
HAL Id: hal-01211749
https://hal.inria.fr/hal-01211749

Submitted on 5 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A parallel matrix-free conservative solution interpolation
on unstructured tetrahedral meshes

Frédéric Alauzet

To cite this version:
Frédéric Alauzet. A parallel matrix-free conservative solution interpolation on unstructured tetrahe-
dral meshes. [Research Report] RR-8785, INRIA Paris-Rocquencourt. 2015, 32 p. �hal-01211749�

https://hal.inria.fr/hal-01211749
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
87

85
--

FR
+E

N
G

RESEARCH
REPORT
N° 8785
Octobre 2015

Project-Team Gamma3

A parallel matrix-free
conservative solution
interpolation
on unstructured
tetrahedral meshes
Frédéric Alauzet

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

A parallel matrix-free conservative solution
interpolation

on unstructured tetrahedral meshes

Frédéric Alauzet∗

Project-Team Gamma3

Research Report n° 8785 — Octobre 2015 — 32 pages

Abstract: This document presents an interpolation operator on unstructured tetrahedral meshes
that satisfies the properties of mass conservation, P1-exactness (order 2) and maximum principle.
Interpolation operators are important for many applications in scientific computing. For instance,
in the context of anisotropic mesh adaptation for time-dependent problems, the interpolation stage
becomes crucial as the error due to solution transfer accumulates throughout the simulation. This
error can eventually spoil the overall solution accuracy. When dealing with conservation laws in
CFD, solution accuracy requires enforcement of mass preservation throughout the computation, in
particular in long time scale computations. In the proposed approach, the conservation property
is achieved by local mesh intersection and quadrature formulae. Derivatives reconstruction is used
to obtain a second order method. Algorithmically, our goal is to design a method which is robust
and efficient. The robustness is mandatory to obtain a reliable method on real-life applications
and to apply the operator to highly anisotropic meshes. The efficiency is achieved by designing a
matrix-free operator which is highly parallel. A multi-thread parallelization is given in this work.
Several numerical examples are presented to illustrate the efficiency of the proposed approach.

Key-words: Solution interpolation, matrix-free conservative interpolation, parallel interpolation,
unstructured mesh, mesh adaptation, conservation laws

∗ INRIA, Équipe-projet Gamma3, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex,
France. email: frederic.alauzet@inria.fr

A parallel matrix-free conservative solution interpolation
on unstructured tetrahedral meshes

Résumé : Ce document présente un opérateur d’interpolation sur des maillages tétraé-
driques non-structurés qui satisfait les propriétés de conservation de la masse, P1-exactitude
(ordre 2) et principe du maximum.

Mots-clés : Interpolation de solution, interpolation conservative sans matrice, interpola-
tion parallèle, maillage non-structuré, adaptation de maillage, adaptation de maillage, loi de
conservation

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 3

Contents

1 Introduction 3

2 Definitions and notations 5

3 Linear interpolation operator 6
3.1 Localization algorithm . 6
3.2 Classical linear interpolation . 7

4 Matrix-free P1-exact conservative interpolation 7
4.1 Mesh intersection algorithm . 7

4.1.1 Tetrahedron-tetrahedron intersection 8
4.1.2 Overlapped tetrahedra detection . 12

4.2 P1-conservative reconstruction . 12
4.2.1 Solution defined at elements . 12
4.2.2 Verifying the maximum principle . 13
4.2.3 Solution defined at vertices . 14
4.2.4 Non-matching discrete boundaries . 14

5 Accuracy and convergence study on analytical functions 15

6 Parallelization of the conservative interpolation algorithm 19

7 Application to mesh adaptation 20
7.1 Unsteady mesh adaptation scheme . 20
7.2 Numerical simulations . 22

7.2.1 Spherical blast . 23
7.2.2 A blast in a town . 25

8 Conclusion 27

1 Introduction
Solution interpolation or solution transfer is an important stage for several applications in
scientific computing. For instance, this stage is important for coupled problems, e.g. multi-
physics simulations or fluid-structure interaction (FSI) problems, where specific meshes are
considered for each sub-problem, see [1, 2]. The preservation of the conservation property
during the interpolation stage is also crucial for the accuracy in long time scale simulations,
see [3, 4]. It is an essential component of Arbitrary Lagrangian-Eulerian (ALE) methods as
well. An accurate remapping must satisfy several properties such as conservation, high order
accuracy, bound preserving, etc. This is also a key point in the context of time-accurate
mesh adaptation. Indeed, it links the mesh generation and the numerical flow solver allowing
the simulation to be restarted from the previous state. More precisely, after generating a
new adapted mesh, called current mesh, the aim is to recover the solution field defined on
the previous mesh, called background mesh, on this new mesh to pursue the computation.
This recurrent stage in adaptive simulations is crucial for time-accurate unsteady problems as
errors introduced by the interpolation procedure accumulate throughout the computations.
The negative impact of such errors on solution accuracy was pointed out in [5] where standard
linear interpolation is applied. In [6], it has been demonstrated - for the 2D case - the
importance of a conservative interpolation operator on the accuracy of anisotropic time-
accurate mesh adaptation for conservation laws.

A conservative interpolation based on a Galerkin projection has been proposed in [1, 7,
8]. The Galerkin projection requires the assembling and the resolution of a linear system.
This method can as well suffer from oscillations. To bound the projected quantities specific
treatments have to be done [7]. A global supermesh construction is used in [7, 8] but it limits
considerably the efficiency of the method and the maximal size of the problem in 3D due

RR n° 8785

4 F. Alauzet

to memory usage. A local approach has been proposed in [6] which improves the algorithm
efficiency. It is based on a local mesh intersection procedure and local quadrature. This
local approach has been followed in [9] coupled with local Galerkin projection. In [6], the
maximum principle is strictly enforced using L2-optimal gradient correction, the method is
thus free from oscillations.

In this paper, we consider the 3D solution interpolation for anisotropic adapted tetrahe-
dral meshes where the background and the current meshes are distinct, in the sense that the
number of entities and the connectivities can be completely different. Flows are modeled by
the conservative compressible Euler equations and resolved by a second order finite volume
scheme. Therefore, to obtain a consistent mesh adaptation loop, the proposed interpolation
scheme must satisfy the following properties:

• mass conservation

• P1 exactness implying an order 2 for the method

• maximum principle.

Moreover, this method has to be algorithmically very robust as we deal with highly stretched
elements and it has to be very efficient to be applied to real-life applications. The word
efficient signifies that it requires low memory storage and that the additional required CPU
time over that for standard linear interpolation is acceptable. In consequence, we propose a
matrix-free approach based on local mesh intersections and appropriate local reconstructions.

The mass conservation property of the interpolation operator is achieved by local mesh
intersection, i.e., intersections are performed at the element level. The use of mesh inter-
section for conservative interpolation seems natural for unconnected meshes and has already
been alluded in [10] or applied in [11] for order 1 reconstruction. The locality is inherent
for efficiency and robustness. Once again for efficiency purposes, the proposed intersection
algorithm is especially designed for simplicial meshes. The idea is to compute the intersec-
tion between two simplexes, mesh this intersection, and use a quadrature formulae to exactly
compute the transferred mass. Moreover, the designed algorithm is highly scalable in parallel
due to its locality.

The high-order accuracy is obtained by a solution gradient reconstruction from the dis-
crete data and the use of Taylor formulae. This high-order interpolation can lead to loss of
monotonicity. The maximum principle is then enforced by correcting the interpolated solu-
tion, thus the interpolated solution is free from any oscillations. Notice that much care has
been taken while designing the localization algorithm as it is also critical for efficiency.

The proposed P1-conservative interpolation operator is suitable for solutions defined at
elements or vertices.

This paper is the extension of [6] to the three-dimensional case. As compared to [6],
several novelties are presented in this work. They are required to ensure the robustness 1,
efficiency and accuracy of the method when dealing with 3D highly anisotropic meshes on
complex geometries. These novelties concern:

• A specific tetra-tetra intersection procedure where floating point arithmetic is treated
with a particular care, as it must be extremely robust and able to deal with highly
anisotropic tetrahedra (anisotropic ratio up to 105)

• A new method to mesh the tetra-tetra intersection ensuring extra numerical accuracy

• Solutions to deal with the case of non-matching boundaries between meshes (this is
always the case for complex geometries), this is crucial to not introduce artifacts in the
solution during the interpolation stage and preserve accuracy

• The parallelization of the interpolation stage for efficiency

• A convergence analysis pointing out the loss of convergence using P1 interpolation
which is recovered using the P1-conservative interpolation, thus advocating the use of
the latter one.

1Ensuring the robustness of the local mesh intersection and the meshing of these intersections is consider-
ably more difficult in 3D than in 2D. Indeed, volume positivity is harder to satisfy than area positivity when
dealing with degenerated cases.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 5

As regards the differences and similarities between this work and [9]. In [9], they use
local approach and an advancing front method for the intersection identification similar to
the ones proposed in [6]. The first difference lies in the computation and the meshing of
the intersection between two elements. In [9], they follow the Eberly clipping algorithm
[12] (?which is not described in 3D while being the core of the algorithm?) while we propose
specific algorithm to achieve greater numerical accuracy and to have a relative mass variation
of the order of the round-off (≈ 10−14). This algorithm is still accurate when dealing with
highly anisotropic elements (ratio up to 105). The second difference is the projection operator.
A local Galerkin projection is used in [9] while this work considers quadrature formulae and
high-order solution reconstruction. As last, we observe that the proposed algorithm achieve
better efficiency in serial, i.e., one order of magnitude faster, and it achieves good scaling in
parallel.

The paper is outlined as follows. Section 2 introduces the main definitions and Section 3
recalls the standard linear interpolation operator. Then in Section 4, the proposed P1-
conservative interpolation operator is described. First, the mesh intersection algorithm is
presented and at a second stage, P1-conservative reconstruction is discussed. Finally, the
accuracy of the proposed approach is emphasized on analytical examples in Section 5, and
parallel efficiency is discussed in Section 6. The approach is successfully applied to adaptive
numerical simulations in Section 7. Some concluding remarks close the paper.

