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Abstract

Web traffic accounts for more than half of Internet traffic today. Camouflaging covert timing channels
in Web traffic would be advantageous for concealment. In thispaper, we investigate the possibility of
disguising network covert timing channels as HTTP traffic toavoid detection. Extensive research has
shown that Internet traffic, including HTTP traffic, exhibits self-similarity and long range persistence.
Existing covert timing channels that mimic i.i.d. legitimate traffic cannot imitate HTTP traffic because
these covert traffic patterns are not long range dependent. The goal of this work is to design a covert
timing channel that can be camouflaged as HTTP traffic. To thisend, we design a covert timing channel
whose inter-arrival times are long range dependent and havethe same marginal distribution as the inter-
arrival times for new HTTP connection traffic. These inter-arrival times are constructed by combining a
Fractional Auto-Regressive Integrated Moving Average (FARIMA) time series and an i.i.d. cryptograph-
ically secure random sequence. Experiments are conducted on PlanetLab, and the results are validated
against recent real traffic trace data. Our experiments demonstrate that the traffic from this timing chan-
nel traffic is statistically indistinguishable from legitimate HTTP traffic and undetectable by all current
detection schemes for timing channels.



1. Introduction

Due to the rapid growth of Internet and Web based applications, covert communication over the In-
ternet has received increased attention from industry and the research community. Since traditional
firewalls do not usually exam packet inter-arrival times, covert timing channels could be an attractive
way for confidential communication between untrusted systems. With the emergence of new designs of
network timing channels, detection methods attempt to differentiate these timing channels from legiti-
mate traffic. The question that we ask us is whether we design network timing channels that behave like
legitimate traffic and that are robust to the timing noise characteristic on the Internet.

In our prior work, we have presented a computationally non-detectable timing channel for mimicking
legitimatei.i.d. traffic [5] . The marginal distribution of the packet inter arrival times from this timing
channel can be any probability distribution. However, these i.i.d. timing channels cannot mimic traffic
that is auto-correlated.

Extensive research has shown that aggregated traffic is selfsimilar and long range dependent (LRD).
For instance, the TCP connection start time for HTTP traffic,the most observed traffic on the Internet
[21], is shown to be LRD and non-stationary [10]. Our goal is to design a covert timing channel that can
mimic LRD traffic, such as HTTP traffic. In particular, we would like our timing channel traffic not only
to have the desired marginal distribution, but the same autocorrelation function (equivalently, same long
range dependence) as legitimate traffic trace data.

To achieve this goal, we first analyze traffic trace data for HTTP traffic from 2009 available from
CAIDA 1. We use the insights from these traffic traces to revive and expand a prior statistical model
for HTTP traffic [10] to better fit current data. Our model usesa Fractional Auto-Regressive Integrated
Moving Average (FARIMA) time series to capture LRD behaviorand also matches the marginal dis-
tribution of the data. We then create covert timing channel traffic by embedding covert information in
this model without disturbing any first- or second-order statistical behavior of the legitimate traffic. We
implement the LRD timing channel and conduct experiments with geographically distributed senders
and receivers on PlanetLab. Our experimental results indicate that the new timing channel traffic is
statistically indistinguishable from legitimate traffic,and our tests confirm it evades the best available
detection methods.

One scenario of using this timing channel is when a sender resides in a country with tight censorship.
She is able to manipulate the inter-transmission times of aggregated HTTP traffic within her organization
to communicate in a covert manner with a receiver who is outside the geographical boundary of the
country and where there are no such censorship laws. Since HTTP traffic has a high volume in most
settings, the sender can achieve reasonable rates of covertcommunication. The receiver intercepts the
traffic en-route to the final web servers, observes the inter-reception times, and decodes the privileged
information from them using a code-book that the sender and the receiver have agreed toa priori.

The remainder of our paper is organized as follows: In Section 2, we review related work on network
timing channels and long range dependent traffic. In Section3, we present our analysis on CAIDA data
and updated traffic models. In Section 4, we describe our design and implementation of covert HTTP
timing channels. Our experimental results are described inSection 5. We conclude with discussion and
future research directions in Section 6.

1Support for CAIDA’s Internet traces is provided by the National Science Foundation, the US Department of Homeland
Security, and CAIDA Members.
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2. Related Work

Past research on network timing channels has investigated channel capacity, schemes for reducing the
capacity, designs of network timing channels, and detection schemes to identify the existence and usage
of timing channels.

Early implementation of an on/off timing channel [1] demonstrated the feasibility of leaking infor-
mation by a network covert timing channel. In [4], the authors built a Keyboard JitterBug, a device
interposed between the keyboard and the computer, that can leak typed information through a covert
network timing channel when a user runs an interactive application such asssh. We designed a timing
channel [5] that mapsL-bits strings ton packet inter transmission times.This design includes boththe
on-off scheme and the keyboard jitter bugs as special cases.It significantly improved the data rate of
the timing channel. In fact, the data rate of this scheme is close to the theoretical upper bound – the
achievable rate of the geometric codes.

Given the threat of clandestinely leaking information by network covert timing channels, researchers
found ways to detect them [1, 2, 3]. However, network timing channels can be very surreptitious. In [5],
we constructed a computationally non-detectable timing channel, mimicking anyi.i.d. legitimate traffic
patterns. The inter-transmission times from telnet trafficare shown to bei.i.d. from a Pareto distribution
[16]. When used to imitate telnet traffic, our timing channelcan evade detections entirely. In spite
of the strong non-detectability property, the usage of thistiming channel is limited to imitatingi.i.d.
legitimate traffic. It cannot be used to imitate correlated traffic such as HTTP traffic, which represents
more than 50% of Internet traffic today. It is well-established that HTTP traffic is non-stationary and
long range dependent (LRD) [10, 11]. LRD means the autocorrelations are positive and decay slowly,
thus are not summable. The focus of this work is to construct timing channels that emulate the long
range dependence of HTTP traffic.

