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ABSTRACT 

As cornputing becomes more ubiquitous, there is a need for distributed intelligent human- 

computer interfaces that can perceive and interpret a user's actions through sensors that see, 

hear and feel. A perceptually intelligent interface enables a more natural interaction between 

a user ancl a machine in the sense that the user can look at ,  talk to or touch an object instead 

of using a, machine language. Although research on haptic (i.e., touch-based) interfaces has 

received less attention in the past as compared to that on visual and auditory interfaces, it 

is emerging as a new interdisciplinary field that holds much promise for the future. 

The goal of the sensing chair project is to enable a computer to track., in real time, the 

sitting pclstures of a user through the use of surface-mounted contact sensors. Given the 

similarity between a pressure distribution map from the contact sensors and a gray-level 

image, we propose to adapt computer vision and paktern recognition algorithms for the 

analysis of sitting pressure daka,. Work in three areas are proposed: (1) data collection for a 

sitting pressure distribution database, (2) development of a real-time sitting posture tracking 

system, and (3)  performance evaluation of the tracking system. The realization of a robust, 

real-time tracking system will lead to many exciting applications such as automatic control 

of airbag deployment forces, ergonomics of furniture design, and biometl-ic authentication 

for computer security. 
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1. INTRODUCTION 

The goal of the Sensing Chair Project is to enable a computer to track, in real time, 

the sitting postures of a user through the use of surface-mounted contact sensors. Given 

the similarity between a pressure distribution map from the contact sensors and a gray- 

level image, we propose to adapt computer vision and pattern recognition algorithms for 

the analysis of sitting pressure data. This work involves: (1) data collection for a sitting 

pressure clistribution database, (2) development of real-time sitting posture classification and 

tracking systems, and (3)  performance evaluation of the systems. The realization of a robust, 

real-time tracking system will lead to many exciting applications such as i3utomatic control 

of airbag deployment forces, ergonomics of furnitmure design, and biometl-ic authentication 

for computer security. This work is divided into two parts: 

A real-time classification system for labeling a set of preselected typical sitting postures 

in an office environment (i.e., Static Posture Classification). 

A real-time tracking system that labels a person's sitting posture at steady-state as 

well as transitional postures (i.e., Dynamic Posture Tracking). 

Preliminary work has focused on the construction of the Static Posture Classification 

system. First, a Static Posture Database was established. The database contains a total of 

1500 sitting pressure distribution maps from 30 individuals. Second, a real-time multi-user 

Static Posture Classification system was developed. This system classifies sitting pressure 

di~tribut~ions with an overall accuracy of 96% correct. Future work involve:; the development 

of a real-5me Dynamic Posture Tracking system. A system like this is needed in order to 

represent a person's posture during transitions from one static posture to the next (e.g., from 

seated upright to sitting with one leg crossed over t,he other). 



The system uses pressure sensors (developed by Tekscan, Inc.) that interface with a P C  

through a, special interface board. They are mounted on a Herman Miller Aeron chair and 

capture pressure distribution information of a user seated in the chair. Tlie setup is shown 

in Figure l . l ( a ) .  The  pressure information from the sensors is converted to  an 8 bit raw 

digital value that can be treated as a greyscale image. A sample sitting pressure distribution 

map for posture Seated Upright is shown in Figure l . l ( b ) .  

Fig. 1.1. (a) The  Smart Chair. (b) An example of sitting pressure dislribution maps 
displa,yed as an 8-bit greyscale image. The top half of the image  show,^ the pressure 

distribution on the back of the chair, and the bottom half shows that of I he seatpan. The 
top, botl,om, left and right sides of the image correspond to the shoulder area, knee area, 

right side and left side of the person, respectively. 

This work draws on aspects of many different fields. The remainder of this chapter 

presents related work in computer vision and pattern recognition, intelligent environments, 

pressure sensing, an overview of human anatomy, and ergonomics as it relates to sitting. 

Chapter :! describes the Static posture C:lassification system and gives performance results. 

Finally, Chapter 3 concludes with a discussion on the planned implementation of the re- 

maining goals. 

1.1 Related Work in Computer Vision 

Much emphasis in computer vision has been placed on developing cornpact representa- 

tions of objects for recognition and pose identification (e.g., [28], [8]). Model-based methods 



such as these perform matching between scene features and model features in their given 

recognition task. These features typically involve shape and other geometrical properties of 

objects. 'These systems work well but can break down when features cannot be extracted 

from a scene (e.g., due to occlusion) or when multiple object or pose hypotheses cannot be 

rectified. 

This led researchers to study recognition systems using appearance-based approaches. 

Appearanced-based methods for classification and localization of objects employ an object 

model that is determined solely by the visual appearance of the object [45]. These models 

include object and scene parameters that get encoded as greyscale variations in the images. 

No user-defined feature-based model is needed. Section 1.1.1 will discuss two commonly used 

appearance-based methods: principal components analysis and linear discriminant analysis. 

When the scene is dynamic, object nlodeling and tracking beco~lles more complex. Sec- 

tion 1.1.2 overviews human modeling and t racking. 

1.1.1 A-ppearanced-Based Methods for Object Recognition 

Appearance-based methods use an object model that is dependent solely on an object's 

visual appearance. This is a combination of its shape, surface reflectance properties, pose in 

the scene. and illumination conditions. Shape and surface reflectance properties are intrinsic 

to rigid objects. To obtain an object model, a11 object is imaged under varying pose and 

illumination conditions. This process produces a set of training images where image pairs 

whose imaging conditions were similar are correlated. 

The  collection of training images can be used as the object model without any further 

processing. To recognize multiple objects a collection of training images is needed for each 

object. Recognition of a test object in a scene (imaged under similar conditions to the 

training images) is a matter of finding the closest training image to the test image. The 

identity of the closest training image is taken as the identity of the test irnage. To perform 

well under general conditions where illumination and view angle of the camera to  the object 

can vary, the training set must contain a large number of samples in order to adequately 

represent these variations. The method for recognition just mentioned is a computationally 

expensive approach. For images of size RxC, the training set is a collection of points in a 



N-dimensional space, where N = RC. Cornputatlion of the distance to each training image 

is therefore O ( N ) .  If. however, the training samples are images of compact objects, the 

distribution of the training set can be represented by a low-order subspace of the original N- 

dimensional space. For training sets of images such as these it is advantageous to represent 

each training image by a vector in a lower dimensional subspace of the image space. 

To obtain this low-dimensional representation, the technique of principal components 

analysis (Karhunen-Loeve Expansion) can be applied to the set of training images. The 

Karhunen-Loeve Expansion is given in in detail in [23]. Training of the system involves 

obtaining an eigen-decomposition of the covariance matrix formed by the training vectors 

(raster scans of training image samples). The eigenvectors of the covariance matrix form an  

orthogonal basis that spans the image space of the training vectors. A training sample is 

then represented by a vector of coefficients. Each element in this vector is the projection of 

the training image onto one eigenvector. An image can be reconstructed from the coefficient 

vector by summing the eigenvectors weighted by their correspo~lding coef3cients. To reduce 

the dimensionality of a set of data,  only a subset of the eigenvectors is used for reconstruc- 

tion. To minimize the mean square error of this representation, the eigenvectors with the 

greatest variances (those corresponding to  the largest eigenvalues) are used. Recognition 

of an unk.nown test object involves projecting the test image onto the reduced number of 

eigenvectors and finding the training instance (projected onto the eigenspace) closest to  the 

test object in the lower dimensional space. 

PCA has been used in systems for object recognition and pose estimation [48], face 

recognition [67], [31]. 1501. [4], [40], and single user posture classification [62]. Since the 

training of a system with PCA is based solely on the visual appearance of the training 

data,  recognition (or pose estimation) faulters when trying t o  recognize objects imaged 

under diflerent illumination conditions, positions, orientations, scale, with occlusion or with 

backgrouild clutter. Variations in illumination are usually overcome by normalizing the 

greyscale values in training images and testing images. This only succeetis when there are 

no other objects whose greyscale values can bias the n~rnlalizat~ion process in the scene. 

Training and testing images are scaled to  pre-set dimensions t o  overcome Lrariations in scale. 

This is inhibited by both occlusion and background clutter. 



Early systems such as [48] make the assumption that objects, under no occlusion, can be 

segmented from a scene. This system trains a single eigenspace, referred to  as a parametric 

eigenspace [47], on all of the training data  from multiple objects and poses. Each object is 

then represented by a manifold in the low-dimensional eigenspace, parameterized by pose. 

Recogniticon of an object in a test image proceeds by finding the closest, manifold to the 

projection of the test image in the eigenspace and its pose is given by the closest point 

on that  manifold. Methods to find the closest point on the manifold include binary search 

[49] and pattern rejection [2]. This system works well when the training and testing images 

contain a single object against a solid background. The system cannot handle occlusion and 

background clutter. The problem of background clutter is handled in [46] by applying an 

AND window to all images before training. This window indicates the area of each object 

that is visible over every pose. It is not useful however if too much of the (object is AND-ed 

out after applying the AND window. It also does not address the problem of occlusion. 

In [50] the authors introduce the concept of view-based eigenspaces (referred to as face 

spaces). Here, a face space is formed for all images of faces taken at a particular orientation 

(e.g., all frontal face images). The reasoning behind using an eigenspace for each view is 

that it would be better to represent a complex distribution (all face orientaliions) by multiple 

clusters (one for each orientation). This is analogous to obtaining an  eigenspace for each class 

of a data  set where the best low-order representation for each class is found. Recognition 

of a person is two-fold. First, the distance of a test image to each face space is computed. 

This is called the Distance From Feature Space (DFFS). It  gives the pose of the face in the 

image (e.g., frontal, angled 45 degrees to the left). space corresponding to the view of the 

face in the image. Identification of the person then is a matter of finding the closest point 

in the face space, the one that minimizes the Distance In Feature Space (DIFS). This view- 

based method is used in our work for posture classification. Because we itre doing posture 

classification, and not person identification, we need only to find the minimum DFFS to each 

of our posture spaces to obtain the posture class (e.g., sitting upright). 