2 Definitions and notations

This section provides notations, definitions and conventions used in this paper. Let us con-
sider a bounded domain Ω ⊂ R3 and denote by ∂Ω its boundary. Domain Ω is discretized by
a tetrahedral mesh H =

⋃
Ki. A tetrahedron Ki is defined by the list of its vertices which are

locally numbered in a convenient way. This list, enriched with some conventions, provides
the complete definition of the related element, including the definition of its faces, edges
and neighbors, together with an orientation. In particular, the oriented local numbering of
tetrahedron’s vertices enables us to compute its volume while giving a sense to its sign, and
to evaluate directional normals for each face.

The local numbering of vertices, edges, faces and neighboring tetrahedra is pre-defined
in such a way that some properties are implicitly induced. In the case of a tetrahedron with
vertices [p0,p1,p2,p3], the vertices are ordered such that a positive signed volume is obtained
while using the scalar triple product Formula (see Figure 1):

VK = |K| = 1

6
e0 · (e1 × e2) . (1)

Faces topology is defined as F0 = [p3,p2,p1], F1 = [p2,p3,p0], F2 = [p1,p0,p3], F3 =
[p0,p1,p2] (Figure 1, left). This numeration is such that the index of the face is the index
of the viewing vertex, i.e., the opposite vertex. And, the four faces have the same inward
orientation, in other words, the face normal nFi

= ei,1×ei,2 is inward, where ei,1 is the edge
composed by the first and the second face vertices and ei,2 is the edge composed by the first
and the third face vertices. To improve the face normal computation accuracy, we choose
the two edges forming an angle the closest as possible to 90◦, i.e., the minimal dot product.
The surface area of the face is simply given by:

AFi
= |Fi| =

1

2
‖nFi‖ =

1

2
‖ei,1 × ei,2‖ .

Regarding the neighboring tetrahedra, they follow the face convention. We denote by Ki

the neighbor viewing vertex pi through face Fi. For the edges topology, the following choice
has been made: e0 = [p0,p1], e1 = [p0,p2], e2 = [p0,p3], e3 = [p1,p2], e4 = [p1,p3],
e5 = [p2,p3].

With the above notations, we now give some definitions used in the sequel. Let p be a
point, we denote by Ki the virtual tetrahedron where vertex pi is substituted by p. The

RR n° 8785

6 F. Alauzet

signed volumes VKi , for i = 0 . . . 3, are called the barycentrics of p. The four associated
barycentric coordinates are given by:

βi =
VKi

VK
for i = 0 . . . 3 .

The sign of the four barycentrics defines explicitly 15 regions of space where point p can be
located with respect to element K. The possible combinations are given in Figure 1 (right).

Now, we recall some definitions relative to the interpolation schemes. Let u be a solution
defined on a mesh H1 of a domain Ω. The mass of the solution over the mesh is simply
m =

∫
H1 u. We deduce the notion of mass on an element K given by mK =

∫
K
u. An

interpolation scheme is said to be conservative if it preserves the mass when transferring
the solution field u from a mesh H1 to another H2. Formally speaking, if we denote by Πu
the interpolated field on H2, then such scheme verifies∫

H1

u =

∫
H2

Πu .

A scheme is said to be Pk-exact if it is exact for polynomial solutions of degree lower than or
equal to k. A Pk-conservative interpolation scheme is a scheme satisfying both properties.
Finally, an interpolation scheme verifies locally themaximum principle on a subsetQ ⊂ H1

if
for p ∈ H2, min

q∈Q
u(q) ≤ Πu(p) ≤ max

q∈Q
u(q) .

It verifies globally that property if Q = H1.

e0

e1

e2

e3

e4

e5

F 0
F1

F2

F
3

p1p0

p2

p3

K
+ + ++

+ ��� � + ��

�� +�

���+

+ + ��

+ � +�

+ ��+

� + +�

� + �+

�� ++

+ + +�

+ + �+

+ � ++

�+
+
+

p3

p2

p1p0

Figure 1: Left, numeration convention for a tetrahedron K. Right, the 15 regions defined by
the signs of the four barycentric coordinates of a point p with respect to element K.

3 Linear interpolation operator

Solution interpolation is a twofold process. First, vertices of the new mesh are located in the
background mesh. Second, an interpolation scheme is applied for each vertex.

3.1 Localization algorithm

The localization problem or research of a point location consists in identifying the element
of a simplicial mesh containing a given point. Here, we consider the simplified problem
where the background and the new meshes are discretizations of the same domain Ω. This
problem has to be dealt with great care in the case of simplicial meshes to handle difficult
configurations. Indeed, background and current meshes can be non-convex and can contain
holes. It is also possible that the overlapping of the current mesh does not coincide with the
background mesh since their boundary discretization can differ. Consequently, some vertices
of the current mesh can be outside of the background mesh and conversely. Moreover, efficient

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 7

localization algorithms have to be implemented to avoid a quadratic complexity obtained with
a naive algorithm.

The localization can be solved efficiently by traversing the background mesh using its
topology, i.e., the neighboring elements of each element, thanks to a barycentric coordinates-
based [13, 14]. The considered algorithm is presented in details for the 2D case in [6] with a
discussion on how to death with pathological configurations Its extension to 3D is straight-
forward.

3.2 Classical linear interpolation
Once the localization has been performed, we can apply an interpolation algorithm. The
easiest interpolation scheme is the classical P1 interpolation:

Π1u(p) =

3∑
i=0

βi(p)u(pi) .

where p is a vertex of the new mesh that has been localized in tetrahedronK = [p0,p1,p2,p3]
of the background mesh. βi are the barycentric coordinates of p w.r.t. K. This scheme is
P1-exact and it is thus order 2. This scheme is monotone and satisfies the maximum principle.
However, this scheme does not conserve the mass.

4 Matrix-free P1-exact conservative interpolation
In this section, a P1-exact conservative interpolation scheme is presented. The provided so-
lution is considered to be piecewise (continuous or discontinuous) linear by element. The
idea of the conservative interpolation is to compute the mass of each element of the new
mesh Hnew knowing the mass of each element of the background mesh Hback. For efficiency
purposes, a local mesh intersection algorithm is utilized coupled with a matrix-free interpo-
lation. Then, in the case of vertex-centered solution, the solution is transferred accurately
and conservatively from elements to vertices using the mass of the elements of its ball. This
process is summarized in Algorithm 1. The mesh intersection procedure corresponding to
steps 3a and 3b is exposed in Section 4.1 and the conservative reconstruction, steps 3c, 4 and
5, is described in Section 4.2.

Algorithm 1 Conservative Interpolation Process
Piecewise linear (continuous or discontinuous) representation of the solution on Hback

1. Localize all vertices of Hnew in Hback

2. ∀Kback ∈ Hback, compute solution mass mKback and gradient ∇Kback

3. ∀Knew ∈ Hnew, recover solution mass mKnew and gradient ∇Knew :

(a) compute the intersection of Knew with all Kback
i ∈ Hback it overlaps

(b) mesh the intersection polyhedron of each pair (Knew,Kback
i)

(c) compute mKnew and ∇Knew using Gauss quadrature formulae

=⇒ get a piecewise linear discontinuous representation of the mass on Hnew

4. Correct the gradient to enforce the maximum principle

5. Set the solution values to vertices by an averaging procedure

4.1 Mesh intersection algorithm
The mesh intersection algorithm consists in intersecting each tetrahedron of the current
mesh with all the background mesh tetrahedra that it overlaps and in meshing the intersec-

RR n° 8785

8 F. Alauzet

tion region. The 3D mesh intersection is a lot harder than in 2D, thus the method of [6]
cannot be applied. Specific attention to numerical accuracy is required to deal accurately
with degenerated cases (occurring frequently for highly anisotropic meshes). To this end,
the tetrahedron-tetrahedron intersection topology consistency is checked to detect numerical
accuracy issues. If an inconsistency is detected a perturbation method is applied. Moreover,
a dedicated meshing method of the intersection is proposed where extra accuracy is obtained
for the orientation predicate.

In the following, we first describe our generic intersection algorithm between any pair of
tetrahedra and how we discretize the intersection polyhedron (Section 4.1.1). Secondly, the
algorithm to locate all background tetrahedra that are overlapped by the current element is
presented (Section 4.1.2).

4.1.1 Tetrahedron-tetrahedron intersection

The tetrahedron-tetrahedron intersection procedure computes the intersection of two tetra-
hedra and meshes the intersection region if it is not empty. Notice that if the intersection
exists, the intersection region of two tetrahedra is always a convex polygon given by the
convex hull of the intersection points. This is a three steps procedure:

1. check all the degenerated intersection cases

2. evaluate the 48 possible edge-face intersections

3. steps 1. and 2. result in a cloud of points which is triangulated resulting in a mesh of
the intersection polyhedron.

In the following, these three steps are described. But, first we give a few words about
the robustness of the proposed algorithm as in 3D numerical accuracy and floating point
arithmetic is of utmost importance.

Accuracy and robustness of the algorithm Accuracy and robustness of algorithms
when implemented with floating point arithmetic is a major topic of study in computational
geometry [15, 16]. However, this work follows the choice of the authors of [13] where extended
accuracy, interval analysis, arithmetic filters and sign or orientation predicates are discussed.

In our context, the most important is consistency meaning that the algorithm always
deliver the same answer on the same configuration and the topology of the final result is
correct. The consistency is crucial to avoid cycling and to have a unique answer in the
localization process. It is also essential to obtain the same intersection point for a given
pair edge-edge or edge-face as such intersection generally occurs many times, i.e., for many
tetrahedron-tetrahedron intersections, in the presented algorithm. Checking the topology of
the intersection is an efficient way to detect and to correct inconsistency due to floating point
arithmetic. If the algorithm is consistent (and the initial data base correct) then the orienta-
tion predicate is reliable. The design of a consistent algorithm is based on handling properly
geometric degeneracy and verifying the correctness of the topology of the intersection.

