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Abstract. A preliminary step towards the verification of elliptic curve
cryptographic algorithms is the development of formal libraries with the
corresponding mathematical theory. In this paper we present a formaliza-
tion of elliptic curves theory, in the SSReflect extension of the Coq proof
assistant. Our central contribution is a library containing many of the
objects and core properties related to elliptic curve theory. We demon-
strate the applicability of our library by formally proving a non-trivial
property of elliptic curves: the existence of an isomorphism between a
curve and its Picard group of divisors.

1 Introduction

The design of cryptographic algorithms is a complicated task. Besides functional
correctness, cryptographic algorithms need to achieve contradictory goals such
as efficiency and side channel resistance. Faulty implementations of algorithms
may endanger security [4]. This is why formal assurance about their correctness
is essential. Our motivation is to develop libraries that allow the formal verifica-
tion of asymmetric cryptographic algorithms. As of today, the work on formal
verification of security protocols has been assuming that the cryptographic li-
braries correctly implement all algorithms [2]. The first step towards the formal
verification of cryptographic algorithms is the development of libraries that for-
mally express the corresponding mathematical theory. In this paper we present
a formal library for elementary elliptic curve theory that will enable formal anal-
ysis of elliptic-curve algorithms.

Elliptic curves have been used since the 19th century to approach a wide
range of problems such as the fast factorization of integers and the search for
congruent numbers. In the 20th century, researchers have regained interest in
elliptic curves because of their applications in cryptography, first suggested in
1985 independently by Neal Koblitz [14] and Victor Miller [15]. Their use in
cryptography relies principally on the existence of a group law that is a good
candidate for public key cryptography, as its Discrete Logarithm Problem is
hard relatively to the size of the parameters used. Elliptic curves also allow
the definition of digital signatures and of new cryptographic primitives, such



as identity-based encryption [17], based on bilinear (Weil and Tate) pairings.
The mathematics of elliptic curves used in cryptography start from defining the
group law and continue to theory from algebraic geometry [9].

Because our formalization involves algebraic structures such as rings and
groups, polynomials, rational functions and matrices, we use the SSReflect ex-
tension [11] of the Coq proof-assistant [19] and its mathematical components
library [1]. The Coq development can be found on the second author website
(http://pierre-yves.strub.nu/).

Contributions. This paper presents an attempt to formalize non-trivial objects
of algebraic geometry such as elliptic curves, rational functions and divisors.
Our library is designed in such a way that will enable formal proofs of func-
tional correctness of elliptic-curve algorithms. We validate the applicability of
our theory by formally proving the Picard theorem, i.e. that an elliptic curve
is structurally equivalent with its Picard group of divisors. Our formalization
follows an elementary proof from Guillot [12] and Charlap [5].

Paper Outline. In sections 2 to 4, we present a formal proof of the following
proposition, referred later as the Picard theorem:

The set of points of an elliptic curve together with its operation
is isomorphic to its Picard group of divisors.

We first define the two structures - namely the elliptic curve (Section 2)
and the Picard group (Section 3) - and then prove that there exists a group
isomorphism between them. In contrast to the definition of an elliptic curve,
which goes smoothly, the definition of the Picard group involves several steps
and forms the main matter of this paper. By construction, the Picard group
of divisors is equipped with a group structure. In Section 4, we prove that the
two structures are isomorphic. By transport of structure, the set of points of an
elliptic curve together with its operation forms a group. In Section 5 and 6, we
discuss related and future work.

2 Formalizing Elliptic Curves

An elliptic curve is a special case of a projective algebraic curve that can be
defined as follows:

Definition 1. Let K be a field. Using an appropriate choice of coordinates, an
elliptic curve E is a plane cubic algebraic curve E(x, y) defined by an equation of
the form:

E: y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the ai’s are in K and the curve has no singular point (i.e. no cusps or
self-intersections). The set of points, written E(K), is formed by the solutions
(x, y) of E augmented by a distinguished point O (called point at infinity):
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E(K) = {(x, y) ∈ K | E(x, y)} ∪ {O}

Figure 1 provides graphical representations of such curves in the real plane.
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Fig. 1: Catalog of Elliptic Curves Graphs

When the characteristic of K is different from 2 and 3, the equation E(x, y)
can be simplified into its Weierstrass form:

y2 = x3 + ax+ b.

