programming approximation to the optimal trajectory planning 

problem with general constraints has the form 

min {Qsh (a)}. 
a€ A 

Analogous to the discussion of practical solution techniques for the optimization problem 

of Eq. (15), if that the function vsh(a) is sufficiently smooth (i.e., differentiable), then 

standard nonlinear programming techniques can also be employed to provide solutions 

to optirr~ization problem of Eq. (21). 

The optimization technique proposed in Section 1V.A (for traversing a specified spatial 

path) is evaluated here for a particular example problem. 



A .  Pn)blem Setup 

The surface to  be painted is a square flat panel that is located within the X Y  plane. 

The four corners of the panel are positioned at the X Y  coordinates (1$,0), (I;, 5$), 

(63, 5;), and (63,O). Using the notation of Eq. ( I ) ,  the surface of the panel is denoted 

by S o  = {(x,y,O): 1: 1 x 5 6 :  & 0 5 y 2 5;). 

It  is assumed that the applicator can be positioned above the panel so that the 

centerline of the spray pattern is oriented normal to the panel's surface. This could be 

achieved, for example, with a cartesian-type robot having three linear axes of motion 

aligned with the fixed reference frame. Only the X and Y coordinates of the applicator 

are con1,rolled; the Z coordinate of the applicator is assumed to  be constant and has 

a value of unity. The angular values that define the orientation of the applicator with 

respect to the three axes of the reference frame are fixed and have values of zero. Thus, 

the assumed trajectory for the applicator is of the form 

For each surface point (x, y, 0) E Sol the assumed rate of film rate accumulation is 

given bj. 

For each. value of time t ,  the above function is a scaled bivariate Cauchy density function 

centered a t  the X Y  coordinate (a,(t), a,(t)) [13]. The spread parameters a~long the X and 

Y axes isre assumed to be unity. From the formula, note that the maximum rate of film 

accumulation occurs at the X Y  coordinate where x = a,(t) and y = a,(t), i.e., a t  the X Y  

coordinate directly under the applicator. This is consistent with the characteristics of 

many realistic applicators, which often have a "bell-shaped" distribution for the density 

of paint particles [12]. One advantage of the assumed formula of Eq. (23) is that it's 

integral over the assumed surface (i.e., a flat panel) can be expressed as an analytic 



function. In practice, empirical data and/or estimates for values of fso (a( t) ,  s, y, t) can 

be used and the required integration can be carried out numerically. 

For ~zonvenience, the units of length are not specified here. In practice, the units for 

the dimensions of the panel may be on the order of a few feet or meters and the units 

for the ].ate of film accumulation could be on the order of a pm/sec. 

Fig. 1 shows the XY coordinates of a parameterized spatial path denoted by pe,d(p). 

The value of e is the length of each straight segment associated with the four horizontal 

"sweeps" over the panel and d is the indexing distance between consecutive sweeps. The 

end-points of the horizontal segments are connected by semicircular arcs of radius $. The 

total lerlgth of the path is given by L = 41 + y. A analytical parameterization of the 

path of the form petd(p) = [p,(p) p,(p) 1 0 0 (I]', p E [O, 11, is given in Appendix A. 

B. Tro:versing the Assumed Spatial Path at a Constant Speed 

The type of parameterization given in Appendix A for the path peYd(p) is known as a 

~aramet~erization by arc length, which means that a unit change in the the parameterizing 

variable p results in a unit change in curve length along the path [9]. It is straightforward 

8~ (P I  2 to verify this property by noting that ((v)' + (-$-) )' = L, for all p E [0, I]. Thus, 

trajectories of the form Pe,d()t), for t E [0, TI, represent a constant speed traversal of the 

spatial path petd (p) over the time interval [0, TI. 

Let . iFN(t) denote a piecewise constant approximation to a linearly increasing func- 

tion of time, which is defined for each t E [0, TI by 

where Li = T I N  and the bk( t )  is the boxcar function as defined by Eq. (10). A plot 

of XpN(t) is shown in Fig. 2a for the case T = 10.57 and N = 100. Let XFN denote 

the N-vector whose components are the coefficients of the piecewise constant function 

XFN(t), i.e., the kth component of X is (k - ?)A. 



