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Abstract We calculate the energy dispersion relations in Si
quantum wells (QW), E(k2D), and quantum wires (QWR),
E(k1D), focusing on the regions with negative effective mass
(NEM) in the valence band. The existence of such NEM
regions is a necessary condition for the current oscillations
in ballistic quasineutral plasma in semiconductor structures.
The frequency range of such oscillations can be extended
to the terahertz region by scaling down the length of struc-
tures. Our analysis shows that silicon is a promising material
for prospective NEM-based terahertz wave generators. We
also found that comparing to Si QWRs, Si QWs are prefer-
able structures for NEM-based generation in the terahertz
range.
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1 Introduction

Energy dispersion curves with negative-effective-mass
(NEM) regions can be found in bulk semiconductors, quan-
tum wells, quantum wires, as well as in artificially band-
engineered structures such as heterostructure obtained by the
cleaved edge overgrowth technique (see [1] and references
therein). The existence of such NEM regions may lead to
current instabilities in ballistic diodes and transistors [2]. For
submicrometer base lengths of these devices the frequency
of current oscillations falls into the terahertz range. Tight-
binding simulations of the energy band structure is an effec-
tive tool for identification and engineering of structures with
well-pronounced NEM regions in energy dispersions.

In this paper we report the results of band structure calcula-
tions of Si quantum wells (QW) and quantum wires (QWR).
We calculated the energy dispersion relations, E (k2D) and E
(k1D), for different orientations of two-dimensional wavevec-
tor, k2D, in QWs and one-dimensional wavevector, k1D, in
QWRs. We used an empirical sp3d5s∗ tight-binding model
which takes into account 10 atomic orbitals: s- and excited
s∗-orbitals, three p-, and five d-orbitals. The inclusion in the
model of higher energy d-orbitals and spin-orbital coupling
has dramatically improved the precision of the calculated
electron and hole energy dispersion relations. In our calcu-
lations we used tight-binding parameters of Si from Ref.
[3]. All other details of the exploited model can be found in
Ref. [4].

The simplest model of energy dispersion relations with
NEM regions is based on anti-crossing of two bands with
light and heavy carriers. It can be described by the following
equation:

E(k) = 1
2

[
ε1(k) + ε2(k) −

√
[ε1(k) − ε2(k)]2 + 4δ2

]
(1)
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Fig. 1 The graph of E(k) defined by Eq. (1) is shown by solid line
1, inverse effective mass, 1/m∗, for E(k) is shown by dash-dotted line
2, and two parabolic energy dispersion relations, ε1(k) and ε2(k), are
shown by dashed lines 3 and 4. The region of negative effective mass
is located between two inflection points, ki1 and ki2

where ε1(k) = h̄2k2/2m, ε2(k) = h̄2k2/2M + ε0, and δ <<

ε0 (see Fig. 1) [5]. Quasineutral semiconductor plasma with
current carriers having dispersion E(k) of Eq. (1), may have
self-organized oscillatory regimes only at certain ratio of two
effective masses, m and M, - light and heavy effective masses,
respectively. This ratio must satisfy the following inequality
[5]:

M/m > 2. (2)

Large ratios of M/m are preferable for NEM-based current
oscillations to be established.

While this model ignores many important details, it is
widely used for qualitative estimates in nonlinear carrier
transport. For this reason, in the next sections we will fit
our data to the above model.

2 Energy dispersion relations in Si quantum wells

First, we will present results for Si QWs grown on (100)
wafers. Analysis of the peculiarities of the energy dispersion
relations associated with the NEM is our main interest here.

We calculated energy dispersion relations E(k2D) for holes
in Si QWs with thicknesses from 0.8 nm to 7 nm for k2D

|| [110] and k2D || [100]. As an example, E(k2D) of QW
with thickness 2.72 nm and k2D || [110] is shown in Fig. 2.
Figure 2 demonstrates well-defined NEM regions, suitable
for occurrence of NEM-based current instability, and wide
energy interval (eVc, eVK ) or interval of applied voltage (Vc,
VK ), where the stationary current in ballistic semiconductor
devices with NEM carriers is unstable. The range of this in-
terval is defined by kc and kK , where kc is the tangency point
and kK is the intersection of tangent and E(k2D), as shown
in Fig. 2. Calculated dependences of these two parameters
on the well thickness are shown in Fig. 3. The increase of
kc by 50% and increase of kK by almost factor of 5 with the
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Fig. 2 Dispersion relations E(k2D) for holes in a Si QW for k2D || [110].
The thickness of QW is 2.72 nm. # is the energy gap between the lowest
and next subband, kc is a tangency point around which the NEM region
is located; kc and kK define the beginning and the end of the interval
where instability takes place, and a is the Si lattice constant equal to
5.43 Å. Solid lines (1, 3) and dash-dotted lines (2, 4) relate to two energy
dispersion relations with opposite spins. Tangent to curve 1 is shown
by dashed line 5
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Fig. 3 Dependences of critical values of kc and kK on QW width are
shown by solid line 1 and dashed line 2, respectively; k2D || [110]

decrease of thickness of QW leads to a substantial increase
of energy interval where the NEM instability exists.