Moreover, such a curve does not present any singularity if∆(a, b) = 4a3+27b2

— the curve’s discriminant — is not equal to 0. Our work lies in this setting.

The parametric type ec represents the points on a specific curve. It is param-
eterized by a K : ecuFieldType — the type of fields with characteristic not in
{2, 3} — and a E : ecuType — a record that packs the curve parameters a and
b along with a proof that ∆(a, b) 6= 0. An inhabitant of the type ec is a point
of the projective plane (represented by the type point), along with a proof that
the point is on the curve.

Record ecuType := { A : K; B : K; _ : 4 * A^3 + 27 * B^2 != 0 }.

Inductive point := EC_Inf | EC_In of K & K.

Notation "(x, y)" := (EC_In x y).

Definition oncurve (p : point) :=

if p is (x, y) then y^2 == x^3 + A * x + B else true.

Inductive ec : Type := EC p of oncurve p.

The points of an elliptic curve can be equipped with a structure of an abelian
group. We give here a geometrical construction of the law. Let P and Q be points
on the curve E and l be the line that goes through P and Q (or that is tangent
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to the curve at P if P = Q). By the Bezout theorem, counting multiplicities, l
intersects E at a third point, denoted by P �Q. The sum P +Q is the opposite
of P �Q, obtained by taking the symmetric of P �Q with respect to the x axis.
Figure 1 highlights this construction. To sum up:

1. O is defined to be the neutral element: ∀P. P +O = O + P = P ,
2. the opposite of a point (xP , yP ) (resp. O) is (xP ,−yP ) (resp. O), and
3. if three points are collinear, their sum is equal to O.

This geometrical definition can be translated into an algebraic setting, ob-
taining polynomial formulas for the definition of the law. Having such polynomial
formulas leads to the following definitions:

Definition neg (p : point) :=

if p is (x, y) then (x, -y) else EC_Inf.

Definition add (p1 p2 : point) :=

let p1 := if oncurve p1 then p1 else EC_Inf in

let p2 := if oncurve p2 then p2 else EC_Inf in

match p1, p2 with

| EC_Inf, _ => p2 | _, EC_Inf => p1

| (x1, y1), (x2, y2) =>

if x1 == x2 then ... else

let s := (y2 - y1) / (x2 - x1) in

let xs := s^2 - x1 - x2 in

(xs, - s * (xs - x1) - y1)

end.

Note that these definitions do not directly work with points on the curve, but
instead on points of the projective plane (points that do not lie on the curve are
projected to O). We then prove that these operations are internal to the curve
and lift them to E :

Lemma addO (p q : point): oncurve (add p q).

Definition addec (p1 p2 : ec) : ec := EC p1 p2 (addO p1 p2).

We link back this algebraic definition to its geometrical interpretation. First,
we define a function line: given two points P,Q on the curve, it returns the
equation ux + vy + c = 0 of the line (PQ) intersecting the curve at P and Q
(resp. the equation of the tangent to the curve at P if P = Q). We then show
that, if (PQ) is not parallel to the y axis (i.e. is not intersecting the curve at
O), then (PQ) is intersecting E exactly at P , Q and −(P + Q) = P � Q as
defined algebraically. This proof mainly relies on Vieta’s formulas that relate
the coefficients of a polynomial to sums and products of its roots. Although only
a specific instance of Vieta’s formulas is needed, we formalized the general ones:

Lemma 1 (Vieta’s formulas). For any polynomial p =
∑

i≤n aiX
i with roots

x1, . . . , xn, over an algebraically closed field, we have:
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∀k. σk(x1, . . . , xn) = (−1)k · an−k

an

where σk is the kth-elementary symmetrical polynomial.