The X Y  coordinates of the trajectory pe,d(iFN(t)) is represented graphically in 

Fig. 2b for the case C = 8, d = I:, T = 10.57 and N = 100. The panel is indicated by 

the shaded area. There are 100 "t" symbols along the spatial path, which indicate the 

applicator's position during the consecutive time intervals of width A = TIN = 0.1057. 

The fact that the "*" symbols are evenly spaced indicates that the applicator moves a t  

a constant speed along the spatial path (as expected). Fig. 2c shows a contour plot for 

the panel's film thickness, which is a result of the trajectory of Fig. 2b. 

A pll~t  of i P N ( t )  is shown in Fig. 3a for the case T = 8.34 and N = 74.. Fig. 3b shows 

the X Y  coordinates of the trajectory defined by Pe,d(ipN(t)) + [1$ 0 . . . 01' for the case 

C = 54, d = l:, T = 8.34, and N = 74. The 74 evenly spaced "*" symbols indicate 

the app:licator's position during consecutive time intervals of width A = TIN = 0.1127. 

Fig. 3c shows a contour plot for the panel's film thickness, which is a result of the constant 

speed trajectory of Fig. 3b. 

Ever1 though the total time duration T for the trajectories of Fig. 2b and Fig. 3b are 

distinct (i.e., 10.57 and 8.34, respectively) the average film thickness for the associated 

contour plots of Fig. 2c and Fig. 3c are equal (and have a value of unity). From the 

contour plots, it is apparent that the surface profile of Fig. 2c has less variation than 

that of Fig. 3c. The trajectory of Fig. 2b expends 27% more paint than that of Fig. 3b, 

because the duration of the spraying time for the trajectory of Fig. 2b (i.e., T = 10.57) 

is 27% longer than that of Fig. 3b (i.e., T = 8.34). This is not surprising because a 

relatively large fraction of the spatial path in Fig. 2b is not positioned directly over the 

panel (which also explains why more spraying time is required for the trajectory of Fig. 2b 

to  accurnulate the same average thickness of paint on the surface). Thus, by increasing 

the length of each sweep (i.e., increasing the value of C) the variation in film thickness is 

decreased; however, the total painting time and the total amount of paint expended to 

accumulate the same average thickness on the surface is increased. 



C. Optimal Traversal of a Specified Spatial Path 

In this ~mbsection, the optimization technique of Section 1V.A is applield to the spatial 

path ptgd(p) + [l? 0 - 01' with l = 5; and d = 1; (same as the spatia,l path assumed 

in Fig. 3b). The values N = 74 and T = 9.37 are used to define the piecewise constant 

function. i ( t )  of Eq. (11). The nonlinear function to be minimized, denoted below as 

vs0(A), is derived in Appendix B. 

where p,,k and pyk denote px(Xk) and py(Xk), respectively; the four corners of the panel 

have XI7 coordinates (:, - y), (:, y), (T, - y), and (F, y); and the area of the surface is given 

by Aso := (T - g) (jj - - y ). 

The assumed constraint set for A is defined by 

The nodinear optimization problem of minimizing the function vso (A) crf Eq. (25) sub- 

ject to ,the constraint set A of Eq. (26) was solved using an IMSL subroutine. The 



particular subroutine employed was BCONF, which uses a quasi-Newtlon method and 

a finite-difference gradient to minimize nonlinear functions with simple bounds on the 

variables [lo]. The vector A?' with T  = 9.37 and N = 74 was used as the initial con- 

dition for the algorithm. The default convergence parameters were used €or the BCONF 

subroutine and the solution was obtained after about one hour of cpu time on a Sun 

Sparcstation 1. 

Becaduse the value of the objective function vso(A) is independent of how the compo- 

nents of the vector A are permuted, the obtained optimal piecewise coristant function, 

denoted by X*(t), is defined wit11 the components of the solution vect13r A* sorted in 

ascending order. A plot of the optimal piecewise constant function X*(t) is shown in 

Fig. 4a. Fig. 4b shows the 74 positions of the applicator based on the optimal solution 

;\*(t) of Fig. 4a (which has an assumed time step A = T I N  = 0.1266). Fig. 4c shows a 

contour plot for the panel's film thickness, which is a result of the optimal trajectory of 

Fig. 4b. 