The discovery of long range dependence and self-similarityof Internet traffic ([13]) had profound
effect on our understanding of network traffic. Many papers on long range dependent and self similar
network traffic have been published. Readers are referred to[12] for a comprehensive overview.

Mathematical models and simulations are essential for network performance evaluation, traffic con-
trols, and resource provisioning. Synthesized long range dependent traffic is required as an input process
for simulations in order to reflect the reality that many traffic variables are long-range persistent. Frac-
tional Gaussian noise (FGN) and fractional ARIMA (FARIMA) processes are the two most widely-used
input processes for network simulations. Clevelandet al. proposed a stochastic model well suited for
TCP start time for HTTP traffic [10]. The authors analyzed 23 million TCP connections organized into
10704 blocks of approximately 15 minutes each. They used a FARIMA sequence to capture the long
range persistence, and the model produces synthetic trafficstochastically similar to that from the actual
wire of an Internet link.

A fast Fourier transform method for synthesizing approximate sample paths for Fractional Gaussian
Noise (FGN) is proposed in [17]. A summary of other methods for generating realistic network traffic
can be found in [17].

Synthesizing a realistic traffic trace is evidently a crucial part of constructing timing channel traffic
to evade detection. Unlike traditional modeling and synthetic trace generation, the synthetic traffic for
our timing channel must meet more rigorous requirements: 1)be statistically indistinguishable (not
just similar) from the underlying HTTP traffic to avoid detection; and 2) be able to transmit covert
information through timing, and of course, be decodable by the receiver.
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Next, we will present a stochastic model for HTTP new connection inter arrival times based on packets
trace data collected by CAIDA in 2009.

3. Model for A LRD Timing Channel

The goal of this research is to design a network timing channel that can be hidden within HTTP traffic.
Persistent connectionsare adopted in HTTP/1.1, that is, a single TCP connection is created and reused
for multiple HTTP request/response interactions. Our timing channel will use the new TCP connection
inter-arrival times, not HTTP packet inter-arrival times,to carry covert information. Due to the net-
work jitters distorting timing information, larger inter-arrival times are more resilient to decoding errors.
Therefore, the TCP connection inter-arrival times, largerthan HTTP packet arrival times, are more reli-
able for transmitting covert information. The tradeoff of the enhanced robustness is the corresponding
throughput reduction when compared to the packet inter-arrival time schemes in [1, 4, 5].

We use the packet traces collected by CAIDA in March 2009 as a baseline for comparing our covert
timing traffic and legitimate traffic. This dataset containsanonymized passive traffic traces from CAIDA’s
Equinix-Chicago and Equinix-Sanjose monitors on OC192 Internet backbone links. The Equinix-Chicago
Internet data collection monitor is located at an Equinix datacenter in Chicago, IL, and is connected to
an OC192 backbone link (9953 Mbps) of a Tier1 ISP between Chicago, IL and Seattle, WA.

The original data set from Equinix-Chicago direction A contains approximately 15 GB of compressed
data. We first extract the new TCP connection packets for HTTPfrom the dataset. The resulting data is
only about1% of the original data. Since the attack scenario under consideration is a compromised edge
router of an enterprise network leaking information via timing channels, we further partition the new
TCP connection packet trace into subnets according to their8 bits network prefix. Within each subnet,
we divide the one-hour trace into four 15-minutes intervalsas in [10].

3.1. Limitation of the Existing Model for HTTP Traffic

A statistical model [10] for TCP new connection times was developed, based on traffic traces collected
at Bell Labs between 1998 and 2000. The authors conducted extensive empirical as well as in-depth
theoretical studies of 23 million TCP connections collected at Bell Labs between 1998 and 2000. They
concluded that TCP start times for HTTP are nonstationary and LRD, the marginal distribution of the
inter-arrival times is approximately Weibull, and the autocorrelation of the log inter-arrival times is
modeled by adding white noise to a FARIMA time series.

FARIMA models are generalizations ofAutoregressive Integrated Moving AverageARMA model by
allowing fractional valuesd in the degree of difference [15]. It is commonly used to modellong range
dependent behavior. The FARIMA seriessj can be generated from equation (1):

(I − B)dsj = ǫj + ǫj−1 (1)

where B is the backward shift operator (Bsj = sj−1) andǫi are i.i.d. Gaussian random variables with
mean 0 and varianceσ2

ǫ . Their model is developed for data with Hurst parameters around 0.75, and they
used a fixed value0.25 for the degree of differenced. The Hurst parameters for the Bell Lab data are
approximately 0.75, and the relationship between H and d isH = d + 0.5.

One advantage of this model is that only one parameter,r, the rate of new TCP connection arrival
times, is needed to generate the traffic trace. In their model, the parameters (α andλ) for a Weibull
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distribution are functions of the connection rater. The correspondingc.d.f.of the marginal distribution
of the new connection inter-arrival times for is:

F (t) = 1− e−(t/α(r))λ(r)

, t ≥ 0 (2)

The Internet has changed tremendously in the last decade. Itis not surprising that this model does not
fit current CAIDA data well. For instance, we select a datasetconsisting of a 15-minute block of CAIDA
traffic trace from a subnet, and compare it with the model in [10]. The load is calculated asr = 0.6387
connection/seconds for this data. We then create a synthetic dataset according to the model in [10] using
r = 0.6387c/s.