While the view-based method in [50] improved recognition accuracy of faces as compared 

to  the parametric approach, it had yet to  overcome problems associated with occlusion 

and background clutter. Systems using PCA to overcome occlusion and bitckground clutter 



include the use of eigenfeatures [50], local face areas [40], and a quadtree-based approach 

[lo]. In all of these, training is performed on sub-regions of the training images. Recognition 

involves combining the results of identified sub-regions of a test image. In [40] a Hidden 

34arkov Rlodel is used on top of the eigendecomposition of the sub-regions of face images. 

This allows the system to be able to recognize a test face that is not found in the training 

set but is a compilation of sub-regions in the training set. The quadtree-based approach 

in [ lo]  gives an hierarchical eigen-representation of each image. Recognition proceeds from 

a "coarse" level (the entire image) to "finer" levels (subimages). If an object is partially 

occluded, those subimages that aren't occluded can provide ample information to recognize 

the object and its pose. 

Another popular appearance-based method is that of Linear Discriminant Analysis (LDA) 

This technique is also known as Fisher Discriminant Analysis (FDA) and Discriminant Anal- 

ysis. Thi,; technique, like PCA, reduces the dimensionality of a problem to make it more 

manageable. 

Training consists of finding the best projection of an N-dimensional set of data of K classes 

onto 1\11 dimensions, where < .N. LDA finds the hi features that best discriminate between 

the different classes in the data. This is done by minimizing the within-class distance while 

maximiziiig the between-class distance. LDA has been used for face recognition [61], [4], [21] 

and mobile robotics [68]. In order to train a system using LDA, N + I< (the dimension of 

the data N plus the number of classes K) training samples are required. For vision problems 

where images can contain thousands of pixels, this constraint is rarely met. To overcome 

this, data is first projected onto an eigenspace to reduce the dimension. LDA can then be 

applied to  the reduced dimension data. 

When applying LDA after PCA, or using PCA in classification, care must be taken in 

the selection of eigenvectors used to represent the data in the eigenspace. Those features 

(eigenvec1,ors) that best represent the data by minimizing the mean-square error are not 

necessarily those that can bst discriminate between classes in the data [24]. For example, 

one can describe a car as having 4 wheels and a windshield but cannot use these features to 

differentiate between a sports car and a luxury car. 



1.1.2 Human Modeling and Tracking 

This section describes work related to  the tracking and understanding of human action 

in image sequences. Those methods that employ a 3-D description generally believe that 

the 3-D description is necessary and sufficient for interpreting human motion ([25], [26], [32], 

[54], [56], [70]). In contrast to  this approach, others use appearance-based methods [I] ,  [16], 

[71]. Still others [52], [ ~ C I ] ,  [37], [17] use motion of regions of the body (as a whole or parts) 

to interpret action without reference to  an underlying sequence of static images or poses. 

These are termed directional motion recognition 1171. 

Those systems using a 3-D des~ript~ion utilize a 3-D object model to recover the pose of a 

scene object in each frame of a sequence. As with any model-based system. it is necessary to  

be able to  accurately extract features from the scene for tracking. Systems that maintain a 

history of the 3-D model alignment with the scene object over time can predict future poses 

of the scene object using a technique like Iialman filtering [26], [54], [56]. 111 [70], observed 2- 

D blob features are probabilistically integrated into a dynamic 3-D skeletal model. The 3-D 

model can be used to track the 2-D blob features through an extended Kalman filter. This 

approach directly couples 2-D and 3-D information. It also incorporates learned behaviors 

of human:; while performing a given task. 

In [261 an a rm is tracked against a solid background using a two cone model. A full 

body cylindrical model is used in 1.561 and a 22 degree of freedom super-quadric model is 

used in [25] to track human motion against comples backgrounds. It is not clear that these 

methods can be directly extended to our problem of tracking a human:: by their sitting 

pressure clistributions since, in addition to modeling human shape, a moclel would need to 

take into account the weight distributiori of a person. In order to  extend this type of approach 

to our domain, in the context of dynamic posture tracking, the 3-D mod.el would need to 

incorporate deformations since our object to be tracked, the human body, is not projected 

onto an image plane but deforms against the surfaces of a chair. Such deformation could 

be captured with a finite element model coupled with a phj~sics-based model of the human 

body. 



Appearance-based syste~ns interpret action from a sequence of 2-D images. Systems that 

use greyscale images to represent action include [16] and 1691. Here again, differences in body 

type can affect system performance. In [71] body silhouettes are used in (3, Hidden Markov 

Model framework. In [I]  body contours and a simple 2-D body model are used to extract 

body parts. Drawbacks to these approaches include dealing with complex backgrounds and 

clothing and the necessity to examine the body as a whole, as opposed to regions of interest. 

In our case, we do not suffer from cluttered backgrounds as there is a single person sitting 

in the chair. Applying an appearance-based approach to our problem would be possible. ,4 

set of features in the pressure distribution map could be fed into an HMM to learn desired 

motion sequences. 

Directional motion approaches examine blob-like and predefined body regions 1521, [60], 

[37], [17]. In [52] cyclic walking motions are recognized through repetitive motion. A feature 

vector containing optical flow and periodicity measurements is used to track humans. In [61:1] 

an ellipsoid model of the body is used with optical flow measurements. These are combined 

into a phase portrait from which force, rotation, and strain dynamics are computed. In [37], 

two ellipsoids are used to model the body. One models motion region silhouettes and the 

other motion magnitudes. Gait is characterized by measures such as centrclid movement and 

torque of the two ellipses. [17] use Motion Energy Images and Motion History Images to 

form a two component view-specific temporal template. This method tenlporally segments 

action secluences automatically and in real-time. The blob-like approach does not seem well 

suited for our problem. Problems can arise when, for example, the back is no longer leaning 

against the seat back. 

1.2 Intlelligent Environments 

Computers can perform astronomical computations, yet they aren't intelligent. They 

do what we tell them to do. We enter commands and the computer executes them. A 

computer is aware of its surroundings only if the necessary information has been entered 

by a user through the low bandwidth devices of mouse and keyboard. Madchine intelligence 

would allow a computer to interpret and anticipate the needs of a user while interacting with 

his/her surroundings. Intelligence can be achieved by giving a, computer human-like senses 



such as sight, hearing. and touch. This can be done by interfacing digital cameras for eyes, 

micropllones for ears, and pressure sensors for skin along with algorithms t,hat can interpret 

sensory input from these devices and from it ,  predict the user's wishes. 

We c a i  extend the notion of intelligent machines to include typically non computational 

aspects of our surroundings. such as a room, a chair, a desk, and clothing. The range of these 

iterns is endless. Most of us are familiar with the TV series Star Trek and the chronicles of 

its crew on the Starship Enterprise. The crew is able to naturally interact with the ship, 

which call locate and identify members of the crew and interpret their commands. This 

fictional intelligent setting is within reach of modern reality. Systems are being developed 

that can recognize, locate and track people, interpret gestural commands, understand natural 

language, and use all of this information to predict and assist the needs of a user (e.g., [12], 

[5113 1391. [231, 1221). 

Beforc creating any intelligent environment it is necessary to define what an intelligent 

environment entails (i.e., what it should be, what types of sensory capabilities it should 

possess aiid what roles it can play in the environment). There is debate as to what an 

intelligent, environment is. To some [12], it must be invisible to the user and require minimal 

hardware. To others [51]. [39], it and the user are intertwined as in the casce of smart clothes 

and cyborgs. Still others fall in between these two extremes [23], [62], [22]. To all, an 

intelligent environment must be able to assist the user in various tasks. These tasks depend 

on the type of human-computer interfacing defined, which include gesture, speech, affect, 

context. a,nd intent, and on the desired roles to be performed by the intelligent environment, 

such as climate control. 

Work in creating rooms with intelligence is currently being investigated by many re- 

searchers. This includes the smart room [51], the intelligent room [12], [66], the intelligent 

classroom [23], and intelligent houses [42].Cameras are placed in a room for person tracking, 

identification, and gesture recognition. Speech recognition systems are used to interpret 

user commands and for sound localization. Pressure sensors can be used to track posture in 

chair and for person localization. Conlmunicating from environment to user is accomplished 

through visual displays and synthesized speech. 



The current state of individual subsystems (e.g., person tracker, speech recognition) can 

be used to  aid other systems by restricting their possible inputs (e.g., where to look or a 

subset of the \,ocabulary). Knowledge about the location of a person can be used to restrict 

and predict a person's next command. If a person were standing by a visual display, that 

nlould be a good indication that the user's speech and to where on the display the user is 

pointing could be coupled together [22], [51], [12]. In the case of a classroom, multi-media 

records of lectures can be obtained that link simultaneous events such as gesture, audio, and 

note taking together. 

Coupltng the input of two sensors is not trivial, as it is for a human who can combine 

verbal and spatial information effortlessly. In addition to the difficulties of implementing 

individual sensory systems are the difficulties in integrating these systems. An architecture 

to integrate sensory systems must also provide an easy manner to add nevv systems. In [l 11 

the author argues for a distributed architecture, called S~at~terbrain,  for combining sensory 

systems based on t<he subsumption architecture of [6], [7] and on [41]. This is advantageous 

over a monolithic approach because it permits individual systems to be rcdatively indepen- 

dent of each other and because integrating new systems is easier. With interacting sensory 

systems, an environment can act as a personal assistant would. For example, if the location 

of a city was requested by a user, a smart room could check if any other information about 

that city was stored in its knowledge base and ask the user if it should be supplied as well. 

In adtlition to making an entire room or house intelligent, much research is being done 

on giving intelligence to typically non-computational objects such as clothing [51], [39] and 

chairs [62], [30], [15]. Many of the same sensory systems found in smart rooms have been 

embedded in clothing and cyborg-like augmentation. These include vision and speech recog- 

nition systems. A system to indicate the presence of a person in a car seat for situation 

appropriate airbag deployment was developed in [XI. In [62], a real-time system to classify 

sitting postures based on pressure distributions was developed. Work in virtual reality-like 

environments includes chairs with dome-like helmets onto which images can be projected, 

interaction through either a joystick, keyboard, or touch screen [XI]. Airline seats contain- 

ing air chambers that inflate and deflate have been developed in [15]. A system that could 

automatic:ally detect pressure peaks would be ideal to regulate the air chambers. 