Although, the obtained energy dispersion relations are not
described by Eq. (1), qualitatively we can introduce two ef-
fective masses, m and M, that characterize calculated E(k2D).
As we can see from Fig. 4 the inequality (2) for Si QW with
k2D || [110] is fully satisfied for widths ranging from 0.8 to
7 nm. Another important characteristic of the energy disper-
sion relations is the energy distance between the lowest and
the next subband, #. For QWs with thicknesses less than
3 nm this value is about 25 meV. As we can see from Figs. 3
and 4 there is a good control of kc, kK , #, and M/m over a
wide range of QW thicknesses.

In Si QWs with k2D || [100] the energy dispersion relations
do not satisfy the inequality (2) for any QW thicknesses and
the NEM regions are weakly pronounced.

In addition, the carried out calculations showed that the
Kramers degeneracy [6] of holes at k2D || [110] is lifted for
k2D $= 0 and there are two different branches of dispersion
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Fig. 4 Dependences of M/m ratio and energy gap # on Si QW width
for E(k2D) with k2D || [110] are shown by solid line 1 and dashed line 2,
respectively. Dependence on M/m was calculated for the valence band’s
lowest energy subband
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Fig. 5 Dispersion relations E(k1D) for holes in a Si QWR: (a) with
cross-section 1.63 × 1.72 nm2 (in directions [001] and [−110], re-
spectively) and with k1D || [110]; (b) with cross-section 1.63 nm2 (in
directions [001] and [010]) and with k1D || [100]. Solid (1, 2, 3) and
dashed (4, 5, 6) lines correspond to holes with opposite spins

relations corresponding to two different spin states as it is
seen in Fig. 2 [7]. In contrast to that, for the hole states with
wavevector k2D || [100] the subbands stay spin degenerate for
any value of k2D.

3 Energy dispersion relations in Si quantum wires

The calculated Si QWR energy dispersion relations, E(k1D),
for k1D || [110] demonstrate well enough pronounced NEM
regions, whereas dispersion curves for k1D || [100] are almost
flat (see Figs. 5(a) and (b)).

The model shows that as in the case of Si QWs, the in-
equality (2) for energy dispersion relations in QWRs for k1D

|| [100] is never satisfied.
Analysis of dependences of inverse effective mass, 1/m∗,

versus k1D shows that only for QWRs with small cross-
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Fig. 6 Dependence of inverse effective mass, 1/m∗, on k1Da for holes
of the lowest energy state in a Si QWR with the cross-section 1.63 ×
1.73 nm2 (in directions [001] and [−110], respectively) and with k1D
|| [110]. The NEM region is located between two inflection points, ki1
and ki2; the ratio M/m ≈ 3

sections the inequality (2) may be satisfied. An example
shown in Fig. 6 for QWR with cross-section 1.63 × 1.73
nm2 (in directions [001] and [−110], respectively) has the
ratio M/m ≈ 3. If we compare the energy dispersion rela-
tions of QWs and QWRs we observe that the energy interval
of NEM-induced instability is shifted to higher energies (or
higher values of k) in the case of QWRs. The shift of NEM
region to higher energies makes it more difficult to maintain
ballistic regime of the device.

As in the case of QWs, the spin degeneracy of states for
k1D $= 0 in QWRs with k1D || [110] is lifted whereas in the
case of k1D || [100] the spin degeneracy is conserved as it is
shown in Figs. 5(a) and (b).

4 Conclusion

We calculated energy dispersion relations in Si QWs, E(k2D),
and QWRs, E(k1D). The results were obtained for differ-
ent directions of two-dimensional wavevector, k2D, and one-
dimensional wavevector, k1D. The analysis of the obtained
dependences shows that the occurrence of NEM-based os-
cillations are most likely to be found in Si samples in [110]
crystallographic direction. Dispersion curves in [100] direc-
tion for both QWs and QWRs are flat and their NEM regions
do not satisfy the necessary condition for instability occur-
rence. Another interesting detail is that the energy bands are
spin degenerate in [100] direction but the spin degeneracy is
lifted in [110] direction for both QWs and QWRs.

The ratio of the effective masses after and before the NEM
region, M/m, behaves differently in QWs and QWRs. For
QWs in [110] direction this ratio for wide range of well
thicknesses is significantly greater than in QWRs. The en-
ergy interval of NEM region in QWRs is shifted to higher
energies (or higher momenta). This may be an obstacle for
maintaining of ballistic oscillatory regime of a device. In
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addition, the energy interval of NEM region is smaller in the
case of QWRs in comparison to QWs. The fourth parameter
that characterizes NEM oscillatory regime, #, is the distance
between the lowest and the next subbands. The larger is this
parameter, the better are the conditions to achieve larger am-
plitudes of oscillations. And this is the only parameter that
is superior in QWRs in comparison with the case of QWs.

In summary, we demonstrate that Si QWs are promising
candidates for NEM-based terahertz generation. The data
obtained in the framework of empirical tight-binding model
can be fitted by the two-band anti-crossing model with the
ratio, M/m, changing in the range from 3 to 13 (see Fig. 4).
Large values of M/m result in effective current oscillations
in wide energy intervals. Using the anti-crossing model, one
can estimate the frequencies of generation band [2]. For QW
structures with the base lengths 0.1–0.3 µm we obtain the
estimates of generation band of 0.5–2 THz.
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