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Abgtract

In MIMD (Multiple Ingtruction stream, Multiple Data stream) execution, each processor has
itsown state. Although these states ae generaly considered to be independent entities, it is ds0
possible to view the set of processor states a a particular time as single, aggregate, ""Meta
State.”" Once a program has been converted into asingle finite automaton based on Meta States,
only asingle program counter is needed. Hence, it is possible to duplicate the MIMD execution
using SIMD (Single Ingtruction stream Multiple Data stream) hardware without the overhead of
interpretation or even of having each processing element keep acopy of the MIMD code. In this
paper, we present an dgorithm for Meta-State Conversion (MSC) and explore some propertiesof
thetechnique.
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Meta-State Converson

1 Introduction

The differencesbetween data pardlelism (SIMD execution) and control paralelism (MIMD
execution) are & least superficially quitelarge. In adata parallel program, parallelismis specified
in termsof performingt he same operation smultaneoudly on dl elementsof adata structure; this
naturally fitsthe SIMD execution modd. It is aso easy to see that, because the abilities of a
MIMD an a superset of the abilities of a SIMD, the data paradlel modd can be extended to
MIMD targets [Phi89] [LiM90]. However, the control parallel modd suggests that each proces-
sor can take its own path independent of all others, and this characteristic seems to require the
multiple instruction streams possible only in MIMD execution. Control parallelism isimpossible
on aSIMD with only oneinstruction stream... orisit?

There are two basic approaches that might alow SIMD hardware to efficiently support a
control parallel programming modd: " M MDemulaion®* ad ** meta-state conversion."’

11 MIMD Emulation

Perhapst he most obvious way to make SIMD hardware mimic MIMD execution is to write
aSIMD program that will interpretively execute a MIMD instruction set. In the Smplest terms,
such an interpreter has adata structure, replicated in each SIMD PE, that corresponds to the inter-
nal registers of each MIMD processor. Likewise, each PE’s memory holds a copy of the MIMD
code to be executed. Hence, theinterpreter structure can be as smple as.

Basc M MDinterpreter Algorithm
1. Each PE fetchesan *‘instruction’” into its ""instruction register” (IR) and updatesits
**program counter** (PC).
Each PE decodesthe "' instruction™ from itsIR.
Repest steps 3a-3c¢ for each **ingtruction™ type:
a) Disabledl PEs wherethe IR holdsan " instruction™ of adifferent type.
b) Simulateexecution of the ™" instruction®* on the enabled PEs.
c) Enabledl PEs.

4. Gotostepl

The only difficulty in implementing an interpreter with the above structure is that the smulated
machine W| be very inefficient.

A number of researchers have used a wide range of *"tricks”* to produce more efficient
MIMD interpreters [NiT90], [WiH91], and [DiC92]. However, some overhead cannot be
removed:

1.  Instructionsmust be fetched and decoded.

2. Instructionsmust be accessible to all PEs, hence, each PE typicaly will have acopy
of the entire MIMD program’s instructions. In,a massively-parald machine, this
wastesa huge amount of memory.
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3. There will be some overhead associated with the interpreter itsdlf, e.g., the cost of
jumping back tothe start of the interpreter loop.
Although problems 1 and 3 merely dow the execution, the second severely restricts the size of
MIMD programs. For example, the Purdue University School of Electrical Engineering has a
16K processingelement MasPar MP- 1 [B1a90] with only 16K bytesof local memory for each PE.
Even with very careful encoding, 16K bytes cannot hold a very large MIMD program.

Although meta-state conversion is more difficult to implement and more restrictive in its
abilities, it can diminate event hese thres overhead problems.

1.2, Meta-State Conversion

In MIMD execution, each processor has its own state.  Although these states are generaly
considered to be independent entities, it is dso possble to view the set of processor states at a
particular time as single, aggregate, ""Meta State”” Udng static analysis based on the timing
described in {Di090], a compiler can convert the MIMD program into an automaton based on
meta states.