1.3 Pressure Sensing 

The design of products, such as seats, is a lengthy and expensive pr,ocess. It iterates 

through prototyping and evaluation, the latter of which is often in the form of subjective 

assessments by test subjects. There is now way t o  do long term systematic evaluation of seat 

comfort. Subject testing is inadequate due to  the lack of nerves in and around the thighs 

and buttclcks areas. Comfort is perceived more as a lack of discomfort. This has led to  the 

development of pressure sensing devices to mea.sure pressure distributions in products that 

support t:he body (e.g., seats, shoes, a.nd beds). 

Some early pressure sensing met,hods involved the use of pressure serisitive inks, ther- 

mographs, mechanical springs, and capacitance bridges [29], [13]. Recently there has been 

commercial developments in pressure sensing devices [34], [63]. Application of these devices 

include the measurement of: (1) bite pressure (with U-shaped sensors), (2) shoe pressure 

[5], [14], 11431, (3) pressure from clinical support surfaces (e.g., hospital beds) [3], and (4) 

sitting pressure distributions. It is the understanding and interpretation of sitting pressure 

distributions to which this work is devoted. 

Current work in the use of pressure sensing devices tmo measure sitting pressure distribu- 

tions is fclcused on relating these distributions to  seat comfort [34], [58] [154], [65], [3], [13], 

[33], [55]. The exception to this is the work in [62] which determines sitting posture (e.g., 

sitting upright, leaning forward) from sitting pressure distribution data and is the basis of 

this work.. 

1.4 Anatomy 

This section is meant to  give the reader a bare bones understanding of anatomical struc- 

ture and its relation to sitting pressure distributions. Covered are anatomical terminology, 

the pelvis, the spine, and the legs. A glossary of terms can be found in Appendix B. 

Starting with terminology, the three fundamental planes of reference are used to  depict the 

structural arrangement of organs, bones, etc, in the body. Figure 1.2 depicts the commonly 

used coronal, midsagittal. and trarzscerse planes. Directional terms such as anterior (toward 

the  front:^ vs. posterior (towards the back), medial (toward the midline of the body) vs. 



lateral (toward the side of the body), and superior (toward the head) vs. inferior (away from 

the head) are used to locate and relate different parts of the body. 

Fig. 1.2. Three fundamental planes. 

Two key elements involved with sitting are the pelvis and spine. One important function 

of the pelvis is that it transmits weight from the upper body to the ischial tuberosities while 

seated. The ischial tuberosities are conlmonly referred to as the sitting bones. Figure 1.3 

depicts the human pelvis. The ischial tuberosities are the two bottom-most protrusions of 

the pelvis. 

Figure 1.4 shows the natural curve of the spine. The lumbar region of the spine is 

of particular importance in sitting posture. Proper support of this region while seated to 

maintain the lumbar curve, sometime referred to as lumbar lordosis, is necessary for both 

comfort and health 1271. 

The vertebrae of the spine are connected together by intervertebral discs (Figure 1.5). 

These are the cartilage discs that separate the vertebrae and provide flexibility and cush- 

ioning for the spine. Improper posture can place stress on these discs which, over time, can 

cause serious damage to them and the surrounding joints and nerves. 

Another key component in sitting posture are the legs. Figure 1.6 shows the major bones 

in the leg. While seated, pressure is distributed along the length of the thigh. 



Fig. 1.3. An x-ray of the pelvic area. 
(http://www.scar.rad.washington.edu/RadAnatoy/Pelvis/Pelvis.html) 

Fig. 1.4. The normal, healthy curve of the spine. 
(http://m~ww.mc.maricopa.edu/academic/cult/l) 



Fig. 1.5. A section of the spine showing the intervertebral discs. (wv~w.scoi.com) 

Fig. 1.6. The leg. (http://www.mc.maricopa.edu/anthro/origins/webanatomy/leg.html) 



This discussion, the figures in particular, has been centered around the skeletal system. 

Also of irnportance to sitting posture is the muscular system. When tlie body is in an 

unstable l~osition, a position in which it is not balanced over the pelvis such as leaning 

forward, ~nuscles contract to keep the body from falling over. Though a person appears still, 

their musc;les may be hard at work. The effects of this will be discussed further in the section 

in this chapter on Sitting Postures at Work. 

1.5  Erg;onomics and Sitting 

In recent years there has been an increase in cumulatiue trauma disorde;ps associated with 

working environments. These are disorders of the muscles, tendons, ligaments, and/or nerves 

caused or aggravated by repetitive motion activity that applies stress to the body. This has 

precipitated the need to design work environments that are healthy for people. 

Here vie discuss the role of ergonomics as it applies to seating. Ergonomics deals with the 

relationships between workers and their environments. Section 1.5.1 con1,ains a discussion 

on anthropometrics. Section 1.5.2 describes proper chair fit and the results of an incorrectly 

fitted cha'lr. The final sectmion on ergonomics is Section 1.5.3 which discusses sitting postures 

in a work environment. 

The Oxford English Dictionary defines anthropometry as the measurement of the human 

body wit11 a view to determine its average dimensions, and the proportions of its parts, at 

different iiges and in different races or classes. Examples of anthropometric measurements 

include popliteal height (The vertical distance between the floor and the crease just behind 

the knee of a seated person.), seat depth (the distance from the buttocks to the back of the 

knee), an'd elbozll rest height (the height of the elbow above the surface on which a person 

sits when the torso and thighs form a right angle) [35]. 

Ergonornicists use anthropometric measurements to designs product:; to fit a desired 

range of people. This range is usually inclusive of a 5th percentile female and 95th percentile 

male. (This assumes that all females below the 5th percentile have dirtlensions that are 

smaller than those of the 1st percentile of males and all males above the 93th percentile 



have dimensions that are larger than those of the 100th percentile female). A person that 

falls into t,he 50th percentile is an average-sized person. By designing to fit all people in the 

5th-to-95th percentile range it is hoped that the product will fit 95 percent of the population. 

But this rnay not be attainable. 

All males above the 95th percentile for one measurement are not necessarily the same 

as those who fall above the 95th percentile for a different measurement. Much of the an- 

thropometric data available to ergonomicists comes from military p~pulal~ions. The entire 

populatio~l has greater amounts of extremely small and extremely large people. This results 

in the effective percentile range being smaller than the desired range. 

Ways to compensate for this reduced range are to make products adjustable to differently 

sized users and to offer the same product in different sizes. These steps rnake the product 

better fitted to an individual. 

1.5.2 Chair Fit 

Office workers spend a large percentage of their time at work seated in their chairs. A 

chair that adjusts to a person's size and does not restrict a person as they move from one 

task to another is important for a healthy and productrive work environment. The chair we 

use in our work, the Herman Miller Aeron chair, comes in three sizes to better fit people on 

the small and large ends of the size spectrum. 

A chair's height should be adjustable to fit a wide range of people. Ideally, the chair 

height (a$, measured from floor to the top of the seatpan) should be close to the popliteal 

height of the person sitting in it. This is to distribute pressure from the seatpan over the 

entire back of the thigh. A chair that is adjusted too low would increase the pressure under 

the ischial tuberosities. A chair that is too high would increase the pressur'e under the dist,al 

thigh. Both of these, over time, would constrict blood flow in the area of increased pressure 

and make the person uncomfortable, and most likely decrease their produ~:tivity [38]. 

Other common chair adjustments include seatpan angle, seat back tilt., and lumber sup- 

port. The later is important to maintain the lumbar curve. 



1.5.3 Sitting Postures at Work 

A variety of tasks induce a variety of sitting postures at  work. People lean forward when 

performing work on their desks such as writing. They sit up when typing on a keyboard. 

When t,heir phone rings, they lean to  the side to answer it. They lean back and slouch when 

they want to  rest. And they cross their legs when talking with a colleague. 

Changing posture, whether due to a change in the task a t  hand or simply a need to 

break f r o ~ n  the task, has benefits. Alternatingly contracting and relaxing muscles increase 

circulation. Movement also allows the spine to  be nourished. This is because there are 

no blood vessels in the spine. The only way to provide nutrients is by moving the fluid 

around the spine through body movement. Joints and ligaments also benefit therapeutically 

from joint movement. Continual change in sitting posture prevents maintaining awkward or 

non-neutral positions of the spine. prolonged conlpression forces on the discs and localized 

contact stresses. 



T H I S  P A G E  INTENTIONALLY L E F T  B L A N K  



2. PRELIMINARY RESULTS 

This chapter describes the preliminary results that have been obtained so far on the 

Sensing Chair project. The  overall goal of this project is to develop a robust real-time 

system for tracking a person's sitting posture using surface-mounted pressure distribution 

sensors on the seatpan and the back of the chair. This work is divided int'o two parts: 

A real-time classification system for labeling a set of preselected typical sitting postures 

in an office environment (i.e., Static Posture Classification). 

A real-time tracking system that labels a person's sitting posture at any given time, 

whether it is a transitional or steady-state posture (i.e., Dynamic Posture Tracking). 

The  preliminary work focused on the construction of the Static Posture Classification 

system. ]+st, a Static Posture Database was established. The database contains a total 

of 1500 sitting pressure distribution maps from 30 individuals (half male and half female) 

who contributed .5 samples for each of 10 preselected postures. Section 2.2 describes the 

postures that were selected, the anthropometrics of the subjects, the procedures used for 

data  collection, and the data  manipulation. Second, a real-time mu1 ti-user Static Posture 

Classification system was developed. This system classifies sitting pressure distributions from 

individuals who either contributed samples to the database, or those who:je anthropometry 

is represented in the database, with an overall accuracy of 96% correct. Section 2.3 presents 

the implementation of the Static Posture Classification system, and its evaluation. The 

hardware system for capturing pressure distribution maps is briefly described in Section 2.1. 



