
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

2-1-2005

Artemis: Practical Runtime Monitoring of
Applications for Errors
Long Fei

Samuel P. Midkiff

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Fei, Long and Midkiff, Samuel P., "Artemis: Practical Runtime Monitoring of Applications for Errors" (2005). ECE Technical Reports.
Paper 4.
http://docs.lib.purdue.edu/ecetr/4

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

ARTEMIS: PRACTICAL RUNTIME
MONITORING OF APPLICATIONS
FOR ERRORS

LONG FEI
SAMUEL P. MIDKIFF

TR-ECE 05-02
FEBRUARY 2005

SCHOOL OF ELECTRICAL
 AND COMPUTER ENGINEERING
PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907-2035

Artemis: Practical Runtime Monitoring of
Applications for Errors

Long Fei and Samuel P. Midkiff∗

School of Electrical and Computer Engineering
465 Northwestern Ave.

Purdue University
West Lafayette, IN 47907-2035

{lfei, smidkiff}@purdue.edu

∗This work was supported by the National Science Foundation by grant 0325603-CCR. The
opinions expressed are those of the authors, and not the National Science Foundation.

Contents

1 Introduction 1

2 Related Work 3

3 An Overview of Artemis 4

4 Implementation 6
4.1 Context Representation . 6
4.2 Inserting Context Checks . 9
4.3 Interfacing with Baseline Monitoring Schemes 10
4.4 Invariant Profile . 10
4.5 Optimizations . 10

5 Experimental Results 11
5.1 Overhead Limits . 12
5.2 Artemis + AccMon . 15
5.3 A Practical Dynamic Whole-Program Integer Range Analysis . . 18
5.4 Artemis + DIDUCE . 20

6 Conclusions 22

7 Acknowledgments 22

ii

Abstract

A number of hardware and software techniques have been proposed to
detect dynamic program behaviors that may indicate a bug in a program. Be-
cause these techniques suffer from high overheads they are useful in finding
bugs in programs before they are released, but are significantly less useful
in finding the much harder to detect bugs in long-running programs – the
bugs that are the most difficult to find using traditional techniques. In this
paper we propose the Artemis1 compiler-based instrumentation framework
that complements many pre-existing runtime monitoring techniques, yield-
ing an average asymptotic lower bound on overhead of 11% on the seven
SPEC benchmarks tested.

1Artemis is the Greek goddess of the hunt and wild animals. Our framework guides the hunt
for wild bugs.

iii

1 Introduction

Program correctness and reliability are two of the greatest problems facing the de-
velopers, deployers and users of software. The financial implications are tremen-
dous – a NIST report estimates that $59.6 billion dollars a year, or 0.6% of the
GDP, are lost every year because of software errors [24]. Single failures of soft-
ware can disable businesses like Charles Schwab and Ebay for hours and days,
costing millions of dollars in revenues. Moreover, purely malicious and politi-
cally motivated sociopaths exploit software errors to disrupt civil society.

Simultaneous with the increasing risks of bug-ridden code has been the rise in
complexity of individual components and in the systems composed of these com-
ponents. The number of lines of code, the number of paths through a program,
and the running times of programs have risen dramatically over time, reducing the
effectiveness of both manual debugging and path coverage based testing mech-
anisms. Moreover, it is commonplace to construct instances of large systems
by lashing together components such as Apache Webserver, J2EE, SQL, and so
forth, where each component may be replaced by a component with similar inter-
faces, but different implementations. For testers of these components, coverage
of a significant number of paths is impossible because of the complexity of code.
Moreover, because instances of real systems are constructed independently of the
developers of the individual components, it may not be possible for the devel-
oper of a component to test the component in the same software and hardware
environment in which it will execute.

This argues for debugging techniques that can be used at runtime during pro-
duction runs of the program, i.e. for debugging to be a continuous, ongoing part
of deployed software. Previously developed techniques, discussed in more de-
tail in Section 2, while invaluable in their targeted context, are typically either (i)
statically based [22, 14, 3, 34, 9, 10, 37, 15, 36], and therefore cannot examine a
program in the context it actually executes in, (ii) are fast enough to use at run-
time, but require hand-modifying the source code and/or user input [23, 6], or (iii)
are too slow to be used in production runs. Sampling across many applications
has been proposed as a solution to reduce the overhead for any given instance of
an application, and thereby enable production run monitoring. Sampling, how-
ever, requires many copies of a program be in place, and that the artifacts of the
program be observable. This raises issues about sensitive data leaking from these
programs, and the monitoring of mission critical, but heavily customized pro-
grams (and essentially single image programs) like online trading systems used
by brokerage and auction sites.

1

In this paper we present a framework, called Artemis, to enable the use of
baseline monitoring schemes (such as those mentioned above) with single threaded
C programs. The framework reduces the overhead of the monitoring schemes suf-
ficiently that monitoring often becomes fast enough to be used in a production
system. Our framework is predicated on the following observation: because single
threaded regions of programs are essentially deterministic, if the context of that re-
gion being entered is the same as the context on a previous, non-anomalous execu-
tion of a region, it is likely that the current execution will also be non-anomalous.
In this case, fine grained and high overhead monitoring of the current execution
instance of the region will be less profitable than when the context is different.
This observation motivates the design of our framework, which effectively pre-
filters execution instances, only monitoring (and incurring the cost of monitoring)
for those instances which are likely to be anomalous. The baseline monitoring
schemes can be any of the various schemes that have been proposed, including
those in [17, 32, 2, 18, 7, 21, 23, 29]. Moreover, because our framework con-
verges, in long running programs or across multiple runs, to a steady-state where
regions are rarely monitored, it is possible to use two or more underlying monitor-
ing techniques with our framework, even when each of the underlying techniques
is too expensive to use in production runs.

This paper makes the following contributions:

• it describes the first framework that uses program context information to
reduce the overhead of monitoring to an acceptable level in long-running
programs, and shows how the framework is used with

– a hardware based monitoring technique (AccMon [38]) that checks for
bugs using program counter invariance;

– a software based monitoring technique (DIDUCE [16]) that checks for
bugs using value invariance;

– synthetic monitoring technique that allows us to examine the behav-
ior of our framework when used with arbitrarily expensive baseline
techniques; and

– a program analysis tool that performs approximate integer range anal-
ysis.

• it describes a runtime technique for tracking pointers in the face of aliasing;

• it provides experimental data showing the performance and precision of us-
ing our framework with different underlying baseline techniques.

2

2 Related Work

Runtime monitoring tools make use of runtime information to detect bugs that
cannot be detected statically. Existing dynamic monitoring schemes fall into two
categories: programming-rule-based (PRB) and statistical-rule-based (SRB).