3 The Picard Group of Divisors

From now on, let E be a smooth elliptic curve with equation y2 = x3+ax+b over
the field K. We assume that K is not of characteristic 2, nor 3. Related to this
curve, we assume two Coq parameters K : ecuFieldType and E : ecuType K.
We now move to the construction of the Picard group Pic(E). This construction
is split into several steps:

1. We start by constructing two objects: the field of rational functions K(E)
over E and the group of E-divisors Div(E), i.e. the set of formal sums over
the points of E . From Div(E) we construct Div0(E) which is the subgroup of
zero-degree divisors.

2. We attach to each rational function f ∈ K(E) a divisor Div(f) (called prin-
cipal divisor) that characterizes f up to a scalar multiplication. This allows
us to define the subgroup Prin(E) of Div(E), namely the group of principal
divisors. The quotient group Div0(E)/Prin(E) forms the Picard group.

3.1 The field of rational functions K(E)

We denote the ring of bivariate polynomials over K by K[x, y].

Definition 2. The ring K[E ] of polynomials over the curve is defined as the
quotient ring of K[x, y] by the prime ideal 〈y2 − (x3 + ax + b)〉. The field K(E)
is defined as the field of fractions of the integral domain K[E ].

In other words, K[E ] is defined as the quotient of K[x, y] by the following
equivalence relation ∼:

p ∼ q if and only if ∃k ∈ K[x, y] such that p− q = k(y2 − x3 − ax− b).

Since the polynomials y2 and x3 + ax + b are identified in K[E ], we can
associate, to any equivalence class of K[E ], a canonical representative of the form
p1y + p2 (p1, p2 ∈ K[x]), obtained by iteratively substituting y2 by x3 + ax + b
in any element of the equivalence class. As such, instead of going through the
path of formalizing ideals and ring quotients, we give a direct representation of
K[E ] solely based on {poly K}, the type of univariate polynomials over K:

Inductive ecring := ECRing of {poly K} * {poly K}.

Notation "[ecp p1 *Y + p2]" := (ECRing p1 p2).

Coercion ecring_val (p : ecring) := let: ECRing p := p in p.
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The type ecring is simply a copy of {poly K} * {poly K}, an element
([ecp p1 *Y + p2] : ecring) representing the class of the polynomial p1y +
p2 ∈ K[E ]. We explicitly define the addition and multiplication, that are compat-
ible with the one induced by the ring quotient, on the canonical representatives.

For instance:

(p1y + p2)(q1y + q2) = p1q1y
2 + (p1q2 + q1p2)y + p2q2

= (p1q2 + q1p2)y + (p1q1(x3 + ax+ b) + p2q2)

leads to:

Notation XPoly := ’X^3 + A *: ’X + B.

Definition dotp (p q : ecring) := p.2 * q.2 + (p.1 * q.1) * Xpoly.

Definition mul (p q : ecring) := [ecp p.1*q.2 + p.2*q.1 *Y + dotp p q].

where .1 and .2 resp. stand for the first and second projections.

The set K[E ], as a ring quotient by a prime ideal, is an integral domain.
As such, we are able to equip the type ecring with an integralDomain struc-
ture, proving all the required axioms of the structure. We can then use the
fraction [6] library to built the type {fraction ecring} representing K(E),
the field of fractions over K[E ].

3.2 Order and evaluation of rational functions

In complex analysis, the zeros and poles of functions, and their order of van-
ishing are notions related to analytic functions and their Laurent expansion;
while in abstract algebra, they refer to algebraic varieties and discrete valua-
tion rings [9]. For our formalization, we follow the more elementary definitions
given in [12]. More precisely, the evaluation of a function f ∈ K(E) at a point
P = (xP , yP ) ∈ E is defined as follows:

Definition 3. A rational function f ∈ K(E) is said to be regular at P = (xP , yP )
if there exists a representative g/h of f such that h(xP , yP ) 6= 0. If f is regular at

P , the evaluation of f at P is the value f(P ) = g(xP ,yP )
h(xP ,yP ) , which is independent

of the representative of f . If f is not regular at P , then P is called a pole of f
and the evaluation of f at P is defined as f(P ) =∞.