2.1 Sitting Pressure Distribution Measurement System 

The sensing system used in the Sensing Chair Project is the Body Pressure Measure- 

ment System (BPMS) (Tekscan, Inc, South Boston,RIA). It consists of two identical surface- 

mounted pressure-sensitive transducer sheets, their interface electronics, and a PC interface 

board. Tekscan also supplies Windows software that captures and displays pressure maps 

from the sensor sheets. 

Each sensor sheet contains a flexible printed circuit array of 42x48 pressure sensing ele- 

ments (seiisels). The sensels are uniformly spaced 10 n1n1 apart. The overall effective sensing 

area is 41 x 47 cm. For the Sensing Chair Project, the two sensor sheets have been mounted 

on the seat back and seatpan of a Herman Miller Aeron chair (Figure 2.1). 

Fig. 2.1. The Aeron Chair. (http://www.herman~niller.com) 

Each :;ensel acts as a variable resistor. Its resistance is determined by the normal force 

being applied to its location. When unloaded, its resistance is high. As an applied force is 

increased. its resistance decreases. The resistance is converted to an 8-bit digital value. The 

interface electronics and PC interface board can capture the two pressure lclistributioll maps 

at rates up to 127 Hz. The pressure maps can be visualized as a greyscale image. Figure 2.2 

is an example of the pressure maps captured with a person seated upright in the chair. 

The irnage shown in Figure 2.2 is subject to noise due to  two sources: inherent Sprasor 

Noise, anfd Sensor Sheet Deformation. Sensor noise can be seen as the locod abrupt changes 

in greyscale values. Sensor sheet deformation introduces pressure artifacts into the sitting 

pressure distribution map that are tlle result of the sensors bending around and conforming 

to tlle chair. The pressure sensors in the Body Pressure Measurement System were designed 



Fig. 2.2. An example of sitting pressure distribution maps displayed as an 8-bit greyscale 
image. The  top half of the image shows the pressure distribution on the back of the chair, 

and the bottom half shows that  of the seatpan. The  top, bottom, left and right sides of the 
image correspond to the shoulder area, knee area, right side and left side of the person, 

respectively. 



t o  be placed on firm flat surfaces. The  Aeron chair is contoured to  fit the human body. To 

affix the pressure sensors to t,he chair, their corners and edges have been wrapped around the 

edges of the chair. This causes pressure artifacts to  appear in the sitting pressure distribution 

maps (e.g., see the small pressure areas in the upper-left and upper-right corners of Figure 

2.2). Removal of sensor noise and pressure artifacts is performed by a process called clearzirzg 

and will be discussed in detail in Section 2.2.5. 

2.2 Static Posture Database 

There is no known publicly accessible database of sitting pressure distribution data. We 

have therefore collected a small database containing Static Sitting Pressure Distribution 

Maps. I t  provides the necessary training data for the development of a Static Posture 

Classification system, as well as data needed for the evaluation of the clasification system. 

The  collection of a database containing dynamic sitting pressure distribution data  will be 

discussed in Chapter 3. 

Section 2.2.1 describes the set of postures we have chosen for the Static Posture Database. 

That  is followed by a description of the software used to collect the pressure distribution 

data. Section 2.2.3 provides information on the subjects from whom data  vlas collected. The 

procedure for data  collection is given in Section 2.2.4. Next is a section on the preprocessing 

of the raw sitting pressure maps to remove sensor noise and sensor sheet deformation pressure 

artifacts. Section 2.2.6 describes the sitting pressure distribution maps for all postures. 

Section 2.2.7 focuses on feature extraction of sitting pressure distribution maps. Finally, 

Section 2 2.8 summarizes data  clustering results using the K-Means algorithm. 

2.2.1 Postures 

The postures contained in the Static Posture Database are lipright. L~nrzzrzg Forward, 

Leaning L,eft, Leara~ng Right, Right Leg Crossed, Left Leg Crossed, Leaning Left with Right Leg 

CI-ossed, Leanzng R ~ g h t  ~ 1 1 t h  Left Leg Crossed, Leaning Back, and Slouching. These postures 

are representative of the typical sitting postures that can be found in an office environment 

[38] . 



?Vhat follows is a general description of each posture. The posture names are self- 

explanatory so skipping this section should not affect the understanding of the rest of this 

document. The reader should look at Table 2.1 to become familiar wit,h the abbreviations 

used for the post'ure names as postures will commonly be referred to by t,heir abbreviations. 

For posture Upright a, person is sitting comfortably upright in the chair with both feet flat 

on the floor. Their hands and forearms may either be on the lap or on the armrests. The back 

may rest against the back of the chair but does not push against it. In the Leaning Forward 

posture a person's trunk is angled forward from the waist. There is usually no pressure 

applied on the backrest of the chair except for a small pressure a.rea near the lumbar region. 

In posture Leaning Left a person has their weight centered over the left sitting bone. Placing 

the left arm on the armrest is optional for the person. In Learzing Right, a person's weight 

is centere'd over the right sitting bone. Placing the arm on the armrest is isgain optional. 

Posture Right L,eg Crossed is when t'he right leg is crossed on top of the left leg. Usually, 

for women' the right knee is over the left knee and for men, the right artkle is on the left 

knee. Posture Left Leg Crossed has the left leg crossed on top of the right; leg. Usually, for 

women, t'lle left knee is over the right knee and for men, the left ankle is on t'he right knee. 

For posture Leaning Left with Right Leg Crossed the person's weight is over the left sitting 

bone while having their right leg crossed. The arm may rest on the left ar-mrest. In posture 

Learzirzg Righ.t Left Leg Crossed the person's weight is over t'he right sitting bone while their 

left leg is crossed over their right leg. The arm may rest on the right armrest. 

In the: Leaning Back posture, a person's upper torso presses against the back of the 

chair. Posture Slouch,ing is when a person's pelvis is positioned toward the front edge of the 

seatpan. For brevity, t,hroughout the rest of this document the postures l ~ i l l  commonly be 

referred to  by their abbreviations listed in Table 2.1. 

2.2.2 Static Posture Acquisition Software 

This section describes the software developed to collect sitting pressure clistribution maps. 

This software was needed to  obtain data for the Static Posture Database. A program was 

written in Microsoft Visual C++ 6.0 to run under Windows 98. It uses an API library 



1 Posture Name I Abbreviation 1 
Upright 

Leaning Forward 

Leaning Left 

Leaning Right 

Right Leg Crossed 

N 

LNF 

LNL 

LNR 

RLC 

Slouching I 

sL 1 

Left Leg Crossed 

Leaning Left with Right Leg Crossed 

Leaning Right with Left Leg Crossed 

Leaning Back 

Table 2.1 Posture names and their abbreviations. 

LLC 

LLRLC 

LRLLC 

LNB 



supplied by Tekscan t,hat permits direct access to  the BNIPS interface board. This pro- 

gram, called Sitting Posture Acquisition, a~tomat~ica l ly  records and stores sitting pressure 

distribution maps for the Static Posture Database. 

Figure 2.3 shows the main window of the Sitting Posture ilcquisition program. The 

experimenter is able either to enter information of the subject or to  collect data  from the 

subject by clicking on the desired button. 

Fig. 2.3. Static Posture Acquisition program. 

The  Subject Info button opens a dialog box in which the experimenter can enter the 

following information about the subject: (1) a unique identification name (for anonymity of 

the subject), ( 2 )  subject's height, (3) subject's weight, (4) subject's age, (5) subject's gender, 

(6) height of the chair1, and (7) comments by the experimenter (e.g., how the subject crosses 

his or her legs). For female subjects the unique identification name (Subject ID) is F# , 

where # is a number. For male subjects the Subject ID is Ad#. The subject information is 

saved in a text file with the name of the unique Subject ID of the subject. 

The  Collect Pressure Data button opens a dialog box that assists the experimenter by 

prompting her with the posture name for the nest sample of pressure distribution maps. 

Steps involved in the data  collection process will be explained in more d e t a ~ l  in Section 2.2.3. 

2.2.3 Subjects 

A total of 30 subjects (15 females and 15 males) participated in data  collection. Five 

samples for each of the ten postures were collected from each subject. Therefore, a total 

of 150 samples were collected for each posture. Subjects were selected on the basis of their 

overall size. The  goal was to  obtain  subject,^ wit11 a wide distribution of weight and height. 

'see Section 2.2.4 for the importance of chair height 



The range, mean and standard deviation for subject's height, weight, and age, chair 

height, and subjective assessment of paddedness have been computed for all of the subjects 

as well at; for the female and male subjects separately (see Table 2.2). Paddedness is a 

subjective assessment of t,he subject's build by the experimenter to  desc~ibe the fitness in 

the torso and upper leg region of the subject. The  range of paddedness is 1 to 3, where 1 

is not paddeded  and 3 is wel l  padded.  Subjects that are well padded tend to be overweight 

while those that aren't edge towards being skinny and/or muscular. 

Table 2.2 Database statistics computed for female subjects, male subjects and all subjects. 

Group 

A plot of the subjects' height vs. weight can be seen in Figure 2.4. Male subjects' data  

are displayed with an '.' and female subjects' data are displayed with a 'x'. The plot shows 

that we succeeded in collecting data  for subjects over a wide range of height and weight. 

Female 

Male 

All 

2.2.4 Procedure 

Since the building of the St'a.t,ic Posture Database took place over several weeks, a col- 

lection procedure was developed to standardize the collection of data.  'The steps in this 

procedure are outlined below. 