First, an adequate local ε is chosen to carefully handle degenerated cases without loss
of accuracy. It needs to be consistent for all intersections with the current tetrahedron.
Therefore, it is only based on the current tetrahedron size.

Second, the topology of the tetrahedron-tetrahedron intersection is stored and checked
throughout and at the end of the process. Topology is powerful because it is exact as it
only involves boolean operation. Figure 2 presents three degenerated intersections where
floating point arithmetic is involved. The two left intersections are not valid topologically
while the intersection on the right is valid. For all edges, we store all the entities (vertex,
edge, face) they intersect. For instance, if an edge of Knew intersects an edge of Kback, then
we store that these edges intersect each other and that they also intersect the faces they
share. Moreover, for each intersection point, the entities (vertex, edge, face) of the current
and of the background tetrahedra on which it lies on are stored. This set of data provides a
complete view of the intersection polyhedron. To verify the topology validity, the number of
intersection points on each entity is also checked. In particular, an edge and a face cannot

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 9

⇥

Invalid configuration

Edge is intersecting
only 1 face

⇥

⇥

Invalid configuration

Edge is intersecting
1 face and 1 edge

⇥

⇥

Valid configuration

Edge is intersecting
two edges

Figure 2: Three degenerated intersections are presented. The two intersections on the left
are inconsistent topologically while the one on the right is valid. Indeed, for the left one, red
edge e has an intersection with the top face but it has no other intersection with tetrahedron
K. In such case, the red edge must intersect K twice or have a degenerated intersection with
an edge of K. For the middle one, red edge e has an intersection with one edge of the side
face and an intersection inside the side face which is not valid. Such an edge must either be
coplanar with the side face, resulting in the configuration presented on the right, or have a
non-degenerated intersection with the top face.

have more than 2 and 6 intersection points, respectively. And, the intersection polyhedron
contains at most 12 intersection points [17]. Cases with 12 intersection points are obtained,
for instance, for the stella octangula polyhedron or by taking two opposite tetrahedra from
Cundy and Rollett’s construction of the tetrahedron 5-compound, [18].

During the tetrahedron-tetrahedron intersection process, the topology consistency is checked
to correct pathological cases due to floating point arithmetic and to update missed degen-
erated cases. After completing the tetrahedron-tetrahedron intersection, the topology con-
sistency is analyzed. If an inconsistency occurs, then (i) the intersection is reset, (ii) a tiny
perturbation of the background vertices position is performed and (iii) the intersection is
resumed. The perturbation helps to get rid of unresolved degenerated cases that create the
inconsistency. As the perturbation is of the order of ε, it doesn’t affect the accuracy.

Remark: The proposed choice to cope with floating point arithmetic is very efficient as it is
able to accurately handle the intersection of highly anisotropic tetrahedra with aspect ratio of
1:100 000. and to recover the tetrahedron volume at the order of the round-off (≈ 10−14).

Dealing with degenerated cases We first introduce the definition of the signed dis-
tance, also called power, of point p with respect to face Fi = [pi,0,pi,1,pi,2]:

P(p, Fi) = pi,kp ·
nFi

‖nFi‖
where k is either 0, 1 or 2 . (2)

Notice that the barycentrics and the powers are linked by the relation: VKi = 1
6 ‖nFi

‖P(p, Fi) .
The distance of point p with respect to edge ei = pi,0pi,1 is:

P(p, ei) =
‖pi,0pi,1 × pi,0p‖
‖pi,0pi,1‖

=
‖pi,0p× pi,1p‖
‖pi,0pi,1‖

.

For the given pair of tetrahedra, the 32 vertices powers with respect to the faces, P(pj , Fi),
are computed according to Equation (2). Then, all possible vertex degenerated cases are
checked according to P(pj , Fi) values:

• is a vertex inside a face ?

• is a vertex on a edge ?

• are two vertices coinciding ?

If such a case happen, the vertex is snapped on the appropriate entity and added to the
intersection points list. The intersection topology table is updated accordingly.

RR n° 8785

10 F. Alauzet

Afterward, edge-edge intersections - which are degenerated cases - are tested. Let p0p1

and q0q1 the two considered lines. A necessary condition is that the two lines are coplanar.
If it is the case, the intersection point x is evaluated following Hill’s approach [19]:

x = p0 +
(p0q0 × q0q1) · (p0p1 × q0q1)

‖p0p1 × q0q1‖2
p0p1 = p0 + sp0p1 ,

or x = q0 +
(p0p1 × q0p0) · (p0p1 × q0q1)

‖p0p1 × q0q1‖2
q0q1 = q0 + tq0q1 .

Now, to check if the intersection point is an intersection between the two segments, we have
to check that:

0 ≤ s ≤ 1 and 0 ≤ t ≤ 1 .

If there is intersection, point x is added to the intersection points list and the intersection
topology table is updated.

Edge-face intersection Dealing with degenerated cases first simplifies the following edge-
face intersection procedure. Indeed, the computation of all the above geometric degeneracy
treats in particular all the possible coplanar edge-face intersections as depicted in Figure 3.

Now, only non-coplanar edge-face intersection remains where the intersection point lies
inside the face. The algorithm checks the 48 possible edge-face intersections. Let us denote
the considered edge by e = [p0,p1] and face by F = [q0,q1,q2]. As it is a non-coplanar
case, the edge’s vertex powers with respect to the face are not zero: P(p0, F) 6= 0 and
P(p1, F) 6= 0. A necessary condition for the edge-face intersection is:

P(p0, F)P(p1, F) < 0 .

If this condition is satisfied, the point of intersection between the edge and the plane defined
by the face is computed:

x = p0 +
P(p0, F)

P(p0, F)− P(p1, F)
p0p1 .

Finally to verify if the edge-face intersection effectively occurs, i.e., point x lies inside face
F , the signs of barycentrics of point x with respect to face F are analyzed. If there is
intersection, point x is added to the intersection points list.

2 intersections :

+

+ +

2 OUT2 IN

+

+

1 IN / 1 OUT

i

i

i
i

i

d

d

d

d d

d

d

d

d

d

d

d

d

d

d

d d

d

+
i

d

d

d

1 intersection :

1 IN / 1 OUT

Figure 3: All possible intersection configurations for coplanar pair edge-face (all kinds of
intersection are gathered by edge-face configurations). Four configurations can occur. One
intersection with an edge’s vertex in the face and the other vertex out. Two intersections with
zero (resp. one or two) edge’s vertex in the face and two (resp. one or zero) edge’s vertices
outside of the face. In the pictures, an intersection marked by "i" or "d" represents a pure
or a degenerated intersection, respectively.

Meshing the intersection polyhedron The intersection procedure results in a cloud of
points formed by the intersection points list. This list is analyzed to mesh the intersection
polyhedron.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 11

Figure 4: Two tetrahedron-tetrahedron intersection configurations where the cyan tet in-
tersects the maroon tet. Left, a non-degenerated intersection and, right, a degenerated case
where both tets share a common vertex. For each configuration, the mesh of the intersection
is depicted. Meshes are composed of 12 (left) and 8 (right) tets, respectively.

If the intersection process returns strictly less than 4 intersection points, then we face a
degenerated tetrahedron-tetrahedron intersection where there is no geometric intersection or
the geometric intersection is either a vertex, a line or a face. In this context, the algorithm
has to make the distinction between the case where one tetrahedron is included in the other
one, meaning that the intersection is this tetrahedron, and the case where the intersection is
empty. Tetrahedron Kp = [p0,p1,p2,p3] is included inside tetrahedron Kq = [q0,q1,q2,q3]
if and only if ∀i = 0, .., 3 and ∀j = 0, .., 3, P(pi, F

q
j) ≥ 0, where Fq

j are the faces of Kq.
As all the powers are evaluated at the beginning of the intersection process, the included
tetrahedron case can be immediately checked. Therefore, if the number of intersection points
is strictly less than 4, it implies that no intersection occurs.

Otherwise, if more than 4 intersection points are returned, the convex hull of this cloud
of points forms a convex polyhedron representing the region of intersection of the tetrahedra
pair.

At this point, many strategies can be employed to mesh the intersection volume. The
more intuitive idea is to create the Delaunay triangulation of the cloud of points - similar
to the one used in [6] - as it returns the convex hull of the set of points. However, a basic
algorithm lacks of robustness due to the presence of many coplanar points inside faces and
the frequent nearly-degenerated configurations when two highly anisotropic tetrahedra are
involved. In such context, orientation predicate may fail leading to a wrong configuration.
To solve this issue, one can consider the use of a very advanced Delaunay triangulation
algorithm such as the one proposed by [20]. But, this seems incongruous to call such an
evolved algorithm at each intersection to triangulate a dozen of points and it may face the
same issues.

Therefore, we propose a clever strategy using the information gathered during the inter-
section process. Indeed, as an intersection topology table has been created, we know which
intersection point belong to which tetrahedron’s face. A first step consists in meshing all
the faces of the convex polyhedron. Each of these faces corresponds to a face of one of the
two tetrahedra. Thus, for each created triangle on these faces the orientation predicate is
based on the orientation of the normal which must be identical to the orientation of the
corresponding tetrahedron’s face normal. This gives extra accuracy because this predicate is
based on a cross product whereas a volume predicate is based on a triple product. Once all
the tetrahedra’s faces have been meshed, an oriented surface mesh of the intersecting poly-
hedron is obtained. In order to get a simplicial volume mesh of the polyhedron, its gravity
center is added and tetrahedra are created by joining the barycenter to each triangle. In
other words, the polyhedron surface mesh is star-shaped with respect to the barycenter.

Two examples of tetrahedron-tetrahedron are shown in Figure 4.

RR n° 8785

12 F. Alauzet

4.1.2 Overlapped tetrahedra detection

The conservative interpolation method consists in computing for each tetrahedron Knew of
the current mesh Hnew its intersection with all tetrahedra Kback

j of the background mesh
Hback that it overlaps. We present how this list of background elements is determined.