Figure 1(a) compares the empirical cumulative distribution functions from the CAIDA trace and the
trace generated according to the model in [10]. Although it may appear that their empiricalcdfsare very
close to each other, the two-sample Kolmogorov-Smirnov test rejects the null hypothesis that these two
samples are drawn from the same distribution at level 0.05. The maximum distance between the two
empirical distributions is 0.2558, and the p-value is2.8 · 10−27. This conclusion is further confirmed
visually by the Weibull plots in Figure 2(a). While the marginal distribution of CAIDA’s new TCP
connection times is approximately Weibull, it does not comefrom the same Weibull distribution as the
model in [10].
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Figure 2. Fragment of Weibull Plots

In addition to the mismatch of the marginal distribution between the CAIDA data and the model, the
second order statistics from the two data sets also differ. The Hurst parameter for the log inter-arrival
times in the CAIDA data set is 0.61, while the model is developed for data with Hurst parameters around
0.75. In the existing model, no calculation of the Hurst parameter value is done based on the data.
Instead, the value of the Hurst parameter is fixed as 0.75. Another misfit is the autocorrelation function.
Since it is difficult to discern the differences from the autocorrelation plots in Figure 3(a), we plot the
power spectrum density (PSD) estimates in Figure 4(a). It shows significant difference between the PSD
estimates of the CAIDA data and of model in [10]. The PSD and the ACF of a time series form a Fouries
transform pair, i.e. the PSD is the Fourier transform of the autocorrelation function of the time series,
assuming the time series is wide sense stationary. The difference in PSD suggests different second order
statistics.
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Figure 4. Power Spectrum Density Estimates

The discrepancy described above indicates the need of updating the model for HTTP traffic in order
to create timing channels that can hide in today’s HTTP traffic.

3.2. New Model for HTTP Traffic

We first design a new model that expands the model in [10], so that it can model traffic with Hurst
parameters other than 0.75. In our model, the scale and shapeparameters for Weibull distribution,
denoted byα and λ respectively, are estimated directly from the data, not computed from the load
parameterr, to better fit a particular trace data.

Table 1 contains the notations we use in our model2. The TCP new connection inter-arrival times are
denoted astj , j = 1, · · · , n. Sincetj can vary by several orders of magnitude,lj = log2(tj) is used
for model fitting as in [10]. The marginal distribution of thet′is is approximately Weibull, with shape
parameterλ > 0 and scale parameterα > 0. Its cumulative distribution function (c.d.f.) is then:

F (t) = 1− e−(t/α)λ

, t ≥ 0; α, λ > 0 (3)

The pseudocode for generating synthetic traces using our model is shown inAlgorithm 3.1 NewModel,
There are fourinputparameters in our synthetic trace generation model:α, λ, H, andρ1. Here,α andλ
are the scale and shape parameters of the Weibull distribution,H is the Hurst parameter oflj = log2(tj),
andρ1 is the autocorrelation oflj at lag 1. The values of all four parameters are estimated directly from
the data trace.

In the first 10 steps, we calculate all the parameters needed for synthetic trace generation. We will
show the derivation of the values of these parameters shortly as we build our model. Steps 11 to 15 in
for loopare the main component for generatingn data points.

Theoutputof the algorithm is simply an array that contains the sequence of inter-arrival times. They
are statistically indistinguishable from today’s HTTP traffic. As shown in Figures 1 to 4, the inter-arrival
times from our new model match the marginal distribution andsecond order statistics of the real traffic

2we use the same notation as [10] whenever possible in our new model
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trace. This new model will later be used to generate covert timing channel traffic, which will be shown
in Section 4.

The first step,d = H − 0.5 calculates the degree of difference in the FARIMA model. TheEuler
constantγ = 0.5772 is set in step 2, and it is used in step 3 for calculating the mean of lj = log2(tj).
The variance oflj is calculated in step 4 using the Weibull shape parameterλ. The variance ofsj

(denoted asσ2
s ) is calculated in step 5, and it is used in step 11 for FARIMA series generation. The value

of σ2
n is calculated in step 6, and is used, along with the value ofµl from step 3, to generate ani.i.d.

Log-Weibull sequence in step 12. We will show how the formulas for σ2
s andσ2

n are developed shortly.
The step 7 calculates the loadr of the TCP new connections asr = 1/E[tj], andE[tj ] = Γ(α(1+1/λ)).
Note,Γ(·) is the Gamma function defined as:Γ(x) =

∫

∞

0 tx−1e−tdt. The loadr is then used in steps 8
through 9 to calculate parametersb0, b1, andb2, which are used to obtainlj from vj in step 14.

Algorithm 3.1: NEWMODEL(α, λ, H, ρ1)

[1]d = H − 0.5
[2]γ ← 0.5772 //Euler Constant
[3]µl = log2(α)− γ log2(e)/λ,
[4]σ2

l = π2 log2
2(e)/6λ2

[5]σ2
s = σ2

l ρ1(2− d)/(1 + d)
[6]σ2

n = σ2
l − σ2

s

[7]r = 1/(αΓ(1 + 1/λ))
[8]b0 = 0.7− e−0.7088−0.05857r

[9]b1 = 1− e−1.6301−0.06399r

[10]b2 = −e−4.1896−0.06254r

for j ← 1 to n

do































[11] s[j]← FARIMA sequence with varianceσ2
s

[12] n[j]← i.i.d.Log-Weibull (µl, σ
2
n) sequence

[13] v[j] = s[j] + n[j]
[14] l[j] = b0 + b1v[j] + b2v

2[j]
[15] t[j] = 2l[j]

return (t)

We now will explain the two key components, the FARIMA sequence (step 11) and thei.i.d. random
sequence with a Log-Weibull distribution3 (step 12) in our algorithm. We will show how we use these
two sequences to build a model that matches the first and second order statistics of a data trace.

A FARIMA series is commonly used to model long range dependent behavior [15]. It is a generaliza-
tion of ARMA model by allowing fractional valuesd in the degree of difference. The LRD seriessj can
be generated from equation (1):

(I − B)dsj = ǫj + ǫj−1 (4)

where B is the backward shift operator (Bsj = sj−1) andǫi are i.i.d. Gaussian random variables with
mean 0 and varianceσ2

ǫ .