Once a program has been converted into the fonn of a meta-state automaton, it is no longer
necessary for each PE to fetch and decode instructions, nor is it necessary that each PE have a
copy of the program in local memory. Only the SIMD control unit needsto have a copy of the
meta-state automaton; PEs merely hold data. Further. because there is no interpreter, there iSno
interpretation overhead. Literally, the metastate automaton is a SIMD program that preserves
therelative timing propertiesof MIMD execution.

However, just asinterpretation has drawbacks, so to does meta-state conversion:

1. If thereareN processorseach of which can bein any of Sstates, then it is possible that
there may be as many as $//(S-N)! statesin the metastate automaton. Without some
means to ensure that the state space i s kept manageable, the techniqueis not practical.

2. In execution, meta-gate trangitions are based on examining the aggregate of the
MIMD date trangitionsfor all processors.

3 Meadatetranstionsare N-way brancheskeyed by the aggregateof the MIMD date
trangitions.

4.  Dynamic cregtion of new processesis difficult to accommodate, Since congtruction of
the meta-state automaton requiresthat al possble MIMD states can be predicted at
compiletime.

Fortunately, we have developed a number of techniquesthat can control the state space explosion
suggested above. Making meta-state transitions basad on aggregate information is conceptually
simple, but requires some hardware suppor, e.g., the **globd or'* of the MasPar MP-1 [Bl1a%0].
The efficient implementation of N-way branchesis adifficult problem, but can be accomplished
using customized hash functions indexing jump tables [Die92a]. Unfortunately, the fully
dynamic crestion of processesseemsto be impractical —but thet is exactly the casein which the
interpretation scheme works best. Consequently, this paper focuses on techniques to control the
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stateexplosion, and restricts the input MIMD code to be formulated as an SPMD program.

The second section of this paper presents the meta-state conversion algorithm, using an
exampleto clarify the process. Section 3 discussesissuesinvolving how the resulting meta-state
automaton can be efficiently encoded for SIMD execution. In section 4, we discuss how the pro-
totype implementation was constructed. and give a smple example of the output generated.
Finally, section five summarizest he contributionsof this work and directions for futurestudy.

2 MtaSateConversion

The meta-state conversion agorithm is surprisngly straightforward; perhaps it would be
more accurate to say that it isfamiliar. The processof converting aset of MIMD statesthat exist
a aparticular point in time into asingle meta stateis strikingly similar to the processof convert-
ing an NFA into a DFA, as used in congtructing lexicd andyzers.

To begin, the code for the MIMD processesis converted into aset of control flow graphsin
whicheach node (MIMD state) representsa basic block [CoS70]. Each of these MIMD stateshas
zero, one,.or two, exit acs. A MIMD state with no exit arcs marks the end of that process. A
sngle exit arc represents unconditional sequencing (e.g., an unconditional branch), whereas two
exit arcs repectively representthe "TRUE™ and ""FALSE'" successorsof that MIMD state (e.g..
targets of' a conditiona branch). In addition, it is assumed that we know in which, particular
MIMD state each process beings execution; these states are called MIMD start states.

The set of MIMD dart states formsthe start state of the meta-state automaton. Since each
MIMD start state may have up to two successors, each processmay pick either of itstwo possible
successors. If we further assume that there may be multiple processesin each MIMD state, it is
further possible that both successorsmight be chosen. Hence, for a meta state that consists of one
MIMD start state, there may be as many as three metarstate successors. In generd, from »
MIMD start states, therecould be as many as3” meta-state successors.

To clarify the operation of the algorithm, we will trace the algorithm's actions on asmple
example. Theframework for the exampleis the following SPMD code:

if (A) {

do { B} while (C):
} else {

do { D} while (E):
}
F

Listing1: Example MIMD (SPMD) Code

It is assumed that all processors begin executing this code smultaneously and that processors
computing different values for the parallel expressonsA, C, and E are the only sourcesof asyn-
chrony (i.e., there are no externa interrupts).
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2.1. Congruction of the MIMD Control-Flow Graph