First of all, all vertices of the new mesh Hnew are localized in the background mesh Hback

using the algorithm presented in Section 3.1. Then, for each tetrahedron Knew of Hnew, the
initial list of background tetrahedra that are overlapped is given by the elements containing
the vertices of Knew. For degenerated cases where a new vertex lies on a background face or
on a background edge or on a background vertex, we add to the initial list the background
tetrahedra that are sharing the face or are in the edge’s shell or are in the vertex’s ball,
respectively.

Then, the intersections between Knew and the tetrahedra of the initial list are computed.
New tetrahedra are added to the list during the intersection procedure as follows:

• if face Fj of Kback is intersected by Knew then neighbor Kback
j of Kback sharing face

Fj is added to the list

• if Knew is intersected by an edge of Kback then background tetrahedra of the edge’s
shell are added to the list

• if a vertex of Kback lies inside Knew then background tetrahedra of the vertex’s ball
are added to the list.

With this simple procedure, all overlapped elements are automatically detected while comput-
ing intersections. Overlapped elements are detected without any additional cost as powers
and intersections have already been computed in the tetrahedron-tetrahedron intersection
process.

4.2 P1-conservative reconstruction

In this section, we describe the P1-conservative solution reconstruction process. It mainly
follows [6], but choices made to cope with the case of non-matching boundaries between
meshes (this is always the case for complex geometries) are detailed. We consider a bounded
domain Ω of R3 and two tetrahedral meshes of this domain Hback =

⋃
Kback
i and Hnew =⋃

Knew
i . For sake of simplicity, we first make the assumption that the discrete boundaries

of both meshes are the same, i.e., both meshes are discretization of the same polyhedral
domain Ωh: |Hback| = |Hnew| where |H| =

∫
Ωh

dx. The case of non-matching discrete
boundaries is addressed in Section 4.2.4. For each mesh, a dual partition of the domain is
defined by associating with each vertex a control volume or cell (which is defined by some
rules): Hback =

⋃
Cback
i and Hnew =

⋃
Cnew
i . A P1 discrete solution field u is given on the

background mesh Hback.

Now, we have to define a projection operator Πc
1 from Hback to Hnew with the following

properties:

• Πc
1 is conservative:

∫
Hback

u =

∫
Hnew

Πc
1u

• Πc
1 is P1-exact: if u is affine then Πc

1u = u.

The projection operator is presented for solutions defined at elements and solutions defined
at vertices.

4.2.1 Solution defined at elements

In this case, the solution is piecewise linear by elements and can be discontinuous. We have
for each background tetrahedron Kback:

• mass mKback =

∫
Kback

u = |Kback|u(g), where g is the barycenter of Kback

• constant gradient ∇uKback .

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 13

For each tetrahedron Knew of the current mesh, we compute the intersection with all tetrahe-
dra of the background mesh {Kback

j }j it overlaps as described in the previous section. Each
pair of tetrahedra Knew and Kback

j provides a simplicial mesh of their intersection region

denoted Tj = Knew ∩ Kback
j . The integrals

∫
Tj
u and

∫
Tj
∇u are computed exactly using

Gauss quadrature formulae. Consequently, we obtain for each tetrahedron of the current
mesh a mass and a gradient given by:

mKnew =

∫
Knew

Πc
1u =

∑
j

∫
Tj
u and (∇Πc

1u)|Knew =

∑
j

∫
Tj ∇u

|Knew| .

This reconstruction is conservative and P1-exact. It gives a P1 by element discontinuous
solution. A specific treatment of the reconstruction is carried out to verify the maximum
principle.

4.2.2 Verifying the maximum principle

Let K be a tetrahedron of the new mesh. In the following, for the sake of clarity, we denote
by uK the P1-conservative interpolated solution Πc

1u on K. The value at the barycenter and
the gradient of the interpolated solution on K are given by:

uK(gK) =
1

|K|

∫
K

Πc
1u and ∇uK = (∇Πc

1u)|K .

Consequently, for each vertex pi of the new mesh, a value of the solution is obtained using
Taylor expansion for each element K of its ball:

uK(pi) = uK(gK) +∇uK · gKpi . (3)

A correction is applied to the linear representation of the solution on each element in order
to verify the maximum principle. The interpolated solution is thus free from any oscillations.
To this end, let K be the set of elements of the background mesh that K overlaps and let Q
be the set of vertices of K:

K = {Kback
j |K ∩Kback

j 6= ∅} and Q = {qj |qj ∈ Kback such that Kback ∈ K} .

Then, for each vertex pi of each element K of the new mesh, the nodal value uK(pi) verify
the maximum principle if:

umin = min
q∈Q

u(q) ≤ uK(pi) ≤ max
q∈Q

u(q) = umax .

Notice that uK(gK) always satisfies the maximum principle. If a vertex does not verify the
maximum principle on an element K then the gradient value of this element is corrected.
The proposed approach results from a minimization problem2. We first reorder the indices
such that uK(p0) ≤ uK(p1) ≤ uK(p2) ≤ uK(p3). Then, we set:

uM
K (p3) = min

(
uK(p3) , umax

)
uM
K (p2) = min

(
uK(p2) +

1

3
(uK(p3)− uM

K (p3)) , umax

)
uM
K (p1) = min

(
uK(p1) +

1

2

3∑
i=2

(uK(pi)− uM
K (pi)) , umax

)
uM
K (p0) = uK(p0) +

3∑
i=1

(uK(pi)− uM
K (pi))

and

ũK(p0) = max
(
uM
K (p0) , umin

)
ũK(p1) = max

(
uM
K (p1) +

1

3
(uM

K (p0)− ũK(p0)) , umin

)
ũK(p2) = max

(
uM
K (p2) +

1

2

1∑
i=0

(uM
K (pi)− ũK(pi)) , umin

)
ũK(p3) = uM

K (p3) +

2∑
i=0

(uM
K (pi)− ũK(pi)) .

These new nodal values ũK(pi) define the corrected linear representation of the solution
on K. For any points x included in K, its solution value is then given by: ũK(x) =

2Amethod based on the notion of slope limiter widely used in numerical schemes has also been implemented
but it turns out to be less accurate than the current method on all validation cases.

RR n° 8785

14 F. Alauzet

∑3
i=0 βi(x)ũK(pi) , where βi(x) are the barycentric coordinates of x with respect to K.

The final interpolated solution verifies all required properties:

Proposition 1: The reconstruction ũK satisfies the maximum principle, is linear preserving
and is conservative. Moreover, we have:

uK(p0) ≤ uK(p1) ≤ uK(p2) ≤ uK(p3) =⇒ ũK(p0) ≤ ũK(p1) ≤ ũK(p2) ≤ ũK(p3)

and if we have umin ≤ uK(pi) ≤ umax for i = 0..3 then ũK(pi) = uK(pi) for i = 0..3.

Notice that this reconstruction comes from a minimization problem. Indeed, we have

Proposition 2: Suppose that uK(p0) ≤ uK(p1) ≤ uK(p2) ≤ uK(p3) and that umax <
uK(p3). Then, we have

3∑
i=0

|uK(pi)− uMK (pi)|2 ≤
3∑
i=0

|uK(pi)− vK(pi)|2

for all the linear reconstructions vK satisfying vK(p3) = umax, vK(pi) ≤ umax for i =
0, .., 2 and

∫
K
vK =

∫
K
uK .

The proofs of these propositions are identical to the 2D proofs given in [6].

4.2.3 Solution defined at vertices

When the solution is given at vertices of the background mesh, i.e., nodal values are pro-
vided, it implicitly defines a piecewise linear continuous representation of the solution at the
elements. Therefore, the P1-conservative interpolation defined in the previous section can be
applied. However, a piecewise linear solution by elements, which is generally discontinuous,
is obtained on the new mesh. Therefore, one more stage is required to retrieve a solution
at vertices of the new mesh which consists in transferring this solution from elements to
vertices while preserving the properties of the interpolation scheme. The solution is simply
re-distributed to each vertex p of the new mesh by averaging:

ũ(p) =

∑
Knew

i 3p |Knew
i | ũKnew

i
(p)∑

Knew
i 3p |Ki|

,

where ũ is the interpolated solution on the new mesh. Notice that after re-distribution to
vertices the interpolated solution still satisfies the maximum principle, is linear preserving
and is conservative.

Remark: As the mass of the solution is linked to the topology of the mesh, the P1-conservative
interpolation operator Πc

1 depends on the mesh topology on which it is applied. In consequence,
it cannot be applied to interpolate solution at any points of a given domain.

4.2.4 Non-matching discrete boundaries

Let Ω be a bounded domain of R3 and Hback and Hnew two meshes of Ω. We consider the
case where the discrete boundaries of Hback and Hnew do not match. In other words, Hback

and Hnew are meshes of two different polyhedral domains Ωback
h and Ωnew

h the boundary of
which differs: Γback

h 6= Γnew
h . Therefore, the volume of each mesh differs: |Hback| 6= |Hnew|.

For instance, when dealing with complex geometries, the volume of the domain may change
due to the change in the geometric approximation of the surface between both meshes.

For the conservative interpolation, the non-matching discrete boundaries are handled
differently depending on the solution behavior and the geometric configuration. This is
crucial to not introduce artifacts in the solution during the interpolation stage and preserve
accuracy. Let’s take the simple example of a sphere in a constant flow field delimited by
a box domain. If the geometric approximation of the sphere is increased (the surface mesh
size on the sphere is divided by a factor 2), then the volume of the sphere increases (because
it is convex) leading to a decrease of the domain volume. In that case, we obviously want

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 15

to preserve the constant flow field when the solution is transferred from one mesh to the
other, hence the conservation property must be violated. Satisfying the P1-exactness is more
important than being conservative. Three specific solution cases may occur: the solution is
constant, linear or something else. And, for the geometry configuration, we may have either
a background tetrahedron or a new tetrahedron which is not entirely overlapped.