However, such a definition cannot be formalized as-is. Instead, we rely on the
following extra notions allowing us to decompose any rational function in some
canonical representative:

Definition 4. A function u ∈ K(E) is called a uniformizer at P ∈ E(K) if
i) u(P ) = 0, and ii) every non-zero function f ∈ K(E) can be written in the
form f = uvg with g(P ) 6= 0,∞ and v ∈ Z.

The exponent v is independent from the choice of the uniformizer and is
called the order of f at P , a quantity denoted by ordf (P ).
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Lemma 2. There exists a uniformizer for every point on the curve.

To get an intuition of the previous definitions, one can make a parallel with
the notion of multiplicity for roots of univariate polynomials or with the notion
of zeros and poles in K(x), the field of plain rational functions.

For instance, let us first consider the ring of polynomials K[x]. Let p be a
polynomial in K[x] and r be an element of K. We can factorize p as p = (x−r)mq
such that m ∈ N and q(r) 6= 0. The exponent m is the multiplicity of p at r. The
multiplicity of r is 1 for the polynomial factor (x−r). Evaluation and multiplicity
are closely related: r is a root of p iff m > 0.

In an analogous way, we can consider the field of fractions K(E). Let P be
in E and f in K(E). Then, one can always write f in the form f = uvg with
v ∈ Z uniquely defined and P neither a zero nor a pole of g (g(P ) 6= 0,∞).
The exponent v is the order of f at P . (Here, the function u corresponds to the
polynomial factor (x − r) for univariate polynomials) If v > 0 then P is a zero
for f , and if v < 0 then P is a pole for f .

As said, the given definition of evaluation is not constructive. However, the
proof of Lemma 2 is constructive and gives all the necessary material to define
these notions. Let P be a point on the curve. For every f ∈ K[E ] (of type ecring)
we explicitly give the decomposition f = uvP (n/d) such that n(P ), d(P ) 6= 0, and
uP is a fixed rational function depending solely on P :

Definition unifun (P : point) : {fraction ecring} :=

match P with

| (x, y) => if y == 0 then [ecp 1 *Y + 0] else [ecp 0 *Y + (’X - x)]

| EC_Inf => [ecp 0 *Y + X] / [ecp 1 *Y + 0]

end.

Definition poly_order (f : ecring) (P : point) :=

match P with

| EC_Inf => let d := (degree f).-1 in

(-d, (’X^d * f, [ecp 1 *Y + 0]^d)).

| (x, y) => ...

and then prove that the decomposition is correct and unique:

Definition uniok (f u : fraction ecring) (p : point) o (n d : ecring) :=

match p with

| (x, y) => [&& f == u^o * (n // d), n.[x, y] != 0 & d.[x, y] != 0]

| EC_Inf => ...

Lemma poly_order_correct:

forall (f : ecring) (p : point), f != 0 -> oncurve p ->

let: (o, (g1, g2)) := poly_order f p in

uniok (unifun p) f p o g1 g2.

Lemma uniok_uniq:

forall f p, f != 0 -> oncurve p ->
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forall o1 o2 n1 n2 d1 d2,

uniok (unifun p) f p o1 n1 d1

-> uniok (unifun p) f p o2 n2 d2

-> (o1 == o2) && (n1 // d1 == n2 // d2).

We then lift these definitions to the quotient {fraction ecring}, and prove
that all the lifted functions are stable by taking the quotient, allowing us to lift all
the proved properties over K[E ] to K(E) (i.e. from ecring to {fraction ecring}).
For instance, the order on {fraction ecring} is defined as:

Definition orderf (f : {ratio ecring}) p : int :=

if \n_f == 0 then 0 else (poly_order \n_f p).1 - (poly_order \d_f p).1.

Definition order (f : {fraction ecring}) p := orderf (repr f) p.

We can then formalize Definition 3 by a simple case analysis over the order,
relying on the decomposition of rational functions we have just formalized:

Definition eval (f : {fraction ecring}) p :=

match p, order f p with

| _, Posz _.+1 => 0

| _, Negz _ => [inf]

| (x, y), Posz 0 => (decomp f ecp).1.[x,y] / (decomp f ecp).2.[x,y]

| EC_Inf, _ => ...

end.