Before meta-state conversion can be applied, the program must be converted into a form
that facilitates the analysis. The most convenient form is that of a traditiona control-flow graph
in which each node representsa maximal basic block. Constructing the control-flow graph in the
usual way, code straightening [CoS70] and removal of empty nodes are applied to obtain the sim-
plest possible graph. The result of this is figure 1 State 0 corresponds to block A, state 2
corresponds to B followed by C, state 6 correspondsto D followed by E, and state 9 corresponds
toF

Figure1l: MIMD State Graph for Listing 1

2.2. Handling Of Function Calls

Although our example case does not contain any function calls, it is important that meta-
state conversion be applicable to codesthat contain arbitrary function calls — perhapsincluding
recursive function invocations. Thus, we need some way to represent function call/return directly
using control flow arcsin the MIMD state graph.

Inthe case of non-recursivefunction calls, it is sufficient to use the traditional solution of
in-line expansion of the function code (i.e., of the MIMD state graph for the function body).
Surprisingly, recursive function calls also can be treated using in-line expansion — and an addi-
tional *“trick’’ that converts r et ur n statementsinto ordinary multiway branches.

Consider the following C-like code fragment in which the main program invokes the
recursive function g
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main ()
g();

g0,

- Q 0o o w

g()

g():
e:
}

Listing 2 Example Recursive Function Call
Theonly difficulty in in-lineexpanding g isthat the target of any return statementsin g is
not known until runtime. However, a compile time we can compute the set of dl possible
return targetsgiventhat g wasinitialy invoked from a particular position.

When in-lineexpanding the call to g from pogtion a, we know that any return State-
ments within g must return to either position bor e, and can replacethe retur n statements
withthe appropriate multiway branch. Likewise, when in-lineexpanding g caled from position
C, return Statements are translated into multiway branchestargeting d or e. Theresult isa
call-free control flow graph for the entire program; thus, the meta-state conversion agorithm can
ignore the direct handlingof function calls without lossof generdlity.

23. Base Conversion Algorithm
Thefollowing C-based pseudo code gives the base dgorithm for meta-state conversion.

Page 6




Meta-State Conversion

meta_state_ convert(Xx)
set x;
{
/* Given t he neta-state automaton start state x,
generate the rest of the automaton
°/

do {
/* Mark this neta state as done */
mark_meta_state_done (x);

/* Add arcs to any neta states y| x—=y */
reach(x, x, 0);

/* CGet another meta state to process */
X = get_unmarked meta_ state():

/* Repeat while there is a neta state to do */
} while (x 1= 0);

i nt
reach (start, s, t)
set start:, s, t;
{
/* Make entries for all neta states t| start—t */

if (8 ==0) {
/* AIl MNMD state transitions fromwthin start have been
consi dered, hence, t nust be a neta state
1:/
make_meta_state_transition (start, t);
} else (
/* Select a MMD state and process its transition(s),
recursing t o conplete the neta state
*/
el ement e, next, fnext;

e = [e] e € 8];

a8 = S - {e};

next = next MIMD state(e);

fnext = next_MIMD state_if false(e):

/* Take each possible path and both paths */
if (next) {
reach(start, s, t W next);
if (fnext) {
reach(etart, s, t v fnext);
reach(start, s, t w next w fnext);

}
) else {
reach (start, s, t);

}

Applying the above algorithm to our smpleexample, the resulting meta-stategraph is:
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Figure2 Meta-State Graph for Listing 1

24. M NDState T i m Splitting Algorithm

In the base conversion agorithm, we made the assumption that each MIMD state took
exactly the same amount of time to execute. However, such an assumption isunrealistic:

e If each instruction istreated as a separate MIMD state, then reasonable size programs will
generate unreasonably large automata. This makes the analysis for meta-state conversion
much slower and also can result in an impractically large meta-state automaton. In addition,
some computers have instruction sets in which even the execution time of different types of
instruction varies widely.

e If instead we Simply treat each maximal basic block asaMIMD state and ignore the differ-
ences in execution time between these blocks, this can result in very poor processor utiliza-
tion. For example, if a block that takes 5 clock cycles to execute is placed in: the same
meta-state as one that takes 100 cycles. then the parallel machine may spend up to 95% of
its processor cycles simply waiting for the transition to the next meta state.