When a tetrahedron of the background mesh is not completely overlapped, we choose
to do nothing specific thus some of the global mass is not recovered due to the volume
change. The algorithm is no longer conservative but it still preserves the P1-exactness and
the maximum principle properties.

When a tetrahedron of the new mesh is not completely overlapped, we have :

|Knew| 6=
∑
j

|Knew ∩Kback
j | =

∑
j

|Tj | = |T∩| .

This case is treated based on the solution behavior as follows.
If the solution is constant, the operator must recover a constant solution to satisfy the

P1-exactness and the maximum principle properties. Indeed, if a constant uniform field is
given as the initial set, we have to return an constant uniform solution set to not introduce
any artifacts in the solution. The conservation principle must be violated. Formally speaking,
we have:

m∩ = c |T∩| and (∇Πc
1u)|Knew = 0 ,

and, the value at barycenter is obtained by dividing the mass by the intersection volume and
not the new tetrahedron volume:

uK(gK) =
m∩
|T∩|

= c ⇒ mKnew = c |Knew| .

If the solution is linear, the operator must recover a linear solution to satisfy the P1-
exactness, once more to not introduce any artifacts in the solution. The above method
cannot be applied because the recovered mass is not correct to compute the barycenter
value. However, the exact gradient value can be recovered:

(∇Πc
1u)|Knew =

∑
j

∫
Tj c

|T∩|
= c .

Therefore, to retrieve the linear solution, we pick one of the new tetrahedron vertex that is
inside the domain and a linear extrapolation is applied to obtain the other vertices values.
In such case, the maximum principle and the conservation properties are no more verified.

Finally, if the solution is not in the two previous cases, we choose to preserve the maximum
principle and to not be conservative. Values and gradients at barycenter are computed as:

uK(gK) =

∑
j

∫
Tj u

|T∩|
and (∇Πc

1u)|Knew =

∑
j

∫
Tj ∇u
|T∩|

.

and values at vertices are computed with Relation (3).

5 Accuracy and convergence study on analytical func-
tions

In this section, the behavior of the P1-conservative interpolation is analyzed on four analytical
functions defined on a cubic domain [−0.5, 0.5]3. These functions are representative of several
physical phenomena encountered in computational fluid dynamics (CFD). The function’s
solutions are considered at vertices. The P1-conservative interpolation is compared to the
linear interpolation, in particular, the mass conservation and the convergence order of the
schemes are studied.

To perform this analysis, two meshes H1
1 and H2

1, composed respectively of 906 and 918
vertices, are considered. These meshes are completely different and unconnected. In order

RR n° 8785

16 F. Alauzet

to study the convergence order of each interpolation method, each of these meshes spans a
series of embedded meshes denoted (H1

i)i=1...5 and (H2
i)i=1...5. Mesh Hji+1 is deduced from

Hji by splitting each tetrahedra into eight tetrahedra in a Lagrangian fashion, i.e., in an
isoparametric way. These series of meshes are summarized in Table 1.

For each case, the analytical function is applied on H1
i providing a solution field u1

i . This
solution field is transferred from H1

i to H2
i , we get Πu2

i . This solution transfer is called
transfer H1

i → H2
i . The error is computed by comparing the interpolated solution Πu2

i with
the analytical function applied on H2

i , i.e., u2
i , in L1-norm:

εi =

∫
H2

i

|u2
i −Πu2

i | .

The series of errors enable a convergence study. We also analyze the error when the solution
field is re-interpolated back to H1

i . More precisely, the function is applied on H1
i giving u1

i ,
then it is interpolated onH2

i giving Πu2
i and finally Πu2

i is interpolated fromH2
i to H1

i and we
obtain Πu1

i . The error εi is obtained by computing the gap in L1-norm between u1
i and Πu1

i

on H1
i . This double solution transfer is called transfer H1

i → H2
i → H1

i . For completeness, we
analyze the behavior of each interpolation operator for many interpolation steps. This will
point out how error due to solution interpolation accumulates. This is crucial for anisotropic
mesh adaptation application where a large number of interpolation steps are done. To this
end, transfer H1

i → H2
i → H1

i is performed five times leading to a total of 10 interpolation
steps. It is denoted 5×H1

i → H2
i → H1

i .

The four studied analytical functions are represented in Figure 5. For each analytical
function, a figure is given providing:

• left, relative mass variation
|mH1

i
−mH2

i
|

mH1
i

for solution transfer H1
i → H2

i

• middle, error εi for solution transfer H1
i → H2

i

• and right, error εi for solution transfers H1
i → H2

i → H1
i and 5 ×H1

i → H2
i → H1

i for
a total of 2 (#I = 2) and 10 (#I = 10) interpolations, respectively.

The linear interpolation scheme is represented by the red (and green) lines and the P1-
conservative interpolation is represented by the blue (and purple) lines.

A Gaussian function The first analytical function is a gaussian given by:

u1(x, y, z) = exp(−30 (x2 + y2 + z2)) .

Figure 5: Representation of the four analytical functions. From left to right, gaussian
function u1, continuous sinusoidal shock function u2, multi-scales smooth function u3 and
discontinuous function u4.

Step 1 2 3 4 5
vertices H1

i 906 6 287 42 656 322 656 2 330 670
vertices H2

i 918 6 432 46 695 360 543 2 739 492

Table 1: Mesh sizes of the series of embedded meshes (H1
i)i=1...5 and (H2

i)i=1...5.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 17

This smooth function is representative of the vortices encountered in CFD, Figure 6.
The relative mass variation with the classical linear interpolation reduces up to 40, 000

vertices and then stabilizes around 0.005% of variation. Conversely, the relative mass varia-
tion with the P1-conservative interpolation is of the order of the round-off (≈ 5. 10−14) for
all interpolation steps.

As regards the accuracy and the convergence order, both interpolation scheme are con-
verging at order 2 for solution transfers H1

i → H2
i , H1

i → H2
i → H1

i and 5×H1
i → H2

i → H1
i .

This fits to the theory. We notice that the P1-conservative interpolation is more accurate
than the linear one in both cases. The difference in accuracy is almost a factor 1.7 and 2.4
for solution transfer H1

i → H2
i and H1

i → H2
i → H1

i , respectively.
However, analyzing the 5×H1

i → H2
i → H1

i case, we notice that the error level stays almost
the same with the P1-conservative interpolation when the number of interpolations increases
while the error increases with the linear interpolation. It means that error accumulates in
the classical case and this adverse effect is drastically reduced with the new interpolation
scheme. As a consequence, the error with the linear interpolation is 7.7 times higher than
the P1-conservative interpolation one.

A continuous sinusoidal shock This analytical function represents a continuous model
of a shock which can be assimilated to the numerical capture of a shock with a dissipative flow
solver, i.e., the solver captures the shock on several mesh elements. This smooth function is
given by:

u2(x, y, z) = tanh
(
20
(
x+ 0.3 sin(−10 y)− 0.3 sin(−5(z − 0.1))

))
.

It contains two quasi-constant regions that are separated by sinusoidal interfaces in which
strong gradient variation occurs continuously.

As previously, the relative mass variation with the P1-conservative interpolation is of the
order of the round-off (≈ 10−14) for all interpolation steps. For the linear interpolation the
relative mass variation decreases with the mesh size. It varies from 13% for the first meshes
to 0.02% for the last meshes with two million vertices.

The P1-conservative interpolation achieves an order 2 of convergence for all solution trans-
fers whereas the linear interpolation has a convergence order less than 2. The convergence
order asymptotically reaches 1.75 for all cases. As regards the accuracy, the P1-conservative
interpolation is more accurate than the linear one in all cases and the difference increases
while meshes are refined. For solution transfer H1

i → H2
i , the error is 2 times smaller with the

P1-conservative interpolation on the finest meshes. This gap increases for multiple solution
transfers and rises to 5.8 when ten interpolations are done.

A multi-scales smooth function This function presents smooth sinusoidal variations
but at different scales. There are two order of magnitudes between small and large scales
variations. This function reads:

u3(x, y, z) =

0.01 sin(200x y z) if x y z ≤ −π

200

sin(200x y z) if
−π
200

< xy z ≤ 2π

200

0.01 sin(200x y z) if
2π

200
< xy z

.

The relative mass variation with the P1-conservative interpolation is of the order of the
round-off (≈ 10−14) for all interpolation steps. For the linear interpolation, the mass variation
is large from 5% for step 1 to 0.01% for step 5 for only one solution transfer. However, the
mass variation seems to converge toward zero while the mesh size goes toward zero.

For this smooth case, the P1-conservative approach reaches an order 2 of convergence for
all solution transfers. With the linear interpolation an order 2 is reached for one transfer
and it is lower than 2 for multiple transfers. Concerning the accuracy, the P1-conservative
interpolation achieves better accuracy than the standard linear interpolation. The difference
in accuracy increases with the number of solution transfers. For the finest meshes (step 4
and 5), the error is 6 times smaller for ten solution transfers while it was only a factor 1.7
for one solution transfer. Again, error accumulates with linear interpolation while the effect
is diminished with the conservative one.

RR n° 8785

18 F. Alauzet

Figure 6: Gaussian analytical function u1. Left, mass variation for the transfer H1
i → H2

i .
Middle, error εi for the transfer H1

i → H2
i . Right, error εi for the transfer H1

i → H2
i → H1

i

(#I=2) and 5×H1
i → H2

i → H1
i (#I=10).

Figure 7: Continuous sinusoidal shock analytical function u2. Left, mass variation for the
transfer H1

i → H2
i . Middle, error εi for the transfer H1

i → H2
i . Right, error εi for the

transfer H1
i → H2

i → H1
i and 5×H1

i → H2
i → H1

i .

Figure 8: Multi-scales smooth analytical function u3. Left, mass variation for the transfer
H1
i → H2

i . Middle, error εi for the transfer H1
i → H2

i . Right, error εi for the transfer
H1
i → H2

i → H1
i (#I=2) and 5×H1

i → H2
i → H1

i (#I=10).