Due to the lack of space, we cannot give much details on the whole formal-
ization of valuation theory, and move to the key lemma of this section:

Lemma 3. A rational function f ∈ K(E) has a finite number of poles and zeros.
Moreover, assuming that K is algebraically closed,

∑
P∈E(ordP (f)) = 0.

This lemma will be central when moving to the construction of the isomor-
phism between an elliptic curve and its Picard group.

3.3 Principal Divisors

From now on, we assume that K is algebraically closed.

Principal divisors are introduced as a tool for describing the zeros and poles
of rational functions on an elliptic curve:

Definition 5 (Principal divisors). Given f ∈ K(E), f 6= 0, the principal
divisor Div(f) of f is defined as the formal (finite) sum:

Div(f) =
∑

P∈E(ordP (f))(P ).

Note that Div(f) is well defined because a rational function has only finitely
many zeros and poles. We write Prin(E) for the set of principal divisors.
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The set Prin(E) forms a subgroup of Div(E), the set of formal sums over E ,
a notion that we define now.

Definition 6. A divisor on an elliptic curve E is a formal sum of points

D =
∑

P∈E nP (P ),

where nP ∈ Z, only finitely many nonzero. In other words, a divisor is any
expression taken in the free abelian group generated over E(K). The domain of
D is dom(D) = {P | nP 6= 0}, and its degree is deg(D) =

∑
P∈E nP . For any

point P , the coefficient of P in D is coeff(P,D) = nP .
We write Div(E) for the set of divisors on E, and Div0(E) its subgroup com-

posed of divisors of degree 0.

The set of divisors on E is an abelian group. The zero divisor is the unique
divisor with all its coefficient set to 0, whereas the sum of two divisors is defined
as the point-wise addition.

Based on the quotient libraries of SSReflect, we develop the theory of free
abelian groups. Let T be a type. We first define the type of pre-free group as the
collection of all sequences s of type int * T s.t. no pair of the form (0, _) can
appear in s and for any z : T, a pair of the form (_, z) can appear at most
once in s.

Definition reduced (D : seq (int * T)) :=

(uniq [seq zx.2 | zx <- D])

&& (all [pred zx | zx.1 != 0] D).

Record prefreeg : Type := mkPrefreeg {

seq_of_prefreeg : seq (int * T);

_ : reduced seq_of_prefreeg

}.

The intent of prefreeg is to give a unique representation of a free-group
expression, up to the order of the coefficients. For instance, if D = k1x1 + · · ·+
knxn (with all the xi’s pairwise distinct and all the ki’s in Z∗), then the reduced
sequence s = [:: (k_1, x_1), ..., (k_n, x_n)], or any sequence equal up
to a permutation to s, is a valid representation of D. The type freeg of free-
groups is then obtained by quotienting prefreeg by the perm_eq equivalence
relation.

From there, we equip the type freeg with a group structure (the operation is
noted additively), and define all the usual notions related to free groups (domain,
coefficient, degree, ...). For instance, assume G : zmodType (G is a Z-module)
and f : T -> G. Then, f defines a unique group homomorphism from freeg to
G that can be defined as follows:

Definition prelift (D : seq (int * T)) : G :=

\sum_(x <- D) (f x.2) * x.1.

9



Definition lift (s : prefreeg T) : G := prelift s.

Definition fglift (D : {freeg T}) := lift (repr D).

One can check that the fglift function defines the homomorphism∑
(z,x)∈D zf(x)

The coefficient coeff and degree deg functions can be then defined as:

Definition coeff (t : T) (D : {freeg T}) :=

fglift (fun x => (x == t)) D.

Definition deg (D : {freeg K}) : int :=

fglift (fun x => 1) D.

The Group of Principal Divisors Returning to principal divisors, one can
now check that Prin(E) is a subgroup of Div0(E). Indeed, i) deg(divf) = 0
by Lemma 3, and ii) since the order function is multiplicative (ordp(f/g) =
ordp(f)− ordp(g)), we have div(f/g) = div(f)− div(g).

Moreover, it is now clear that the coefficients associated in Div(f), to each
point P , is the order of the function f at P , highlighting the fact that a divisor
wraps up the zeros and poles of f .

