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ABSTRACT

As computing becomes more ubiquitous, thereis a need for distributed intelligent human-
computer interfaces that can perceiveand interpret a user's actions through sensors that see,
hear and feel. A perceptually intelligent interface enables a more natural interaction between
a user and a machinein the sense that the user can look at, talk to or touch an object instead
of using a machine language. Although research on haptic (i.e., touch-based) interfaces has
received less attention in the past as compared to that on visual and auditory interfaces, it
is emerging as a new interdisciplinary field that holds much promise for the future.

The goa o the sensing chair project is to enable a computer to track.,in real time, the
sitting postures of a user through the use of surface-mounted contact sensors. Given the
similarity between a pressure distribution map from the contact sensors and a gray-level
image, we propose to adapt computer vision and pattern recognition algorithms for the
analysis of sitting pressure data. Work in three areas are proposed: (1) data collection for a
sitting pressure distribution database, (2) development of a real-timesitting posture tracking
system, and (3) performance evaluation o the tracking system. The realization of a robust,
real-time tracking system will lead to many exciting applications such as automatic control
o airbag deployment forces, ergonomics of furniture design, and biometric authentication

for computer security.
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1. INTRODUCTION

The goal of the Sensing Chair Project is to enable a computer to track, in real time,
the sitting postures of a user through the use of surface-mounted contact sensors. Given
the similarity between a pressure distribution map from the contact sensors and a gray-
level image, we propose to adapt computer vision and pattern recognition algorithms for
the analysis of sitting pressure data. This work involves: (1) data collection for a sitting
pressure clistribution database, (2) development of real-time sitting posture classification and
tracking systems, and (3) performanceevaluation o thesystems. The realization of arobust,
real-time tracking system will lead to many exciting applications such as automatic control
o airbag deployment forces, ergonomics of furniture design, and biometric authentication

for computer security. This work is divided into two parts:

e A real-timeclassification system for labeling a set of preselected typical sitting postures

in an office environment (i.e., Static Posture Classification).

e A real-time tracking system that labels a person's sitting posture at steady-state as

well as transitional postures (i.e., Dynamic Posture Tracking).

Preliminary work has focused on the construction of the Static Posture Classification
system. First, a Static Posture Database was established. The database contains a total of
1500 sitting pressure distribution maps from 30 individuals. Second, a real-time multi-user
Static Posture Classification system was developed. This system classifies sitting pressure
distributions with an overall accuracy of 96% correct. Future work involve:; the development
o areal-:ime Dynamic Posture Tracking system. A system like this is needed in order to
represent a person's posture during transitionsfrom one static posture to the next (e.g., from

seated upright to sitting with one leg crossed over the other).



The system uses pressure sensors (developed by Tekscan, Inc.) that interface with a PC
through a special interface board. They are mounted on a Herman Miller Aeron chair and
capture pressure distribution information of a user seated in the chair. The setup is shown
in Figure 1.1(a). The pressure information from the sensors is converted to an 8 bit raw
digital value that can be treated as a greyscale image. A sample sitting pressure distribution

map for posture Seated Upright is shown in Figure 1.1(b).

(a)

Fig. 1.1. (a) The Smart Chair. (b) An example of sitting pressure distribution maps
displayed as an 8-bit greyscale image. The top half of the image shows the pressure
distribution on the back of the chair, and the bottom half shows that of 1he seatpan. The
top, bottom, left and right sides of the image correspond to the shoulder area, knee area,
right side and left side of the person, respectively.

This work draws on aspects of many different fields. The remainder of this chapter
presents related work in computer vision and pattern recognition, intelligent environments,
pressure sensing, an overview of human anatomy, and ergonomics as it relates to sitting.
Chapter 2 describes the Static posture Classification system and gives performance results.
Finally, Chapter 3 concludes with a discussion on the planned implementation of the re-

maining goals.
1.1 Related Work in Computer Vision

Much emphasis in computer vision has been placed on developing compact representa-

tions of objects for recognition and pose identification (e.g., [28], [8]). Model-based methods



such as these perform matching between scene features and model features in their given
recognition task. These features typically involve shape and other geometrical properties of
objects. These systems work well but can break down when features cannot be extracted
from a scene (e.g., due to occlusion) or when multiple object or pose hypotheses cannot be
rectified.

This led researchers to study recognition systems using appearance-based approaches.
Appearanced-based methods for classification and localization of objects employ an object
model that is determined solely by the visual appearance of the object [45]. These models
include object and scene parameters that get encoded as greyscale variations in the images.
No user-defined feature-based model is needed. Section 1.1.1will discuss two commonly used
appearance-based methods: principal components analysis and linear discriminant analysis.
When the scene is dynamic, object modeling and tracking becomes more complex. Sec-

tion 1.1.2 overviews human modeling and tracking.

1.1.1 Appearanced-Based M ethodsfor Object Recognition

Appearance-based methods use an object model that is dependent solely on an object's
visual appearance. Thisisa combination of its shape, surface reflectance properties, posein
the scene. and illumination conditions. Shape and surface reflectance properties are intrinsic
to rigid objects. To obtain an object model, an object is imaged under varying pose and
illumination conditions. This process produces a set of training images where image pairs
whose imaging conditions were similar are correlated.

The collection of training images can be used as the object model without any further
processing. To recognize multiple objects a collection of training images is needed for each
object. Recognition of a test object in a scene (imaged under similar conditions to the
training images) is a matter of finding the closest training image to the test image. The
identity of the closest training image is taken as the identity of the test irnage. To perform
well under general conditions where illumination and view angle of the camera to the object
can vary, the training set must contain a large number of samples in order to adequately
represent these variations. The method for recognition just mentioned is a computationally

expensive approach. For images of size Rx(C, the training set is a collection of pointsin a



N-dimensional space, where N = RC. Computation of the distance to each training image
is therefore O(N). If. however, the training samples are images of compact objects, the
distribution of the training set can be represented by a low-order subspace of the original N-
dimensional space. For training sets of images such as these it is advantageous to represent
each training image by a vector in a lower dimensional subspace of the image space.

To obtain this low-dimensional representation, the technique of principal components
analysis (Karhunen-Loeve Expansion) can be applied to the set of training images. The
Karhunen-Loeve Expansion is given in in detail in [24]. Training of the system involves
obtaining an eigen-decomposition of the covariance matrix formed by the training vectors
(raster scans of training image samples). The eigenvectors of the covariance matrix form an
orthogonal basis that spans the image space of the training vectors. A training sample is
then represented by a vector of coefficients. Each element in this vector is the projection of
the training image onto one eigenvector. An image can be reconstructed from the coefficient
vector by summing the eigenvectors weighted by their corresponding coefficients. To reduce
the dimensionality of a set of data, only a subset of the eigenvectors is used for reconstruc-
tion. To minimize the mean square error of this representation, the eigenvectors with the
greatest variances (those corresponding to the largest eigenvalues) are used. Recognition
of an unknown test object involves projecting the test image onto the reduced number of
eigenvectors and finding the training instance (projected onto the eigenspace) closest to the
test object in the lower dimensional space.

PCA has been used in systems for object recognition and pose estimation [48], face
recognition [67], [31], [50], [4], [40], and single user posture classification [62]. Since the
training of a system with PCA is based solely on the visual appearance of the training
data, recognition (or pose estimation) faulters when trying to recognize objects imaged
under different illumination conditions, positions, orientations, scale, with occlusion or with
background clutter. Variations in illumination are usually overcome by normalizing the
greyscale values in training images and testing images. This only succeeds when there are
no other objects whose greyscale values can bias the normalization process in the scene.
Training and testing images are scaled to pre-set dimensionsto overcome variations in scale.

Thisisinhibited by both occlusion and background clutter.

R et o —



Early systems such as [48] make the assumption that objects, under no occlusion, can be
segmented from a scene. This system trains a single eigenspace, referred to as a parametric
eigenspace [47], on all of the training data from multiple objects and poses. Each object is
then represented by a manifold in the low-dimensional eigenspace, parameterized by pose.
Recognition of an object in a test image proceeds by finding the closest, manifold to the
projection of the test image in the eigenspace and its pose is given by the closest point
on that manifold. Methods to find the closest point on the manifold include binary search
[49] and pattern rejection [2]. This system works well when the training and testing images
contain a single object against a solid background. The system cannot handle occlusion and
background clutter. The problem of background clutter is handled in [46] by applying an
AND window to all images before training. This window indicates the area of each object
that is visible over every pose. It is not useful however if too much of the object is AND-ed
out after applying the AND window. It also does not address the problem of occlusion.

In [50] the authors introduce the concept of view-based eigenspaces (referred to as face
spaces). Here, a face space is formed for all images of faces taken at a particular orientation
(e.g., all frontal face images). The reasoning behind using an eigenspace for each view is
that it would be better to represent a complex distribution (all face orientations) by multiple
clusters (onefor each orientation). Thisis analogous to obtaining an eigenspacefor each class
of a data set where the best low-order representation for each class is found. Recognition
of a person is two-fold. First, the distance of a test image to each face space is computed.
This is called the Distance From Feature Space (DFFS). It gives the pose of the face in the
image (e.g., frontal, angled 45 degrees to the left). space corresponding to the view of the
face in the image. ldentification of the person then is a matter of finding the closest point
in the face space, the one that minimizes the Distance In Feature Space (DIFS). This view-
based method is used in our work for posture classification. Because we are doing posture
classification, and not person identification, we need only to find the minimum DFFS to each
of our posture spaces to obtain the posture class (e.g., sitting upright).

While the view-based method in [50] improved recognition accuracy of faces as compared
to the parametric approach, it had yet to overcome problems associated with occlusion

and background clutter. Systems using PCA to overcome occlusion and background clutter



include the use of eigenfeatures [50], local face areas [40], and a quadtree-based approach
[10]. In @l of these, training is performed on sub-regions of the training images. Recognition
involves combining the results of identified sub-regions of a test image. In [40] a Hidden
Markov Model is used on top of the eigendecomposition of the sub-regions of face images.
This allows the system to be able to recognize a test face that is not found in the training
set but is a compilation of sub-regions in the training set. The quadtree-based approach
in [10] gives an hierarchical eigen-representation of each image. Recognition proceeds from
a "coarse" level (the entire image) to "finer" levels (subimages). If an object is partially
occluded, those subimages that aren't occluded can provide ample information to recognize
the object and its pose.