In other words, the meta-state automaton embodies an execution time schedule for the code, and
it isnecessary that the execution time of each block be taken into account if agood scheduleisto
be produced.

There are many possible ways in which timing information could be incorporated, but our
overriding concern must be keeping the state space manageable, and this greatly restricts the
choice. Clearly, the smallest M MD state automaton results from treating each maximal basic
block as a MIMD state; hence, this will be our initial assumption. As the conversion is being
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performed, we may be fortunateenough to have all the M MDstates merged into each meta state
happen to have the same cost. If the costs differ, but do not differ by a sgnificant enough
amount, we can ignorethe difference.

This leavesonly the case of a meta state that containsM I M D states of widely varying cost,
for example, the 5 and 100 cycle MIMD states mentioned above. The solution we propose is a
simple heuristic that will break the 100 cycle MIMD gate into an approximatey 5 cycle MIMD
state which is unconditionally followed by the remaining portion of the original 100 cycle state.
Sincethis change might aso affect the construction of other meta states that hed incorporated the
original 100 cycle MIM D date, the congtructionof the meta-stateautomaton is retarted to ensure
thet the final meta-state automaton iscong stent.

The following pseudocode gives the algorithm for performing MM D state splitting based
on the variation in timing within a meta state. It would be invoked on each meta state as it is

created.
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flag
time— split— state(s)
set s;

{

/* Determine i f time imbalance between MIMD states within the
meta state s is sufficient to warrant time splitting the
more expensive MIMD states to get a better balance; this
assumes that each MIMD state already has an execution time
associated with it

°/

flag didsplit;

/* Ignore zero execution time components because you can't
do anything about them anyway
*|

Swgs - (eleec s time(e) == 0};

[* Get minimum and maximum MIMD state times... */
min = min MIMD state_time(s);
max = max MIMD state time(s);

/* 1s enough time wasted t o be worth splitting? Not if the
difference between times is already at noise level
(split— delta) or if the utilization is already sure to be

/ greater than an acceptable percentage (split— percentage)

*

if {(min * split— delta) > max) return (FALSE);

if {min > ((split_percent ® max) / 100)) return (FALSE):

[* sSplitting seems useful... doit, if possible */
didsplit = FALSE
while (s != &) (

element e

e = [e] e € s8];
S = s - {e};
if (time(e) > min) {
[* 1f possible, split this node into two
nodes, the first with time » min, the
"y second with the remaining time...

didsplit = TRUE
}

return (didsplit);

The splitting of astateisillustrated in the next two figures. The rdevant portion of the ini-

tial MIMD state graphis
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Figure3 MIMD States Before Time Splitting

Suppose that meta-state conversion would combine states aand B and that B takes much longer
to executethan a, i.e., to<tg. The state splitting agorithm would attempt to convert this portion
of the state: graph into:

MmN, A N sl
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}
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’ ' \
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[}
f--"r“—\
. ! \
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Figure4: MIMD States After Time Splitting

Thus, states @ and B’ would be merged — without any idle time being introduced for either
thread of execution.

25. Meta State Compression Algorithm

Despite the reduction in state space possible usng maxima basic blocks and time splitting,
the automata created can be very large. Hence, it is useful to find a way to reduce the upper
bound on the number of meta states created.

Because MIMD nodes with zero or one exit arc can only increase the state space linearly,
the explosion in meta state space is rlated to the occurrence of M MD states that have two exit
arcs. Each such MIMD state could contribute three meta states: the TRUE successor,, FALSE
successor, and both successors. However, if there are many processesin any given MIMD dtate,
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it iseasy to see that the mogt probable caseis that of both successors. Further, the case of both
successors can aways emulate either successor, since it has the code for both. Thus. a very
dramétic reduction in mea state space can be obtained by smply assuming that both successors
areawaystaken.