PRB checks for violations of programming language specifications or software
development specifications. For example “array index cannot exceed the array
bounds” and “concurrent accesses to a shared variable should be synchronized”
are the kinds of rules PRB checkers use to detect bugs. Much work has been done
in this category, including Purify [17], rtcc [32], SafeC [2], Eraser [30], Jones &
Kelly’s tool [18], StackGuard [7], runtime-type-checking [21], [5], [25], CCured
[23, 6], CRED [29], and so on. Each of the tools is capable of detecting violations
against one or a few programming rules.

SRB extracts rules (PC and value invariants) statistically from successful runs
or multiple periods of a single long-running execution, and then uses these rules
to check for violations in a later execution or later periods of an execution in a
long-running job. Value invariance maintains, for each variable, a set of values
that the variable has held. When a value not in the set is found at runtime, it is
recorded as an anomalous value. Program Counter (PC) invariance maintains for
each memory location a set of program counters that access the variable. When a
datum is accessed by a program location that has not previously accessed it, it is
recorded as an anomalous event.

A few studies have been conducted on SRB bug detection. DAIKON [13, 12]
is a pioneering system which detects value invariants at runtime. DIDUCE [16]
detects bugs on the fly by automatically extracting value invariants and using them
to detect violations during execution. Both DAIKON and DIDUCE use value-
based invariants. Liblit et. al. [20] uses statistical analysis to find the difference
between abnormal and normal runs for postmortem bug analysis. AccMon [38]
detects bugs using PC-based invariants. Similarly, each SRB tool detects runtime
violations of one category of statistical rule.

While the designers of runtime monitoring tools strive to make their tools as
efficient as possible, runtime overhead remains one of the biggest challenges in
making these tools practical. One approach to reducing overheads is to make use
of static information provided by static analysis tools, compiler, or user annota-
tions. Examples in this category include [5] and [6]. While static information
alleviates the overhead problem in detecting certain categories of bugs in some
programming languages, it is not a general solution and may involve considerable
modification to source code [6]. More importantly, it does not solve the over-

3

head aggregation problem that occurs when multiple tools are applied together to
achieve better coverage.

Another approach to reducing overhead is to use sampling [20] to amortize
the monitoring overhead among a large number of releases. This approach is only
applicable when data can be collected from a huge set of sample runs, and is not a
general solution for debugging a piece of software that has limited distribution. It
also requires special data representations to ensure the communication efficiency
and client privacy, which also limits its applicability to existing runtime monitor-
ing schemes. A recent variant of sampling, called adaptive sampling (Chilimbi
and Hauswirth [4]), uses a sampling rate inversely proportional to the frequency
of code segment execution. Adaptive sampling can ensure the coverage of all
executed program segments in a single run. However, adaptive sampling cannot
be used to capture bugs that occur only once in the execution, which makes it
ineffective in detecting the most common bugs like buffer overflow.

A third approach is to perform runtime checking in parallel with the main
execution by either creating a shadow process [28] or executing the checking
code speculatively [27]. These techniques are useful when there are multiple
CPUs available and parallelism can be discovered between the main execution
process and runtime checking process. These techniques are complementary to
the Artemis framework. Artemis can use these techniques to further reduce the
runtime overhead.

Our work is also related to static analysis and model checking ([22], [14],
[3], [34], [9], [10], [37], [15], [36]). Model checking can be used to prove there
is no error, but models are usually difficult to construct and may not always be
feasible. Static checking tools are usually best-effort based tools focused on one
particular category of bugs [11]. Static tools usually use program annotations or
user specifications to improve precision.

Artemis differs from all of these in that it is not, primarily, a technique for
anomaly detection, but rather a framework to reduce the overhead of other anomaly
detection tools. The Artemis framework can be implemented using source-level
or binary-level instrumentation tools like Cetus [19], ATOM [31], Trimaran [33].
We use Cetus.

3 An Overview of Artemis

In this section we give an overview of our framework, and describe its capabilities.
The problem with existing monitoring techniques is that they are expensive –

4

large numbers of accesses must be monitored. Our technique proposes a form of
filtering to reduce this overhead. Specifically, we observe that single threaded pro-
grams are deterministic – for a given execution context the program, or a region
of the program, will have functionally equivalent behaviors. We define the exe-
cution, or dynamic, context of a program region to be the program state accessed
in that region. Unfortunately, checking this context can be at least as expensive
as checking the sets of invariants themselves. Moreover, determining precisely
the equivalence of two contexts can be difficult, particularly in the presence of
pointers and aliasing. Our technique is predicated on the idea that if the global
context (the state of all in-scope variables, method parameters, and storage reach-
able from these) is the same then the outcome of an execution of the region, when
projected onto the outcomes of “correct” and “anomalous”, will also be the same.
The global context is, of course, an approximation to the whole context, and pro-
gram behavior can be non-linear (i.e. small changes in the context can lead to
large changes in the outcome, including an incorrect result) but our experimen-
tal results show that with this sampling we can catch errors in programs, while
significantly reducing the monitoring cost.

We approximate global contexts depending on the values and types of the ob-
ject in the context as described in Section 4.1. As always, our goal is to minimize
the overhead of monitoring and maintaining the state of the context, while gaining
sufficient information about the actual context to be useful in finding potentially
anomalous execution instances of the region to monitor.

The Artemis framework is used as follows. The program is automatically
instrumented by the compiler with context checks and the monitoring required
by the baseline monitoring technique. In the current implementation, a context
checking test consists of an if statement that selects one of two versions of a
procedure. The first version is unchanged from the original program, and the sec-
ond version is instrumented with the baseline monitoring scheme. The program
can then be optionally executed, with a profile of “normal” values collected to
both train the context checks and the baseline monitoring schemes. After the op-
tional training runs, the program is put into production. The initial contexts are
taken from training runs, or prior production runs. When the current context for
a region is found to not belong to the context being tested against, the baseline
monitoring technique(s) are turned on for the region, and the invariant context for
the region is updated by adding the values of the current context to it. After the
execution any anomalies found by the monitoring techniques are reported, and the
newly formed contexts are saved as invariant profiles (or profiles, for short) for
use by the next run of the program.

5

We note now, and discuss in further detail later, that over time the frame-
work becomes trained and the invariant of a region’s context matches almost all
contexts that lead to non-anomalous behaviors. As a consequence, very few re-
gions are subjected to fine-grained monitoring, and the runtime overhead of the
Artemis framework becomes increasingly close to the cost of comparing the con-
texts. This means that the granularity of regions, and therefore the number of
contexts tested are strongly correlated to the asymptotic overhead of the system.
Because procedures introduce parameters, and are natural units of functionality,
making regions larger than procedures seemed unwise, whereas making regions
smaller than procedures (e.g. at loop nest boundaries) seemed likely to lead to
untenable overheads in non-numerical program, and with little gain in precision.
In numerical programs, where loop nests may contain a large amount of work,
defining regions at this finer granularity may prove useful, and is currently being
investigated. Profiling, conducted during training runs, can provide information
to guide region formation, but this not done in the current version.