Another popular appearance-based methodisthat of Linear Discriminant Analysis (LDA)
This technique is also known as Fisher Discriminant Analysis (FDA) and Discriminant Anal-
ysis. This technique, like PCA, reduces the dimensionality of a problem to make it more
manageabl e.

Training consists of finding the best projection of an N-dimensional set of dataof K classes
onto M dimensions, where M < V. LDA finds the M features that best discriminate between
the different classes in the data. This is done by minimizing the within-class distance while
maximizing the between-class distance. LDA has been used for face recognition [61], [4], [21]
and mobile robotics [68]. In order to train a system using LDA, N+ K (the dimension of
the data N plus the number of classes K) training samples are required. For vision problems
where images can contain thousands of pixels, this constraint is rarely met. To overcome
this, data is first projected onto an eigenspace to reduce the dimension. LDA can then be
applied to the reduced dimension data.

When applying LDA after PCA, or using PCA in classification, care must be taken in
the selection of eigenvectors used to represent the data in the eigenspace. Those features
(eigenvecrors) that best represent the data by minimizing the mean-square error are not
necessarily those that can bst discriminate between classes in the data [24]. For example,
one can describe a car as having 4 wheels and a windshield but cannot use these features to

differentiate between a sports car and a luxury car.
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1.1.2 Human Modeling and Tracking

This section describes work related to the tracking and understanding of human action
in image sequences. Those methods that employ a 3-D description generally believe that
32,
16],
[71]. Still others [52], [60], [37], [L7] use motion of regions of the body (as a whole or parts)

the 3-D description is necessary and sufficient for interpreting human motion ([25], [26], |

[54], [56], [70]). In contrast to this approach, others use appearance-based methods [1], |

to interpret action without reference to an underlying sequence of static images or poses.
These are termed directional motion recognition [17].

Those systems using a 3-D description utilize a 3-D object model to recover the pose of a
scene object in each frame of asequence. As with any model-based system. it is necessary to
be able to accurately extract features from the scene for tracking. Systems that maintain a
history of the 3-D model alignment with the scene object over time can predict future poses
of the scene object using a techniquelike Kalman filtering [26], [34], [56]. In [70], observed 2-
D blob features are probabilistically integrated into a dynamic 3-D skeletal model. The 3-D
model can be used to track the 2-D blob features through an extended Kalman filter. This
approach directly couples 2-D and 3-D information. It also incorporates learned behaviors
of human:; while performing a given task.

In [26] an arm is tracked against a solid background using a two cone model. A full
body cylindrical model is used in [56] and a 22 degree of freedom super-quadric model is
used in [25] to track human motion against complex backgrounds. It is not clear that these
methods can be directly extended to our problem of tracking a human:: by their sitting
pressure distributions since, in addition to modeling human shape, a moclel would need to
takeinto account the weight distributiori of a person. Inorder to extend thistypeof approach
to our domain, in the context of dynamic posture tracking, the 3-D model would need to
incorporate deformations since our object to be tracked, the human body, is not projected
onto an image plane but deforms against the surfaces of a chair. Such deformation could
be captured with a finite element model coupled with a physics-based model of the human
body.
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Appearance-based systems interpret action from a sequence of 2-D images. Systems that
use greyscale images to represent action include [16] and [69]. Here again, differences in body
type can affect system performance. In [71] body silhouettes are used in a Hidden Markov
Model framework. In [1] body contours and a simple 2-D body model are used to extract
body parts. Drawbacks to these approaches include dealing with complex backgrounds and
clothing and the necessity to examine the body as a whole, as opposed to regions of interest.
In our case, we do not suffer from cluttered backgrounds as there is a single person sitting
in the chair. Applying an appearance-based approach to our problem would be possible. A
set of features in the pressure distribution map could be fed into an HMM to learn desired
motion sequences.

Directional motion approaches examine blob-like and predefined body regions [52], [60],
[37], [17]. In [52] cyclic walking motions are recognized through repetitive motion. A feature
vector containing optical flow and periodicity measurementsis used to track humans. In [60]
an ellipsoid model of the body is used with optical flow measurements. These are combined
into a phase portrait from which force, rotation, and strain dynamics are computed. In [37],
two ellipsoids are used to model the body. One models motion region silhouettes and the
other motion magnitudes. Gait is characterized by measures such as centroid movement and
torque o the two ellipses. [17] use Motion Energy Images and Motion History Images to
form a two component view-specific temporal template. This method temporally segments
action sequences automatically and in real-time. The blob-like approach does not seem well
suited for our problem. Problems can arise when, for example, the back is no longer leaning

against the seat back.
1.2 Intelligent Environments

Computers can perform astronomical computations, yet they aren't intelligent. They
do what we tell them to do. We enter commands and the computer executes them. A
computer is aware of its surroundings only if the necessary information has been entered
by a user through the low bandwidth devices of mouse and keyboard. Machine intelligence
would allow a computer to interpret and anticipate the needs of a user while interacting with

his/her surroundings. Intelligence can be achieved by giving a computer human-like senses



such as sight, hearing. and touch. This can be done by interfacing digital cameras for eyes,
microphones for ears, and pressure sensors for skin along with algorithms that can interpret
sensory input from these devices and from it, predict the user's wishes.

We can extend the notion of intelligent machinesto include typically non computational
aspects of our surroundings. such as aroom, achair, a desk, and clothing. The range of these
iterns is endless. Most of us are familiar with the TV series Star Trek and the chronicles of
its crew on the Starship Enterprise. The crew is able to naturally interact with the ship,
which can locate and identify members of the crew and interpret their commands. This
fictional intelligent setting is within reach of modern reality. Systems are being developed
that can recognize, locate and track people, interpret gestural commands, understand natural
language, and use all of this information to predict and assist the needs of a user (e.g., [12],
51, [39], [23], [22])-

Before creating any intelligent environment it is necessary to define what an intelligent
environment entails (i.e., what it should be, what types of sensory capabilities it should
possess and what roles it can play in the environment). There is debate as to what an
intelligent, environment is. To some [12], it must be invisibleto the user and require minimal
hardware. To others [51], [39], it and the user are intertwined as in the case of smart clothes
and cyborgs. Still others fall in between these two extremes [23], [62], [22]. To all, an
intelligent environment must be able to assist the user in various tasks. These tasks depend
on the type of human-computer interfacing defined, which include gesture, speech, affect,
context. and intent, and on the desired roles to be performed by the intelligent environment,
such as climate control.

Work in creating rooms Wth intelligence is currently being investigated by many re-
searchers. This includes the smart room [51], the intelligent room [12], [66], the intelligent
classroom [23], and intelligent houses [42].Cameras are placed in a room for person tracking,
identification, and gesture recognition. Speech recognition systems are used to interpret
user commands and for sound localization. Pressure sensors can be used to track posture in
chair and for person localization. Communicating from environment to user is accomplished

through visual displays and synthesized speech.
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The current state of individual subsystems (e.g., person tracker, speech recognition) can
be used to aid other systems by restricting their possible inputs (e.g., where to look or a
subset of the vocabulary). Knowledge about the location of a person can be used to restrict
and predict a person's next command. If a person were standing by a visual display, that
would be a good indication that the user's speech and to where on the display the user is
pointing could be coupled together [22], [51], [12]. In the case of a classroom, multi-media
records o lectures can be obtained that link simultaneous events such as gesture, audio, and
note taking together.

Coupling the input of two sensors is not trivial, as it is for a human who can combine
verbal and spatial information effortlessly. In addition to the difficulties of implementing
individual sensory systems are the difficulties in integrating these systems. An architecture
to integrate sensory systems must also provide an easy manner to add new systems. In [ 1]
the author argues for a distributed architecture, called Scatterbrain, for combining sensory
systems based on the subsumption architecture of [6], [7] and on [41]. This is advantageous
over a monolithic approach because it permits individual systems to be relatively indepen-
dent of each other and because integrating new systems is easier. With interacting sensory
systems, an environment can act as a personal assistant would. For example, if the location
of a city was requested by a user, a smart room could check if any other information about
that city was stored in its knowledge base and ask the user if it should be supplied as well.

In adtlition to making an entire room or house intelligent, much research is being done
on giving intelligence to typically non-computational objects such as clothing [51], [39] and
chairs [62], [30], [15]. Many of the same sensory systems found in smart rooms have been
embedded in clothing and cyborg-like augmentation. These include vision and speech recog-
nition systems. A system to indicate the presence of a person in a car seat for situation
appropriate airbag deployment was developed in [36]. In [62], a real-time system to classify
sitting postures based on pressure distributions was developed. Work in virtual reality-like
environments includes chairs with dome-like helmets onto which images can be projected,
interaction through either a joystick, keyboard, or touch screen [30]. Airline seats contain-
ing air chambers that inflate and deflate have been developed in [15]. A system that could

automatically detect pressure peaks would be ideal to regulate the air chambers.
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1.3 Pressure Sensing

The design of products, such as seats, is a lengthy and expensive process. It iterates
through prototyping and evaluation, the latter of which is often in the form of subjective
assessments by test subjects. Thereis now way to do long term systematic evaluation of seat
comfort. Subject testing is inadequate due to the lack of nervesin and around the thighs
and buttocks areas. Comfort is perceived more as a lack of discomfort. This has led to the
development of pressure sensing devices to measure pressure distributions in products that
support the body (e.g., seats, shoes, and beds).

Some early pressure sensing methods involved the use of pressure sensitive inks, ther-
mographs, mechanical springs, and capacitance bridges [29], [13]. Recently there has been
commercial developments in pressure sensing devices [34], [63]. Application of these devices
include the measurement of: (1) bite pressure (with U-shaped sensors), (2) shoe pressure
[5], [14], [43], (3) pressure from clinical support surfaces (e.g., hospital beds) [3], and (4)
sitting pressure distributions. It is the understanding and interpretation of sitting pressure
distributions to which this work is devoted.

Current work in the use of pressure sensing devices to measure sitting pressure distribu-
tions is focused on relating these distributions to seat comfort [34], [58] [64], [65], [3], [13],
[33], [55]. The exception to this is the work in [62] which determines sitting posture (e.g.,
sitting upright, leaning forward) from sitting pressure distribution data and is the basis of

this work..
1.4 Anatomy

This section is meant to give the reader a bare bones understanding of anatomical struc-
ture and its relation to sitting pressure distributions. Covered are anatomical terminology,
the pelvis, the spine, and the legs. A glossary of terms can befound in Appendix B.