Figure 9: Discontinuous analytical function u4. Left, mass variation for the transfer H1
i →

H2
i . Middle, error εi for the transfer H1

i → H2
i . Right, error εi for the transfer H1

i → H2
i →

H1
i (#I=2) and 5×H1

i → H2
i → H1

i (#I=10).

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 19

Nbr. cores Serial 1 HT 2 HT 4 HT 8 HT 10 HT 20 HT
Timings (sec.) 1,435 1,071 562 301 158 126 72
Speed-up 1.0 1.3 2.6 4.8 9.1 11.3 19.93

Table 2: Timings and speed-up on computer 1 up to 20 cores with hyper-threading.

Nbr. cores Serial 1 HT 2 HT 4 HT 10 HT 20 HT 40 HT
Timings (sec.) 2,087 1,625 1,011 413 193 115 63
Speed-up 1.0 1.3 2.0 5.0 10.8 18.1 33.1

Table 3: Timings and speed-up on computer 2 up to 40 cores with hyper-threading.

A discontinuous function The last analytical function is discontinuous and represents
eight steps:

u4(x, y, z) =

1 if x ≥ 0 and y ≥ 0 and z ≥ 0
2 if x ≥ 0 and y < 0 and z ≥ 0
3 if x < 0 and y ≥ 0 and z ≥ 0
4 if x < 0 and y < 0 and z ≥ 0
5 if x ≥ 0 and y ≥ 0 and z < 0
6 if x ≥ 0 and y < 0 and z < 0
7 if x < 0 and y ≥ 0 and z < 0
8 if x < 0 and y < 0 and z < 0

.

The solution is constant in eight cubic regions and is discontinuous at the interface of each
region.

Again, the relative mass variation with the P1-conservative interpolation is of the order
of the round-off for all the interpolation steps. For the linear interpolation, the relative mass
variation varies from 0.2% for step 1 to 0.0002% for step 5 for one solution transfer. It seems
to converge toward zero while the size approaches zero.

Even if the mass is preserved, the same accuracy is obtained for both approaches while
transferring the solution from one mesh to another one, Nevertheless, for the multiple solution
transfers, the P1-conservative interpolation performs better than the classical linear approach
as it accumulates less error.

For this purely discontinuous case, the two approaches reach only an order 1 of convergence
for all solution transfers.

Conclusions For all those analytical cases, while preserving the mass, the P1-conservative
interpolation obviously achieves better accuracy than the classical linear interpolation and
for some cases it converges at a faster rate. We also notice that it gathers less error when
multiple solution transfers are performed. This points out the superiority of the conservative
interpolation over the standard one.

6 Parallelization of the conservative interpolation algo-
rithm

The CPU time overhead is minor in 2D but a major issue in 3D. In 2D, the conservative
interpolation is three times slower than the polynomial linear interpolation [6]. In the context
of 2D anisotropic mesh adaptation, the CPU times devoted to the interpolation stage is very
small (less than one percent) relative to the total adaptive CPU time. Therefore, the time
overhead induced by the conservative interpolation as compared to the polynomial one can
be considered as negligible.

In 3D, the conservative interpolation is 50 times slower on average than the polynomial
linear interpolation, meaning that it has non-negligible cost in the adaptive process, but nu-
merical results shown in Section 7.2 will point out that it is well worth it. Let us explain why
the overhead is so important. For all the performed test cases, there are 16 computed inter-
sections on average for each tetrahedron. For each intersection, 32 barycentrics are computed

RR n° 8785

20 F. Alauzet

to solve the 48 edge-face intersections. Therefore, a mean of 512 barycentrics evaluations is
needed for each tetrahedron which is 128 times the cost of the linear interpolation. Then,
we have to generate a 3D mesh of these intersections which is composed of 8 tetrahedra on
average.

Fortunately, the procedure is easily parallelized and scales very well because most of
the CPU time is spent in step 3 of Algorithm 1. For this step, the intersection of each
tetrahedron of the new mesh with the background mesh can be done independently. There
is no dependency nor communication which makes it efficient to parallelize. In this work,
we follow the strategy proposed in [21] where space filling curve based renumbering is used
to minimize cache misses and memory contention, and the parallelization uses the p-thread
paradigm [22, 23].

Parallel performance has been analyzed on two different multi-cores computers with dif-
ferent processors and memory access speeds:

• Computer 1:

– 2 chips: Xeon E5-2670 10 cores 2.5 GHz

– both chips are connected by 2 QPI links with a speed of 16 GB/s

• Computer 2:

– 4 chips: Xeon E7-4850 10 cores 2 GHz

– all chips are connected to all by 1 QPI link with a speed of 16 GB/s

The selected test case is the spherical blast of Section 7.2.1 where the state (five solution
fields) at a-dimensioned time 0.6945 is interpolated. The background mesh size is 12, 993, 399
tetrahedra and the new mesh size is 13, 037, 975 tetrahedra. For that case, 226 millions
tetrahedron-tetrahedron intersections have been computed and 1.7 billions tetrahedra have
been generated to mesh the intersections.

Parallel timings are compared to the CPU time in serial on the same mesh, thus strong
speed-ups are analyzed. In the timings analysis, I/Os and initializations are not taken into
account. For each parallel run, hyper-threading has been used by launching a number of
threads equal to twice the number of cores. For instance, the 4 HT run means than only 4
cores have been used but 8 threads have been launched. Timings and speed-ups for computer
1 and 2 are summarized in Table 2 and 3, respectively.

We notice that the speed-ups are excellent on both computers and even super-linear for a
low number of cores thanks to the hyper-threading which reduces memory latency. However,
for computer 2, we notice that when more chips are used, the speed-up degrades. This is
mainly due to slower memory access between the chips (only one link between each).

We can evaluate the algorithm performance by computing the average time spent to treat
one element. On Computer 1, it takes in serial 0.1 ms of CPU time per element and on 20
cores with hyper-threading 0.0055 ms of CPU time per element.

7 Application to mesh adaptation

One of the main application is time-accurate anisotropic mesh adaptation in CFD. Mesh
adaptation provides a way to control the accuracy of the numerical solution by modifying
the domain discretization according to size and directional constraints. It is well known that
mesh adaptation captures accurately physical phenomena in the computational domain while
reducing significantly the CPU time, see [5, 24, 25, 26, 27, 28, 29].

7.1 Unsteady mesh adaptation scheme

Our goal is to solve an unsteady PDE which is set in the computational space-time domain
Q = Ω × [0, T] where T is the (positive) maximal time and Ω ⊂ R3 is the spatial domain.
Let Πh be the usual P1 projector. The considered problem of mesh adaptation consists in

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 21

finding the space-time mesh H of Q that minimizes the space-time linear interpolation error
u−Πhu in Lp norm. The problem is thus stated in an a priori way:

Find Hopt having Nst space-time vertices such that ELp(Hopt) = min
H
‖u−Πhu‖Lp(Ωh×[0,T]) .

In the continuous mesh framework, we rewrite this problem under the continuous form [30]:

Find MLp = (MLp(x, t))(x,t)∈Q such that ELp(MLp) = min
M
‖u− πMu‖Lp(Ω×[0,T]) , (4)

under the space-time constraint:

Cst(M) =

∫ T

0

τ(t)−1

(∫
Ω

dM(x, t) dx

)
dt = Nst . (5)

where τ(t) is the time step used at time t. To find the optimal space-time continuous mesh,
Problem (4-5) is solved in two steps. First, a spatial minimization is done for a fixed t.
Second, a temporal minimization is performed. The expression of the optimal space-time
metric MLp for a prescribed time step is [31]:

MLp(x, t) = N
2
3

ST

(∫ T

0

τ(t)−
2p

2p+3 K(t)dt

)− 2
3

τ(t)
2

2p+3 (det |Hu(x, t)|)− 1
2p+3 |Hu(x, t)| , (6)

where Hu is the Hessian of sensor u.

The previous analysis provides the optimal size of the adapted meshes for each time level.
Hence, this analysis requires the mesh to be adapted at each flow solver time step which
is inconceivable. Now, we want to extend the previous analysis to the fixed-point mesh
adaptation algorithm context [5]. The idea consists in splitting the simulation time frame
[0, T] into nadap adaptation sub-intervals:

[0, T] = [0 = t0, t1] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap−1, tnadap
] , (7)

and to keep the same adapted spatial mesh Mi for each time sub-interval [ti−1, ti]. On each
sub-interval, the mesh is adapted to control the solution accuracy from ti to ti+1. Conse-
quently, the time-dependent simulation is performed with nadap different adapted meshes.
This drastically reduces the number of remeshing during the simulation, hence the number
of solution transfers. This can been seen as a coarse adapted discretization of the time axis,
the spatial mesh being kept constant for each sub-interval when the global space-time mesh
is visualized, thus providing a first answer to the adaptation of the whole space-time mesh.

Algorithm 2 Mesh Adaptation Loop for Unsteady Flows
Initial mesh and solution(H0,S0

0) and set targeted space-time complexity Nst

Fixed-point loop to converge the global space-time mesh adaptation problem
For j = 1, nptfx

Adaptive loop to advance the solution in time on time frame [0, T]

1. For i = 1, nadap

(a) Sj
0,i = Interpolate conservatively next sub-interval initial sol. from (Hj

i−1,S
j
i−1,H

j
i);

(b) Sj
i = Compute solution on sub-interval from pair (Sj

0,i,H
j
i);

(c) |H|ji = Compute sub-interval Hessian-metric from sol. sample (Hj
i , {S

j
i (k)}k=1,nk);

EndFor

2. Cj = Compute space-time complexity from all Hessian-metrics ({|H|ji}i=1,nadap);

3. {Mj
i}i=1,nadap = Compute all sub-interval unsteady metrics (Cj , {|H|ji}i=1,nadap);

4. {Hj+1
i }i=1,nadap = Generate all sub-interval adapted meshes ({Hj

i , M
j
i}i=1,nadap);

EndFor

RR n° 8785

22 F. Alauzet

To converge the non-linear mesh adaptation problem, i.e., converging the mesh-solution
couple, a fixed-point mesh adaptation algorithm is used. This is also a way to predict the
solution evolution and to adapt the mesh accordingly. The previous error analysis can be also
carried out in this context [31]. The time-accurate fixed-point mesh adaptation algorithm is
schematized in Algorithm 2. where H, S, H and M denote respectively meshes, solutions,
Hessian-metrics and metrics.