Formally, we define principal divisors for polynomials on the curve with the
function ecdivp:

Definition ecdivp (f : ecring) : {freeg (point)} :=

\sum_(p <- ecroots f)

<< (order f (p.1, p.2)) * (p.1, p.2) >>

+ << order f EC_Inf * EC_Inf >>.

where << z * P >> stands for the divisor z(P ) and the function ecroots takes
a polynomial of K[E ] and returns the list of its finite zeros:

Definition ecroots f : seq (K * K) :=

let forx := fun x =>

let sqrts := roots (’X^2 - (’X^3 + A *: ’X + B).[x]) in

[seq (x, y) | y <- sqrts & f.[x, y] == 0]

in

undup (flatten ([seq forx x | x <- roots (norm f)])).

The function ecroots relies on norm(f), a polynomial in K[x] associated to
f that has the following property: (x, y) is a zero of f if and only if x is a zero
of norm(f) and y2 = x3 + ax+ b.

Next, we lift the definition of principal divisors to K(E), prove its correctness
and recast the key Lemma 3 (deg_ecdiv_eq0):
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Notation "\n_f" := (numerator f).

Notation "\d_f" := (denominator f).

Definition ecdiv_r (f : {ratio ecring}) :=

if \n_f == 0 then 0 else (ecdivp \n_f) - (ecdivp \d_f).

Definition ecdiv := lift_fun1 {fraction ecring} ecdiv_r.

Lemma ecdiv_coeffE (f : {fraction ecring}) p:

coeff p (ecdiv f) = order f p.

Lemma deg_ecdiv_eq0 (f : {fraction ecring}): deg (ecdiv f) = 0.

3.4 Divisor of a line

Before moving to the definition of the Picard group, we characterize the divisors
of some specific rational functions. These divisors will later help formalize the
construction of the Picard group:

Definition 7. A line l ∈ K(E) is any rational function of the form l(x, y) =
ax+ by + c with a, b, c ∈ K not all zero.

For instance, if (PQ) is the line intersecting the curve at P and Q, then we
know that (PQ) intersects E at exactly three points (counting multiplicities):
P , Q and P � Q. Assuming that P , Q and P � Q are all finite, these three
points are the unique zeros of the rational function l associated to (PQ) and
Div(l) = (P )+(Q)+(P�Q)−3(O). This relation still holds when one or several of
these three points are equal toO. For instance, Div(x− xP ) = (P )+(−P )−2(O),
where x− xP is the line intersecting E at P , −P and O.

3.5 The Picard Group

Definition 8. The Picard group Pic(E) is the group quotient Div0(E)/Prin(E).
Note that the degree is well defined on the divisor class group since if D1 =
D2 + Div(f) then degD1 = degD2 + deg(Div(f)) = degD2 + 0 = degD2.

In other words, Pic(E) is defined as the quotient of Div0(E) by the following
equivalence relation ∼:

D1 ∼ D2 if and only if ∃f ∈ K(E) such that div(f) = D1 −D2.

a notion that we formalize as follows:

Definition ecdeqv D1 D2 :=

(exists f : {fraction ecring}, ecdiv f = D1 - D2).

Notation "D1 :~: D2" := (ecdeqv D1 D2).
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We do not give a direct construction of Pic(E) but instead prove that any
class of Pic(E) can be represented by a divisor of the form (P )− (O).

The construction of this representative is based on a procedure called Linear
Reduction. Assume that P and Q are two finite points of E(K). We know that
the divisor of the line l intersecting E at P and Q is Div(l) = (P ) + (Q) +
(P �Q)− 3(O). Likewise, the divisor of the line l′ intersecting E at P �Q and
−(P �Q) (= P +Q) is Div(l′) = (P +Q) + (P �Q)− 2(O). Hence,

Div(l/l′) = Div(l)−Div(l′)
= (P ) + (Q)− (P +Q)− (O)

and, (P ) + (Q) ∼ (P +Q) + (O).