Starting with terminology, the threefundamental planes of referenceare used to depict the
structural arrangement of organs, bones, etc, in the body. Figure 1.2 depicts the commonly
used coronal, midsagittal. and transverse planes. Directional terms such as anterior (toward

the front) vs. posterior (towards the back), medial (toward the midline of the body) vs.
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lateral (toward the side of the body), and superior (toward the head) vs. inferior (away from

the head) are used to locate and relate different parts of the body.

Midsagittal | Coronal

-

Transverse < o >

Fig. 1.2. Threefundamental planes.

Two key elementsinvolved with sitting are the pelvis and spine. One iraportant function
of the pelvisis that it transmits weight from the upper body to theischial tuberosities while
seated. The ischial tuberosities are commonly referred to as the sitting bones. Figure 1.3
depicts the human pelvis. The ischial tuberosities are the two bottom-most protrusions of
the pelvis.

Figure 1.4 shows the natural curve of the spine. The lumbar region of the spine is
of particular importance in sitting posture. Proper support of this region while seated to
maintain the lumbar curve, sometime referred to as lumbar lordosis, is necessary for both
comfort and health [27].

The vertebrae of the spine are connected together by intervertebral discs (Figure 1.5).
These are the cartilage discs that separate the vertebrae and provide flexibility and cush-
ioning for the spine. Improper posture can place stress on these discs which, over time, can
cause serious damage to them and the surrounding joints and nerves.

Another key component in sitting posture are thelegs. Figure 1.6 shows the major bones

in the leg. While seated, pressure is distributed along the length of the thigh.
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Fig. 1.3. An x-ray of the pelvic area.
(http://wwv scar.rad. washi ngt on. edu/ RadAnat oy/ Pel vi s/ Pel vis. htm)

Cervical
Vertebrae

Thoracic
Vertebrae

Fig. 1.4. The normal, healthy curve of the spine.
(http://www.mc.maricopa.edu/academic/cult sci/anthro/origins/webanatomy/spine.html)
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Fig. 1.5. A section of the spine showing the intervertebral discs. (www.scoi.com)

Knee Joint

Fibula

Calcaneus

Fig. 1.6. Theleg. (http://www.mc.maricopa.edu/anthro/origins/webanatomy/leg.html)
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This discussion, the figures in particular, has been centered around the skeletal system.
Also of importance to sitting posture is the muscular system. When the body is in an
unstable position, a position in which it is not balanced over the pelvis such as leaning
forward, rmuscles contract to keep the body from falling over. Though a person appears still,
their muscies may be hard at work. The effects o this will be discussed further in the section

in this chapter on Sitting Postures at Work.
1.5 Ergonomics and Sitting

In recent years there has been an increase in cumulatiue trauma disorders associated with
working environments. These are disorders of the muscles, tendons, ligaments, and/or nerves
caused or aggravated by repetitive motion activity that applies stress to the body. This has
precipitated the need to design work environments that are healthy for people.

Here vie discuss the role of ergonomicsas it applies to seating. Ergonomics deals with the
relationships between workers and their environments. Section 1.5.1 contains a discussion
on anthropometrics. Section 1.5.2 describes proper chair fit and the results of an incorrectly
fitted chair. Thefinal section on ergonomicsis Section 1.5.3 which discusses sitting postures

in a work environment.
1.5.1 Anthropometrics

The Oxford English Dictionary defines anthropometry as the measurement of the human
body with a view to determine its average dimensions, and the proportions of its parts, at
different ages and in different races or classes. Examples of anthropometric measurements
include popliteal height (The vertical distance between the floor and the crease just behind
the knee of a seated person.), seat depth (thedistance from the buttocks to the back of the
knee), and elbow rest height (the height o the elbow above the surface on which a person
sits when the torso and thighs form a right angle) [35].

Ergonornicists use anthropometric measurements to designs product:; to fit a desired
range of people. Thisrangeis usually inclusive of a 5th percentilefemale and 95th percentile
male. (This assumes that all females below the 5th percentile have dimensions that are

smaller than those of the 1st percentile of males and all males above the 93th percentile




- 16 -

have dimensions that are larger than those of the 100th percentile female). A person that
falls into the 50th percentileis an average-sized person. By designing to fit all people in the
5th-to-95th percentilerangeit is hoped that the product will fit 95 percent of the population.
But this rnay not be attainable.

All males above the 95th percentile for one measurement are not necessarily the same
as those who fall above the 95th percentile for a different measurement. Much of the an-
thropometric data available to ergonomicists comes from military populations. The entire
population has greater amounts of extremely small and extremely large people. This results
in the effective percentile range being smaller than the desired range.

Ways to compensatefor this reduced range are to make products adjustable to differently
sized users and to offer the same product in different sizes. These steps rnake the product

better fitted to an individual.

1.5.2 Chair Fit

Office workers spend a large percentage of their time at work seated in their chairs. A
chair that adjusts to a person's size and does not restrict a person as they move from one
task to arother is important for a healthy and productive work environment. The chair we
use in our work, the Herman Miller Aeron chair, comes in three sizes to better fit people on
the small and large ends of the size spectrum.

A chair's height should be adjustable to fit a wide range of people. Ideally, the chair
height (as measured from floor to the top of the seatpan) should be close to the popliteal
height of the person sitting in it. This is to distribute pressure from the seatpan over the
entire back o the thigh. A chair that is adjusted too low would increase the pressure under
the ischial tuberosities. A chair that is too high would increase the pressure under the distal
thigh. Both of these, over time, would constrict blood flow in the area of increased pressure
and make the person uncomfortable, and most likely decrease their productivity [38].

Other common chair adjustments include seatpan angle, seat back tilt.,and lumber sup-

port. The later isimportant to maintain the lumbar curve.
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1.5.3 Sitting Postures at Work

A variety of tasks induce a variety of sitting postures at work. People lean forward when
performing work on their desks such as writing. They sit up when typing on a keyboard.
When their phone rings, they lean to the side to answer it. They lean back and slouch when
they want to rest. And they cross their legs when talking with a colleague.

Changing posture, whether due to a change in the task at hand or simply a need to
break from the task, has benefits. Alternatingly contracting and relaxing muscles increase
circulation. Movement also allows the spine to be nourished. This is because there are
no blood vessels in the spine. The only way to provide nutrients is by moving the fluid
around the spine through body movement. Joints and ligaments also benefit therapeutically
from joint movement. Continual change in sitting posture prevents maintaining awkward or
non-neutral positions of the spine. prolonged compression forces on the discs and localized

contact stresses.
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2. PRELIMINARY RESULTS

This chapter describes the preliminary results that have been obtained so far on the
Sensing Chair project. The overall goal of this project is to develop a robust real-time
system for tracking a person's sitting posture using surface-mounted pressure distribution

sensors on the seatpan and the back of the chair. This work is divided into two parts:

¢ A real-timeclassification system for labeling a set of preselected typical sitting postures

in an office environment (i.e., Static Posture Classification).

e A real-time tracking system that labels a person's sitting posture at any given time,

whether it is a transitional or steady-state posture (i.e., Dynamic Posture Tracking).

The preliminary work focused on the construction of the Static Posture Classification
system. First, a Static Posture Database was established. The database contains a total
of 1500 sitting pressure distribution maps from 30 individuals (half male and half female)
who contributed 5 samples for each of 10 preselected postures. Section 2.2 describes the
postures that were selected, the anthropometrics of the subjects, the procedures used for
data collection, and the data manipulation. Second, a real-time multi-user Static Posture
Classification system was developed. Thissystem classifiessitting pressure distributionsfrom
individuals who either contributed samples to the database, or those whose anthropometry
is represented in the database, with an overall accuracy of 96% correct. Section 2.3 presents
the implementation of the Static Posture Classification system, and its evaluation. The

hardware system for capturing pressure distribution maps is briefly described in Section 2.1.



2.1 Sitting Pressure Distribution Measurement System

The sensing system used in the Sensing Chair Project is the Body Pressure Measure-
ment System (BPM S) (Tekscan, Inc, South Boston,MA). It consists of two identical surface-
mounted pressure-sensitive transducer sheets, their interface electronics, and a PC interface
board. Tekscan also supplies Windows software that captures and displays pressure maps
from the sensor sheets.

Each sensor sheet contains a flexible printed circuit array of 42x48 pressure sensing ele-
ments (sensels). The sensels are uniformly spaced 10 mm apart. The overall effective sensing
areais 41 x 47 cm. For the Sensing Chair Project, the two sensor sheets have been mounted

on the seat back and seatpan of a Herman Miller Aeron chair (Figure 2.1).

Fig. 2.1. The Aeron Chair. (http://www.hermanmiller.com)

Each sensel acts as a variable resistor. Its resistance is determined by the normal force
being applied to its location. When unloaded, its resistance is high. As an applied force is
increased. its resistance decreases. The resistance is converted to an 8-bit digital value. The
interface electronics and PC interface board can capture the two pressure distribution maps
at rates up to 127 Hz. The pressure maps can be visualized as a greyscale image. Figure 2.2
is an example of the pressure maps captured with a person seated upright in the chair.

The irnage shown in Figure 2.2 is subject to noise due to two sources. inherent Sensor
Noise, and Sensor Sheet Deformation. Sensor noise can be seen as the local abrupt changes
in greyscale values. Sensor sheet deformation introduces pressure artifacts into the sitting
pressure distribution map that are the result of the sensors bending around and conforming

to the chair. The pressure sensors in the Body Pressure Measurement System were designed



Fig. 2.2. An exampledf sitting pressure distribution maps displayed as an 8-bit greyscale
image. The top half of the image shows the pressure distribution on the back of the chair,
and the bottom half shows that of the seatpan. Thetop, bottom, left and right sides of the
image correspond to the shoulder area, knee area, right side and left side of the person,
respectively.



to be placed on firm flat surfaces. The Aeron chair is contoured to fit the human body. To
affix the pressure sensors to the chair, their corners and edges have been wrapped around the
edges of the chair. This causes pressure artifactsto appear in the sitting pressure distribution
maps (e.g., see the small pressure areas in the upper-left and upper-right corners of Figure
2.2). Removal o sensor noise and pressure artifacts is performed by a process called cleaning

and will be discussed in detail in Section 2.2.5.
2.2 Static Posture Database

There is no known publicly accessible database of sitting pressure distribution data. We
have therefore collected a small database containing Static Sitting Pressure Distribution
Maps. It provides the necessary training data for the development of a Static Posture
Classification system, as well as data needed for the evaluation of the clasification system.
The collection of a database containing dynamic sitting pressure distribution data will be
discussed in Chapter 3.