3Log-Weibul is a type of extreme-value distributions.
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Table 1. List of Notations

Symbol Explaination

tj HTTP connection inter-arrival times
α, λ Weibull scale and shape parameters

r = 1/E[tj ] new TCP connection rate
lj log scale oftj : lj = log2(tj)
ρ1 autocorrelation oflj at lag one
H Hurst Parameter oflj
d degree of difference in FARIMA model

d = H − 0.5
sj FARIMA series:(I −B)dsj = ǫj + ǫj−1

ǫj arei.i.d. Gaussian(0, σ2
ǫ )

nj i.i.d. Log-Weibull (µl, σ
2
n) random variables

uncorrelated withsj

vj intermediate random sequence to modellj :
vj = sj + nj

The long range dependence property oftj is well modeled by Eq (1) [10, 15]. The advantage of
FARIMA models is that it can capture the LRD using only one parameter – Hurst ParameterH. The
degree of differenced is d = H − 0.5. In the earlier model [10],d is fixed to0.25; That model fitted the
Bell Lab data well since the Hurst parameters from those dataare approximately 0.75. When a traffic
trace has a significantly lower or higher Hurst parameter, like recent CAIDA data, the old model is no
longer appropriate. One of our contribution is to model LRD traffic with wide range of Hurst parameters,
we allowd to be in(0, 0.5), corresponding to Hurst parameters in(0.5, 1).

Thei.i.d. Log-Weibull sequence{nj} is added tosj , in an attempt to capture the first order and second
order statistics oflj. This method was first proposed in [10]. The random sequence{nj} and{sj} are
not correlated, i.e.cov(ni, sj) = 0 for all i, j. Recall thatlj = log2(tj), andtj is Weibull(α, λ). Thuslj
has a Log-Weibull distribution with meanµl and varianceσ2

l . The values ofµl andσ2
l can be expressed

in terms of the Weibull parametersλ andα: µl = log2(α)− γ log2(e)/λ, andσ2
l = π2 log2

2(e)/6λ2.
Our goal is to obtainlj from sj andnj . For the ease of expositions, we use an intermediate variable

vj, and denotevj = sj +nj . The goal is to havevj statistically as close tolj as possible. Thus, we design
sj andnj, so thatvj satisfiesE[vj] = µl andvar[vj] = σ2

l . In addition,vj retains the same second order
statistics oflj. The Hurst parameterH and the autocorrelation oflj at lag one,ρ1, are obtained from the
data.

We calculate the autocorrelation functionas(k) for si according to [15], and obtain:

as(k) = ax(k) ·
2k2(1− d)− (1− d)2

k2 − (1− d)2

where

ax(k) =
d(1 + d) · · · (k − 1 + d)

(1− d)(2− d) · · · (k − d)
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In particular, the autocorrelation ofsj at lag one is

as(1) =
1 + d

2− d

Sincevj = sj + nj andvar(vj) = σ2
l , we have

σ2
l = σ2

s + σ2
n

Define

θ =
ρ1

as(1)
= ρ1

2− d

1 + d
,

whereρ1 is the autocorrelation oflj at lag one, an input parameter to our new model. Then,θ = σ2
s/σ

2
l ,

so thatσ2
s = θσ2

l .
Also we obtain the value of the variance ofsj using results in [15],

σ2
s =

2

1− d
·
Γ(1− 2d)

Γ2(1− d)
· σ2

ǫ

so that,

σ2
ǫ =

θ(1− d)

2
·

Γ2(1− d)

Γ(1− 2d)
· σ2

l

The value ofσ2
ǫ is used for generating the FARIMA sequencesj defined by equation (1), which is

used in step 11 in our model.
The parametersµl andσ2

n are used for generatingi.i.d. Log-Weibull random sequencenj in step 12,
where

σ2
n = (1− θ) · σ2

l

Even thoughvj has the desired second order statistics, and satisfiesE(vj) = µl andvar(vj) = σ2
l ,

its marginal distribution is not the desired Log-Weibull distribution. Therefore, to obtainlj from vj with
the desired Log-Weibull distribution, we apply the following transformation:

lj = b0(r) + b1(r)vj + b2(r)v
2
j

is used to obtainlj in step 14, so thatlj has the desired Log-Weibull distribution. The values ofb0, b1,
andb2 are computed in steps 8 to 10, according to equations (17), (18), and (19) on page 168 of [10],
We made some adjustment tob0 for a better fit. Note thatb0, b1, andb2 incoporate the effect of load on
the inter-arrival times.

We generated synthetic traces according to our new model, and compare them with the real data and
the existing model in [10]. The input parameters for our new model are estimated directly from the
real data set. The value of the Hurst parameterH is estimated using R/S method4. Other methods
and tools for Hurst parameter estimation can be found in [19]. The value ofρ1 is estimated using
a Matlab function autocorr. The Weibull parameters(α, λ) are estimated using theMatlab function
wblfit. The CAIDA data set we used to generate figures 1(a) to 4(a) hasthe following parameter values:
α = 1.36, λ = 0.76, H = 0.65, ρ1 = 0.18. The loadr is 0.64 c/s.

4R/S method is also known as the rescaled adjusted range statistics method.

10



Figure 1(a) compares the empirical cumulative distribution functions from our model, the model in
[10] and the CAIDA trace. In this figure, the empiricalcdf of data from our model almost follow that of
the CAIDA trace exactly. The Weibull plots in Figure 2(a) arealso very close between our model and
the data. There two figures demonstrate that the marginal distribution from our model is a much closer
match to the real data than the existing model.

The second order statistics also match well between our model and the data. Autocorrelation plots are
in Figure 3(a), and the power spectrum density (PSD) estimates are in Figure 4(a). Figure 4(a) shows the
PSD estimates of the CAIDA data is much closer to that of our model than that of the existing model.
These two figures show that the second order statistics from our model also matches the real data better
than the existing model.

The fundamental reasons behind the better match is that we useH andρ1 in our model, in addition to
the load(r) and that we measured these values directly from recent realdata.

4. Design of HTTP Timing Channel

As we have seen, our model can be used to generate synthetic data that is statistically indistinguishable
from the real trace. If we can embed covert information in ourmodel while maintaining the statistical
properties, a detection-resistant covert timing channel can be created. In what follows, we will explain
how we incorporate this model in our HTTP timing channel design.

l(1)l(2)l(3)l(4) ...