Iterating this procedure, we can reduce any divisor of the form:

(P1) + · · ·+ (Pn)− (Q1)− · · · − (Qk) + r(O)

to an equivalent one (P ) − (Q) + r′(O), with r′ ∈ Z. Using one more time
the same construction, one can show that (P ) − (Q) + n′(O) is equivalent to
(P −Q) + n′′(O) where n′, n′′ ∈ Z.

The lr function formally defines the linear reduction procedure:

Definition fgpos (D : {freeg K}) :=

\sum_(p <- dom D | coeff p D > 0) coeff p D.

Definition fgneg (D : {freeg K}) :=

\sum_(p <- dom D | coeff p D < 0) -(coeff p D).

Definition lr_r (D : {freeg point}) :=

let iter p n := iterop _ n + p EC_Inf in

\sum_(p <- dom D | p != EC_Inf) (iter p ‘|coeff p D|).

Definition lr (D : {freeg point}) : point :=

let: (Dp, Dn) := (fgpos D, fgneg D) in

lr_r Dp - lr_r Dn.

Lemma ecdeqv_lr D: all oncurve (dom D) ->

D :~: << lr D >> + << deg D - 1 *g EC_Inf >>.

where (Dp, Dn) := (fgpos D, fgneg D) is the decomposition of D into its
negative and positive parts.

The lemma ecdeqv_lr states that any divisor is equivalent to a divisor of
the form (P ) + (degD − 1)(O). In the context of Pic(E), this means that any
class contains a divisor of the form (P ) − (O) (recall that Pic(E) is a group
quotient of Div0(E) — the divisors of degree 0). In the next section, we end the
construction of the Picard group by proving that at most one such representative
can be found in each class of Pic(E).
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4 Linking Pic(E) to E(K)

In this section, we finish our formal construction of the Picard group and prove
the existence of an isomorphism between Pic(E) and E(K). We start by defining
a canonical representative for the classes of Pic(E):

Lemma 4. For every class of Pic(E), there exists a unique representative of the
form (P )− (O) with P ∈ E(K).

From Section 3.5, we already know that each class of Pic(E) contains one such
representative. Assume now that (P )−(O) and (Q)−(O) are two representatives
of a class of Pic(E) with P 6= Q. Such an assumption allows us to find a rational
function h ∈ K(E) s.t. every rational function f ∈ K(E) can be expressed as
a polynomial fraction of h. This implies that K(E) and K(x) are isomorphic.
However, since K(E) is a field extension of degree 2 of K(x), such an h cannot
exist. Hence, P = Q:

Lemma lr_uniq: << p >> :~: << q >> -> p = q.

The Picard group can now be formally defined as the set of divisors of the
form (P )− (O). It remains to prove the existence of a bijection between Pic(E)
and E(K). Namely, the function

φ : E(K)→ Pic(E)
P 7→ [(P )− (O)]

is our isomorphism. Indeed, φ is clearly bijective and from the results of Section 3:

φ(P1)− φ(P2) = [(P1)− (O)]− [(P2)− (O)] = [(P1)− (P2)]
= [(P1 − P2)− (O)] = φ(P1 − P2).

In our formalization, we directly use the linear reduction function lr in place
of φ−1. For instance, we prove that lr commutes with the curve operations and
maps (P )− (O) to P ∈ K(E):

Lemma lrB: forall (D1 D2: {freeg point},

deg D1 = 0 -> all oncurve (dom D1) ->

deg D2 = 0 -> all oncurve (dom D2) ->

lr (D1 - D2) = lr D1 - lr D2.

Lemma lrpi: forall p : point,

oncurve p -> lr (<<p>> - <<EC_Inf>>) = p.

This allows us to transport the structure from Pic(E) to E(K), proving that
E(K) is a group.

13



5 Related Work

Hurd et al. [13] formalize elliptic curves in higher order logic using the HOL-4
proof assistant. Their goal is to create a “gold-standard” set of elliptic curve
operations mechanized in HOL-4, which can be used afterwards to verify ec-
algorithms for scalar multiplication. They define datatypes to represent elliptic
curves on arbitrary fields (in both projective and affine representation), rational
points and the elliptic curve group operation, although they do not provide
a proof that the operation indeed satisfies the group properties. In the end,
they state the theorem that expresses the functional correctness of the ElGamal
encryption scheme for elliptic curves.