Section 2.2.1 describes the set of postures we have chosen for the Static Posture Database.
That is followed by a description of the software used to collect the pressure distribution
data. Section 2.2.3 provides information on the subjects from whom data was collected. The
procedure for data collection is given in Section 2.2.4. Next isa section on the preprocessing
of the raw sitting pressure maps to remove sensor noise and sensor sheet deformation pressure
artifacts. Section 2.2.6 describes the sitting pressure distribution maps for all postures.
Section 2.2.7 focuses on feature extraction of sitting pressure distribution maps. Finally,

Section 2 2.8 summarizes data clustering results using the K-Means algorithm.

2.2.1 Postures

The postures contained in the Static Posture Database are Upright, Leaning Forward,
Leaning Left, Leaning Right, Right Leg Crossed, Left Leg Crossed, Leaning Left with Right Leg
Crossed, Leanzng Right with Left Leg Crossed, Leaning Back, and Slouching. These postures
are representative of the typical sitting postures that can be found in an office environment

[38].



What follows is a general description of each posture. The posture names are self-
explanatory so skipping this section should not affect the understanding o the rest of this
document. The reader should look at Table 2.1 to become familiar with the abbreviations
used for the posture names as postures will commonly be referred to by their abbreviations.

For posture Upright a person is sitting comfortably upright in the chair with both feet flat
on thefloor. Their hands and forearms may either be on the lap or on the armrests. The back
may rest against the back of the chair but does not push against it. In the Leaning Forward
posture a person's trunk is angled forward from the waist. There is usually no pressure
applied on the backrest of the chair except for a small pressure area near the lumbar region.
In posture Leaning Left a person has their weight centered over the left sitting bone. Placing
the left arm on the armrest is optional for the person. In Leaning Right, a person's weight
is centered over the right sitting bone. Placing the arm on the armrest is again optional.

Posture Right Leg Crossed is when the right leg is crossed on top of the left leg. Usually,
for women' the right knee is over the left knee and for men, the right ankle is on the left
knee. Posture Left Leg Crossed has the left leg crossed on top of the right; leg. Usually, for
women, the left knee is over the right knee and for men, the left ankle is on the right knee.
For posture Leaning Left with Right Leg Crossed the person's weight is over the left sitting
bone while having their right leg crossed. The arm may rest on the left armrest. In posture
Leaning Right Left Leg Crossed the person's weight is over the right sitting bone while their
left leg is crossed over their right leg. The arm may rest on the right armrest.

In the: Leaning Back posture, a person's upper torso presses against the back of the
chair. Posture Slouching is when a person's pelvis is positioned toward the front edge of the
seatpan. For brevity, throughout the rest of this document the postures will commonly be

referred to by their abbreviations listed in Table 2.1.

2.2.2 Static Posture Acquisition Software

This section describes the software developed to collect sitting pressure clistribution maps.
This software was needed to obtain data for the Static Posture Database. A program was

written in Microsoft Visual C++4 6.0 to run under Windows 98. It uses an API library




Posture Name

Abbreviation

Upright

Leaning Forward

Leaning Left

Leaning Right

Right Leg Crossed

Left Leg Crossed

Leaning Left with Right Leg Crossed
Leaning Right with Left Leg Crossed
Leaning Back

Slouching

N
LNF
LNL
LNR
RLC
LLC

LLRLC
LRLLC
LNB
SL

Table 2.1 Posture names and their abbreviations.




supplied by Tekscan that permits direct access to the BMPS interface board. This pro-
gram, called Sitting Posture Acquisition, automatically records and stores sitting pressure
distribution maps for the Static Posture Database.

Figure 2.3 shows the main window of the Sitting Posture Acquisition program. The
experimenter is able either to enter information of the subject or to collect data from the

subject by clicking on the desired button.

£- Sitting Posture Acquisition

B L ;..m»&-u....».,...u . :
¢ Subject
i dnfo oo

About

Fig. 2.3. Static Posture Acquisition program.

The Subject Info button opens a dialog box in which the experimenter can enter the
following information about the subject: (1) a unique identification name (for anonymity of
the subject), (2) subject's height, (3) subject's weight, (4) subject's age, (5) subject's gender,
(6) height of the chair', and (7) comments by the experimenter (e.g., how the subject crosses
his or her legs). For female subjects the unique identification name (Subject I1D) is F'# ,
where # is a number. For male subjects the Subject ID is M#. The subject information is
saved in atext file with the name of the unique Subject ID of the subject.

The Collect Pressure Data button opens a dialog box that assists the experimenter by
prompting her with the posture name for the nest sample of pressure distribution maps.

Stepsinvolvedin the data collection process will be explained in more detail in Section 2.2.4.

2.2.3 Subjects

A total of 30 subjects (15 females and 15 males) participated in data collection. Five
samples for each of the ten postures were collected from each subject. Therefore, a total
of 150 samples were collected for each posture. Subjects were selected on the basis of their

overall size. The goal was to obtain subjects with a wide distribution of weight and height.

lsee Section 2.2.4 for the importance of chair height
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The range, mean and standard deviation for subject's height, weight, and age, chair
height, and subjective assessment of paddedness have been computed for all of the subjects
as well as for the female and male subjects separately (see Table 2.2). Paddedness is a
subjective assessment of the subject's build by the experimenter to describe the fitness in
the torso and upper leg region of the subject. The range of paddedness is 1 to 3, where 1
is not paddeded and 3 is well padded. Subjects that are well padded tend to be overweight

while those that aren't edge towards being skinny and/or muscular.

Subject Subject | Subject | Subject | Chair

by Statistic | Height | Weight Age Height | Paddedness

Group (in.) (Ibs.) | (years) | (in.)

Female | Range 60-70 | 100-185 | 18-60 | 0-3.125 1-2
Mean 65.867 | 139.067 | 30.300 | 0.833 1.333
StdDev 2475 | 21171 | 14.446 | 1.082 0.488

Male Range 66-75 | 146-260 | 19-37 | 0-4.75 1-3
Mean 70.600 | 177.400 | 28.133 | 2.476 1.60
StdDev 2.667 | 33.032 | 6.334 1.220 0.828

All Range 60-75 | 100-260 | 18-60 | 0-4.75 1-3
Mean 68.233 | 158.233 | 29.267 | 1.655 1.467
StdDev 3.491 | 33513 | 11.020 | 1.408 0.681

Table 2.2 Database statistics computed for femal e subjects, male subjects and all subjects.

A plot of the subjects' height vs. weight can be seen in Figure 2.4. Male subjects' data
are displayed with an '." and female subjects' data are displayed with a ’x’. The plot shows

that we succeeded in collecting data for subjects over a wide range of height and weight.
2.2.4 Procedure

Since the building of the Static Posture Database took place over several weeks, a col-
lection procedure was developed to standardize the collection of data. 'The steps in this

procedure are outlined below.
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Subject Height vs. Subject Weight [x-female, -male]
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Fig. 2.4. The distribution of subject height and weight.
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. The subject is given a brief description of the Static Posture Classification Project and
informed of the types of postures and number of samples of each posture that will be

collected.

. The subject is then familiarized with sitting pressure distribution maps by viewing

their sitting pressure distribution data on a computer monitor.

. The chair height is adjusted to properly fit the subject. The height of a chair can dra-
matically change the pressure distribution pattern on (especially) the seatpan. When
the chair is too low or too high, a person's weight is mostly supported by the back or
the front edge of the seatpan, respectively. The experimenter adjusts the height of the

chair such that pressure seems to be evenly distributed across the subject's thighs.

. Data collection begins by opening the Sitting Posture Acquisition program (see Fig-
ure 2.3). The experimenter clicks on the Subject Info button and enters the relevant

information in the dialog box shown in Figure 2.5.

. To collect data, the experimenter clicks on the Collect Pressure Data button. The Data
Collection dialog box (Figure2.6a) opens and the experimenter click:; the Start button

to begin the collection process (see Figure 2.3).

. The program prompts the subject to sit in a specified posture. When the subjects
complies, the experimenter clicks the Capture button to capture the current sitting
pressure distribution map and then the Save Map button to save the sitting pressure

distribution map to afile (Figure 2.6 b and c).

When a sitting pressure distribution map is saved, the Sitting Posture Acquisition
program saves the pressure map in an ASCII file with a name that is indicative of the
subject, posture and sample number. All data files for a given subject are stored in
one directory. The directory name is taken as the value of the Subject ID field of the

Subject Info dialog box. The naming convention of the data filesis as follows:

< Subjectl D >< PostureAbbreviation > . < Sample Number >



Fig. 2.5. The Subject Info dialog box.

—————————
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SPA Data Collection

SPA Data Collection

Fig. 2.6. (a) Click Start to begin data collection. (b) The data acquisition program
prompts for a posture. (c) The current sitting pressure distribution map is stored in afile
after the Save Map button is clicked.



For example, the five data files for posture Right Leg Crossed for subject FO4 would
be given the names FO4RLC.1, FO4RLC.2, FO4RLC.3, FO4RLC.4, FO4RLC.5.

7. Step 6 is repeated until all samples for all postures have been collected.

2.2.5 Data Preprocessing

As described at the beginning of Section 2.1, there are two types of noise found in the
sitting pressure distribution maps due to either sensor noise or sensor sheet deformation.
This section describes the methods used to clean the sitting pressure distribution maps.
Cleaning the sitting pressure distribution maps involves smoothing the raw sitting pressure
distribution mapsto removesensor noise, and removing pressure artifacts from the smoothed
maps.

Figure 2.7 shows a raw sitting pressure distribution map for posture N. This s the first
sample of posture Upright collected for female subject number four (F04N.1) The image is
shown as a 3-D height map, where the height above the z=0 plane indicates the pressure
value. Large height values indicate high pressure values in the sitting pressure distribution

map.

\
o

IV‘A ) ,"
s
S

AN N
‘;\" ‘\'\;\/

I N0 /27

o APK
S

Fig. 2.7. Raw sitting pressure distribution map for posture Upright (sample FO4N.1).
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As one can see, the raw sitting pressure distribution map is extremely noisy. The first

step in data preprocessing is to smooth the sitting pressure distribution map. The 3x3

smoothing kernel shown below is applied to the sitting pressure distribution map.