Range 

Mean 

StdDev 

Range 

Mean 

StdDev 

Range 

Mean 

StdDev 

60-70 

65.867 

2.475 

66-75 

70.600 

2.667 

60-75 

68.233 

3.491 

18-60 

30.300 

14.446 

19-37 

28.133 

6.334 

18-60 

29.267 

11.020 

100-185 

139.067 

21.171 

146-260 

177.400 

33.032 

100-260 

158.233 

33.513 

0-3.125 

0.833 

1.082 

0-4.75 

2.476 

1.220 

0-4.75 

1.655 

1.408 

1-2 

1.333 

0.488 

1-3 

1.60 

0.828 

1-3 

1.467 

0.681 



Subject Height vs. Subject Weight [x-female, -male] 
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Fig. 2.4. The distribution of subject height and weight. 



1. The subject is given a brief description of the Static Postmure Classification Project and 

informed of the types of postures and number of samples of each posture that will be 

collected. 

2. The subject is then familiarized with sitting pressure distribution maps by viewing 

their sitting pressure dist.ribution data on a computer monitor. 

3. The chair height is adjusted t,o properly fit the subject. The height of a chair can dra- 

matically change the pressure distribution pattern on (especially) the seatpan. When 

the chair is too low or too high, a person's weight is mostly supported by the back or 

the front edge of the seatpan, respectively. The experimenter adjusts the height of the 

chair such that  pressure seems to be evenly distributed across the subject's thighs. 

4. Data collection begins by opening the Sitt,ing Posture Acquisition program (see Fig- 

ure 2.3). The experimenter clicks on the Subject Info button and enters the relevant 

information in the dialog box shown in Figure 2..5. 

5 .  To collect data,  the experimenter clicks on the Collecf Pressure Data button. The Data 

Collection dialog box (Figure 2.6a) opens and the experimenter click:; the Start button 

to begin the collection process (see Figure 2.3). 

6. The program prompts the subject to sit in a specified posture. When the subjects 

complies, the experimenter clicks the Capture button to  capture the current sitting 

pressure distribution map and then the Save Map button to save the sitting pressure 

distribution map to a file (Figure 2.6 b and c). 

When a sitting pressure distribution map is saved, the Sitting Posture Acquisition 

program saves the pressure map in an ASCII file with a name that is indicative of the 

subject, posture and sample number. All data files for a given subject are stored in 

one directory. The directory name is taken as the value of the Subject ID field of the 

Subject Info dialog box. The naming convention of the dat,a files is as follows: 



Fig. 2.5. The Subject Info dialog box. 



Next posture: Sample 1 of posture Upright. 

1To save pressure map to fie N 1, cl~ck Save Map 

Fig. 2.6. (a) Click Start to begin data collection. (b) The data acquisition program 
prompts for a posture. (c) The current sitting pressure distribution map is stored in a file 

after the Save Map button is clicked. 



For example, the five da,ta, files for posture Right Leg Crossed for subject F04 would 

be given the names F04RLC.1, F04RLC.2, F04R.LC.3, F04RLC.4, F04RLC.5. 

7. Step 6 is repeated until all samples for all postures have been collected. 

2.2.5 Data Preprocessing 

As described at the beginning of Section 2.1, there are two types of noise found in the 

sitting pressure distribution maps due to  either sensor noise or sensor sheet deformatiorz. 

This section describes the methods used to  clean the sitting pressure distribution maps. 

Cleaning the sitting pressure distribution maps involves smoothing the raw sitting pressure 

distribution maps to  remove sensor noise, and removing pressure artifacts from the smoothed 

maps. 

Figure 2.7 shows a raw sitting pressure distribution map for posture N .  This is the first 

sample of posture Upright collected for female subject number four (F04DJ.l) The image is 

shown as a 3-D height map, where the height above the z=0 plane indicates the pressure 

value. Large height values indicate high pressure values in the sitting pressure distribution 

map. 

Fig. 2.'7. Raw sitting pressure di~tr ibut~ion map for posture Upright (sa-mple F04N.1). 



As one can see, the raw sitting pressure distribution map is extremely noisy. The first 

step in data preprocessing is to smooth the sitting pressure distributiorl map. The 3x3 

smoothing kernel shown below is applied to the sitting pressure distribution map. 

The dramatic affects of applying the smoothi~~g operator to the pressure map in Figure 

2.7 can be seen i11 Figure 2.8. This does not remove all of the noise in the sitting pressure 

distribution map. In addition to noisy pressure values, there are pressure artifacts throughout 

the sitting pressure distribution map. 

Fig. 2.8. Sample F04N.1 after smoothing. 

The pressure artifacts due to Pressure Sheet Deformation occupy significantly smaller 

areas than any of the subject induced pressure components in the sitting pressure distribution 

map. They usually lie near the corners and along the edges of the sitting pressure distribution 

map where the sensors fold around the chair. These artifacts are remo~ied in a two-step 

process. First, the connected components in the sitting pressure distribution map are found 



by a standlard component labeling algorith~n [57]. Second, those  component.^ whose areas are 

smaller than ten percent of the largest component area of the sitting pressure dist,ribution 

map are deemed to be pressure artifacts and are removed. The cleaned version of the sample 

upright posture is shown in Figure 2.9. 

Fig. 2.9. Sample F04N.1 after artifact removal. 

2.2.6 Description of Sitting Pressure Distribution Maps 

What follows is a general description of the sitting pressure distribution maps after they 

have been cleaned, that is after smoothing and pressure artifact removal. For all postures, 

there are usually peaks in the sitting pressure distribution map that correspond to the 

the sitting bones of the pelvis. Most sitting pressure distribution maps :;how two distinct 

peaks, one for each sitting bone. Occasionally, the peaks are not distinct as compared to 

the pressure values around the posterior distal thigh. This case generally occurs with more 

padded subjects. Figure 2.10 shows a sitting pressure distribution map for a padded subject. 

Sometimes there are secondary peaks located down the thigh and to 1,he outside of the 

leg to peaks from the sitting bone. These are believed to result from a pressure increase due 

to the bony bulge at the end of the femur near the hip joint called the greater trochanter. 

which is distal and lateral to the sitting bones. Figure 2.11 shows an x-ray of the pelvic area 



Fig. 2.10. A sitting pressure distribution map of a padded person. 



with the greater trocha,nters labeled. Figure 2.12 shows a typical sit,ting preljsure distribution 

map for posture N compared to one that has secondary peaks. 

Fig. 2.11. X-ray of a pelvis. The greater trochanters are labeled on ~ea.ch femur. 
(htt~~://www.scar.rad.washington.edu/RadA~~atomy/Pelvis/PelvisLa~~elled.html) 

Fig. 2.12. A sitting pressure distribution map showing secondary peaks. 



The generalities mentioned so far are applicable to all postures. Below are descriptions 

of the sitting pressure distribution maps for each posture. Descriptions for both the seatpan 

and t,he seat back are given. 

N Posture Upright: Figure 2.13a 

Seatpan: TJsually one connected componerlt where areas of the pressure distribution 

corresponding to the left and right thighs diverge. It is possible to have two separate 

components. 

Seatback: One trapezoidal or butterfly-like region is common, usua'lly with two ver- 

tically symmetric lobes. There can be two components separated by the area on the 

chair over which the spine is positioned. 

LNF Posture L,eanin.g Forward: Figure 2.13b 

Seatpan: Similar to N but pressure is more evenly distributed across the length of the 

leg. 

Seatback: There is very little pressure on the seat back. 

LNL Posture Lean.ing Forward: Figure 2 . 1 3 ~  

Seatpan: There is an increase in pressure and area on the left leg and a decrease on 

the right leg as compared to posture N. 

Seatback: Pressure shift to the left side. Back pressure region can resemble that of IS 

or ciln show only one of the vertical lobes. 

LNR Posi;ure Leanin.g Forulard: Figure 2.13d 

Similar to LNL but flipped. 

RLC Posture Right Leg Crossed: Figure 2.13e 

Seatpan: Left leg is of same shape as that in posture N. The right leg reduces to a 

sphere with an increase of pressure around the sitting bones. T h e ~ e  can also be an 

increase of pressure around the left knee. 

Seatback: Similar to  posture N.  

LLC Posture Left L,eg Crossed: Figure 2.13f 

Similar to RLC but flipped. 



LLRLC Postzlre Leaning Left with Right Leg Crossed: Figure 2.13g 

Seat,pan: The pressure on left leg is greater than that of posture RLC. There is also a 

decrease in pressure of right sitting bone. 

Seatback: Similar to posture LNL. 

LRLLC Posture Leaning Right with Left Leg Crossed: Figure 2.13h 

Similar to LLRLC but flipped. 

LNB Posture Leaning Back: Figure 2.13i 

Seatpan: Similar in shape to posture N. The pressure of the sitting bone peaks is 

norrr~ally reduced. There is an increase in pressure along the entire leg. 

Seatback: There is an increase in pressure compared to posture N.  The area of the 

back component may increase. In the case of a lightweight person, there may not be a 

great amount of pressure placed on the seat back. 

SL Posture Slouching: Figure 2.13j 

Seatpan: The sitting bones slide forward towards the middle of the !chair. The main 

component looks like an elliptical blob. Any sharp pressure peaks from the sitting 

bone:; are reduced from those of posture N. 

Seatback: The area of the main component decreases. What correspoilds to the shoul- 

der area in posture N is located slightly lower down the back of the chair. There is the 

possibility of the neck and/or head pressing against the back of the chair as either an 

extension of the main component or as a separate comporlent. 

2.2.7 Feature Extraction 

Many feat.ures can be extract,ed from the sitting pressure distribution maps. Some of 

these are tine following: 

Ischia,l tuberosity (sitting hone) localization 

Total force 

Average pressure 



Fig. 2.13. Samples of cleaned sitting pressure distribution maps for all postures: (a) N (b) 
L N F  (c) LNL (d) LKR (e) RLC (f) LLC (g) LLRLC (h) LRLLC (i) LiNB (j) SL. 



Maximum pressure value 

Nunlber of components 

Areas of the largest components in the pressure map 

Angle of divergence of the legs, major axis, minor axis 

Once the pressure peaks that correspond to the sitting bones are known, the distance 

between tliem and the orientation of the line connecting them can be calculated. These 

features can be used to rotate and scale a sitting pressure distribution map. The sitting bone 

distance for females usually is larger than that for males (F: 15.51'7f 0.550, M.: 13.352f 1.623). 