T(1)T(2) T(3)T(4) ...  T(2n−1)T(2n)

Message:    c(1) c(2) c(3) ...  c(n)

F(x): CDF of an Log−Weibull random variable 

α, λ

−1

r(1)r(2) r(3)r(4) ...  r(2n−1)r(2n)

x(1)x(2) x(3)x(4) ...  x(2n−1)x(2n)

n(1)n(2)n(3)n(4) ...

ρ1

c(i) −> (x(2i−1), x(2i))

2: Codeword Masking using CSPRNG:
a) CSPRNG −> u(1), u(2), ... u(2n)

3: Extreme−Value sequence generation:

b)  r(i) = x(i)+u(i) (mod 1)

6: Inter−Transmission Time Generation:

T(i) = 2

1: Codeword Look Up:

Hurst Parameters: H
Autocorrelation at lag one:

Weibull Parameters:

n(i) = F    (r(i))

Input Parameters:

s(1)s(2)s(3)s(4)...

5: Combine FARIMA and Extreme−Value Sequences:
a)  v(i) = n(i) + s(i)
b)  l(i) = g(v(i)), g(v)=b0+b1*v+b2*v^2

4: Fractional ARIMA sequence Generation:

FARIMA −> s(1), s(2), ..., s(2n)

l(i)

(a)

Figure 5. Encoder

Message:    c(1) c(2) c(3) ...  c(n)

F(x): CDF of an Log−Weibull random variable 

α, λ

r(1)r(2) r(3)r(4) ...  r(2n−1)r(2n)

x(1)x(2) x(3)x(4) ...  x(2n−1)x(2n)

n(1)n(2)n(3)n(4) ...

−1

l(1)l(2)l(3)l(4) ...

Inter Reception Times at Receiver: R(1)R(2) R(3)R(4) ...  R(2n−1)R(2n)

ρ1

(x(2i−1), x(2i)) −−> c(i)

5: Get codewords by unmasking:
a) CSPRNG −> u(1), u(2), ... u(2n)

4: Get a Uniform (0,1) Random Sequence:

b)  x(i) = u(i) − r(i) (mod 1)

6: Reverse Codeword Look Up:

Hurst Parameters: H
Autocorrelation at lag one: 

Weibull Parameters:
Input Parameters:

3: Get the Extreme−Value Sequence:
a) v(i) = g   (l(i))
b)  n(i) = v(i) −  s(i)

r(i) = F(n(i))

s(1)s(2)s(3)s(4)...

2: Fractional ARIMA sequence Generation:

FARIMA −> s(1), s(2), ..., s(2n)l(i) = log2(R(i))

1:  Convert R(i) to log scale:

(a)

Figure 6. Decoder

The encoder of our HTTP timing channel is detailed in Figure 5(a). A single 8-bit ASCII characterci

will be mapped to two inter-arrival timesT2i−1, T2i by this encoder. A message, consisting of a sequence
of 8-bit ASCII charactersc1, c2, · · · , cn, is encoded in a sequence of TCP new connection inter-arrival
timesT1, T2, · · · , T2n which have the same marginal distribution and autocorrelations as a legitimate
HTTP traffic trace.
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The covert message is implanted in thei.i.d. Log-Weibull random sequenceni. The sender and
receiver share a code book, a one-to-one mapping of 8-bit binary strings to two-dimensional vectors
(k1

16
, k2

16
), wherek1 andk2 are integers between 0 and 15.

The first step of our scheme is to look up the codeword for each character in the message. We use
(x2k−1, x2k) to denote the codeword for characterck. At the end of the first step, the messagemsg is
transformed to a sequence of numbersx = {x1, x2, · · · , x2n−1, x2n}.

In the second step, we use a Cryptographic Secure Pseudo Random Number Generator (CSPRNG) to
generate a sequence of pseudo uniform (0,1) random numbersu = u1, u2, · · · , u2n−1, u2n. The seed used
by CSPRNG is shared between the sender and receiver, but not with the detector of the covert timing traf-
fic. We thenmask the sequencex with u to obtain a new sequence of numbersr = r1, r2, · · · , r2n−1, r2n

by setting
rk = xk ⊕ uk

∆
= (xk + uk) mod 1.

In the third step, we create ani.i.d. Log-Weibull random sequence{nk, k = 1, 2 · · ·} by setting
nk = F−1(rk), whereF (x) is thec.d.f.of a Log-Weibull random variable with meanµl and variance
σ2

n. This step accomplishes the goal specified in step 12 of our Algorithm 3.1 (in Section 3), that is
to generate ani.i.d. Log-Weibull random sequence{nj}. Additionally, the third step in our design
also embeds the covert information in{nj}. This sequence{ni} will then be added to a fractional
ARIMA sequence{s1, s2, · · ·} generated in step 4. This fractional ARIMA sequence has the same Hurst
parameter as the trace data.

In the last two steps, the fractional ARIMA and thei.i.d. Log-Weibull sequence are joined together,
and transformed to the inter-arrival timeT1, T2, · · · , T2n according to our model introduced in Section 3.
The sender then initiates new HTTP connection times according to the values ofT1, T2, · · · , T2n.

The sender and the receiver share the following using an auxiliary channel prior to initiating the covert
communication:

• Code Book: it contains the mapping from 8-bit characters to two-dimensional vectors(x1, x2) =
(k1/16, k2/16), whereki are integers between 0 and 15, inclusive.

• Traffic Model Parametersα, λ, H, andρ1: The underlying assumption is that the sender does
the determination of model parameters for legitimate traffic that is similar in characteristic to the
legitimate traffic in which he will embed the covert information. For example, the daytime traffic
over different weekdays may be statistically similar.

• Seed for CSPRNG: it is used to generate a common CSPRNG sequence.

• Seed for FARIMA series: it is used to generate a common FARIMAsequence.