0.5]1.0]05
1
= 1.011.0 1.0
0.5]1.0]0.5

The dramatic affects of applying the smoothing operator to the pressure map in Figure

2.7 can be seen in Figure 2.8. This does not remove all of the noise in the sitting pressure

distribution map. In addition to noisy pressure values, there are pressure artifacts throughout

the sitting pressure distribution map.
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Fig. 2.8. Sample FO4N.1 after smoothing.

The pressure artifacts due to Pressure Sheet Deformation occupy significantly smaller

areas than any of the subject induced pressure componentsin thesitting pressure distribution

map. They usually lie near the corners and along the edges of thesitting pressure distribution

map where the sensors fold around the chair. These artifacts are removed in a two-step

process. First, the connected components in the sitting pressure distribution map are found



by astandard component labeling algorithm [57]. Second, those components whose areas are
smaller than ten percent of the largest component area of the sitting pressure distribution
map are deemed to be pressure artifacts and are removed. The cleaned version of the sample

upright posture is shown in Figure 2.9.
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Fig. 2.9. Sample F04N.1 after artifact removal.

2.2.6 Description of Sitting Pressure Distribution Maps

What follows is a general description of the sitting pressure distribution maps after they
have been cleaned, that is after smoothing and pressure artifact removal. For all postures,
there are usually peaks in the sitting pressure distribution map that correspond to the
the sitting bones of the pelvis. Most sitting pressure distribution maps show two distinct
peaks, one for each sitting bone. Occasionally, the peaks are not distinct as compared to
the pressure values around the posterior distal thigh. This case generally occurs with more
padded subjects. Figure 2.10 shows a sitting pressure distribution map for a padded subject.

Sometimes there are secondary peaks located down the thigh and to the outside o the
leg to peaks from the sitting bone. These are believed to result from a pressure increase due
to the bony bulge at the end of the femur near the hip joint called the greater trochanter.

which is distal and lateral to the sitting bones. Figure 2.11 shows an x-ray of the pelvic area
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Fig. 2.10. A sitting pressure distribution map of a padded person.



with the greater trochanters labeled. Figure 2.12 shows a typical sitting pressure distribution

map for posture N compared to one that has secondary peaks.
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Fig. 2.11. X-ray of a pelvis. The greater trochanters are labeled on =ach femur.
(http://www.scar.rad.washington.edu/RadAnatomy/Pelvis/PelvisLabelled.html)
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Fig. 2.12. A sitting pressure distribution map showing secondary peaks.



The generalities mentioned so far are applicable to all postures. Below are descriptions

of the sitting pressure distribution maps for each posture. Descriptions for both the seatpan

and the seat back are given.

N

LNF

LNL

LNR

RLC

LLC

Posture Upright: Figure 2.13a

Seatpan: Usually one connected component where areas of the pressure distribution
corresponding to the left and right thighs diverge. It is possible to have two separate
components.

Seatback: One trapezoidal or butterfly-like region is common, usually with two ver-
tically symmetric lobes. There can be two components separated by the area on the

chair over which the spine is positioned.

Posture Leaning Forward: Figure 2.13b
Seatpan: Similar to N but pressure is more evenly distributed across the length of the
leg.

Seatback: There is very little pressure on the seat back.

Posture Leaning Forward: Figure 2.13¢
Seatpan: There is an increase in pressure and area on the left leg and a decrease on
the right leg as compared to posture N.
Seatback: Pressure shift to the left side. Back pressure region can resemble that of N

or can show only one of the vertical |obes.

Posture Leaning Forward: Figure 2.13d
Similar to LNL but flipped.

Posture Right Leg Crossed: Figure 2.13e
Seatpan: Left leg is of same shape as that in posture N. The right leg reduces to a
sphere with an increase of pressure around the sitting bones. There can aso be an
increase of pressure around the left knee.

Seatback: Similar to posture N.

Posture Left Leg Crossed: Figure 2,13t
Similar to RLC but flipped.




LLRLC

LRLLC

LNB
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Posture Leaning Left with Right Leg Crossed: Figure 2.13g
Seatpan: The pressure on left leg is greater than that of posture RLC. Thereis adso a
decrease in pressure of right sitting bone.

Seatback: Similar to posture LNL.

Posture Leaning Right with Left Leg Crossed: Figure 2.13h
Similar to LLRLC but flipped.

Posture Leaning Back: Figure 2.13i

Seatpan: Similar in shape to posture N. The pressure of the sitting bone peaks is
normally reduced. Thereis an increase in pressure along the entire leg.

Seatback: There is an increase in pressure compared to posture N. The area of the
back component may increase. In the case of a lightweight person, there may not be a

great amount of pressure placed on the seat back.

Posture Souching: Figure 2.13]

Seatpan: The sitting bones slide forward towards the middle o the chair. The main
component looks like an elliptical blob. Any sharp pressure peaks from the sitting
bone:; are reduced from those of posture N.

Seatback: The area of the main component decreases. What corresponds to the shoul-
der areain posture N is located slightly lower down the back of the chair. Thereisthe
possibility of the neck and/or head pressing against the back of the chair as either an

extension of the main component or as a separate component.

2.2.7 Feature Extraction

Many features can be extracted from the sitting pressure distribution maps. Some of

these are tne following:

e I[schial tuberosity (sitting hone) localization

e Total force

e Average pressure



Fig. 2.13. Samples of cleaned sitting pressure distribution maps for all postures: (a) N (b)
LNF (c) LNL (d) LNR (e) RLC (f) LLC (g) LLRLC (h) LRLLC (i) LNB (j) SL.
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e Maximum pressure value

e Number of components

Areas of the largest components in the pressure map

Angle of divergence o the legs, major axis, minor axis

Once the pressure peaks that correspond to the sitting bones are known, the distance
between them and the orientation of the line connecting them can be calculated. These
features can be used to rotate and scale a sitting pressure distribution map. The sitting bone
distance for females usually islarger than that for males (F: 15.517+0.550, M: 13.352+1.623).
This measurement could be used to predict the gender o a person sitting in a sensing chair.

Sitting bone localization. total force, average pressure, maximum pressure value, number
of components, component areas, leg divergence angle, and leg orientations can be automat-
ically calculated for 90 percent of the pressure distribution maps. They will be useful for a

feature-based static posture classification or tracking system.

2.2.8 K-Means

K-means is a clustering algorithm that takes a set of N data samples o dimension d
and splits it into K clusters. This algorithm was applied to the Static Posture Database
to investigate whether the natural clustering of the database samples corresponds to that
according to their posture labels’.

K-means works by randomly initializing K clusters. The means of each of the K clusters
are calculated. Then for each sample, its distance to each cluster is computed as the Eu-
clidean distance to each cluster mean and it is reassigned to the cluster corresponding to the
smallest distance. The means of the new clusters are computed and the reassignment step
is repeated until the clusters do not change [20].

The K-means algorithm was applied to the data in the Static Posture Database under
various scenarios. It was first applied to cluster samples into different postures and then to

find clusters within a given posture

2The author thanks Tim Stough and Jennifer Dy for the K-means MATLAB code
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Fig. 2.14. Output from running K-means on the data in the Static Posture Database with

K = 10.
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To find clusters of samples representing different postures K-means was run on smoothed
sitting pressure distribution maps. The number of clusters was varied from 10 to 20, the
dimension of the data was 4032, and the number of samples was 1500. Figure 2.14 shows
the mean:; it computed for X' = 10. Whereas some of the cluster means (e.g., Figure
2.14f) are very similar to the posture mean of the database samples (in this case Slouching,
see Figure 2.16}), others appear to be averaged from samples with different posture labels.
To investigate this further, the number of samples from each posture that contributed to
each cluster mean are tallied in Table 2.3. As can be seen, the clusters do not necessarily

correspond to individual postures.

Cluster | N | LNF | LNL | LNR | RLC | LLC | LLRLC | LRLLC | LNB | SL | Total
a |0 0o | o |39 ] 2| e 0 0o | 0| 113
b ol 5 | o | 7| 6 | 2| 60 0 2 |0 | 152
¢ l3r| 24 |16 4 |36 |29 o 2 7 | o0 | 155
d 31| o | 5 | 5 | 53 |6 | 38 36 | 25 | 4 | 236
e a1 0o |21 2 |3 |2/ 17|13 | 1| w46
£ lol o | o] o] o |1 | 0 9o | 111 122
e 15|l ol 7 w0 o g | 12 | 0! 20
hol7 082 5 2 | 0 | o0 0 0 Y
P24 W |2 2% 14|15 7 13 10| 155
i 5 0 o0 0 0|2 o0 1 80 | 34 | 122

Table 2.3 Number of samples from each posture that belong to each cluster from K-means
with K=10. The cluster labels in the table correspond to the image of the cluster mean of
Figure 2.16.

Appendix A contains figures of the cluster means and tables of the number of samples
from each posture that contributed to each cluster mean for K = 12, 14,16, 18, and 20.

We then investigated clustering the data in the eigenspace. A single eigenspace was
trained on the 1500 samples in the Static posture Database. The training samples were then
projected onto the first D eigenvectors of the eigenspace to obtain a vector of weights for

each training sample. The value of D varied from 5 to 250. The weight vectors were then
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clustered using K-means for various values of K. The results of clustering in the eigenspace
also produced cluster means that did not visually resemble one of the 10 postures. Looking
at the means and standard deviations of the weight vector elements across different postures
shows that the means are similar for different postures and that the variances are relatively
large. These both imply that the projection weights are not good features by which to
cluster.

The second method of clustering was done to examine how by which the data samples
within asingle posture cluster. The samples for each posture usually form 3 clusters. These
clusters represent differencesin sizeand weight o a person and correspond to small, medium,

and large sized people.
2.3 Posture Classification

The problem of classification can be defined as follows. Assume, we are given a set of
labeled training samples containing several examples of each posture by each of our subjects.
The associated |abel indicates to which class each sample belongs (i.e. the posture that the
sample represents). The first step is to select a learning algorithm that can be used to
construct some type of model of the data, whether it be appearanced-based or feature-
based. Then, given a new unknown or unlabeled sample X,,..,, the problem of classification
is to identify to which model (or group or class) that the new sample belongs.