int
reach(start, s, t)
set start, s, t;
{
/* Make rntries for all meta statrs t] start— y */

if (8 = Q, (
/* All MIMD state transitions from within start have been
considered, hence, t must be a meta state
4
make meta_state transition(start, t};
} else (
/* Select a MIMD state and process its transition(s),
recursing to complete the meta state
*/
element e, next, fnext;

e = [e|l € s];

s = 3 —- {e};

next = next—MI| — state(e) ;

fnext = next MIMD_state_if_ falss(e}:

[* Always take all possible paths... */
if (next) {
if (fnext) {
reach(start, s, t Vv next v fnext):
} else {
reach (start, s, t U next):

}
} else {
reach(start, S, t):;

}

Retuming to our example code, the meta-state compression dgorithm results in a graph
with only two meta-states, compared to eight for the uncompressed graph:

(o)
DS

Figure5 Compressed Meta-State Graph for Listing 1
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Notice that meta-state transitionsinto compressed portions of the graph are unconditional; i.e.,
thereis ) need to Use a globalor to determine what statesare present. The disadvantage is
that the average meta-state is wider, which implies that the SIMD implementation will be less
efficient.

26 Barrier Synchronization Algorithm

While the above compression scheme produces very small automata, it does increase over-
head sonewhat in that each meta state becomes much more complex. Hence, it is useful to seek
yet another method to reduce the state space — without adding to the complexity of each meta
dstate. Caneful USe of barrier synchronization providessuch amechanism.

set
barrier sync(s)
set s;

/* If sis a meta state that contains a MIMD state
which is a barrier synchronization point, then
tine barrier should prevent any transitions past
tinat MIMD state. Hence, unless all processors
have reached the barrier (i.e., every MIMD state
within s is a barrier state), simply remove the
barrier states from s

°/

set waits;

[* construct the set of MIMD barrier wait states */
waits = {e] e € s, is— barrier—wait(e) == TRUE);

[* Has everyone reached the barrier? */

if (waits == 8) {
[* Yes; go into all barrier state */
return(waits);

} else {
[* No; remove barriers from meta state */
return(s - waits);

For example, consider modifying the code framework of listing 1 to contain a barrier sync
attheendofthe if:

if (A) {
do { B } while (C):
} else {
do { D } while (E);
}
wait; /* barrier sync. of all threads */
F

Listing 3 Listing 1 + Barrier Synchronization
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The barrier synchronizationdoes not result in a runtime operation, but rather constrains the asyn-
chrony «s defined by the above agorithm. The result isa metastategraph of the form:

Figure 6. Meta-StateGraph for Ligting 3

3 SIMD Coding of the Meta-State Automaton

Given a MIMD program that has been converted into a meta-stategraph, it is not trivial to
find an efficient coding of the meta-state automaton for a SIMD architecture. The meta-state
graph does reduce control flow to a single instruction stream. but that instruction stream would
appear to execute different types of instructions in parallel — the meta-state graph employs a
variationon VLIW semantics.

There are two aspects of the graph that mirror VLIW constructions:  the apparently simul-
taneous execution of different types of instructionsand the use of multiway branches generated
by merging multiple (binary) branches. Thus, we must efficiently implement these VLIW-like
execution structureson SIMD hardware.

31 Coemmon Subexpression Induction

Ay meta state that merged two or more MIMD states effectively contains multiple instruc-
tion sequences that are supposed to execute Smultaneoudy. Given that it isimpossiblefor atrad-
itional SIMD machine to smultaneoudly execute different types of instructionson different pro-
cessing elements, it would appear that these operationswill have to be seridlized. However, it is
quite possible and practical that any operations that would be performed by more than one
sequence can be executed in parale by al processors. Common subexpression induction (CSl)

1 The meta-state graph is not suitable fa execution on a traditional VLIW because which processing
elements execute wWhich ingtructionsis determined statically fa VLIW, but dynamically in the graph. le.,
the graph would be appropriatefd & VLIW in which each processing dement could select @ runtime which
ingruction field it would execute. rather than having each processing element statically associated with a
particular instruction field.
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(Die92] is an optimization technique that identifiesthese operationsand ** factors' them out.