Table I gives the performance features of the three trajectories described in Figs. 2, 

3, and 4.. To summarize these results, the optimal trajectory of Fig. 4 tlelivers a mean 

squared error that is about three times smaller than that of Fig. 2 and more than five 

times smaller than that of Fig. 3. Also, the total painting time (which is proportional 

to the amount of expended paint) for the optimal trajectory is about 13'% less than the 

trajectory of Fig. 2a and 12% more than the trajectory of Fig. 3a. 

Fig. 5a shows the result of smoothing the piecewise constant function i* ( t )  with a 

cubic spline [4]. The trajectory associated with sampling N = 740 values from the 

smoothc~d curve (ten times more resolution than the original sampling) over a period of 

T  = 9.37 seconds is shown in Fig. 5b. Fig. 5c shows the contour plot for film thickness 

that results from the sampled smooth trajectory of Fig. 5b. The mean squared error 

for the contour plot of Fig. 5c is 0.001933, which is only slightly greater than the mean 



squared error of 0.001692 associated with the optimal piecewise consta-nt trajectory of 

Fig. 4. 

VI. CONCLUSIONS 

Graphical Views 

(trajectory type) 

Fig. 2 

(constant speed) 

Fig. 3 

(constant speed) 

Fig. 4 

(optimal) 

Fig. 5 

A framework for solving an optimal trajectory planning problem for spiray coating was 

developed. The proposed methodology is general in the sense that no real limitations 

are placed on the spray coating system nor the surface to be coated. The methodology 

can utilize empirically-based information for the rate film accumulation at each surface 

point, as a function of the position and orientation of the applicator. It was demonstrated 

through an example that standard commercially available nonlinear programming algo- 

rithms (:an be applied to solve the formulated optimization problem. 

Future work will include utilizing the techniques developed here as .the basis for an 

interactive and graphically-based tool for trajectory planning. A simil.ar tool for this 

purpose was developed in [21.]. However, in [21] the assumed spray pattern is circular 

and the rate of film accumulation within the circular pattern is assumedl to be uniform. 

Thus, our more general formulation may ~rov ide  a more realistic basis for simulation and 
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optimiz,ation. 

The optimal trajectory planning problem with general constraints (i..e., where both 

the spatial and temporal components of the trajectory are sought) may prove to be 

comput,stionally intractable because of the complexity of the constraint :jet. In practice, 

an approach that allows the operator to specify the spatial path and uses the proposed 

optimization technique to determine how to traverse the path as a function of time shows 

great promise. A graphically-based tool would enable the operator to evaluate the merit 

of several trajectories through off-line simulation. As the simulation stud.ies done in this 

paper indicate, the best way to traverse a simple spatial path over a fl.at panel is not 

entirely intuitive. 

The author thanks Ting-Li Ling, Ramanujam Ramabhadran, and Simon P. Yeung for 

their assistance in developing the software for the simulation studies. 

An analytic parameterization of the spatial path shown in Fig. 1 is derived in this ap- 

pendix. The parameterization is of the form p,,,(p) = [pz(p) p, (p) 1 0 0 0]', p E [0, 11. 

The length of the path is denoted by L = 41 + y. The expressions for pZ(p) and p,(p) 

are defined by partitioning the interval [O,1] for p into seven subintervals: as follows: 



if ( i t  5 p < i ( e +  9 ) )  

pZ(p) = e + f C O S [ ( ~ ~  - p)? + q] 

py(p) = + $sin[(;[ - p)? + f ]  

if (;(e+ 9) 5 p < ;(2e+ q)) 
pz(p) = 2e + q - Lp 

PY(P> = 2d 

if ( i ( 2e  + $) 5 p < i (2P + ad))  

pX(p) = g C O S [ ~ ( ~  - t (2e  + $1) + 
1 nd n 

py(p) = + f sin[%(p - z(2e + ?-)) + 
if ( i(2P + ad) 5 p < i ( 3e  + ad)) 

= - 2e - ad 

PY(P) = d 

if ( i ( 3 e +  ad) 5 p < i (3P + )) 

px(p) = e + f C O S [ ( ; ( ~ ~  + ad) - p)? + q] 

py(p) = f + f sin((t(3e + ad) - p)?f + 4) 

if ( t ( 3 e +  %f) 5 p < i ( 4 e +  y) = 1) 

p&) = 4e+ ?+ - LP 

PY(P) = 0. 