Classification systems fall under one of two categories: appearanced-based and model-
based. Appearanced-based systems include those that use techniques such as principal com-
ponents analysis and discriminant analysis for classification. Model-based systems match
scene features to model features in order to classify an object in a scene.

A real-time static posture classification system that uses the appearanced-based technique
of principal components analysis (PCA) has been developed. Section 2.3.1 describes PCA
and its formulation for the classification of sitting postures. Section 2.3.2 describes the
posture data in the new space defined by PCA. The real-time sitting posture classification
program is described in Section 2.3.3. Lastly, Section 2.3.4 gives the classification results.
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2.3.1 Posture-Based Eigenspaces

Principal components analysis is a well known techniquein computer vision. It has been
applied to many vision problems with much success [67], [50]. It has also been used for a
single user posture classification system [62].

A common approach to PCA consists of projecting the set of training vectors X; to a
single eigenspace. The classification step can be described as follows. First, we project the
new vector X,., onto the eigenspace. We then use the L2-norm to search for the nearest-
neighbor of X,,..... This nearest-neighbor isthe one that infersthe class (in our case, posture)
to our unknown vector X,.,. We can reduce the dimensionality of our problem by using
those eigenvectors that correspond to the N largest eigenvalues and discarding the rest [67].

Another approach (and the approach we take) would correspond to generating a separate
eigenspace for each posture, what we call a posture space (i.e., the view-based eigenspace
in [50]). [f 10 different postures are to be discriminated, 10 different posture spaces are
generated. In this case, the classification step is more complicated than before. One possible
way of doing this consists of searching for the best reconstruction of the unknown sample.
That is to say, we first project our vector X,., onto each of the posture spaces. Second.
we reconstruct the new vector from each of the 10 projections. Last, we search for the
best reconstruction of the unknown sample. This step is a simple matter of computing
the Euclidean distance between the unknown vector X,,., and each of the reconstructions
(Xnewts Xnewz, .- Xpewio). The label of the reconstruction that is closest to the unknown
sample is used to classify X,.,. Once again, we can limit ourselves to a low dimensional
subspace by keeping those eigenvectors that correspond to the largest eigenvalues. We call
these eigenvectors Eigen Pressure Maps (EPMs).

Eigen-decomposition for the Posture Classificatiori System starts with preprocessing the
sitting pressure distribution maps in the Static Posture Database. The smoothing step de-
scribed in Section 2.2.5 is applied to the raw sitting pressure distribution maps. Smoothing
reduces the mean-square error in the eigen representations and increases the overall accu-
racy in classification by 7% (See Section 2.3.4 for more details). Pressure artifacts are not

removed because (1) they are common to all pressure maps, and therefore, do not affect
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the performance of the Posture Classification System; (2) the removal of pressure artifacts
reduces the effective sampling rate of the whole system.

After the sitting pressure distribution maps are smoothed, they are then normalized.
The pressure values on the seatpan are usually much higher than those of the seat back.
Therefore, the values in the seat back and seatpan are normalized independently. Figure

2.15 shows the result of normalizing the cleaned sample posture F'04N.1 (see Figure 2.9).

Fig. 2.15. Normalized sitting pressure distribution map. Also shown are the equal pressure
contours.

The sitting pressure distribution map is raster scanned to form a 4032x1 vector. Eigen-
decomposition for each posture k, k = 1..N with N = 10, is computed as follows.

Let . = {X11,..X15,X21,...X25,..., Xg1,..Xn s}t be the set of training samples for
posture k, where H = 30 is the number of subjects. S = 5 is the number of samples per
posture per subject. There are HS = 150 training samples of each posture in the Static
Posture Database. For simplicity, the training set Py, is rewritten as Pi, = { X1, Xs, ..., Xar}
where M = 150. The mean sitting pressure distribution map vector for posturek is calculated
as:

1 M

X, = X; 2.2
k M; (2:2)
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The mean sitting pressure distribution map vectors for all postures art: shown in Figure
2.16. The vectors have been converted back to arrays for display purposes.

Zero-mean data is obtained by subtracting the mean from each of the training samples:

¢i = Xi — X, (2.3)

The zero-mean training samples are stacked to form a large matrix ¢, of size 4032x150,

whose covariance matrix C is:

C = Lf:qﬁ-d = L<I><I>’ (2.4)
M—=™" M
where ® = [¢;, @, ...d0n] is Of size 4032xM.

The eigenvectors and eigenvalues of ' determine the eigen-decomposition of the training
samples. Seeing that C' is such a large matrix, computation of its eigenvectors is compu-
tationally expensive. Since M = 150 < 4032 no more than M eigenvalues are non-zero.
The eigenvectors of our large 4032x4032 matrix ' = ﬁdﬂb’ and those of the MxM matrix
Cr = #%'® matrix are related in the following manner [44]:

Let vectors v, of size Mx| be the eigenvectors of (7 = ﬁ@’@. Then,

1
M(I)@'vi = [;v; (2.5)

where p; are eigenvalues. Premultiplying by @ yields:

1
W(I)q)/(q)vi) = ILL,'(@UI’) (26)

So, the eigenvalues and eigenvectors of C are u; and $v;, respectively.
The eigen-decomposition of the training samples consists of finding the M eigenvectors

v, of C' = ﬁ@’@. The eigenvectors of C u;, of size 4032x1, are given by:

M
u; = Pv; = vaoﬁi for 1=1,2,...M (2.7)

=1

where v;; is the j-th component of v;.
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Fig. 2.16. Mean sitting pressure distribution maps: (a) N (b) LNF (c)LNL (d) LNR (e)
RLC (f) LLC (g) LLRLC (h) LRLLC (i) LNB (j) SL.
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Thewu; (i=1,2,...M) are therefore the EPMs. Welet ¢;; denote the ith eigenvector (the
eigenvector corresponding to theith largest eigenvalue) of the posture space for posture k. A
training sample can be reconstructed from the EPMs. Thisis done by projecting the sample
onto each EPM to obtain a vector o weights. The EPMs are then added together, weighted
by the respected projection weight, to reconstruct the sample (i.e., ¢; = E?il(éi < €kj)eks).
We can choose D < M eigenvectors to reduce the dimension of our problem. The error
in the reconstruction caused by eliminating eigenvectors is minimized, in the mean-square
sense, if we use the D eigenvectors corresponding to the D largest eigenvalues.

The procedure for obtaining the EPMs described above is repeated for each of the 10
postures. Figure 2.17 shows the eigenvalues calculated for each of the posture spaces.

Classification of a test sitting pressure distribution map is performed asfollows. First, the
test map undergoes the same preprocessing steps the training data has undergone (smoothing

and normalization). The following steps are repeated for each posture space k. The posture

mean X, of the training samples for posture k is subtracted from the test map X,.

b =X, — Xy (2.8)

The mean-subtract test sample ¢; is projected onto the first D eigenvectors of posture
space k to obtain a D-dimensional weight vector Wy, = [wy;...wxp]?, where the ith element
of Wj is the projection of ¢; onto the ith eigenvector of posture space k. The test map is

then reconstructed as follows:

D
¢ = Z WkiCki (2~9)
i=1

where wy; is the ith element of W, and eg; isthe ith eigenvector of posture space k

The distance ¢; — <2>t (i.e., the Distance From Feature Space - DFFS [67]) is used as a
distance measure between the test map ¢; and posture space k. The posture space yielding
the smallest DFFS in the reconstruction is taken as the posture label for classification. If
min; DFF'S > threshold then the sitting pressure distribution map is labeled as unknown

posture. The threshold is determined empirically
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All 150 eigenvalues lor each of 10 postures
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0--150 - ‘ o
igenvalue number
Posture o
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First 10 eigenvalues lor each of 10 postures

Eigenvalue number

Posture

Fig. 2.17. Eigenvalues for all ten postures. (a) All 150 eigenvalues. (b) The ten largest
eigenvaluesfor each posture.
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2.3.2 Data Visualization

Since the sitting pressure distribution samples are of high dimension (4032) it is hard to
visualize the distribution of training samplesin that posture space. Figure 2.18 shows the
projections of all of the training samplesfor each posture onto the three eigenvectors (eigen
pressure maps) corresponding to the three largest eigenvalues. This figure shows that even

in just three dimensions, the posture spaces are complex.
2.3.3 A Real-Time Static Posture Classification System

This section describes the real-time static posture classification software. Figure 2.19
shows the dialog box that is created when the program starts. The Initialize button must
first be pressed in order to initial the hardware and software variables containing the means,
eigenvectors, and eigenvalues of each posture space.

Onceinitialized, the program continually loops through capturing asitting pressure distri-
bution map and classifying the captured sitting pressure distribution map. The text window
displays a message stating the classification o the current sitting pressure distribution map.
If the maximum pressure value in the sitting pressure distribution map is below a threshold,
the seat is said to be empty (see Figure 2.20).

When the seat is not empty, the sitting pressure distribution map is classified as posture
k if thereconstruction of the projection of the current pressure distribution map onto the kth
posture spaceis closest to the current map. Thislabel and the distanceto the reconstruction
is displayed in the text window along with the labels and distances of the second and third
closest reconstructions. Figure 2.21 shows the classification for a subject sitting in posture
LLRLC. The classification of the test posture is correctly given as Leaning Left Right Leg
Crossed. Note that the next two closest posture spaces are those postures most similar to

LLRLC: LNL and RLC.

2.3.4 Classification Results

The real-time static posture classification system was evaluated in three ways. First,
execution 5me as a function of number of eigenvectors used was measured. The results are

shown in Table 2.4. It was observed when using 20 eigenvectors in classification, there is a
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Fig. 2.18. Projections of the training samples for each posture onto the first three
eigenvectors of its posture space. (a) N (b) LNF (c) LNL (d) LNR (e) RLC (f) LLC (g)
LLRLC (h) LRLLC (i) LNB (j) SL.
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i Sitting Posture Recognition

Fig. 2.19. Main window of the Static Posture Classification System.

i@ Sitting Posture Becognition

Fig. 2.20. Output when the sensing chair is empty.

™) Siltig Postuie Recognition

Fig. 2.21. This posture is correctly classified as LLRLC.




noticeable delay between the time of moving to a new posture and that of the display of the
classification result. As the number of eigenvectors is decreased, say to 10, this delay is no

longer observable.

Number of Eigenvectors | Average Classification Time (ms)
) 62.07
10 107.81
15 168.13
20 241.0

Table 2.4 Average classification time.