The CS dgorithm andyzes a segment of code containing operations executed by any of
multiple threads (enabled setsof SIMD PEs). From thisanalydis, it determineswhere threads can
share the same code and whet cost isassociated with inducing thet sharing. Findly, it generatesa
code schedule that uses this sharing, where appropriate, to achieve the minimum execution time.
Unfortunately, thisimplies that the CSI dgorithm isnot smple.

The dgorithm can be summarized as follows. First, a guarded DAG is constructed for the
input, then this DAG is improved usng inter-threed CSE. The improved DAG is then usd to
compute information for pruning the search: earliest and latest, operation classes, and theoretical
lower bound on execution time. Next, this information is used to create alinear schedule (SSMD
execution sequence), which is improved using a chegp gpproximate search and then used as the
initia schedulefor the permutation-in-rangesearch thet is the coreof the CSl optimization.

33. Ml tiway Branch Encoding

At the end of each meta-dtate's execution, a particular type of multiway branch mugt be
executed to move the SIMD machine into the correct next meta state.  Before discussing the
encoding of these multiway branches, it is useful to specify the precise semantics of meta-state
transitions, SO that an optima coding can be achieved. The following defines the possible types
of meta-state trandtions.

R1 N Exit Arc

A mew dtate without an exit ac is a teemind node, i.e., it represents the end of the
program's execution. Thus, it isimplicitly followed by a return to the operating sysem. Thereis
no difficulty in generating codeto implement this.

B2 Single Exit Arc

If thereisasingleexit arc from ameta state, the code for that metagtate isis followed by a
goto(aka, junp) to the code for the target meta state. Again, it is Smple to generate an
efficientcoding.

Notice that al entriesto compressed metastatesfdl into thiscategory.

B3 Multiple Bt Arcs

If there are multiple exit arcs from a meta state, then the aggregate of the™ pc™* vaues for
each of the processing eements must be usad to determinethe next state. For example, when, a
the end of' executing a meta state, Some processng elements have *‘p¢’’ vaue 2 and others have
“pc'’ value 6, meta state {2,6} is the next state. In order to efficiently collect this aggregete,
each possible ‘‘pc'' vaue is assgned abit; thus, a globalor o the' pc’ vauesfrom dl pro-
cessors determinesthe aggregate.
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3.2.4. Multiple Exit Arcsinvolving Barriers

The: treatment of multiple exit arcs must be dightly adjusted if some, but not al, of the pro-
cessing elements have reached a barrier a the time a meta state's execution completes. For
example, in figure6 the transitions from metastates 2, {2,6), and 6 into 2, (2,6}, and 6 would not
be sufficient if even one processing element had reached the barier (i.e., meta state 9). Conse-
quently, the processingelementsar e alowed to set their ““pe’* valueto 9, but they are not permit-
ted to enter metastate 9 unlessal *‘pe**’s are 9.

Thi s is accomplished by asimplecheck to see if (globalox pc) iscontained withinthe set
of all barrier states. If it is, thenthe statetransition proceeds normally. Otherwise, the next meta
state isdetermined by subtracting the set of all barrer states from the result of the globalor.

325. Restricted Dynamic ProcessCreation

Although the completely static nature of meta-state conversion makes it impossible to
efficently support forking of new processesto execute different programs, a minor encoding trick
can be used to implement a restricted form of dynamic process creation. This restricted type of
spawn instruction |ooks just like a conditiona jump, except the semantics are that both paths
must be taken (i.e., the compressed meta state trangition rule). One exit is taken by the origina
processes, } he other by the newly created processes.

Initidly. processing elements that are not in use would be given a “‘pc”” vadue indicating
thet they are not in any meta state. When a spawn (x) instruction is reached by N processng
dements, the origina N processing e ements do not change their pc values. but N currently-
disabled processing elements are selected and their pc values are set to x. No other changes are
needed, provided that the number of processes requested does not exceed the number of proces
sorsavailable.

Nate further that processorsthat complete their processes early can be returned to the pool
of free processors by Smply executing a halt ingruction to set their pc vaue to indicate that
they are not in any meta state.