4 Implementation

4.1 Context Representation

As discussed previously, exactly representing and comparing contexts is too ex-
pensive. In the presence of pointer aliasing, this check potentially requires com-
paring the entire memory space. Therefore, it is infeasible to record the precise
context for future comparison, or to perform a precise comparison of the context
at the entrance of a code region.

We approximately model the context of a code region as a set of independent
variables and pointers (ignoring the correlations between the elements) that are
accessed in the code region. Each variable in the set is represented by its corre-
sponding int value (by directly casting, or hashing multiword objects), and each
pointer in the set is represented by its type in declaration. The scheme of approxi-
mating a variable’s value by an integer value and approximating a memory object
being pointed to by the pointer’s runtime type is inspired by the techniques in [16]
and [8].

Previously observed contexts are recorded as context invariants. Each context
invariant contains these components: a list of value invariants (each value invariant
records all previously seen values of one variable in the context), and a table of
pointer types (each entry contains a mask representing the types of pointers which

6

111111 111 11 1unused (19)1

s
u

s
p

ic
io

u
s
 b

it

v
o
i
d

c
h
a
r

s
h
o
r
t

i
n
t

l
o
n
g

f
l
o
a
t

d
o
u
b
l
e

s
i
g
n
e
d

u
n
s
i
g
n
e
d

s
t
r
u
c
t

/

u
n
i
o
n

w
c
h
a
r
_
t

p
o
i
n
t
e
r

o
f

p
o
i
n
t
e
r

Figure 1: Pointer type invariant table. The table is indexed by the lower 10 bits of the
pointer value (cast to unsigned int). Each entry contains a bit mask representing the
types of pointers pointing to that location observed previously.

previously pointed to the same address, indexed by the pointer value). Context
invariants are bound to regions, i.e. each context invariant records only previously
seen contexts at the entrance of a code region.

A variable’s value invariant uses the value invariant representation described
in [16]. Each value invariant contains two parts: a base value and a mask.
Each bit in base value records the value of that bit when the value invariant
records its first integer value; each bit in mask records if a different value of that
bit has been observed in a later recording. Given first integer value of V , the value
invariant is initialized to base value = V ;mask = ¬0. Suppose the current
observed value is V ′: it matches the invariant only if (V ′ ⊕ base value) ∧
mask == 0, where ⊕ is exclusive or. The invariant can be relaxed when a new
value is observed by updating the mask: mask = mask∧¬(V ′⊕base value).
The Artemis framework can also be configured to prevent invariant updating after
sufficient learning, which is an effective mechanism to prevent malicious training.

In order to achieve high efficiency and to handle pointer aliasing, a global
pointer type invariant table is used to record the runtime types of pointers. The lay-
out of the pointer type invariant table is shown in Figure 1. The table (1024 entries)
is indexed by the lower 10 bits of the pointer value (cast to unsigned int).
Each entry in the table holds a type invariant, which is a bit mask representing
the pointer types observed previously. The MSB of each entry is suspicious
bit. For example, if a previously seen pointer’s declared type (from its decla-
ration statement) is unsigned int, the bits corresponding to unsigned and
int will be set. In this scheme, different pointers pointing to the same memory
object will be indexed into the same entry in the table, avoiding the global pointer
aliasing problem.

Each entry in the pointer type invariant table is initialized to 0. To check if a
pointer’s type matches the type invariant at runtime, the lower 10 bits of its pointer
value are used to index the pointer type invariant in the table. The pointer type in-

7

variant is then compared with a statically assigned type mask (with only bits corre-
sponding to the pointer’s declared type set to 1). Suppose the pointer type invariant
is ptr inv and the pointer’s type mask is ptr type mask, then the pointer’s
runtime type matches the pointer type invariant only if (MSB(ptr inv)) ∨
((ptr type mask ∧ ptr inv) ⊕ ptr type mask) == 0. If the pointer
is not NULL, and is a pointer to another pointer, the runtime type of the target
pointer is also checked. The pointer type invariant can be updated if necessary by
ptr inv = ptr inv ∨ ptr type mask.

In addition to resolving aliasing, the pointer type invariant table is designed
to reveal at runtime the potential existence of an important category of bugs over-
looked by most existing tools: referencing by an incompatible pointer. For in-
stance, using a char-typed pointer to reference to a double-typed variable will
result in a pointer pointing into the middle of a variable, and dereferencing a
double-typed pointer pointing to a char-typed variable will result in corrup-
tion of data. By checking the runtime type of a pointer against the pointer type
invariant, which represents the types of “compatible pointers types”, a potentially
mistyped pointer can be detected during context checking. The observant reader
may have noticed that the pointer type invariant table itself is a useful tool to de-
tect mistyped pointer dereference errors. A further exploration of this capability
is beyond the scope of this paper.

To determine if the current context representation matches a context invariant
at the entry to a code region, Artemis checks each variable and each pointer in the
set against their corresponding value invariant and pointer type invariant. If any of
the checks return mismatch, the current context is considered to be different from
any previously observed context.

Context at the program level is represented using max
argument length (maximum string length of any argument in argv[]) as
the program level approximation. max argument length records the length
of the longest argument observed previously, and is carried across different runs
of the program via the invariant profile (discussed in Section 4.4). If the length
of any argument (argv[i], i = 1, 2, ... argc-1) in the current com-
mandline exceeds max argument length, Artemis sets the “suspicious bit”
of the entry in the pointer type invariant table corresponding to argv[i]. This
ensures that if a pointer p is aliased to an over-sized commandline argument, con-
text checks at the entrances of code regions accessing p will report a mismatch,
and the baseline detection tool will be activated to monitor for potential violations.
max argument length is preset to be 20, which is large enough to allow most
commandline arguments, yet too small for most exploits from commandline argu-

8

ments [26].
In the default configuration, Artemis updates the invariants (variable value in-

variants, pointer type invariants, and max argument length) when it reports
a context mismatch. This ensures that the new observations can be included in the
context invariant if the new context turns out to be a legal context. It can also be
configured to freeze context invariants to protect itself against malicious training.