Second! extra pressure-map samples that did not get used in eigen decomposition were
used to test the accuracy of the posture classification system, again, as a function of number
of eigenvectors used. There were a total of 200 extra samples, 20 for each of the 10 postures.
The results in Figure 2.22 shows an increase in accuracy as the number of eigenvectors used
in classification isincreased. Even when only 15 eigenvectors are used, the overall accuracy
of the system is 96% correct. The reason the accuracy does not increase monotonically
with dimension is due to the differences in the energy associated with the added eigenvector
between posture spaces. For example, a test pressure distribution sample may be classified
as posture P; for dimension d = 1. When the second eigenvector is added in the computation
of the DF'FS, the same test sample may be classified as posture P,. This is possible if the
second eigenvector in posture space P, is more representative of the test samplethan that of
posture space P,. Table 2.5 lists the accuracy as computed for each posture averaged over
different numbers of eigenvectors used. These values range from 90.3% for posture LNB to
99.8% for posture SL.

For comparison, the test above was repeated on the training and testing data without the
application of the smoothing operator. The mean-square error in the eigen-decomposition
was greater and the overall accuracy was reduced. Figure 2.23 shows that the classification
accuracy when the training and test data were smoothed was on average 7% higher than

when training and test data were not smoothed.
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Static Sitting Posture Classification Results
100 y

Accuracy (%)

t 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Dimension of Posture Space

Fig. 222. Accuracy vs. the number of eigenvectors used for classification. The solid line
indicates the accuracy o the Static Posture Classification System. The dashed line shows
the accuracy if either the closest or second closest posture space is the correct
classification. The dotted line depicts the accuracy if the correct classification is one of the
three nearest posture spaces to the test sample.

Posture Classification

Class | Accuracy (%)

N 97.4832
LNF 95.6376
LNL 95.1678
LNR 98.2215
RLC 95.0671
LLC 94.7651

LLRLC 93.5235
LRLLC 96.5436
LNB 90.3020
sL 99.7987

Table 2.5 Classification accuracy for each posture class averaged over different numbers of
eigenvectors used.
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Classification Results for Smoothed and Non-smoothed Sittin @ Pressure Distribution Maps
100 t T

Smoothed

951

90 Non-smoothed 1

85 ‘ .

Accuracy (%)

70 i 1 1
0 10 20 30 40 50 60 70 80 90 100

Bimension of Posture Space

Fig. 2.23. Accuracy vs. the number of eigenvectors used for classification for both
smoothed (solid line) and non-smoothed (dashed line) training and test data.
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Third, real-time evaluation was conducted using four subjects who contributed pressure-
distribution samplesto the training data, and four others who did not. In general, the system
correctly classified sitting postures for all subjects. Even using as few as five eigenvectors
in classification, the system could still correctly classify static postures. The fact that our
system performed equally well with the two subjectswhom it had never "felt." before indicates
that it can be used as a multi-user system as long as the user's build is represented in the

Static Posture Database.
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3. PROPOSED WORK

This chapter describes the proposed work for the Sensing Chair Project. As stated in

thefirst chapter, the work can be divided into two parts:

e A real-time Static Posture Classification system

e A real-time Dynamic Posture Tracking system.

Chapter 2 describes the development of a real-time classification system for labeling
a set of preselected sitting postures. This involved the construction of a Static Posture
Database and the development of an appearance-based classification system. The Static
Posture Database contains 1.500 samples of sitting pressure distribution maps (five samples
each of ten different postures from 15 female and 15 male subjects). The real-time sitting
posture classification system has been implemented. This system interprets the sitting pres-
sure distribution data from a sensing chair outfitted with pressure sensors to identify the
posture which the data represents. A quantitative measurement on its accuracy was calcu-
lated on a set of sitting pressure distribution samples that were collected from the subjects
but not used to train the system. These results show that an accuracy of 96 percent is
achieved with a reduction in dimension D from 4032 to 10. Real-time tests have shown that
the system is also capable of classifying sitting pressure distribution maps from people who
did not contribute to the static posture database.

In this chapter, we will discuss further work on the Sensing Chair Project. Thisinvolves
improving the Static Posture Classification System and the development of a real-time Dy-
namic Posture Tracking System. Section 3.1 describes how we wish to improve posture
classification. Section 3.2 describes our ideas for the Dynamic Posture Tracking System.

Finally, Section 3.3 will discuss some issues related to system evaluation.
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3.1 Improving Classification

As mentioned in Section 2.3.4, our overall classification accuracy is 96% correct using only
10 eigenvectors for reconstruction. This is averaged over all 10 postures. The classification
accuracy for individual postures varies from 90.3% for posture Leaning Back to 99.8% for
posture Slouching (see Table 2.5 for all result's). While this indicates that the system most
accurately identifies when a person is slouching, which is good for correcting the person's
posture, improvements can be made to increase the accuracy of the other postures.

We would like to improve the classification accuracy of postures such as Leaning Back
and Leaning Left with Right Leg Crossed. One way to do thisis to incorporate additional
information in the classification process. Figure 2.22 showed the classification scores if one
of thefirst one, two or three choices for posture was the correct choice on our test samples.
Knowing which postures are more likely to be misclassified can indicate when additional
information is needed. One way to do this would be to look at the difference between the
two smallest DFFS values. A small difference would indicate that a test map could be
classified as either of the two postures. Additional information could either verify or reject
the posture corresponding to the minimum DFFS value.

We will be looking at incorporating a mixture-model of the sitting pressure distribution
data into the classification process. Each sitting pressure distribution map will be modeled
with a set of lognormal densities that will be learned by using the EM algorithm [18], [53].
The distribution of the means and covariances of the densities for each of the postures will be
learned from the training samplesin the Static Posture Database and used for classification
in @ manner similar to the hierarchical model method developed in [9].

Additional evaluation of the system will be conducted on samplesitting pressure distri-

bution maps from new sitters.
3.2 Dynamic Posture Tracking System

By its design, the static posture classification system does not always classify postures
correctly when the subject is in transition. This section describes the two components

necessary for the development of a Dynamic Posture Tracking System. Section 3.2.1 describes
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a Dynamic Posture Database that will be used to collect sitting pressure distribution map
sequencesfor training and for testing. Section 3.2.2 describes the framework for the dynamic

posture tracking.
3.2.1 Dynamic Posture Database

A database containing dynamic sitting pressure distribution data is needed to train and
test a sitting posture tracking system. To be consistent with the Static Classification System
and to restrict the seemingly unconstrained domain of dynamic sitting posture, we will
collect a set of movies that contain a single transition between postures in the Static Posture
Database. By movies, we mean a sequence of sitting pressure distribution rnaps that start at
one static posture and end at a different static posture and are recorded at a fixed sampling
rate. We will collect only those sequences that move directly from one posture to another
(e.g., leaning left — upright). An indirect sequence would move through an alternate posture
before transitioning to the end posture (e.g., leaning left — upright — leaning right). We
are using the single transition sequences because they are representative of how a person

working in an office environment would move.

3.2.2 Dynamic Posture Tracking System Development

The posture classification system determines the posture represented by a sitting pressure
distribution map. In a posture tracking system, interpreting the posture represented by the
current sitting pressure distribution map is more difficult because the tracking system will
have to be able to handle a sitting pressure distribution map when it lies near to the edge
of the posture's class distribution. This section discusses some of the aspects in formalizing
a real-time sitting posture tracking system.

In moving from one postureto another thesitting pressure distribution undergoes changes.
For example, a pressure peak can appear and then disappear in going from one posture to
another. The occurrence of this peak and, in general, other key transition points such as this
can provide a tracking system with a road map or story board to follow from one posture to

the next.
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There are two modalities of tracking to investigate. Those that use an appearance-based
framework and those that use a 3-D human model to recover the pose of the person sittingin
the chair. In an appearance-based framework, action is interpreted from a sequence of 2-D
images. Representations can be view-based or feature-based. Drawbacks to these approaches
include dealing with complex background and correct extraction of features. In our data,
we do not, have the problem of complex backgrounds. It is straightforward to segment out
the various parts of the body in the sitting pressure distribution maps. Systems that utilize
a 3-D model tend to be more robust but still rely on feature extraction. These systems can
also use a Kalman filtering approach to predict future poses of the object. We believe the
method best suited for posture tracking is one that uses a 3-D object model.

Here, our model is a model of the human body. What is different in our problem, as
compared to tracking a walking human, is that the subject deforms against the surfaces of
the chair, as compared to a projection onto an image plane. A simple skeleton model or
cylindrical model is inadequate. To compensate for this model must be deformable, such as
with a Finite Element Model. This would involve extending such work as [59] and [19] which
deal with modeling deformation of the soft tissue in human thighs in seated postures.

With the recovered pose of the 3-D model, numerous features can be extracted to give
specific information regarding the posture of the person sitting in the chair. These features
include the orientation of the spine, the pose of the legs, and the locations of the shoulders.

Key issues of the system include:

e The type of 3-d model
The parts of the body that comein contact with the chair include the shoulders, back,
buttocks, and thighs. The model will need to incorporate these itenns as well as take

into account the head, arms, and lower legs because they affect the pressure distribution

on the chair.

e Extracting local features (e.g., orientation of the spine)
With the current pressure distribution and 3-D model in registration, various features

can be extracted for use in a more specific description of posture. For example, the




orientation of the pelvis can indicatein which direction a user islooking or isinterested

in.

e Robustness: Dealing with the variation in subject size
We want a multi-user system and do not want the system to be extensively trained for
each new user. Having an initial bootstrapping procedure when a user first sitsin the
chair will permit the system to appropriately scale the model. This can be done by
having the user sit in the upright position while the system determinessuch features as
the total force, the size and weight distribution in the thigh area, and the distribution

of pressure on the seat back.

¢ Real-time tracking
One of the key facets to our work isthat our system work in real-time.. This will involve

determining the minimal amount of pressure information needed for tracking.

3.3 Performance Evaluation

Testing, as with the Static posture Classification System, will be conducted on pre-
recorded posture sequences not used in training and on real-time testing of subjects who
did and did not contribute samples used in training. The tests will determine how well the
system performs on subjects, whose anthropometry is represented in the training data, and
will indicate the system's robustness.

An area in which to evaluate a tracking system is in the reduction d pressure data in
the sitting pressure distribution map. The reasoning behind this is two-fold.