The analytical expression for the objective function vs0 (A )  of Eq. (25) is derived in this 

appendix. From Eq. (13), it is straightforward to verify the following alternate general 



expression for V;, (A):  

By evaluating Eq. (12) using the assumed formula for the rate of film accilmulation given 

in Eq. (23),  the expression for film thickness on the surface So is given by 

where p.ck and p y k  denote p x ( A k )  and p y ( A k ) ,  respectively. The analytic p,arameterization 

of the al3sumed spatial path coordinates p x ( . )  and p y ( . )  are given in App'endix A. 

By denoting the XY coordinates for the four corners of the panel iss ( : ,y) ,  ( : ,g) ,  

(T ,  I ) ,  and (z, - y ) ,  the expression for average film thickness is given by 

N 1 
d:c dy, 

k= 1 + - p x k ) ' )  ( 1  + (Y  - ~ y k ) ~ )  
(B.3)  

where 

Aso = ( y  - y) (5  - :). 

Exchanging the order of summation and integration and evaluating the integrals of 

Eq. (B.:3) gives 

Let I denote the first term of Eq. ( B . l ) ,  i.e., the integral term. The value of I is 

determined for the surface So by first squaring and then integrating the expression for 

!so ( A ,  ~7 Y )  of Eq' (B'2) :  



- ln(l + x2 - 2xpzi + p:;) + (pxj - p,;)tan-' (p,; - x) 
2 2 

4 ~ = i  - 4 ~ x 1  - P;j ~ P X ; P , ~  - 3pxjpx; pZi 

Thus, the assumed objective function is 

VSo(A) = I - (i::g(~)) , 

where I and f Z ( A )  are given in Eqs. (B.6) and (B.5), respectively. 
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Fig. 1. The XY coordinates of the parameterized spatial path ~ P ~ , ~ ( P ) .  



4 6 
t (seconds) 

Fig. 2a. A piecewise constant approximation to  a linearly increasing function of time 

with T = 10.57 and N = 100. 



Fig. 2b. The XY coordinates of the trajectory P t , d ( J F N ( t ) )  for the case P = 8, d = l;, 

T = 10.57 and N = 100. The panel is indicated by the shaded area. 



Fig. 2c. The contour plot for the panel's film thickness, which is a result of the trajectory 

of Fig. 2b. 
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Fig. 3a. A piecewise constant approximation to a linearly increasing function of time 

with T = 8.34 and N = 74. 



7 Fig. 3b. The X Y  coordinates of the trajectory ~ ~ , ~ ( i P ~ ( t ) )  for the case e = 5, d = lG, 

T = 8.34 and N = 74. The panel is indicated by the shaded area. 



Fig. 3c. The contour plot for the panel's film thickness, which is a result of the trajectory 

of Fig. 3b. 
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Fig. 4;s. The optimal piecewise constant function of time with T = 9.37 and N = 74. 



Fig. 4b. The X Y  coordinates of the trajectory P5d(K;,N(t)) for the case e = 5, d = I:, 

T = 9.37 and N = 74. The panel is indicated by the shaded area. 



Fig. 4c. The contour plot for the panel's film thickness, which is a result of the trajectory 

of Fig. 4b. 
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Fig. 5a. The optimal function of time with T = 9.37 and N = 740 (a cubic-spline 

interpolation of the function shown in Fig. 4a). 



Fig. 5b. The XY coordinates of the trajectory Pt,d(hF'(t)) for the case l = 5, d = l;, 

T = 9.37 and N = 740. The panel is indicated by the shaded area. 



Fig. 5c. The contour plot for the panel's film thickness, which is a result of the trajectory 

of Fig. 5b. 
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