4.2 Inserting Context Checks

We use the Cetus C compiler [19] to insert context-checking instrumentation into
the source code. At each procedure entrance, we insert instrumentation to check
the current context representation against the learned context invariants (as dis-
cussed in Section 4.1) at that particular program point. Code is also inserted to
turn on monitoring if the current context representation does not match the learned
context invariant, and to turn off monitoring otherwise. Before we turn on/off
monitoring, the current monitoring state (ON or OFF) is saved, and restored when
the function returns. This ensures that a decision made within the callee does not
change the monitoring in the caller after the callee returns.

If the baseline monitoring scheme is binary-level or hardware-based, we turn
on monitoring before each call to a library function whose source code is not
available. The current monitoring state is remembered before the library call, and
is restored after the library call returns. For standard C libraries, an optimization
effort is underway to build a list of safe library functions for which monitoring
is not needed. This technique is similar to the way CCured [6] handles standard
C library calls. With this technique, monitoring overhead within safe standard C
libraries can be reduced.

The handling of small functions is a special case. Since the overhead savings
from not monitoring a region should exceed the overhead of checking the context
and deciding whether or not to monitor, we always leave monitoring on for small
functions. Our assumption is that it is not profitable to check the context in order
to save the monitoring overhead of very few statements. In our current imple-
mentation, small functions are those functions that contain fewer than five simple
statements (i.e. no loops, switch statements, etc.). The threshold is a tunable
configuration parameter. It should be set smaller when the baseline monitoring
scheme is expensive since the monitoring overhead on a few statements may still
exceed the context check overhead in that case.

The compiler instrumentation of the Artemis framework is easily configured
by a few parameters. By default, Cetus inserts at a procedure entrance context

9

checks and the code to turn on/off baseline monitoring based on the result of the
context check. Code replication (discussed in Section 4.5) is enabled if the base-
line tool is based on source-level instrumentation; library call wrapping is enabled
if the baseline tool is based on binary instrumentation or monitoring hardware.

4.3 Interfacing with Baseline Monitoring Schemes

Artemis is designed to be a general framework that works with source-level,
binary-level and hardware baseline monitoring schemes. The interface between
the baseline monitoring scheme and Artemis is a switch, which is used to turn the
baseline monitoring on and off. This simple interface makes it easy to adapt an
existing monitoring tool to work with Artemis.

4.4 Invariant Profile

In its default configuration, Artemis uses an invariant profile to avoid losing the
learned context invariants when the program terminates. During a normal run,
each time a new context is observed, Artemis learns the new negative observation
by updating the invariants in the context invariant. Without profiling, this learning
process needs to be started from the beginning in every run. Artemis reduces un-
necessary activations of the baseline monitoring tool during the learning process
by dumping the context invariants into an invariant profile before the program
terminates, and loading the invariant profile the next time the program runs.

Because pointers can point to dynamic objects whose addresses in memory are
not necessarily the same in two different runs, Artemis does not dump the pointer
type invariant table as part of the invariant profile.

Invariant profiling also makes it possible for software companies to build pro-
files during their in-house testing phase, and then to ship the released software
with runtime monitoring code together with the invariant profile. This makes it
possible to use heavy-weight runtime monitoring schemes in real world applica-
tions at the cost of a light-weight monitoring scheme.

4.5 Optimizations

If the baseline tool works by instrumenting the source code with checking func-
tions, code replication [1, 20] can significantly improve the performance of the
resulting code when interfacing the baseline tool with Artemis. Figure 2 shows
an example where Artemis works with a runtime null pointer checker. The naive

10

foo()
{

if (context match){
MON_OFF;

}else{
MON_ON;

}

...
if (MON_ON){

baseline_check_NULL_ptr(p);
}
*p = 2;
...

}

foo()
{

if (context match){
...
*p = 2;
...

}else{
...
baseline_check_NULL_ptr(p);
*p = 2;
...

}
}

(a) (b)

Figure 2: (a) – a naive interface between baseline tool and Artemis; (b) – applying code
replication on function body

version (Figure 2(a)) allows Artemis to control the monitoring by inserting the
testing code at each monitoring call site. This simple scheme is not desirable in
practice because the existence of a branch precludes compiler optimizations that
could have been applied. A more efficient way of interfacing with Artemis is
presented in Figure 2(b). By creating two versions of the function body (one in-
strumented with runtime monitoring, one not instrumented), execution can take a
fast path when Artemis determines that no monitoring is necessary. Because most
context checks succeed after some initial learning, the fast path is usually taken,
completely avoiding the overhead of the baseline monitoring. In our current im-
plementation, Artemis replicates the function body by default. 2

5 Experimental Results

Benchmark ammp bzip2 equake gap mcf parser vpr MEAN STD
running time increase (%) 0.28 16.71 10.45 18.86 -0.46 19.42 11.75 11.00 8.29
binary size increase (X) 0.84 0.84 0.49 1.23 0.57 1.01 0.92 0.84 0.25

profile size (k) 2.11 1.37 0.45 12.81 0.36 4.90 4.11 3.73 4.36

Table 1: Time and space overhead of using Artemis framework (with no profile) without
baseline tools.

We present the results of four experiments. In the first experiment, we fo-
cus on the reduction in monitoring overhead when using the Artemis framework

2Currently, the only exception to the default policy is when there are static local
variables inside the (nested) compound statement. It is ongoing work to develop the anal-
ysis and transformation to allow code replication in the presence of static variables.

11

with baseline monitoring schemes. We also present the asymptotic overhead of
the Artemis framework, simulations showing Artemis framework overheads with
generic monitoring schemes, and how the monitoring overhead approaches an
asymptotic overhead over time. In the second experiment, we use the Artemis
framework on AccMon, a state-of-the-art hardware-based monitoring tool for
memory bugs [38]. We present the interface between Artemis and AccMon, the
monitoring overhead, and three examples of detecting real bugs in benchmark pro-
grams. In the third experiment, we present an application of the Artemis frame-
work on a program analysis problem – dynamic whole program integer range
analysis. We present its runtime overhead improvement and precision in discov-
ering the integer ranges. In the fourth experiment, we use our framework with a
variant of DIDUCE [16] for C (C-DIDUCE) – a state-of-the-art software moni-
toring scheme based on value invariants [16]. We present the implementation of
C-DIDUCE, its interface with Artemis, the runtime overhead improvement and
the accuracy in detecting runtime invariant violations. All these experiments are
conducted on a DELL Precision 350 workstation (3.0GHz Pentium IV with Hy-
perthreading, 1.5G memory) running RedHat Linux 9.0 with gcc 3.3.3. All
of the programs are compiled with gcc -O2 except those used with AccMon,
which use the compiler for the iWatcher simulator compiler, a variant of gcc for
MIPS.