The procedure for recovering the message at the receiver is simply the reverse of the sender scheme,
as illustrated in Figure 6(a). After the receiver get inter-arrival timesRi, it will execute the following
tasks:

• 1. ConvertRi to log scale:li = log2(Ri)

• 2. Generatesi from the FARIMA model using the same seed as the sender, so that the resulting
series is identical to that used by the sender.
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• 3 a) Obtain the intermediate sequencevi: vi = g−1(li)

3 b) Obtain the Log-Weibull sequenceni: ni = vi − si

• 4. Transform the Log-Weibull sequenceni to a random sequenceri: ri = F (ni), whereF (·) is
thecdf of Log-Weibull distribution

• 5 a). Generateui from the CSPRNG using the same seed as the sender

5 b). Obtain the codewordxi: xi = (ri − ui) mod 1

• 6. Get characterck from xi, xi+1 using codebook

At the receiver, the inter-arrival times observed areR1, R2, · · · , R2n. These are a distorted version of
sender’s inter-arrival timesT1, T2, · · · , T2n. Ri = Ti + ǫi, whereǫi’s are network jitters.

Our initial experiments show most decoding errors occur when the inter-arrival times are small. We
conducted more rigorous error analysis and proved that the smaller the inter-arrival time, the less jitter it
can tolerate. The detailed error analysis can be found in [6]. Through our experiments and error analysis,
we found when the inter arrival times is greater than 100 ms, jitters has much less impact on decoding
errors.

Based on this observation, our method of reducing the decoding error is that if a codewordx∗ is
encoded with a small inter-arrival time, we will re-encode the same characterx∗ using the next values of
CSPRNG and FARIMA sequence until the inter-arrival timeT obtained is larger than 100 ms. Note that,
using our encoder, the same codeword can be mapped to different inter-arrival times. We will transmit
all the inter-arrival times obtained through the encoding process illustrated in Figure 5(a), including the
small inter-arrival times that are less than 100 ms so that the desired statistical properties of the traffic
is not disturbed. The receiver will record all the inter-reception times, but the decoder will discard the
small inter-reception times when recovering the covert information.

In our encoding scheme, it is important that an error in one character does not ripple over to subsequent
characters and is contained. In our basic timing channel design, each character is represented by two
inter-arrival times. Due to ”re-encoding” in our error correction, a character could be mapped to three
or more inter-arrival times. In order to contain the character decoding error, we require even number of
inter-arrival times (including small inter-arrival times) to represent one character. This design guarantees
that even if the decoder mistakenly discards a ”small” inter-reception time or accepted a ”larger” inter-
reception time, it can always start at the right positions todecode characters.

5. Experiments

We implemented this covert timing channel design in Java, using a client/server architecture. The
sender injects the covert information into thei.i.d. Log-Weibull series, and obtains the desired inter-
arrival timesTi according to our design in Figure 5(a). It controls the inter-transmission time by using
Thread.sleep(Ti) (Ti is in milliseconds). The accuracy of theThread.sleep(T ) method is 1 ms. The
receiver passively collects the TCP packet reception timesand decodes the message by extracting the
covert information from the inter-reception timesRi, according to the design in Figure 6(a). There is
no feedback from receiver to sender regarding when the packet is received or whether it is decoded
correctly.
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Table 2. Parameter Values for Two SubNets

SubNet 1 data 1 data 2 data 3 data 4
Parameters

α 1.50 1.34 1.20 1.36
λ 0.77 0.74 0.73 0.76
H 0.61 0.52 0.81 0.65
ρ1 0.12 0.14 0.23 0.18

r (c/s) 0.57 0.62 0.70 0.64

SubNet 2
Parameters data 1 data 2 data 3 data 4

α 0.51 0.43 0.44 0.45
λ 0.90 0.85 0.87 0.91
H 0.57 0.56 0.59 0.70
ρ1 0.08 0.10 0.12 0.09

r (c/s) 1.87 2.15 2.12 2.11

We conducted our experiments on two pairs of computers usingthe PlanetLab environment. The
receivers are hosts at Purdue University, and the senders are PlanetLab nodes located at Princeton Uni-
versity and Stanford University. The average RTT between Purdue and Princeton is approximately39.5
ms, and the average RTT between Purdue and Stanford is approximately 73.5 ms. The average RTT
times for both pairs remained stable during the course of tenhour experiments through the day.

In our experiments, we used parameters estimated from two subnets. Each subnet has four data
sets, each containing about 15-minutes traffic trace. The data was collected by CAIDA in March 2009.
Further details of the data set have been presented in Section 3. We will verify through our experiments
if our covert timing channel traffic is statistically indistinguishable from these real data, and if it can
avoid detection.

The values of input parameters for the eight data sets,α, λ, H andρ1, all estimated directly from these
trace data, are listed in Table 2. We create 8 timing channelscorresponding to the 8 traces. The sender
sends a text file of 410 characters over the covert channels mimicking subnet 1, and a text file of 1100
characters over the covert channel mimicking subnet 2. We will see shortly that the timing channels
mimicking subnet 2 has a higher data rate than subnet 1. We rana set of the eight timing channels from
Princeton to Purdue. The inter-arrival times from each of these eight timing channels are later used to
test if these timing channels can avoid the best available detection schemes, such as the entropy based
detection and the Kolmogorov-Smirnov Test.

Additionally, we ran two timing channels hourly over the course of a day on two pairs of hosts to
see how network conditions impact the decoding error. The first timing channel runs from Stanford
University to Purdue University, mimicking the first subnet. The second timing channel runs from
Princeton University to Purdue University, mimicking the second subnet. We found the decoding error
ranges from2.9% to 6%. The data rate for the covert channels mimicking the first subnet’s traffic is
approximately 2 bits/sec; the data rate for the second covert channel is approximately 6 bits/sec.

The data rate for our covert timing channel is largely determined byE[tj ], the mean value of the
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consecutive new HTTP connection request times. If one character (8-bits) is encoded in two inter-arrival
times, the data rate of our timing channel is approximately 8/(2E[tj ]) = 4r b/s. Because of the use
of error-correction in our timing channel, small inter-arrival times do not carry information, and one
character could be mapped to2N inter-arrival times, whereN is an integer andN ≥ 1. This reduces the
actual data rate to be less than the maximum achievable rate of 4r b/s. As shown in Table 2,r = 2.12c/s
for data 3 in subnet 2. The data rate of this timing channel is 6bits/sec, less than4r b/s. Although
the data rates are not very high, we would caution the reader not to underestimate the potential security
risks. Since these timing channels mimic non-stationary LRD HTTP traffic, it can potentially be used
long-term without detection. Further, often systems have small-sized private data items.