Smith et al. [18] use the Verifun proof assistant to prove that two represen-
tations of an elliptic curve in different coordinate systems are isomorphic. Their
theory applies to elliptic curves on prime fields. They define data structures for
affine and projective points and the functions that compute the elliptic curve
operations in affine and Jacobian coordinates. In their formalization there is no
datatype for elliptic curves, an elliptic curve is a set of points that satisfy a set of
conditions. They define the transformation functions between the two systems of
coordinate and prove that for elliptic curve points the transformation functions
commute with the operations and that both representations of elliptic curves in
affine or Jacobian coordinates are isomorphic.

Théry [20] present a formal proof that an elliptic curve is a group using the
Coq proof assistant. The proof that the operation is associative relies heavily on
case analysis and requires handling of elementary but subtle geometric trans-
formations and therefore uses computer-algebra systems to deal with non-trivial
computation. In our development, we give a different proof of the associativity of
the elliptic curve group law: we define an algebraic structure (the Picard group
of divisors) and proceed to prove that the elliptic curve is isomorphic to this
structure. Our formalization is more structural than [20] in the sense that it
involves less computation and the definition of new algebraic structures.

As in [13] and [18] we wish to develop libraries that will enable the formal
analysis of elliptic curve algorithms and our proofs follow textbook mathematics.
As in [20], we give a formal proof of the group law for elliptic curves. Neverthe-
less, the content of our development is quite different from the related work.
To the extent of our knowledge this is the first formalization of divisors and
rational functions of a curve, which are objects of study of algebraic geome-
try. Such libraries may allow the formalization of non-trivial algorithms that
involve divisors (such as the Miller algorithm for pairings [16]), isogenies (such
as [3], [8]) or endomorphisms on elliptic curves (such as the GLV algorithm for
scalar multiplication [10]).

6 Future work

This paper presents a formalization of the elementary elliptic curve theory in the
SSReflect extension of Coq. Our central result is the formal proof of the Picard
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theorem which is a structure theorem for elliptic curves. A direct implication
of this theorem is the associativity of the elliptic curve group operation. Our
development includes generic libraries formalizing divisors and rational functions
that are designed to enable the formal verification of elliptic curve cryptographic
algorithms. Our formalization required 10k lines of code out of which 6.5k lines
were required for the proof of the Picard theorem. The SSReflect features and
methodology for the formalization of algebraic structures have been very helpful
to our development.

The proof layout follows the ones that can be found in most graduate text
books about smooth algebraic curves, but instantiated to the case of elliptic
curves. Generalizing our development should not deeply change the general struc-
ture, but will certainly require the development of a lot of background theory:
affine spaces, multinomials, rational maps, ring quotients, valuation rings, formal
differentials, ... to name some of them.

To further validate our development, we are working on the formal proof
of correctness of an implementation of the GLV algorithm [10]. The GLV algo-
rithm is a non-generic scalar multiplication algorithm that uses endomorphisms
on elliptic curves to accelerate computation. It is composed of three independent
algorithms: parallel exponentiation, decomposition of the scalar, computation of
endomorphisms on elliptic curves. The third algorithm involves background from
algebraic geometry that can be provided by the rational functions’ libraries pre-
sented in this paper. We aim to generate a certified implementation of the GLV
algorithm based on the methodology described in [7]. Another algorithm that
would be interesting to formalize is the Miller algorithm for bilinear pairings [16],
which would rely on our divisors’ library to compute pairings by evaluating linear
functions on divisors.

In the development presented in this paper, we chose to represent elliptic
curves in an affine coordinate system. However, projective, Jacobian and other
coordinate systems are widely used in practice mainly for reasons of efficiency.
Indeed, nowadays the search of optimal coordinate-systems is an active domain
of research in elliptic curve cryptography. Future work is to extend our libraries
to isomorphic coordinate representations in order to allow formal analysis of
algorithms in different coordinate systems. Furthermore, in our development we
treat elliptic curves on fields with characteristic different from 2 and 3 although
in cryptography binary fields are used often. Generalizing our development to
more general curves is a natural extension.
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