5.1 Overhead Limits

As discussed in Section 3, Artemis’ context representation will converge to the
closure of previously observed contexts over time. Consequently, the runtime
monitoring overhead approaches its asymptotic overhead, i.e. almost all of the
runtime monitoring is skipped and the only overhead is that of context checking.
The context checking overhead is the asymptotic lower bound of Artemis with any
baseline monitoring scheme, regardless of the overhead of the baseline scheme.

Table 1 shows the overhead of running Artemis without any baseline monitor-
ing tools, measured using seven SPEC 2000 C programs. No invariant profile is
loaded. Using Artemis alone adds 11% overhead on average with a standard devi-
ation of 8.29%; the resulting binary is 0.84 times larger on average with standard
deviation of 0.25. Since the instrumented programs suffer only context checking
overhead under this configuration, this is the theoretical asymptotic lower bound
of the overhead of using Artemis together with any baseline monitoring scheme.
This lower bound is attainable only when Artemis and the baseline monitoring
scheme are perfectly interfaced, i.e. no baseline monitoring overhead is incurred

12

when all the context checking succeeds. For example, if all the procedures are
replicated as shown in Figure 2(b) and the fast path executes as efficiently as the
original procedure body, only context checking overhead remains when all the
contexts match the context invariants. However, the interface shown in Figure
2(a) is not perfect because the if(MON ON){} statement adds some overhead
whether or not the context check succeeds. In practice, this lower bound is often
not attainable for several reasons. First, not all the function bodies are replicated
(as discussed in Section 4), thus the interface is not perfect in all the functions.
Second, the replicated version is not as efficient as the original version since code
replication incurs overhead [1, 20]. Third, monitoring may happen in library calls
if the call site is wrapped (as discussed in Section 4.2). Finally, because we do not
dump the pointer type invariant table into the profile, Artemis incurs some initial
context check failures when pointers are involved in the contexts. Therefore, all
of the monitoring is not skipped even if the context was seen in a previous run of
the program. Although the asymptotic lower bound is not always achieved, we
still achieve a significant overhead reduction when using the baseline monitoring
scheme with the Artemis framework, as will be shown in this section.

To measure overhead when using various baseline monitoring schemes, we
use a simple monitoring simulator. Our simulator models a generic baseline mon-
itoring tool which inserts a call to a checking function at program points of its
interest. This is by far the most widely used monitoring paradigm in today’s mon-
itoring tools (e.g. Purify, DIDUCE). Without any knowledge of what program
points should be monitored and what the check function actually does, our simu-
lator inserts a dummy checking function call at a program point with probability
p. The parameter p and the overhead within the dummy check function can be
adjusted to cause the desired monitoring overhead. Artemis controls an ON and
OFF switch. The checking function is called only when the monitoring is turned
on.

Figure 3 shows how the overhead of {Artemis + simulated baseline monitoring
tool} changes along with the baseline monitoring overhead. The data is obtained
on SPEC 2000 benchmark programs (those used in Table 1) without profile infor-
mation from previous runs (this is the case when the program is executed for the
first time). Each of the seven benchmark programs is run five times, each time
with a different simulated baseline monitoring scheme and overhead. Each dot in
the figure represents an (x, y) pair, where x is the baseline monitoring overhead
and y is the overhead of baseline monitoring controlled by the Artemis framework.
As can be seen, by eliminating unnecessary monitoring calls, the overall overhead
of {Artemis + simulated baseline monitoring tool} increases much slower than

13

y = 0.1005x + 0.5881

0

2

4

6

8

10

12

0.01 0.1 1 10 100

baseline overhead (log scale)

b
a

s
e

li
n

e
+

A
rt

e
m

is
 o

v
e

rh
e

a
d

(baseline overhead, baseline + Artemis overhead) Linear Regression Line

Figure 3: simulated overhead of the baseline monitoring and baseline + Artemis without
profile.

the baseline overhead. A simple linear regression shows that when the baseline
monitoring scheme causes x times slowdown, using Artemis with the baseline
scheme (without profile) will bring the overhead down to y = 0.1005x + 0.5881.
As discussed previously, when a profile is used the monitoring overhead will ap-
proach the asymptotic overhead shown in Table 1. Although the performance
varies with the program and the input, the trend shows that using Artemis brings
significant performance benefits when the baseline overhead exceeds a certain
threshold. This threshold is 65% for SPEC-like programs without a profile (by
solving the equation x = 0.1005x + 0.5881), and 11% (theoretical asymptotic
lower bound) for long-running programs or with a profile. Given that most run-
time monitoring schemes suffer much higher overheads, and the overhead is even
higher when multiple monitoring schemes are used in combination, Artemis’ ap-
proach has significant performance benefits, which increases the applicability of
the underlying baseline monitoring scheme.

To demonstrate the convergence of overhead using {Artemis + simulated base-
line monitoring tool} in long-running programs and across multiple runs, we use
the bzip2 benchmark with a simulated “representative” baseline monitoring tool
which has a runtime overhead of approximately 4X (this is a “representative over-
head” of many bug-detection tools). Figure 4 shows the convergence of overhead
(of the first run, without profile) of {Artemis + simulated baseline monitoring
tool} when the memory image size increases (the larger the memory image, the
longer the running time). As seen from the figure, the overhead approaches the
lower bound as the memory image size increases. Figure 5 shows the convergence

14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5M 10M 20M 40M 80M 160M

Image Size

O
ve

rh
ea

d
 (

ti
m

es
 s

lo
w

er
)

baseline overhead baseline + Artemis overhead

Figure 4: Convergence of overhead of bzip2 when the input size increases. The inputs
are randomly generated ACSII files of various sizes.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6

Inputs

O
ve

rh
ea

d
(t

im
es

 s
lo

w
er

)

baseline overhead {baseline + Artemis} overhead

0.4599

0.2085

Figure 5: Convergence of overhead of bzip2 over multiple runs with profiles. The inputs
are randomly generated ACSII files.

of overhead of {Artemis + simulated baseline monitoring tool} over multiple runs.
Each run uses a different input. Each input is a randomly generated ASCII file of
size 5M. A profile is used by Artemis to carry invariants from a previous run to the
next except for the first run which starts without a profile. As shown in the figure,
with the Artemis framework the overhead quickly converges to around 21% after
the first run, reducing the overhead by a factor of 18.8.

5.2 Artemis + AccMon

AccMon [38] is a state-of-the-art hardware-based runtime monitoring tool for
memory-related bugs. It relies on PC invariants to detect illegal accesses. During
the training phase, it forms the set of PC’s that access each monitored datum in

15

each monitored memory region. During the detection phase, if a memory region
is accessed by an instruction whose PC is not present in the memory region’s legal
PC set, an alert is issued.