This rneasurenlent could be used to predict the gender of a person sitting i11 a sensing chair. 

Sitting bone localization. total force, average pressure, maximum pressure value, number 

of components, component areas, leg divergence angle, and leg orientations can be automat- 

ically calculated for 90 percent of the pressure distribution maps. They will be useful for a 

feature-based static posture classification or tracking system. 

K-means is a clustering algorithm that takes a set of AT data samples of dimension d 

and splits it into K clusters. This algorithm was applied to the Static Posture Database 

to investigate whether the natural clustering of the database samples corl-esponds to that 

according i;o their posture labels2. 

K-means works by randomly initializing K clusters. The means of each of the K clusters 

are calcula.ted. Then for each sample, its distance to each cluster is computed as the Eu- 

clidean distance to each cluster mean and it is reassigned to the cluster corresporlding to the 

smallest distance. The means of the new clusters are computed and the reassignment step 

is repeated until the clusters do not change [20]. 

The K-means algorithm was applied to the data in the Static Posture Database under 

various scenarios. It was first applied to cluster samples into different postures and then to 

find clusters within a given posture 

'The author t'hanks Tim Stough and Jennifer Dy for the K-means MATLAB code 



Fig. 2.14. Output from running I<-means on the data in the Static Postur'e Da.ta.ba.se with 
K = 10. 



To find clusters of samples representing different postures K-means was run on smoothed 

sitting pressure distribution maps. The number of clusters was varied from 10 to 20, the 

dimension of the data was 4032, and the number of samples was 1500. Figure 2.14 shows 

the mean:; it computed for I< = 10. Whereas some of the cluster means (e.g., Figure 

2.14f) are very similar to  the posture mean of the database samples (in this case Slouching, 

see Figure 2.16j). others appear to  be averaged from samples with different posture labels. 

To investmigate this further, the nuniber of samples from each posture that contributed to 

each cluster mean are tallied in Table 2.3. As can be seen, the clusters do not necessarily 

correspontl to individual postures. 

Table 2.3 Number of sa~nples from each posture that belong to each cluster from K-means 
with K=10. The cluster labels in the table correspond to the image of the cluster mean of 

Figure 2.16. 

Appendix A contains figures of the cluster means and tables of the number of samples 

from each posture that contributed to each cluster mean for I< = 12,14,16,18, and 20. 

We then investigated clustering the data in the eigenspace. ,4 single eigenspace was 

trained on the 1500 samples in the Static posture Database. The training sa.mples were then 

projected onto the first D eigenvectors of the eigenspace to obtain a vector of weights for 

each training sample. The value of D varied from 5 to 250. The weight vectors were then 



clustered using Ei-means for various values of I<. The results of clustering in the eigenspace 

also produced cluster means that did not visually resemble one of the 10 postures. Looking 

at the means and standard deviations of the weight vector elements across different postures 

shows that the means are similar for different postures and that the variances are relatively 

large. These both imply that the projection weights are not good features by which to 

cluster. 

The second method of clu~t~ering was done to examine how by which the data samples 

within a s~ngle posture cluster. The samples for each posture usually form 3 clusters. These 

clusters represent differences in size and weight of a person and correspond to small, medium, 

and large sized people. 

2.3 Posture Classification 

The pr.oblem of classification can be defined as follows. Assume, we a.re given a set of 

labeled training samples containing several examples of each posture by eacln of our subjects. 

The associated label indica.tes to which class each sample belongs (i.e. the posture that the 

sample represents). The first step is to select a learning algorithm that ca,n be used to 

construct some type of model of the data, whether it be a.ppearanced-based or feature- 

ba,sed. Th'en, given a new unknown or unla.beled sample X,,,, the problem of classification 

is to identify to which model (or group or class) that the new sample belorigs. 

Classifica,tion systems fall under one of two categories: appearanced-based and model- 

based. Appearanced-based systems include those that use techniques such as principal com- 

ponents analysis and discriminant analysis for classification. Model-based systems ma.tch 

scene features to model features in order to classify a.n object in a scene. 

A real-lime sta,t,ic post.ure classification system that uses the appearanced-based technique 

of principal components analysis (PCA) has been developed. Section 2.3.1 describes PCA 

and its formulation for the classification of sitting postures. Section 2.3; .2 describes the 

posture da.ta in the new space defined by PCA. The real-time sitting posture classifica.tion 

program is described in Section 2.3.3. Lastly, Section 2.3.4 gives the classification results. 



2.3.1 Posture-Based Eigenspaces 

Principal components analysis is a well known technique in computer vision. It has been 

applied to many vision problems with much success [67], [50]. It has also been used for a 

single usei- posture classification system [62]. 

A common approach to PCA consists of projecting the set of training vectors X,  to a 

single eigenspace. The classification step can be described as follows. First, we project the 

new vector X,,, onto the eigenspace. We then use the L2-norm to search for the nearest- 

neighbor of X,,,,,. This nearest-neighbor is the one that infers the class (in our case, posture) 

to our un~tnown vector X,,,. We can reduce the dimensionality of our problem by using 

those eigenvectors that correspond to the N largest eigenvalues and discarding the rest [67]. 

Another approach (and the approach we take) would correspond to generating a separate 

eigenspace for each posture, what we call a posture space (i.e., the view-based eigenspace 

in [50]). [f 10 different postures are to  be discriminated, 10 different posture spaces are 

generated. In this case, the classification step is more complicated than before. One possible 

way of doing this consists of searching for the best reconstruction of the unknown sample. 

That  is to  say, we first project our vector X,,, onto each of the posture spaces. Second. 

we rec~nsi~ruct  the new vector from each of the 10 projections. Last, we search for the 

best reconstruction of the unknown sample. This step is a simple matter of computing 

the Euclidean distance between the unknown vector X,,, and each of the reconstructions 

-Ynew2, .. X,,,lo). The label of the reconstruction that is closest to the unknown 

sample is used to classify X,,,,. Once again, we can limit ourselves to a low dimensional 

subspace by keeping those eigenvectors that correspond to the largest eigenvalues. We call 

these eigerlvectors Eigen Pressure Aaps  ( EPMs). 

Eigen-decomposition for the Posture Classificatiori System starts with preprocessing the 

sitting pressure distribution maps in the Static Posture Database. The smoothing step de- 

scribed in Section 2.2.5 is applied to the raw sitting pressure distribution maps. Smoothing 

reduces the mean-square error in the eigen representations and increases the overall accu- 

racy in classification by 7% (See Section 2.3.4 for more details). Pressure artifacts are not 

removed because (1) they are common to all pressure maps, and therefore, do not affect 



the performance of the Posture Classification System; (2) the removal of pressure artifacts 

reduces the effective sampling rate of the whole system. 

After the sitting pressure distribution maps are smoothed, they are then normalized. 

The pressure values on the seatpan are usua,lly much higher than those of the seat back. 

Therefore, the values in the seat back and seatpan are nornlalized independently. Figure 

3,. 15 shows the result of normalizing the clearled sample posture F04N.1 (see Figure 2.9). 

Fig. 2.15. Normalized sitting pressure distribution ma.p. Also shown are the equal pressure 
contours. 

The sitting pressure distribution map is raster scanned to  form a 4032x1 vector. E'g 1 en- 

decomposition for each posture k ,  k = 1..N with N = 10, is computed as f(11lows. 

Let Pk = ... X l , s ,  X2.1, ... X2,S, ..., X H T 1 ,  ... X H , s )  be the set of training samples for 

posture k ,  where H = 30 is the number of subjects. S = 5 is the number of samples per 

posture per subject. There axe HS = 150 training samples of each posture in the Static 

Posture Database. For simplicity, the training set PI, is rewritten as PI, = { X I ,  X 2 ,  ..., X M )  

where hrl =I 150. The mean sitting pressure distribution map vector for posture k is calculated 

as : 



The rnean sitting pressure di~tribut~ion map vectors for all postures art: shown in Figure 

2.16. The vectors have been converted back to arrays for display purposes. 

Zero-mean data is obtained by subtracting the mean from each of the -training samples: 

The zero-mean training samples are stacked to form a large mat8rix a, of size 4032x150, 

whose covariance matrix C is: 

where @ =: 02, is of size 4032xM. 

The eigenvectors and eigenvalues of C determine the eigen-decomposition of the training 

samples. Seeing that C is such a large matrix, computation of its eigen1,ectors is compu- 

tationally expensive. Since nil = 150 < 4032 no more than eigenvalues are non-zero. 

The eigenvectors of our large 4032x4032 matrix C = $a@' and those of the MxM matrix 

CI = -!-@I@ M matrix are related in the following manner [44]: 

Let vec-tors v, of size Mxl be the eigenvectors of (71 = &@I@. Then, 

where p, a,re eigenvalues. Premultiplying by yields: 

So, the eigenvalues and eigenvectors of C are p ;  and at!;, respectively. 

The eigen-decomposition of the training samples consists of finding the 12.1 eigenvectors 

v, of C' = &at@. The eigenvectors of C u;, of size 403'2x1, are given by: 

M 

u; = @ ~ i  =Cv;,j$; for i = I , % ,  ... M 
j=1 

where vi,j is the j-th component of v;. 



Fig. 2.16. Mean sitting pressure distribution maps: (a) N (b) L N F  ( c )  LNL (d) L N R  ( e )  
R L C  (f)  LLC (g) LLRLC (h) LRLLC (i)  L N B  (j) SL.  



The u: (i  = 1,2 ,  ... 1W) are therefore the EPhJs. We let ek; denote the itii eigenvector (the 

eigenvector corresponding to the ith largest eigenvalue) of the posture space for posture k.  A 

training siltmple can be reconstructed from the EPMs. This is done by projecting the sample 

onto each EPT\/I to obtain a vector of weights. The EPMs are then added together, weighted 

x- AT by the respected projection weight, to reconstruct t,he sample (i.e., 4; = L - ~ = ~ ( @ ; .  ekj)ekj). 