We compare the traffic trace from our timing channels and the real data. Figures 7(a) and 9(a) compare
the first order and the second order statistics of the data trace from our timing channel with its corre-
sponding real data trace (data 1 of subnet 1 is used5) . Figure 7(a) shows that the empirical distributions
of the two traces are very close to each other. In fact, the maximum distance between these two empirical
distributions using the Kolmogrov-Smirnov test is only 0.066. Figure 9(a) shows the PSD estimates of
the covert traffic and the legitimate traffic, and they are very close to each other. The closeness of the
PSD indicates the closeness of their autocorrelations functions.
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Figure 8. Weibull probability plots

Next, we evaluate how well our timing channel can evade current detection methods. First, we conduct
two sample Kolmogorov-Smirnov tests (KS test) on each covert traffic and real data pair. The two sample
KS test uses the maximum distance between two empirical distributions,KS STAT = max(|F1(x)−
F2(x)|), whereF1(x) andF2(x) are empirical distributions of the real data and the covert channel data.
Table 3 shows the values ofKS STAT and corresponding p-values for each pair. When the allowable
false alarm level is set to1% as in [3], none of our timing channel traffic can be detected since all the
p-values are greater than1%.

5Data 4 of subnet 1 was used in Section 3.
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Figure 10. Sample Autocorrelation Functions

Table 3. Kolmogorov-Smirnov Test

SubNet 1 data 1 data 2 data 3 data 4

KS-STAT 0.0657 0.0845 0.0637 0.0516
p-value 0.096 0.012 0.0863 0.2678
detect no no no no

SubNet 2 data 1 data 2 data 3 data 4

KS-STAT 0.0402 0.0442 0.0466 0.0513
p-value 0.2088 0.1088 0.08 0.043
detect no no no no

The regularity test proposed in [1] checks if the variance ofthe inter-arrival times is relatively constant,
and the traffic is flagged as a covert timing channel if the variance remains constant. Our timing channel
is designed to mimic the non-stationary LRD HTTP traffic. More specifically, our timing channel traffic
patterns match the legitimate HTTP traffic patterns in each small time interval (say 15 minutes). The
marginal distributions of our timing channels match that ofthe changing legitimate HTTP traffic patterns.
Therefore, the variance of the inter-arrival times of our timing channels change the same way as the
legitimate HTTP traffic patterns change. Thus, by design, our timing channel can evade the regularity
test independent of the threshold used in the test.

A recent detection scheme based on entropy is proposed in [3], where data is first partitioned intoQ
equiprobable bins according to a desired cumulative distribution functionF (x). The bin numbersy for
the data valuex can be calculated usingy = ⌊F (x)∗Q⌋, and then used for the entropy and the corrected
conditional entropy computation. By using a singlecdf for legitimate traffic, they implicitly assume that
the legitimate traffic is stationary. Thec.d.f. of a non-stationary traffic can change over time, so their
detection method does not apply directly to timing channelsmimicking non-stationary traffic.

Their recommended value for fine binningQ = 65536 also fails to work for small data sets with

16



Table 4. Entropy Values for Covert Traffic 1

traffic type data 1 data 2 data 3 data 4

training data 6.81 6.80 6.85 6.82
legit 6.56 6.50 6.50 6.51

covert 1 6.85 6.84 6.87 6.89
p-value 0.33 0.36 0.28 0.24
detect? no no no no

Table 5. Entropy Values for Covert Traffic 2
traffic type data 1 data 2 data 3 data 4

training data 6.93 6.94 6.95 6.95
legit 6.29 6.38 6.44 6.34

covert 2 6.86 6.88 6.90 6.87
p-value 0.55 0.52 0.48 0.53
detect? no no no no

less than 65536 data points. The reason is that legitimate traffic is expected to be uniformly distributed
among theQ bins, thus having entropy value near 16 whenQ = 65536. Traffic with entropy values less
than 15.12 in [3] is flagged as covert traffic. Consider legitimate traffic that follows exactly the desired
c.d.f, but only has 2000 inter-arrival times. Since the maximum entropy for any data sets with 2000 data
points islog2(2000) = 10.97, the entropy for this legitimate traffic is far less than the desired entropy
16, and will be falsely flagged as covert traffic.

In each of our 15-minute data sets from subnet 1, there are approximately 600 HTTP connections. It
is appropriate to useQ = 128 for fine binning. We useQ = 5 to calculate CCE values as in [3]. Table 4
and 5 show the entropy values of covert traffic mimicking subnet 1 and subnet 2 respectively, compared
with the legitimate traffic and the training data. Table 6 and7 show the CCE values of covert traffic
mimicking subnet 1 and subnet 2 respectively, compared withlegitimate traffic and training data. The
training data are the CAIDA data set that was used to obtain the model parameters for the covert timing
channels. Thep-values are calculated for each entropy or CCE value using T-test. The T-test was applied
to determine if the traffic coming from the covert channel differs significantly from the ”normal” traffic,
where normal traffic included the training and the legitimate traffic traces. As shown in these tables, all
the 8 covert timing channels evade entropy and CCE tests, even if the allowable false alarm level is5%.