AccMon is built on the iWatcher infrastructure [39]. iWatcher allows a user
to associate a user-specified checking function with each monitored memory re-
gion. When the monitored memory region is accessed, the checking function is
automatically triggered by the hardware without generating an exception to the
operating system.

To use AccMon with Artemis, we make one change to the checking function
used in AccMon: each time the checking function is invoked, it tests a flag. If the
flag is set to OFF, the checking function returns without performing the checking,
otherwise it checks for PC invariants violations as usual.

In our experiments, AccMon is configured as described in [38] except that
we do not use thread level speculation. We use programs with real bugs (see
[38]) in our experiments. Due to compatibility problems between Cetus and the
simulator’s backend compiler, we are only able to build ncompress-4.2.4,
polymorph-0.4.0 and gzip-1.2.4with the Artemis framework. ncompress
is a compression and decompression utility that is compatible with the original
UNIX compress utility, gzip is a popular compression utility provided by the
GNU project and polymorph is a tool to convert Windows-styled file names to
UNIX file names.

All three of these programs have buffer overflow problems. In ncompress-4.2.4,
input file name longer than 1024 bytes overflows a stack buffer and corrupts the
function’s return address, in gzip-1.2.4, an input file name longer than 1024
bytes overflows a global buffer, and in polymorph-0.4.0 an input file name
longer than 2048 bytes overflows a global buffer. If this overflow in polymorph-0.4.0
is not detected, the global buffer is then copied into a stack buffer using strcpy(),
which corrupts the function return address. These bugs represent the buffer over-
flow bugs most frequently exploited by malicious users [26].

For all three programs, the Artemis framework detects a program context
change and sets the monitoring to ON at the functions where the overflow first
happens. For ncompress-4.2.4 and gzip-1.2.4, AccMon then immedi-
ately detects the violation. For polymorph-0.4.0, AccMon is activated but
does not detect the bug when the global buffer first overflows because no memory
region monitored by AccMon is overwritten. Artemis does not detect any context
change when the global buffer is used to overflow the stack buffer (the second
buffer overflow). But the bug is detected by Artemis’ library call wrapping mech-
anism, which turns on monitoring before strcpy(). AccMon does not catch

16

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

100k 500k 1M 5M 10M

Input Sizes

O
v

e
rh

e
a

d
 (

ti
m

e
s

 s
lo

w
e

r)

AccMon Overhead AccMon + Artemis w call wrapping overhead

Figure 6: Monitoring overhead (AccMon only and {AccMon + Artemis}) of
ncompress-4.2.4 when the input size changes

0

1

2

3

4

5

6

7

8

5k 10k 20k 40k 60k 100k

Input Sizes

O
v

e
rh

e
a

d
 (

ti
m

e
s

 s
lo

w
e

r)

AccMon Overhead AccMon + Artemis w call wrapping overhead

Figure 7: Monitoring overhead (AccMon only and {AccMon + Artemis}) of
gzip-1.2.4 when the input size changes

the first overflow because it only overflows the buffer by 100 bytes and does not
access a region monitored by AccMon.

We evaluate the overhead reductions when using Artemis by providing in-
puts of different sizes to ncompress-4.2.4 and gzip-1.2.43. The in-
puts are randomly generated ASCII files. Figure 6 shows the performance on
ncompress-4.2.4. Because AccMon has an extremely low overhead (and
even a small speedup on some inputs) on this benchmark with the given data set,
using our framework results in a small slowdown. Figure 7 shows the perfor-
mance on gzip-1.2.4. Because AccMon has relatively high overhead, using
our framework significantly improves the monitoring overhead by a factor of 2.67.

3The running time of polymorph-0.4.0 with the default input data set is significantly less
than the time to initialize the Artemis framework data structures, and so we do not report numbers
for it since our framework is intended for long running programs.

17

5.3 A Practical Dynamic Whole-Program Integer Range Anal-
ysis

Integer range analysis computes the ranges of integers in the program. It is a use-
ful tool for program analysis and debugging purposes. For instance, it is shown
in [34] that the array bounds checking problem is a special case of integer range
solving. By extracting the array subscript expression and assigning it to a unique
temporary local integer variable, any array bounds check problem can be con-
verted into an integer range solving problem by testing if the range of the tempo-
rary variable exceeds the array bounds. In applications with resource constraints
(e.g. embedded systems), integer range information can be used to guide system-
specific optimizations (e.g. determining a good initial buffer size). We note that
even approximate information is useful for these purposes.

When applied to array bounds check, static integer range analysis suffers a
severe precision loss (as reported in [34], the false alarm to real vulnerability ratio
is 10 to 1, and missed one real bug in sendmail 8.7.5) due to its conser-
vativeness and pointer aliasing. Although runtime integer range analysis has the
advantage of using runtime information to improve precision, its application is
limited by its overhead, particularly when integer range analysis is used to pro-
vide information to other analyses or runtime systems. That is, adding the addi-
tional overhead of runtime integer range analysis to the other already high runtime
overheads is usually not profitable.

With the Artemis framework, however, the overhead is less of a concern. Be-
cause Artemis approaches its asymptotic overhead regardless of the baseline mon-
itoring scheme, even if a combination of monitoring schemes are used, runtime
integer range analysis can be efficiently used to assist other runtime analyses or
monitoring tools. For example, with integer range information, even a nonpro-
fessional programmer can write an efficient and fully compatible array bounds
checker by comparing the ranges of array subscript expressions to the array’s de-
clared length, while the state of the art runtime checking tools like StackGuard
[7], Jones & Kelly’s tool [18], and SafeC [2] all involve advanced compiler tech-
niques and incur runtime overheads of 69%−125% (StackGuard Canary), 1200%
on average (J&K), and 130 − 540% (SafeC), and often suffer from compatibility
problems because of special tricks used in code generation.

We implement a simple integer range analyzer, which probes integer variable’s
value when it is are read or written4. In our current implementation, we do not

4With sufficient pointer aliasing information, we can eliminate some of the probes

18

break an expression into multiple subexpressions and evaluate the intermediate
values. To interface with the Artemis framework, we build a switch to skip prob-
ing when the monitoring is turned off.

0

10

20

30

40

50

60

70

80

90

am
m

p

b
zi

p
2

eq
u

ak
e

g
ap

m
cf

p
ar

se
r

vp
r

O
ve

rh
ea

d
 (

%
)

baseline overhead baseline + Artemis overhead

-0.06

Figure 8: Overhead of the baseline whole-program integer range analysis and the over-
head of the baseline analysis + Artemis

0

10

20

30

40

50

60

70

80

90

100

1
0
0
%

[9
0
,

1
0
0
)%

[8
0
,

9
0
)%

[7
0
,

8
0
)%

[6
0
,

7
0
)%

[5
0
,

6
0
)%

[4
0
,

5
0
)%

[3
0
,

4
0
)%

[2
0
,

3
0
)%

[1
0
,

2
0
)%

[0
,

1
0
)%

range coverage

p
e

rc
e

n
ta

g
e

 o
f

in
te

g
e

rs

Figure 9: Accuracy of the whole-program integer range analysis using baseline analysis
+ X43. Each bar in the graph represents the percentage of the integer ranges that have the
accuracy given below (compared with the ranges found by the baseline analysis).