We can choose D < ,44 eigenvectors to reduce the dimension of our problem. The error 

in the recol~struction caused by eliminating eigenvectors is minimized, in the mean-square 

sense, if we use the D eigenvectors corresponding to the D largest eigenvalues. 

The pirocedure for obtaining the EPMs described above is repeated for each of the 10 

postures. Figure 2.17 shows the eigenvalues calcula.ted for each of the posture spaces. 

Classification of a test sitting pressure distribution map is performed as follows. First, the 

test map undergoes the same preprocessing steps the training data has undexgone (smoothing 

and normalization). The following steps are repeated for each posture space k. The posture 

mean xk of the training samples for posture k is subtracted from the test map Xt .  

The mean-subtract test sample dt  is projected onto the first D eigenvectors of posture 

space k to obtain a D-dimensional weight vector Wk = [ W ~ ~ . . . W ~ ~ ] ~ ,  where the ith element 

of T/Vk is the projection of 4t onto the ith eigenvector of posture space k.  The test map is 

then reconstructed as follows: 

where wk; is the ith element of T/Iirk and ek; is the ith eigenvector of posture space k 

The distance 4, - 4, (i.e., the Distance From Feature Space - DFFS [67]) is used as a 

distance rrleasure between the test map dt and posture space k.  The posture space yielding 

the smallest DFFS in the reconstruction is taken as the posture label for classification. If 

mink DFF'S 2 threshold then the sitting pressure distribution map is labeled as unknou1n 

post,ure. The threshold is determined empirically 



All 150 elgenvalues lor each of 10 p t u r e s  
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Posture 
Eigenvalue numbel 

Flrsl 10 elgenvalues lor each of 10 poslures 
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Fig. 2.17. Eigenvalues for all ten postures. (a) All 150 eigenvalues. (b) The ten largest 
eigenvalues for each posture. 



2.3.2 Data Visualization 

Since the sitting pressure distribution samples are of high dimension (4-0.32) it is hard to 

visualize -the distribution of training samples in that posture space. Figure 2.18 shows the 

projectio~ls of all of the training samples for each posture onto the three eigenvectors (eigen 

pressure maps) corresponding to the three largest eigenvalues. This figure shows that even 

in just three dimensions, the posture spaces are complex. 

2.3.3 A Real-Time Static Posture Classification System 

This section describes the real-time static posture classification soft,ware. Figure 2.19 

shows the dialog box that is created when the program starts. The Initialize button must 

first be pr,essed in order to initial the hardware and software variables containing the means, 

eigenvectors, and eigenvalues of each posture space. 

Once i:?itialized, the program continually loops through capturing a sittirig pressure distri- 

bution ma,p and classifying the captured sitt'ing pressure dist'ribution map. The text window 

displays a message stating the classification of the current sit,ting pressure distribution map. 

If the maximum pressure value in the sitting pressure distribution map is below a threshold, 

the seat is said to be empty (see Figure 2.20). 

When the seat is not empt'y, the sitting pressure distribution map is classified as posture 

k if the reconstruction of the projection of the current pressure distribut'ion ]nap onto the kth 

posture space is closest to the current map. This label and the distance to the reconst~ruction 

is displayed in the t'ext window along with the labels and distances of the aecond and third 

closest reconstructions. Figure 2.21 shows the classification for a subject sitting in posture 

LLRLC. The classification of the test posture is correctly given as Leaning Left Right Leg 

Crossed. Note that the next two closest posture spaces are t,hose postures most similar to 

LLRLC: LNL and RLC. 

2.3.4 Classification Results 

The real-time static posture classification system was evaluated in three ways. First, 

execution 5 m e  as a function of number of eigenvectors used was measured. The results are 

shown in Table 2.4. It was observed when using 20 eigenvectors in classification, there is a 



Fig. 2.18. Projections of the training samples for each posture onto the first three 
eigen~ect~ors of its posture space. (a) N (b) LNF (c) LNL (d) LNR (e) R I X  (f) LLC (g) 

LLRLC (h) LRLLC (i) LNB (j)  SL. 



Fig. 2.19. Main window of the Static Posture Classifica.tion System. 

Fig. 2.20. Output when the sensing chair is empty. 

Posture: Leaning left right leg crossed (8.31 8) 
Leaning left i9.1731 
Right leg crossed (9.6511 

Fig. 2.21. This posture is correctly classified as LLRLC. 



noticeable delay between the time of moving to a new posture and that of the display of the 

classification result. As t,he number of eigenvectors is decreased, say to 10, this delay is no 

longer observable. 

1 Number of Eigenvectors 1 Average Classification Time (ms) 1 

Table 2.4 Average classification time. 

Second! extra pressure-map samples that did not get used in eigen decomposition were 

used to test the accuracy of the posture classification system, again, as a function of number 

of eigenvectors used. There were a total of 200 extra samples, 20 for each of the 10 postures. 

The results in Figure 2.22 shows an increase in accuracy as the number of eigenvectors used 

in classifi(:ation is increased. Even when only 15 eigenvectors are used, the overall accuracy 

of the system is 96% correct. The reason the accuracy does not increase monotonically 

with dimension is due to the differences in the energy associated with the added eigenvector 

between posture spaces. For example, a test pressure distribution sample may be classified 

as posture Pl for dimension d = 1. When the second eigenvector is added in the cornputmation 

of the DF'FS, the same test sample may be classified as posture P2. This is possible if the 

second eigenvector in posture space P2 is more representative of the test sample than that of 

posture s;?ace Pl.  Table 2.5 lists the accuracy as computed for each post,iure averaged over 

different ilumbers of eigenvectors used. These values range from 90.3% for posture LNB to 

99.8% for posture SL. 

For comparison, the test above was repeated on the training and testing data without the 

applicaticln of the smoothing operator. The mean-square error in the eigen-decomposition 

was greater and the overall accuracy was reduced. Figure 2.23 shows that the classification 

accuracy when the training and test data were smoothed was on average 7% higher than 

when training and test data were not smoothed. 



Static Sitting Posture Classification Results 
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Fig. 2.22'. Accuracy vs. the number of eigenvectors used for classification. The solid line 
indicates the accuracy of the Static Posture Classification System. The dashed line shows 

the accuracy if either the closest or second closest posture space is the correct 
classification. The dotted line depicts the accuracy if the correct classification is one of the 

three nearest posture spaces to the test sample. 

Post'ure 

Class 

Classification 

Accuracy (%) 

N 

LNF 

LNL 

LNR 

RLC 

LLC 

LLRLC 

LR.LLC 

LNB 

SL 

Table 2.5 Classification accuracy for each posture class averaged over different numbers of 
eigenvectors used. 



Class~f~cation Results for Smoothed and Non-smoothed Sitl~n Q Pressure Distribut~on Maps 
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Fig. 2.23. Accuracy vs. the number of eigenvectors used for cla~sifica~tion for both 
smoothed (solid line) and non-smoothed (dashed line) training and test data. 



Third, real-time evaluation was conducted using four subjects who con1;ributed pressure- 

distribution samples to the training data, and four others who did not. In general, the system 

correctly classified sitting postures for all subjects. Even using as few as five eigenvectors 

in classification, the system could still correctly classify static postures. 'The fact that our 

system performed equally well with the two subjects whom it had never "felt." before indicates 

that it can be used as a multi-user system as long as the user's build is represented in the 

Static Po:jture Database. 



T H I S  P A G E  INTENTIONALLY L E F T  B L A N K  



3. PROPOSED WORK 

This c:hapter describes the proposed work for the Sensing Chair Project. As stated in 

the first chapter, the work can be divided into two parts: 

,4 red-time Static Posture Classification system 

,4 real-time Dynamic Posture Tracking syste~n. 

Chapter 2 describes the development of a real-time classification system for labeling 

a set of preselected sitting postures. This involved the construction of a Static Posture 

Database and the development of an appearance-based classification system. The Static 

Posture Database contains 1.500 samples of sitting pressure distribution maps (five samples 

each of tchn different postures from 15 female and 15 male subjects). The real-time sitting 

posture classification system has been implemented. This system interprets the sitting pres- 

sure distribution data from a sensing chair outfitted with pressure sensors to identify the 

posture which the data represents. A quantitative measurement on its ac~curacy was calcu- 

lated on a set of sitting pressure distribution samples that were collected from the subjects 

but not used to train the system. These results show that an accuracj of 96 percent is 

achieved with a reduction in dimension D from 4032 to 10. Real-time tests have shown that 

the syste~n is also capable of classifying sitting pressure distribution maps from people who 

did not contribute to the static posture database. 

In this chapter, we will discuss further work on the Sensing Chair Project. This involves 

improving the Static Posture Classification System and the development of a real-time Dy- 

namic Posture Tracking System. Section 3.1 describes how we wish to improve posture 

classification. Section 3.2 describes our ideas for the Dynamic Posture Tracking System. 

Finally, Section 3.3 will discuss some issues related to system evaluation. 



3.1 Improving Classification 

As mentioned in Section 2.3.4, our overall classification accuracy is 96% correct using only 

10 eigenvectors for reconstruction. This is averaged over all 10 postures. The classification 

accuracy for individual postures varies from 90.3% for posture Leaning Back to 99.8% for 

posture Slouching (see Table 2.5 for all result's). While this indicates that the system most 

accurately identifies when a person is slouching, which is good for correclting the person's 

posture, improvements can be made to increase the accuracy of the other postures. 

We would like to improve the classification accuracy of postures such as Leaning Back 

and Leaning Left with Right Leg Crossed. One way to do this is t,o incorporate additional 

information in the classification process. Figure 2.22 showed the classifica,tion scores if one 

of the first one, two or three choices for posture was the correct choice on our test samples. 

Knowing which postures are more likely to be misclassified can indicate when additional 

information is needed. One way to do this would be to look at the difference between the 

two small-est DFFS values. A small difference would indicate that a test map could be 

classified as either of the two postures. Additional information could eith'er verify or reject 

the posture corresponding to  the minimum DFFS value. 