Flow solver In all the examples, the flow is modeled by the conservative Euler equations.
Assuming that the gas is perfect, inviscid and that there is no thermal diffusion, the Euler
equations for mass, momentum and energy conservation read:

∂W

∂t
+∇ · F (W) = 0 ,

where W = t(ρ, ρu, ρE) is the conservative variables vector and vector F represents the
convective operator:

F (W) = t (ρu, ρuu + pex, ρvu + pey, ρwu + pez,u(ρE + p)) .

We have noted ρ the density, u = (u, v, w) the velocity vector, E = T + ‖u‖2
2 the total

energy and p = (γ − 1)ρT the pressure with γ = 1.4 the ratio of specific heats and T the
temperature.

The Euler system is solved by means of a Finite Volume technique on unstructured meshes
composed of tetrahedra. The proposed scheme is vertex-centered, achieved a second order
accuracy in space and a third order accuracy in time with an explicit Runge-Kutta scheme.
More details can be found in [32].

Local remesher The generation of the adapted anisotropic meshes is done using a metric-
based adaptive local remeshing strategy [33] where the surface mesh is adapted conjointly
with the volume mesh using local mesh modifications. One main advantage of this method is
to be extremely robust. Indeed, if an invalid operation occurs, it is simply rejected. The core
of the algorithm uses a unique cavity-based operator [34]. Thus, each meshing operateor is
equivalent to a node insertion or reinsertion. It is the cavity initialization (definition) which
defines the scope of the underlying local mesh modification. The node insertion is based on
the extension of the Delaunay kernel to the metric-based anisotropic context. This strategy
is very efficient to generate high-quality adapted meshes with a very high level of anisotropy
O(1 : 106) [33].

Remark: For polynomial interpolation, it has been observed that interpolating physical vari-
able (ρ,u, p) is more accurate than dealing with conservative variable (ρ, ρu, ρE). As ρ and
p are interpolated, the positivity is preserved. But, the conservative interpolation works on
(ρ, ρu, ρE) and, thus, there is no guarantee that p = (γ − 1)

(
ρE − ρ‖u‖2

2

)
remains positive

after the process even if it should be. Indeed, for 3D problems involving strong physics (e.g.
blast wave) and complex geometry (e.g. sharp ridges in the city) the positivity issue may
occur. This is very rare and concerns a few points over million. In that case, the resulting
interpolated field contains negative pressure which is not admissible for the flow solver. A
correction, using clipping or averaging with neighboring vertices, is then applied to restore a
positive pressure.

7.2 Numerical simulations

The goal of the presented examples is to emphasized the benefits in terms of accuracy and
convergence of using the P1-conservative interpolation instead of classical P1 interpolation
for item 1 (a) in the unsteady mesh adaptation loop presented in Algorithm 2. For each
simulation, identical parameters are used for the flow solver and the local remesher, and a
control of the interpolation error of the density variable in L2-norm is done.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 23

To analyze the accuracy of each simulation and to perform a convergence analysis, we
compute the L1-norm of the space-time error with respect to the reference solution:

errST =

∫ T

0

∫
Ω

|uref (x, t)− u(x, t)|dxdt (8)

≈
n
ref
adap∑

iadap=1

∆t

N
ref
tet (iadap)∑
itet=1

|Kitet | |uref (Gitet , tiadap)− u(Gitet , tiadap)|

with the notations:

• nrefadap is the number of reference adapted meshes used for the simulation

• ∆t = T

nref
adap

is the sub-intervals time length

• Nref
tet (iadap) is the number of tetrahedra of the ithiadap

adapted mesh used to compute
the reference solution for sub-interval [tiadap−1, tiadap

]

• |Kitet | is the volume of the ithitet tetrahedron

• uref (Gitet , tiadap
) and u(Gitet , tiadap

) are the reference solution and the solution at ithitet
tetrahedron barycenter at time tiadap

.

The total space-time mesh complexity, i.e., total number of vertices, of a simulation ran on
nadap meshes is:

NST =

nadap∑
iadap=1

Nver(iadap) = nadap × Ñver (9)

where Nver(iadap) is the number of vertices of the ithiadap
adapted mesh and Ñver is the average

number of vertices per mesh.

7.2.1 Spherical blast

The first example is a spherical Riemann problem between two parallel walls simulating a
blast. Initially, the gas is at rest with density ρout = 1 and pressure pout = 1 everywhere
except in a sphere centered at (0, 0, 0.4) with radius 0.2. Inside the sphere the parameters
are ρin = 1 and pin = 5. For both regions, we have γ = 1.4. The initial pressure jump results
in a strong outward moving shock wave, an outward contact discontinuity and an inward
moving rarefaction wave. The main feature of the solution are the interactions between these
waves. Another significant feature is the development of a low density region in the center
of the domain. The solution remains cylindrically symmetric throughout the simulation and
is computed until a-dimensioned time T = 0.7.

The adaptive reference solution has been computed using nrefadap = 128 sub-intervals, i.e.,
the number of adapted meshes used to run the simulation, each mesh having an average
size of Ñref

ver = 1, 712, 282 vertices. The total space-time number of vertices of the reference
solution is Nref

ST = 219 millions vertices. The final adapted mesh and density solution field
are shown in Figure 10.

Four series of adaptive simulations have been run to make the comparison between the
two interpolation methods. Two series with the P1 interpolation and two series with the P1-
conservative interpolation by setting a theoretical target mesh size of 120, 000 and 240, 000
vertices on average per sub-interval mesh. To increase the space-time mesh complexity and to
perform a convergence analysis, the number of sub-intervals is increased. Notice that when
the simulation complexity increased, the number of interpolation stages increases as well.
For each series, six simulations have been run with 4, 8, 16, 32, 64 and 128 sub-intervals.
The total theoretical space-time mesh size being the number of sub-intervals nadap multiplied
by the average complexity NAvg. The resulting mesh sizes for the simulations with 240, 000
vertices on average per sub-interval mesh are presented in Table 4 using P1 interpolation and
in Table 5 using P1-conservative interpolation. We notice that for the same set of parameters,
we obtain almost the same space-time mesh complexity for the P1 and the P1-conservative
interpolation.

RR n° 8785

24 F. Alauzet

The improvement in accuracy and convergence of the conservative interpolation with
respect to the classical one is clearly pointed out in Figure 14 where the space-time error -
given by Equation (8) - vs. the space-time complexity - given by Equation (9) - is plotted
for each simulation.

As larger size adapted meshes are generated with Ñ240K
ver than Ñ120K

ver , it results (as ex-
pected) in more accurate solutions, therefore the blue and the pink curves are below the red
and the green curves, respectively. This accounts for the discretization error that has been
reduced by increasing the mesh size.

Besides, the difference between the blue (resp. red) curve and the pink (resp. green)
curve points out the accumulation of the error due to the interpolation stage. For the P1

interpolation, we observe that the accuracy of the solution degrades more and more with
the number of interpolation stages. This degradation becomes visible when 16 or more
interpolation steps are done. This is due to solution transfer errors which accumulates at each
interpolation and spoils the solution accuracy. As this is not the case with the P1-conservative
interpolation even if 128 solution transfers are done, the gap in accuracy between the two
approaches grows quickly with the number of adaptations (sub-intervals) and becomes quickly
significant. As shown in Section 5, the error introduced by the interpolation stage is linked
to the mesh size. The smaller h, the smaller the error. This is why the pink curve is shift to
the right with respect to the green curve. Hence, the accumulation of interpolation error is
much more dramatic with coarser meshes.

This significant difference is evident when we observe the final density solutions and
adapted meshes, shown in Figures 11 and 12, obtained with each method for a theoretical
target mesh size of 240, 000 vertices on average per sub-interval mesh and nadap = 128. The
solution using the P1-conservative interpolation is obviously more detailed with more shock
waves present in the flow, less dissipated shock waves and the low density region at the
domain center separated by a contact discontinuity is a lot less diffused. In comparison, we
notice that both solutions for nadap = 16 - given in Figure 13 - are more similar. Indeed, less
error due to the solution transfer has been accumulated. Moreover, we observe a time shift
of the shock waves positions with the P1 interpolation which increases with the number of
sub-intervals, while no time shift occurs with P1-conservative interpolation. These comments
are highlighted in Figure 14 by density solutions extraction along a line for the reference and
these four cases solutions.

This significant difference is also emphasized by the final adapted mesh size of each
simulation. For a given number of sub-intervals and average complexity, we see in Tables
4 and 5 that the average number of vertices per mesh in both cases is similar. However,
the larger the number of adapted meshes, the larger the final adapted mesh size using the
P1-conservative interpolation, see Tables 4 and 5. A similar behavior is observed for the
simulations where 120, 000 vertices on average per sub-interval mesh has been prescribed.
This means that information on the solution is lost during the simulation using the P1

interpolation.