We apply this analyzer to seven SPEC 2000 benchmark programs, and com-
pare the results obtained when this analyzer is used with and without Artemis.
Figure 8 shows the improvement in overhead when the programs run for the first
time (no profile) with and without the Artemis framework. The overhead will ap-
proach the asymptotic overhead over time. Figure 9 shows the average accuracy

when the values are read.

19

on the ranges discovered. From the figure, we can see that when using the Artemis
framework, 70.12% of ranges are detected precisely, and 79.02% ranges are de-
tected with 90% or higher precision5. This accuracy is good enough to provide
information to optimize the initial buffer size and to detect array out-of-bound
errors Statistically, we have > 70% chance to detect off-by-one-byte overflows,
and > 79% chance to detect those overflow by more than 10%. This is very good
compared to existing buffer-overrun detectors evaluated in [35].

5.4 Artemis + DIDUCE

DIDUCE [16] is a state of the art runtime bug detection tool for Java programs.
DIDUCE’s bug-detection mechanism is based on runtime value-based invariant
detection and checking. Violations of learned invariants are considered indications
of possible bugs. DIDUCE instruments the original program (class files) with
calls to the DIDUCE runtime system, passing the values of tracked expressions
to DIDUCE checking and reporting functions. The runtime system is responsible
for learning invariants and detecting invariant violations. DIDUCE checks ex-
pressions at the following program points: 1. object read and writes (including
arrays); 2. static variable read and writes; 3. procedure call sites. The expressions
DIDUCE tracks by default include: 1. the value being read or written; 2. the
non-array parent object of a field accessed; 3. the difference between the values
of the location accessed before and after a write operation. DIDUCE’s value in-
variance is based on integer types only, ignores all values of floating point data
types, and handles references by taking the hashcode of the String object contain-
ing the name of its runtime type. DIDUCE ranks the invariant violations it detects
based on confidence change before and after an invariant update (only if the value
does not match the invariant), where confidence is defined as the ratio of the num-
ber of times the expression has been evaluated and the the number of values the
corresponding invariant can accept.

Because the current Artemis implementation works on C programs only6, we
implemented a C variant of DIDUCE (C-DIDUCE) to work with the Artemis
framework. Our implementation is based on [16]. The C variant conforms to

5We conservatively consider coverage to be 0% if the range found by {baseline +
Artemis} is not a subset of the corresponding range found by baseline. This rare case
happens when an integer stores a memory address, is assigned a random value, or is
assigned an integer value read from input file.

6The authors see no technical difficulty to do a similar implementation for a different
language.

20

Benchmark C-DIDUCE D + A Top Top Top
overhead overhead 5 10 20

ammp 4.92% -0.63% 4 8 13
bzip2 80.59% 21.38% 2 6 14
gap 351.64% 42.17% 0 1 4
mcf 13.45% 0.05% 5 6 16

parser 81.50% 54.20% 0 3 8
vpr 56.48% 20.66% 0 2 5

Average 98.10% 22.97% 1.83 4.33 10
Overhead Ratio: 23.42% Top 20 Coverage: 50%

Table 2: Overhead and coverage of using C-DIDICE with Artemis. ‘D + A’ in the top
row stands for {C-DIDUCE + Artemis}. y in ‘Top X’ column means “among the top
X invariant violations found by C-DIDUCE, y of them are still among top X invariant
violations when using C-DIDUCE with Artemis”.

the specifications given in the paper as strictly as possible. Due to differences in
the language features of Java and C, we made our own implementation decisions
when no corresponding specification from the original implementation is applica-
ble to the C variant. Our general strategy is to avoid adding features that are not
proven to be effective in [16].

C-DIDUCE is different from the original implementation in the following
places: 1. Because C is not an object-oriented language, we track program points
which read from or write to global variables instead of objects. static-typed ob-
jects are also tracked. 2. For multi-word user-typed objects (including struct),
we cast the first word into an integer value and use this as the value of the object. 3.
Since C has no object references or inheritance relations, we ignore pointer types.
Otherwise, C-DIDUCE is implemented the same as the original DIDUCE (includ-
ing the violation ranking scheme). C-DIDUCE instruments the source code with
calls to the C-DIDUCE runtime library (containing C-DIDUCE checking and re-
porting functions).

Since there are no C benchmarks with bugs suitable for DIDUCE, we measure
the overlap the invariant violations in the SPEC 2000 benchmarks detected and
ranked using C-DIDUCE and {C-DIDUCE + Artemis}. This is justified since
C-DIDUCE (and DIDUCE) only detect and rank runtime violations of invariants
– they do not actually identify bugs. Therefore, the extent that Artemis changes
the rankings given by C-DIDUCE is indicated by how many violations detected
by C-DIDUCE and ranked top X is still detected and ranked top X when using
C-DIDUCE with Artemis.

We used C-DIDUCE to detect and rank runtime invariant violations in six

21

SPEC 2000 programs7. We then use C-DIDUCE controlled by Artemis on the
same programs. Table 2 reports the running times of C-DIDUCE and {C-DIDUCE
+ Artemis}, and how many of the Top 5, 10, and 20 violations found by C-
DIDUCE are still ranked Top 5, 10 and 20 in {C-DIDUCE + Artemis}. On aver-
age, using C-DIDUCE controlled by Artemis detects 50% of the original top 20
violations at 23% of the original overhead.

We interpret the loss of precision as a combination of two factors. The first is
a result of the loss of precision when approximating the context with our context
representation. The second is due to DIDUCE’s violation-ranking scheme. The
confidence value is computed as a function of the number of times the invariant is
evaluated. Because Artemis reduces overhead by skipping monitoring when pos-
sible, C-DIDUCE computes a different number of times the invariant is evaluated,
which leads to ranking differences.

6 Conclusions

As hardware costs have fallen, and organizations have become increasingly de-
pendent on computers, reliability and productivity have become increasingly im-
portant. Runtime monitoring of programs for execution anomolies are potentially
invaluable tool for increasing the robustness of programs and the productivity of
programmers by giving them clues to why long running programs failed. The
framework described in this paper works with wide range of monitoring tools,
imposing an asymptotic overhead of only 11%, and giving speedups of up to 3.2
times using third party monitoring tools on SPEC benchmark programs. It does
this not by random sampling, but by using runtime properties of the program to
determine what regions of a program need to be examined more closely. Because
the Artemis framework reduces the overhead of the underlying monitoring frame-
work, it makes runtime monitoring a reality for many programs, and dramatically
increases the scope of applicability of the underlying monitoring technique.