We will be looking at inc~rporat~ing a mixture-model of the sitting pressure distribution 

data into the classification process. Each sitting pressure distribution map will be modeled 

with a sel of lognormal densities that will be learned by using the EM algorithm [ la] ,  [53]. 

The distribution of t'he means and covariances of the densities for each of the postures will be 

learned from the t,raining samples in the Static Posture Database and usecl for classification 

in a manner similar to the hierarchical model method developed in [9]. 

Additional evaluation of the system will be conducted on sample sitting pressure distri- 

bution miips from new sitters. 

3.2 Dynamic Posture Tracking System 

By its design, the static posture classification system does not always classify postures 

correctly when the subject is in transition. This section describes the two components 

necessary for the development of a Dynamic Posture Tracking System. Section 3.2.1 describes 



a Dynami .~  Posture Database that will be used to collect sitting pressure distribution map 

sequences for training and for testing. Section 3.2.2 describes the framework for the dynamic 

posture tracking. 

3.2.1 Dynamic Posture Database 

,4 database containing dynamic sitting pressure distribution data is needed to train and 

test a sitting posture tracking system. To be consistent with the Static C1a:;sification System 

and to restrict the seemingly unconstrained domain of dynamic sitting posture, we will 

collect a set of mouies that contain a single transition between postures in the Static Posture 

Database. By movies, we mean a sequence of sitting pressure distribution rnaps that start at 

one static posture and end a t  a different static posture and are recorded at a fixed sampling 

rate. We will collect only those sequences that move directly from one posture to another 

(e.g., leaning left + upright). An indirect sequence would move through an alternate posture 

before transitioning to the end posture (e.g., leaning left + upright + lcaning right). We 

are using the single transition sequences because t,hey are representative of how a person 

working ill an office environment would move. 

3.2.2 Dynamic Posture Tracking System Development 

The posture classification system determines the posture represented by a sitting pressure 

distribution map. In a posture tracking system, interpreting the posture represented by the 

current sitting pressure distribution map is more difficult because the tracking system will 

have to be able to handle a sitting pressure distribution map when it lies near to the edge 

of the posture's class distribution. This section discusses some of the aspects in formalizing 

a real-time sitting posture tracking system. 

In moving from one posture to another the sitting pressure distribution undergoes changes. 

For example, a pressure peak can appear and then disappear in going from one posture to 

another. 'The occurrence of this peak and, in general, other key transition points such as this 

can provide a t,racking system with a road map or story board to follow from one posture to 

the next. 



There are two modalities of tracking to investigate. Those that use an appearance-based 

framework and those that use a 3-D human model to recover the pose of the person sitting in 

the chair. In an appearance-based framework, action is interpreted from a sequence of 2-D 

images. R,epresentations can be view-based or feature-based. Drawbacks to these approaches 

include dealing with complex background and correct extraction of features. In our data, 

we do not, have the problem of complex backgrounds. It is straightforward to segment out 

the various parts of the body in the sitting pressure distribution maps. Systems that utilize 

a 3-D model tend to be more robust but still rely on feature extraction. These systems can 

also use a. Kalman filtering approach to predict future poses of the objeci,. We believe the 

method best suited for posture tracking is one that uses a 3-D object model. 

Here, our model is a model of the human body. What is different in our problem, as 

compared to tracking a walking human, is that the subject deforms against the surfaces of 

the chair, as compared to a projection onto an image plane. A simple skeleton model or 

cylindrical model is inadequate. To compensate for this model must be deformable, such as 

with a Finite Element Model. This would involve extending such work as [59] and [19] which 

deal with modeling deformation of the soft tissue in human thighs in seated postures. 

With the recovered pose of the 3-D model, numerous features can be extracted to give 

specific information regarding the posture of the person sitting in the chair. These features 

include the orientation of the spine, the pose of the legs, and the locations of the shoulders. 

Key issues of the system include: 

The type of 3-d model 

The parts of the body that come in contact with the chair include the shoulders, back, 

buttocks, and thighs. The model will need to incorporate these itenns as well as take 

into account the head, arms, and lower legs because they affect the pressure distribution 

on the chair. 

Ext-racting local features (e.g., orientation of the spine) 

With the current pressure distribution and 3-D model in registration, various features 

can be extracted for use in a more specific description of posture. For example, the 



orientation of the pelvis can indicate in which direction a user is looking or is interested 

in. 

Robustness: Dealing with the variation in subject size 

We want a multi-user system and do not want the system to be exterlsively trained for 

each new user. Having an initial bootstrapping procedure when a user first sits in the 

chair will permit the system to appropriately scale the model. This can be done by 

having the user sit in the upright position while the system determines such features as 

the total force, the size and weight distribution in the thigh area, and the distribution 

of pressure on the seat back. 

Real-time tracking 

One of the key facets to our work is that our system work in real-time.. This will involve 

determining the minimal amount of pressure information needed for tracking. 

3.3 Performance Evaluation 

Testing, as with the Static posture Classification System, will be conducted on pre- 

recorded posture sequences not used in training and on real-time testing of subjects who 

did and did not contribute samples used in training. The tests will determine how well the 

system performs on subjects, whose anthropometry is represented in the training data, and 

will indicate the system's robustness. 

,4n area in which to evaluate a tracking system is in the reduction of pressure data in 

the sitting pressure distribution map. The reasoning behind this is two-fold. 

First, we are interested the development of a real-time posture tracking system. Each of 

the two pressure mats contains 2016 pressure sensing elements. This gives a sitting pressure 

distribution map that contains 4032 data points. Tests of tracking performance and execution 

time will be conducted on down-sampled sitting posture presure maps. 

Second, if a real-time posture tracking system were to be implemented in a real-world 

application, it would be desired to be economical. While this is not an immediate goal, 

reducing t,he number of sensing elements is one way to accomplish this. This can be simulated 

by down-sampling the sitting pressure distribution maps. 



What we seek is a graph showing system performance (e.g., accuracy, speed, cost, etc.) vs. 

down sampling and dimension D. Again, D means the dimension of our data (e.g., the number 

of eigenvectors or number of features). For example, Figure 3.1 shows possible curves for the 

performa~lce indices of speed and accuracy as a function of down sampling. The selection 

of how much to  down sample and to what to set the dimension are application dependent. 

Knowing the shapes of the curves describing how these parameters affect system performance 

can guide a person to set them to appropriate values. For example, if the application was 

automatic control of airbag deployment force, down sampling would be limited in order to 

maintain a high accuracy rate and speed. If the application was the medical analysis of 

posture for a person suffering from lower-back pain, then such an analysis could be carried 

out off-line and speed would not be a factor. In this case, dimension would mainly be 

determined by t,he desired accuracy. By systematically characterizing the tradeoffs among 

parametex such as resolution, accuracy, speed, and cost, we hope to  provide a foundation 

for the applications of our Posture Tracking System. 

Pelf olmanre 

I ) o l n ~  S amnl~hlp 

Fig. 3.1. System performance as a function of down sampling. 
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APPENDIX A: RESULTS OF K-MEANS 



Fig. A.1. Output from running K-means on the data i11 the Static Posture Database with 
K = 12. 



Fig. A.2. Output from running K-means on the data in the Static Postuire Database with 
K = 14. 



Fig. A.3. Output from running K-means on the data in the Static Posture Database with 
K = 16. 



Fig. A.4. Output from running K-means on the data in the Static Posture Database with 
K = 18. 



Fig. A.5. Output from running K-means on the data in the Static Posture Database with 
K = 20. 



Table '4.1 Number of sa~nples from each post,ure that belong to each cluster from k-means 
with K= 12. The cluster labels in the table correspond to the image of the clust,er mean of 

Figure A.1. 



Table A.2 Number of samples from ea.ch posture that belong to each cluster from k-means 
wit,h Ii=14. The cluster labels in the table correspond to the image of the cluster mean of 

Figure A.2. 



Table A.3 Number of samples from each posture that belong to each cluster from k-means 
with K=16. The cluster labels in the table correspond to the image of the cluster mean of 

Figure A.3.  



Ta.ble ,4.4 Number of samples from each posture that belong to each cluster from k-means 
with I<= 18. The cluster labels in the table correspond to the image of the cluster mean of 

Figure A.4. 



Table A.5 Number of samples from each posture that belong to each cluster from k-means 
with I i=20.  The cluster labels in the table correspond to  the image of the cluster mean of 

Figure A.5. 
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APPENDIX B: GLOSSARY 

Anterior: Toward the front. 

Anthropometry: The measurement of the human body wit11 a view to determine its 

average dimensions, and the proportions of its parts, at different ages and in different races 

or classes. 

Biomechanics: The study of the mechanical laws relating to the movement or structure 

of living organisms. 

Coronal Plane: The plane that passes through the length of the body and divides the 

front from the back. 

Cumnlulative Trauma Disorders: Disorders of the muscles, tendons, and/or nerves 

caused, precipitated or aggravated by repetitive motion activity that applies stress to the 

body. 

Ergonomics: The scientific study of the eficiancy of man in his working environment. 

Inferior: Away from the head. 

Ischial Tuberosities: The sitting bones of the pelvis. 

Kinematics: The science of pure motion, considered without reference to the matter or 

objects moved, or to the force producing or changing the motion. 

Lateral: Toward the side of the body. 

Medial: Toward the midline of the body. 

Midsagittal Plane: The plane that passes through the midline of the body dividing it 

into left and right halves. 

Popliteal fossa: The back of the knee. 

Popliteal height: The vertical distance between the bottom of the foot and the crease 

just behind the knee of a seated person. 

Posterior: Toward the back. 



Seat Depth: The horizontal distance from the most posterior part of the buttocks to 

the crease just behind the knee of a seated person. 

Superior: Towa.rd the head. 

Trochanter: A large knobby projection at the end of the femur near the pelvis. The 

greater trochanter is on the lateral side of the femur and is larger in size to the lesser 

trochanter on the medial side. 

Transverse Plane: The plane that divides the body into superior (upper) and inferior 

(lower) regions. 
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