4 Implementation

The current prototype meta-state converter does not directly generate executable SIMD
code from a MIMD-oriented language. Insteed, it Smply outputs aset of meta-state definitions.
Eachof these metastates must then be common subexpressioninducted and the meta-State trans-
tions (multiway branches) must be encoded using hash functions. However, these last two steps
areimplemented by two software tools devel oped earlier:

° A common subexpression inductor, described in [Die92].
® A hashfunction generator, described in [Die92a]).

Thus, in this paper we will confine the discussion to the implementation of the pmtotype meta:
stateconverter. The meta-state converter was written in C using PCCTS [PaD92] and Isactually
amodified versonof the m ndc compiler described in [DiC92].
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41. The Input Language

Thelanguage accepted by the meta-state converteris aparald didect of C called MIMDC.
It supportsmost of the basic C constructs. Datavauescan beeither int or float, and vari-
ables can bedeclared as mono (shared) or poly (private) [Phi89].

There are two kinds of shared memory referencesupported. The mono variables are repli-
cated in each processor’s local memory S0 that |oads execute quickly, but stores involve a broad-
cast toupdate all copies. Itisaso possibleto directly access poly valuesfrom other processors
using **parallel subscripting’":

x[Mil = yIlI31 + =z:

would use: the valuesof i, j,and z on this processor to fetch the value of y from processor
j, add z, and store the result into the x on processor i - In addition to allowing use of shared
memory for synchronization, MIMDC supports barrier synchronization [DiO90] using a wait
Statement.

43. The Conversion Process

A brief outlineof the prototypeimplementationis:

1 Asthe PCCTS-generated parser readsthe sourcecode, a traditiona control-flow graph
whose nodes are expression treesis built. This control-flow graph is constructed in a
""normalized’* form that ensures, for example, thet loops are al of the type that exe-
cute the body one or more times, rather than zero or more (e.g., by replicating some
codeand inserting an additiona i f statement).

2. Thecontrol-flow graph isstraightened and empty nodes are removed. This maximizes
thesize of the nodes.
3. The meta-state conversion agorithm is applied. Except for the handling of function
calls, the prototypeimplementsthe full algorithm.
4.  Theresulting meta-stategraph is straightened and outpuit.
The current prototype implementation does not perform the fina encoding of the meta-state auto-
nat on Hence, a CSl tool [Die92] and atool for finding hash functions [Die92a] are gpplied by
hand to produce the find SIMD codein MPL.

43. An Example

To illustrate how the prototype meta-state converter works, consider the MIMDC program
presented in listing 4. This example has the same control structure given in listing 1, but is a
complete program, so that the actual code generated can be given.
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main ()
{
poly int x:
if (x) {
do { x = 1, } while (x):
} else ({
do { X = 2, } while (x):

return{x):

Listing 4 Example MIMDC Program

Without compression or time cracking, the resulting meta-state SIM D automaton, written in
MPL [Mas91] for the MasPar MP-1 [B1a90], is given in listing 5. The code within each meta
stateis simple SIMD stack code using MPL macrosfor each operation. The only surprising stack
operation is JumpF (x, y), which simply Setseach processing element's pc equa to 2* if the
top-of-stack value is ""FALSE™ or to 2’ if it is " TRUE " The apc is simply the aggregate
obtained by oring the values of all the individual pcs; the switch at the end of each meta state
simply employs a customized hash function to ensure that the multiway branch is implemented
efficiently. For example, at the end of meta state 0 (i.e., ms—-0), insteadof a switch on apc
with casesfor BIT(2)|BIT(6), BIT(6).and BIT (2), ahash function is applied to make
the case values contiguous 0 that the MPL compiler will use a jump table to implement the
switch.

5. Conclusions

Although meta-state conversion is a complex and slow process, it does provide a mechani-
cal way to transform control-parallel (MIMD) programsinto pure SIMD code. Further, the exe-
cution of the meta-state program can be very efficient. In particular, fine-grain MIMD code is
generally inefficient on most MIMD machines due to the cost of runtime synchronization, but
synchronization is implicit in the meta-state converted SIMD code, and hence has no runtime
cost.