7 Acknowledgments

We would like to thank the members of PROBE project, in particular Pin Zhou,
for access to the AccMon software and their help in running it.

7equake is a floating-point-intensive program, which doesn’t show any violations on
the invariants C-DIDUCE tracks.

22

References

[1] M. Arnold and B. G. Ryder. A framework for reducing the cost of instru-
mented code. In Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation, pages 168–179. ACM
Press, 2001.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all pointer
and array access errors. In Proceedings of the ACM SIGPLAN 1994 con-
ference on Programming Language Design and Implementation, pages 290–
301. ACM Press, 1994.

[3] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dy-
namic programming errors. Software Practice and Experience, 30(7):775–
802, 2000.

[4] T. M. Chilimbi and M. Hauswirth. Low-overhead memory leak detection us-
ing adaptive statistical profiling. In ASPLOS-XI: Proceedings of the 11th in-
ternational conference on Architectural support for programming languages
and operating systems, pages 156–164, 2004.

[5] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded object-
oriented programs. In Proceedings of the ACM SIGPLAN 2002 Confer-
ence on Programming language design and implementation, pages 258–269.
ACM Press, 2002.

[6] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. Ccured in
the real world. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming Language Design and Implementation, pages 232–244. ACM
Press, 2003.

[7] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-
gle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th USENIX Security Sym-
posium, 1998.

[8] D. Engler and K. Ashcraft. Racerx: effective, static detection of race condi-
tions and deadlocks. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 237–252. ACM Press, 2003.

23

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Proceedings
of the Fourth Symposium on Operating Systems Design and Implementation,
Oct. 2000.

[10] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as de-
viant behavior: a general approach to inferring errors in systems code. In
Proceedings of the eighteenth ACM Symposium on Operating Systems Prin-
ciples, pages 57–72. ACM Press, 2001.

[11] D. Engler and M. Musuvathi. Static analysis versus software model checking
for bug finding. In Proceedings of VMCAI ’04, 2003.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):99–123, 2001.

[13] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detect-
ing relevant program invariants. In Proceedings of the 22nd international
conference on Software engineering, pages 449–458. ACM Press, 2000.

[14] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: a tool for using
specifications to check code. In Proceedings of the 2nd ACM SIGSOFT sym-
posium on Foundations of software engineering, pages 87–96. ACM Press,
1994.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for java. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and Imple-
mentation, pages 234–245. ACM Press, 2002.

[16] S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the 24th international conference on
Software engineering, pages 291–301. ACM Press, 2002.

[17] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the USENIX Winter Technical Conference, 1992.

[18] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds checking
for arrays and pointers in c programs. In Third International Workshop on

24

Automated Debugging, pages 13–26. Linkoping University Electronic Press,
1997.

[19] S.-I. Lee, T. A. Johnson, and R. Eigenmann. Cetus – an extensible com-
piler infrastructure for source-to-source transformation. In Proceedings of
the 16th International Workshop on Languages and Compilers for Parallel
Computing (LCPC), 2003.

[20] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via re-
mote program sampling. In Proceedings of the ACM SIGPLAN 2003 con-
ference on Programming Language Design and Implementation, pages 141–
154. ACM Press, 2003.

[21] A. Loginov, S. H. Yong, S. Horwitz, and T. W. Reps. Debugging via run-time
type checking. In Proceedings of the 4th International Conference on Fun-
damental Approaches to Software Engineering, pages 217–232. Springer-
Verlag, 2001.

[22] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill. Cmc: A
pragmatic approach to model checking real code. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation, 2002.

[23] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe retrofitting of
legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 128–139. ACM Press, 2002.

[24] Software errors cost u.s. economy $59.5 billion annually, 2002. NIST News,
Release 2002-10.

[25] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In Pro-
ceedings of the ninth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 167–178. ACM Press, 2003.

[26] A. One. Smashing the stack for fun and profit. Phrack, 7(49), 1996.

[27] J. Oplinger and M. S. Lam. Enhancing software reliability with specula-
tive threads. In Proceedings of the 10th International Conference on Archi-
tectural support for programming languages and operating systems, pages
184–196. ACM Press, 2002.

25

[28] H. Patil and C. Fischer. Low-cost, concurrent checking of pointer and array
accesses in c programs. Software Practice and Experience, 27(1):87–110,
1997.

[29] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow detector.
In Proceedings of the 11th Annual Network and Distributed System Security
Symposium, 2004.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
a dynamic data race detector for multithreaded programs. ACM Transactions
on Computer Systems (TOCS), 15(4):391–411, 1997.

[31] A. Srivastava and A. Eustace. Atom: a system for building customized pro-
gram analysis tools. In Proceedings of the ACM SIGPLAN 1994 confer-
ence on Programming Language Design and Implementation, pages 196–
205. ACM Press, 1994.

[32] J. L. Steffen. Adding run-time checking to the portable c compiler. Software
Practice and Experience, 22(4):305–316, 1992.

[33] http://www.trimaran.org/.

[34] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In Network and Dis-
tributed System Security Symposium, pages 3–17, San Diego, CA, February
2000.

[35] J. Wilander and M. Kamkar. A comparison of publicly available tools for
dynamic buffer overflow prevention. In Proceedings of the 10th Network
and Distributed System Security Symposium, pages 149–162, San Diego,
California, February 2003.

[36] Y. Xie, A. Chou, and D. Engler. Archer: using symbolic, path-sensitive
analysis to detect memory access errors. In Proceedings of the 9th European
software engineering conference held jointly with 10th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, pages 327–
336. ACM Press, 2003.

[37] Y. Xie and D. Engler. Using redundancies to find errors. ACM SIGSOFT
Software Engineering Notes, 27(6):51–60, 2002.

26

[38] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Torrel-
las. AccMon: Automatically detecting memory-related bugs via program
counter-based invariants. In Proceedings of the 37th Annual IEEE/ACM In-
ternational Symposium on Micro-architecture (MICRO’04), 2004.

[39] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iwatcher: Efficient archi-
tectural support for software debugging. In Proceedings of the 31st Annual
International Symposium on Computer Architecture, page 224. IEEE Com-
puter Society, 2004.

27

	Purdue University
	Purdue e-Pubs
	2-1-2005

	Artemis: Practical Runtime Monitoring of Applications for Errors
	Long Fei
	Samuel P. Midkiff