First, we are interested the development of a real-time posture tracking system. Each of
the two pressure mats contains 2016 pressure sensing elements. This gives a sitting pressure
distribution map that contains 4032 data points. Testsdf tracking performance and execution
time will be conducted on down-sampled sitting posture presure maps.

Second, if a real-time posture tracking system were to be implemented in a real-world
application, it would be desired to be economical. While this is not an immediate goal,
reducing the number of sensing elementsisone way to accomplish this. This can be simulated

by down-sampling the sitting pressure distribution maps.



What we seek is a graph showing system performance (e.g., accuracy, speed, cost, etc.) vs.
down sampling and dimension D. Again, D means the dimension of our data (e.g., the number
of eigenvectorsor number of features). For example, Figure 3.1 shows possible curvesfor the
performance indices of speed and accuracy as a function of down sampling. The selection
of how much to down sample and to what to set the dimension are application dependent.
Knowing the shapes of the curves describing how these parameters affect system performance
can guide a person to set them to appropriate values. For example, if the application was
automatic control of airbag deployment force, down sampling would be limited in order to
maintain a high accuracy rate and speed. If the application was the medical analysis of
posture for a person suffering from lower-back pain, then such an analysis could be carried
out off-line and speed would not be a factor. In this case, dimension would mainly be
determined by the desired accuracy. By systematically characterizing the tradeoffs among
parameters such as resolution, accuracy, speed, and cost, we hope to provide a foundation

for the applications of our Posture Tracking System.

Pelformance

Accuracy

Speed

Dovn Sampling

Fig. 3.1. System performance as a function of down sampling.
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APPENDIX A: RESULTS OF K-MEANS
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Fig. A.1. Output from running K-means on the data in the Static Posture Database with
K =12.



Fig. A.2. Output from running K-means on the data in the Static Posture Database with
K=14.



Fig. A.3. Output from running K-means on the data in the Static Posture Database with
K = 16.
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K =18

means on the data in the Static Posture Database with

K

Fig. A.4. Output from running
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Fig. A.5. Output from running K-means on the data in the Static Posture Database with
K =20
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Cluster | N | LNF | LNL | LNR | RLC | LLC | LLRLC | LRLLC | LNB | SL | Table
a 40 | 0 4 2 42 | 25 14 1 10 | 1 | 139
b 350 20 | 13 | 12 | 32 | 27 5 3 5 0 | 152
c 7| 82 2 2 1 0 1 0 0 0| 95
d 6| 0 0 0 0 2 0 0 82 | 24 | 114
e 0] 0 0 40 5 0 13 0 0 0 | 58
f 0| 0 33 0 2 2 0 59 0 0 | 96
g 5 17 6 9 5 5 5 5 2 0 | 59

51 14 | 69 0 8 8 1 57 12 | 0 | 174
] 33| 2 4 5 42 | 71 6 19 29 | 5 | 216
i 0 0 0 79 9 0 104 0 0 0 | 192
k 19 15 | 19 1 4 9 0 6 0 0 | 73
| 0| O 0 | 0 0 1 1| 0 \ 10 120 | 132

Table A.1 Number of samples from each posture that belong to each cluster from k-means
with K=12. The cluster labels in the table correspond to the image of the cluster mean of
Figure A.1.
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Cluster | N | LNF | LNL | LNR | RLC | LLC | LLRLC | LRLLC | LNB | SL | Table |
a 0 41 0 0 1 0 39 0 0 81
b 9 7 8 13 4 0 5 0 0 0 46
c 11 8 11 7 6 10 0 7 0 0 60
d 39 | 21 12 6 45 35 0 2 10 0 170
e D 0 0 0 0 1 0 0 79 31 116
f 7 81 1 1 0 0 0 0 0 0 90
g 0 0 0 33 11 3 72 0 0 0 119

27 4 0 10 17 37 10 6 29 7 147
1 0 0 0 0 0 0 1 0 8 111 | 120
] D 17 9 10 ) D ) D 2 0 63
k 41 0 5 6 42 28 13 ) 10 1 151
1 4 12 61 0 1 D 0 49 11 0 143
m 2 0 2 0 17 23 0 37 1 0 84
n 0 0 0 ‘ 64 | 2 0 | 44 | 0 0 0 110

Table A.2 Number of samples from each posture that belong to each cluster from k-means
with K=14. The cluster labels in the table correspond to the image of the cluster mean of
Figure A.2.
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Cluster | N | LNF | LNL | LNR | RLC | LLC | LLRLC | LRLLC | LNB | SL | Table
a 0l o 0 0 0 1 0 0 6 | 92| 99
b 21 0 0 0 0 1 0 0 48 | 48 | 99
c 0] 0 7 0 2 3 0 52 0 | 0| 64
d 11| 0 3 4 | 62 | 0 11 0 0 | 0| 91
e 0] 9 0 | 70 | 2 1 47 0 0 [0 | 129
£ 71 0 2 0 0 | 62 0 25 0 | 0| 9
g 71 18 | 6 12 | 6 5 5 5 5 | 0| 69

0| 0 0 | 26 | 2 0 22 0 0 | 0] 350
i 40 8 | 131 0 2 1 0 46 2 | 0| 136
j 21| 4 0 4 15 | 18 6 3 3| 9| 133
k 19| 15 | 18 | 20 | 9 9 4 5 0 [ 0| 99
I 36| 0 0 0 | 28 | 37 6 3 28 | 1 | 139
m [33] 7 6 2 18 | 10 0 0 4 |0 80
n 0] 0 0 11 0 1 49 0 0 | 0 6l
o 1| 0 | 3 | o0 4 1 11 2 | 0| 50
p |9 89 | 4 1 0 | 0 0 0 2 0| 105

Table A.3 Number of samplesfrom each posture that belong to each cluster from k-means

with K=16. The cluster labels in the table correspond to the image of the cluster mean o

Figure A.3.
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T o
Cluster | N | LNF | LNL | LNR | RLC | LLC | LLRLC | LRLLC | LNB

N SL | Table
a 1 3 0 0 15 0 15 0 0 34
b 0| O 33 0 1 1 0 53 0 0 | 88
c 7| 86 1 3 0 0 0 0 0 0 | 97
d 51 0 0 0 0 1 0 0 80 | 5 | 91
e 16| 14 | 15 6 5 0 5 0 0 0 61
f 10| 18 9 7 5 0 5 0 4 0 | 58
g 310 1 0 30 | 27 9 14 0 2 86
h 21 5 6 6 15 | 63 0 17 0 0 | 134
i 0| 0 0 0 0 0 0 0 17 | 22| 39
i 0l o 0 23 5 0 7 0 0 | 35
k 419 62 0 1 0 0 44 5 0 | 125
1 0| 0 0 30 1 0 61 0 0 0 | 92
m 0| o0 0 0 54 0 7 0 0 0 61
n 0] 0 10 4 10 | 18 3 5 13 | 0 | 103
o 16| 0 0 3 10 | 11 6 1 23 | 13 | 83
p 26! 14 | 10 | 11 13 | 13 5 1 0 0 | 93
q 0| 4 0 57 0 0 42 0 0 0 | 103
r 0, 0 \ o o o 1L | 0 | 0 | 8 [108] 117

Table A.4 Number of samplesfrom each posture that belong to each cluster from k-means
with 1<=18. The cluster labels in the table correspond to the image of the cluster mean of
Figure A.4.
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Cluster | N | LNF | LNL | LNR | RLC | LLC | LLRLC | LRLLC | LNB | SL | Table
a ) 0 0 19 ) 0 7 0 1 0 37
b 0 0 0 22 7 0 65 0 0 0 94
c 0 0 0 0 0 1 1 0 11 | 66 79
d 6 0 0 0 0 1 0 0 79 4 86
e 0 0 0 0 0 0 0 0 1 56 57
f 0 0 0 0 0 0 0 0 15 | 13 28
g 19 9 0 17 27 32 6 4 ) 0 119
h 4 7 65 0 2 4 0 45 4 0 131
i 10 3 1 3 10 8 7 0 17 |10 69
] 7T 76 3 1 0 0 0 0 0 0 87
k 0 0 0 %) 1 0 38 0 0 0 94
| 13 0 7 0 7 12 0 8 17 1 65
m 32 0 2 0 25 14 0 0 0 0 73
n 3 0 21 0 10 0 10 0 0 44
0 8 18 18 6 ) ) 3 1 0 71
p ) 3 6 7 8 6 ) 3 2 0 50
q 0 0 10 0 1 2 0 65 0 0 78
r 25| 15 21 3 15 23 0 3 0 0 105
s 4 0 1 0 31 32 11 7 1 0 87
t 9 14 8 3 ) 0 | 3 0 0 0 | 46

Table A.5 Number of samplesfrom each posture that belong to each cluster from k-means
with K=20. The cluster labels in the table correspond to the image of the cluster mean of
Figure A.5.
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APPENDIX B: GLOSSARY

Anterior: Toward the front.

Anthropometry: The measurement of the human body with a view to determine its
average dimensions, and the proportions of its parts, at different ages and in different races
or classes.

Biomechanics: The study of the mechanical laws relating to the movement or structure
of living organisms.

Coronal Plane: The plane that passes through the length of the body and divides the
front from the back.

Cummulative Trauma Disorders: Disorders of the muscles, tendons, and/or nerves
caused, precipitated or aggravated by repetitive motion activity that applies stress to the
body.

Ergonomics: The scientific study of the efficiancy of man in his working environment.

Inferior: Away from the head.

Ischial Tuberosities: The sitting bones of the pelvis.

Kinematics: The science of pure motion, considered without reference to the matter or
objects moved, or to the force producing or changing the motion.

Lateral: Toward the side of the body.

Medial: Toward the midline of the body.

Midsagittal Plane: The plane that passes through the midline of the body dividing it
into left and right halves.

Popliteal fossa: The back of the knee.

Popliteal height: The vertical distance between the bottom of the foot and the crease
just behind the knee of a seated person.

Posterior: Toward the back.
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Seat Depth: The horizontal distance from the most posterior part of the buttocks to
the crease just behind the knee of a seated person.

Superior: Toward the head.

Trochanter: A large knobby projection at the end of the femur near the pelvis. The
greater trochanter is on the lateral side of the femur and is larger in size to the lesser
trochanter on the medial side.

Transverse Plane: The plane that divides the body into superior (upper) and inferior

(lower) regions.
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