While the prototype implementation demonstrates the feasibility and correctness of the
meta-state conversion algorithm, it does not yet automate the process of generating the final
SIMD code. Future work will integrate the code generation process and will benchmark perfor-
mance on "*red"" programs.




0:
It (pe & BIT(O)) ¢

Push{(0) LdL

JumpF (6, 2)
t
ape = globalor{pc):
nrltch (((-ape} >> 5) & 3) |
cass |. goto ms_2_6;
case 2. goto Na
case 3. (OotOo ms_
}

ne_2:
if (pc & BIT(2)) {
Push(l) Push(0) LdL Push(l2)
StL Pop(2) Pushid) LdL
JunprF (9, 2)

t

ape = globalor{(pc):;

switch | ((-apc) >> 8) & 3) |

case 1: (qoto ms_2_9:

cam 2t qoto am9:

cass 3 goto ms_2;

)

ms_9:

Lif (pc & BIT{(9)) {
Push (4) LdL
Ret (3)

}
|* no next meta state */
exit (0);

ms_2_9;

Tt (pe &« BIT(2)) {

Push{l) Push(0) LdL
Push{12) StL Pop(2)

}

if (pc &« (BIT(2) | BIT(9))) |
Push(4) LdL

}

if (pc 4 BIT(2)) {
JumpF (9, 2)

t

if tpe & BIT(9)) {
Ret (3)

apt = globalor{pc):

nrlitch ({(-apc) >> @) & 3) {
case 1. qoto me_2_9:

case 2. (oto ms_9:
case 3 qoto ms_2:
}

ms_6:

if {pc &« BIT{6)) (
Push(2) Push{0) LdL Push(1l2)
StL Pop{2) Push(4) LdL
JumpF {9, 6)

)

apc = globalor(pc);

switch (((-apc) >> 8) & 3) {

case 1. goto ms_6_9;

case 2. goto ms_9;

case 3. goto ms_6;

}

ms_2_|
if

Meta-State Conversion

ms_6_9:
if (pc & BIT(6)) {
Push(2) Push(0) LdL
Push(12) StL Pop{2)

}

if (pc &« (BIT(6) } BIT(9))) |
Push(4) LdAL

}

if (pc ¢ BIT(6)) |
JurmpF {9, 6)

}
if (pc & BIT(9)) |
Ret (3)
t
ape = globalor(pc):
nmltch (((=spec) >> 8) & 3) {
case 1. (oto ms_6_9;
ca 2. qoto ms_9:
case 3. (oto ms_6;
)

ms_2_ 61

If (pc & BIT(2)) |
pushl)

}

if (pc & BIT(6)) |
Push(2)

}

if (pe & (BIT(2) | BIT(6))) (
Push{0) LdL Push{(12) StL
Pop{2) Fush(4) LdL

t

if (pe & BIT{2)) |
JumpF (9, 2)

if (pc & BIT(6)) |
JumpF (9, 6)
}
apc T globalor(pch:
nrlitch (({apec >> 6) ° apc) & 15) {
case 5. qoto ms_2_6:
@: qoto ms_9;
came 9: qoto ms_6_9;
case 12: qoto ms_2_9;
case 13: qoto ma-2-6-9:
)

6_9:

(pc & BIT(2)) |
Push{l)

)

if (pc & BIT(6)) {
Push (2)

if (pe & (BIT(2) | BIT(6))) |
Push{0) LdL Push(12)
stL Pop{2)

t

if (pc & (BIT(2) | BIT(6) | BIT(9))) {
Push{4) LdL

t

if (pe & BIT(2)) (
JunpF {9, 2)

t

Af (pc & BIT(6)) |
JumpF (9, 6)

t

if (pc & BIT(9}) (
Ret {3)

t

ape = globalor{pc):

switch {((apc >> 6) " ape) & 15) |

csse 5 goto ms_2 6;

came 8 qoto as-9:

came 9: qoto as-6-9:

came 12: qoto am2-9:

came 13: goto ms_2 _6_9;

}

Liging 5 Meta-State Converted Exanpl e
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