Table 6. CCE Values for Covert Traffic 1

traffic type data 1 data 2 data 3 data 4

training data 2.21 2.19 2.17 2.21
legit 1.84 1.81 1.82 1.84

covert 1 2.22 2.23 2.18 2.21
p-value 0.35 0.33 0.44 0.37
detect? no no no no

17



Table 7. CCE Values for Covert Traffic 2

traffic type data 1 data 2 data 3 data 4

training data 2.26 2.21 2.22 2.22
legit 1.75 1.85 1.88 1.80

covert 2 2.25 2.25 2.24 2.22
p-value 0.37 0.37 0.39 0.43
detect? no no no no

6. Conclusion

Internet traffic has often been show to display LRD characteristics. Thus, traditional covert channel
schemes can easily be detected by comparing their traffic characteristics with Internet traffics. T o
overcome this problem, we have designed a covert timing channel scheme that can mimic legitimate
traffics displaying LRD property. We show that our covert timing channel can be hidden in the Web
traffic, the most observed traffic on Internet today. We used the HTTP new connection inter-arrival times
to carry the covert information. We found that the marginal distribution and autocorrelation functions
of the inter-arrival times from our covert timing channel matched closely with that from recent traces of
real traffic.

We implemented our design and have conducted extensive experiments on the PlanetLab nodes and
verified the close match of our covert traffic with the real thedata. Further, our experiments show that
our our covert timing channels evade the current best available detection methods. The data rates of our
covert channels range from 2 to 6 bits/sec, and decoding errors range from 3% to 6%.

There are several interesting future directions for this work. One is to develop timing channels for
short range dependent (SRD) traffic; and the other is to design a covert timing channel to mimic other
commonly used traffics, such as peer-to-peer traffic.
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A. Appendix: Decoding Errors

In Section 4, we presented our design of a covert timing channel that can mimic LRD traffic, based
on a model we proposed in Section 3. The design of our timing channel encoder that converts a char-
acterck to two inter-arrival timesT2k−1, T2k (for k = 1, 2, · · · , n), is illustrated in Figure 5(a). Due to
network jitters, the inter-reception timesR2k−1, R2k obtained by the receiver are slightly distorted from
T2k−1, T2k, andRj = Tj + ǫj (ǫj are network jitters).

The decoder in Figure 6(a) usesR1, R2, · · · , R2n to recover the covert message. Our initial experi-
ments show most decoding errors occur when the inter-arrival timesTj are small. Here, we present a
more rigorous error analysis and show that the smaller the inter-arrival time, the less jitter it can tolerate.

Let lDj = log2(Rj) = log2(Tj + ǫj), and recall thatlj = log2(Tj). We have

∆lj = lDj − lj = log2(Tj + ǫj)− log2(Tj) (5)

By the mean value theorem, there is aT ∗ ∈ (Tj, Tj + ǫj) such that

log2(Tj + ǫj)− log2(Tj) =
ǫj

ln(2)T ∗
(6)

By Equations (5) and (6), we have

∆lj =
ǫj

ln(2)T ∗
(7)

Recall that{nj} is ani.i.d. Log-Weibull random sequence, and{sj} is a a LRD FARIMA sequence. In
our encoder, we used an intermediate random variablevj = nj +sj to obtain the Log-Weibull distributed
lj, usinglj = b0 + b1 · vj + b2 · v

2
j . Let vD

j satisfieslDj = b0 + b1 · v
D
j + b2 · (v

D
j )

2. and∆vj = vD
j − vj .

Then, we have∆lj = b1∆vj + b2 · (vj + vD
j ) ·∆vj

Based on the values ofb1 andb2, calculated according to [10],∆lj ≈ ∆vj .
DentenD

j = vD
j − sj in step 3b of the decoder in Figure 6(a). Recall that{sj} is shared between the

encoder and decoder since they share the seed for generatingthe sequence, andvj = nj + sj. We have,

∆lj ≈ ∆nj = nD
j − nj (8)

In step 3 of Figure 5(a),nj = F−1(rj), whereF−1(x) is the inverse function ofc.d.f. of the Log-
Weibull distribution. Therefore,

∆nj = −b ln(− ln(rD
j )) + b ln(− ln(rj)), (9)

whereb = −1/(ln(2) · λ), andλ is the shape parameter of the Weibull distribution.
Noterj = uj + xj (mod 1) = uj ⊕ xj from step 2b of Figure 5(a). By equations (7), (8), and (9), we

have

−ǫ

ln(2) · b · Tj

= ln(− ln(uj ⊕ xD
j ))− ln(− ln(uj ⊕ xj)) (10)

Thus,
−ǫ

ln(2) · b · Tj
= ln

ln(uj ⊕ xD
j )

ln(uj ⊕ xj)
(11)

20



So that,
ln(uj ⊕ xD

j )

ln(uj ⊕ xj)
= exp{

−ǫ

ln(2) · b · Tj
} (12)

Denote
β = exp{

ǫj

ln(2) · b · Tj
} (13)

We have
uj ⊕ xD

j = ((uj ⊕ xj)
β = rβ

j

∆xj = xD
j − xj = (xD

j ⊕ uj)− (xj ⊕ uj) = rβ
j − rj ,

In order for our decode to decode correctly, we would like to have|∆xj | < 1/32. When0.92 < β <
1.08, we have|∆xj | < 1/32 regardless of the values ofuj.

By equation (13), we have

|
ǫj

ln(2) · b · Tj
| = | ln(β)| (14)

Thus,
|Tj| = |

ǫj

ln(2) · b · ln(β)
| (15)

Sinceb = −1/ ln(2) · λ, we have

|Tj | = |
λǫj

ln(β)
| (16)

We can see from Equation (16) that ifTj is too small,ln(β) will be too large, causingβ to be outside
the interval (0.92, 1.08) for correct decoding. Using the Weibull parameterλ = 0.9 in our data 1
from Subnet 2 (Table 2, Section 5), and choosingβ = 1.08, or 0.92, the worst case scenario, we have
1/ ln(β) ≈ 12, and Equation(16) gives

|Tj| > (12λ)ǫj > 10ǫj (17)

If the maximum jitter in the network is 10 ms, We will not have decoding error whenTj > 100 ms.
Our analysis show that smallTj has less tolerance for network jitters, and can cause decoding errors.
Our proposed solution is to add redundancy and if a characteris encoded with a smallT value, we will
re-encode this character until it is encoded with a largerT value.
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