Tables 4 and 5 also report the CPU time distribution between the interpolation stage,
the flow solver stage, and the metric computation and the mesh generation stage. All stages
are run in parallel using the same number of processors. Table 4 - for the P1 interpolation
- shows that the 3%/63%/33% (Interpolation/Flow/Metric-Mesh) CPU distribution using
4 adapted meshes evolves to a 11%/31%/58% CPU distribution using 128 adapted meshes.
Hence, the flow solver CPU part decreases with respect to the interpolation and meshing
stages when the number of sub-intervals increases. This change in the CPU distribution is
due to the lower number of flow solver time steps performed on each mesh when a larger
number of meshes is used to discretize the simulation time frame3. Using a larger number
of meshes increases the number of interpolation steps and the number of generated meshes.
In this example, the average number of flow solver time steps per sub-interval is 525 for
nadap = 4 and drops to 60 for nadap = 128. For the P1-conservative interpolation, see Table
5, the same behavior is observed: the 15%/41%/44% CPU distribution using 4 adapted
meshes evolves to a 45%/23%/32% CPU distribution using 128 adapted meshes. As the

3Indeed, more meshes considered to reach the simulation final time (see Expression (7)) means less time
steps performed on each mesh.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 25

P1-conservative interpolation is more costly in term of CPU time, it takes a larger part of
the CPU distribution. An almost balanced distribution between the three stages is obtained
for nadap = 32. Similar CPU distributions are obtained for the simulations where 120, 000
vertices on average per sub-interval mesh has been prescribed.

In conclusion, for time-accurate compressible flow simulations with a large number of
adapted meshes, the conservative interpolation is mandatory even if it has an important
CPU cost in the unsteady mesh adaptation loop.

7.2.2 A blast in a town

The second example is the propagation of a blast in a geometry representing a city plaza.
The physics of this problem has a lot more energy than the one proposed in [5], it results
in stronger and more complex physical phenomena. The main feature is related to the
random character of the blast wave propagation due to a large number of waves reflexions
on the geometry and the interactions between the numerous blast waves. The computational
domain size is 85× 85× 70 m3. Initially, the gas representing the ambient air is at rest with
a density ρout = 1 and pout = 1. To simulate the blast, a high pressure and density region
is introduced in a quarter-circle centered at (6.5, 0) with a radius 0.25. In this region, the
relevant parameters are ρin = 10, pin = 25 and uin = 0. For both regions, we have γ = 1.4.
The solution is computed until a-dimensioned time T = 15.

The adaptive reference solution has been computed using nrefadap = 128 adapted meshes,
each mesh having an average size of Ñref

ver = 3, 327, 382 vertices. The total space-time number
of vertices of the reference solution is Nref

ST = 426 millions vertices. The final adapted mesh
and density solution field are shown in Figure 16.

nadap P1

Ñ240K
ver N240K

ver (nadap) Itp CPU Flow CPU Mesh CPU
4 181, 073 202, 807 3.48% 63.19% 33.33%

8 198, 064 223, 082 5.36% 69.00% 25.64%

16 214, 477 245, 638 7.67% 61.72% 30.61%

32 230, 379 265, 977 9.51% 51.73% 38.76%

64 245, 714 278, 025 10.44% 41.53% 48.03%

128 256, 374 259, 879 10.53% 30.97% 58.50%

Table 4: Spherical blast. Statistics for the unsteady mesh adaptation algorithm for different
number of sub-intervals nadap using the P1 interpolation. From left to right, average number
of vertices per sub-interval Ñver and final meshes number of vertices Nver(nadap), percentage
of the total CPU time for the interpolation (Itp), the flow solver (Flow) and the metric com-
putation and mesh generation (Mesh) stages. The total space-time mesh number of vertices
is nadap × Ñver.

nadap P1-conservative
Ñ240K

ver N240K
ver (nadap) Itp CPU Flow CPU Mesh CPU

4 182, 330 206, 760 14.98% 41.12% 43.90%

8 199, 328 229, 657 23.62% 53.70% 22.68%

16 217, 308 259, 689 30.44% 43.94% 25, 62%

32 236, 141 291, 980 35.77% 35.49% 28.74%

64 256, 758 327, 466 41.11% 28.14% 30.75%

128 279, 709 367, 101 44.80% 23.05% 32.15%

Table 5: Spherical blast. Statistics for the unsteady mesh adaptation algorithm for dif-
ferent number of sub-intervals nadap using the P1-conservative interpolation. From left to
right, average number of vertices per sub-interval Ñver and final meshes number of vertices
Nver(nadap), percentage of the total CPU time for the interpolation (Itp), the flow solver
(Flow) and the metric computation and mesh generation (Mesh) stages. The total space-time
mesh number of vertices is nadap × Ñver.

RR n° 8785

26 F. Alauzet

Two series of adaptive simulations have been run to make the comparison between the
two interpolation methods. A theoretical target mesh size of 250, 000 vertices on average per
sub-interval mesh has been prescribed. To increase the space-time mesh complexity and to
perform a convergence analysis, the number of sub-intervals is increased. Thus, the number of
interpolation stages increases with the simulation complexity. For each series, six simulations
have been run with 4, 8, 16, 32, 64 and 128 sub-intervals. The resulting mesh size for each
simulation are presented in Tables 6 and 7. We notice that for the same set of parameters,

Figure 10: Spherical blast. Reference density solution (left) at a-dimensioned time T =
0.7 and final adapted reference mesh (right) containing 2, 173, 612 vertices and 13, 037, 975
tetrahedra.

Figure 11: Spherical blast. Density solution (left) at a-dimensioned time T = 0.7 and final
adapted mesh (right) containing 367, 101 vertices and 2, 177, 486 tetrahedra obtained with the
P1-conservative interpolation for nadap = 128 and Ñver = 240K.

Figure 12: Spherical blast. Density solution (left) at a-dimensioned time T = 0.7 and final
adapted reference mesh (right) containing 259, 879 vertices and 1, 535, 198 tetrahedra obtained
with the P1 interpolation for nadap = 128 and Ñver = 240K.

Figure 13: Spherical blast. Density solution at a-dimensioned time T = 0.7 obtained with
the P1-conservative interpolation (left) and the P1 interpolation (right) for nadap = 16 and
Ñver = 240K.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 27

Figure 14: Spherical blast. Left, space-time error (Equation (8)) vs. space-time complexity
(Equation (9)) for the four series of adaptive simulations from 4 to 128 sub-intervals. In
green and pink, adaptive simulations with the P1 interpolation and, in red and blue, with
the P1-conservative interpolation. Right, final density solution extraction along a line for the
reference simulation and simulations at average complexity 240, 000 for both interpolations
with 16 and 128 sub-intervals.

we obtain almost the same space-time mesh complexity for the P1 and the P1-conservative
interpolation. Again, when the number of sub-intervals increases, we observe that the size of
the final adapted mesh obtained with the P1-conservative interpolation is (a lot) larger than
the one obtained with P1 interpolation. It denotes a loss of accuracy during the simulation
while using the P1 interpolation.

The space-time error vs. the space-time complexity for each simulation is plotted in
Figure 15. Final density solutions and corresponding adapted meshes are shown in Figures
17 and 18. Comments on the results are identical to the previous example. Again, for a large
number of adaptation, the difference in accuracy between the two methods is significant.
Thus, the conservative interpolation is mandatory to avoid the accumulation of errors due to
the solution transfer which spoils considerably the solution accuracy.

Tables 6 and 7 report the CPU time distribution between the interpolation stage, the
flow solver stage, and the metric computation and the mesh generation stage. As previously,
all stages are run in parallel using the same number of processors. For the P1 interpolation,
see Table 6, the 3%/60%/37% (Interpolation/Flow/Metric-Mesh) CPU distribution using 4
adapted meshes evolves to a 10%/51%/38% CPU distribution using 128 adapted meshes.
Therefore, the same observations as Section 7.2.1 can be made. In this example, the av-
erage number of flow solver time steps per sub-interval is 750 for nadap = 4 and drops to
200 for nadap = 128. For the P1-conservative interpolation, see Table 7, the same behav-
ior is observed: the 12%/55%/33% CPU distribution using 4 adapted meshes evolves to a
34%/37%/29% CPU distribution using 128 adapted meshes. This time, an almost balanced
distribution between the three stages is obtained for nadap = 128.

8 Conclusion

In this work, we have proposed a matrix-free P1-conservative interpolation operator that
satisfies the maximum principle. This operator is based on local mesh intersections and lo-
cal operations that make it memory efficient and easy to parallelize. The properties of this
new operator have been verified numerically on analytical examples and adaptive simula-
tions. These examples also point out a significative improvement in accuracy and numerical
convergence obtained with the conservative interpolation as compared to the classical one
when a large number of adapted meshes are considered. The accuracy of the solution is not
spoiled by this stage. Consequently, for long-time simulations, the conservative interpolation
is mandatory as it is only slightly sensitive to the increase of the number of interpolations.

The proposed conservative interpolation scheme can be extend to Pk-representation of the

RR n° 8785

28 F. Alauzet

nadap P1

Ñ120K
ver N120K

ver (nadap) Itp CPU Flow CPU Mesh CPU
4 210, 131 239, 090 2.91% 60.34% 36.75%

8 229, 860 281, 278 4.17% 63.44% 32.39%

16 245, 058 316, 850 5.16% 68.16% 26.68%

32 264, 455 354, 053 6.61% 64.35% 29.04%

64 285, 301 374, 908 7.95% 58.85% 33.20%

128 307, 001 314, 963 9.93% 51.46% 38.61%

Table 6: City blast. Statistics for the unsteady mesh adaptation algorithm for different
number of sub-intervals nadap using the P1 interpolation. From left to right, average number
of vertices per sub-interval Ñver and final meshes number of vertices Nver(nadap), percentage
of the total CPU time for the interpolation (Itp), the flow solver (Flow) and the metric com-
putation and mesh generation (Mesh) stages. The total space-time mesh number of vertices
is nadap × Ñver.

nadap P1-conservative
Ñ120K

ver N120K
ver (nadap) Itp CPU Flow CPU Mesh CPU

4 210, 309 241, 620 12.02% 54.57% 33.41%

8 230, 148 287, 236 16.76% 56.11% 27.13%

16 247, 354 331, 257 19.56% 58.00% 22.44%

32 270, 084 384, 186 23.69% 51.87% 24.44%

64 296, 473 438, 169 28.20% 45.04% 26.76%

128 323, 835 487, 440 33.72% 36.82% 29.46%

Table 7: City blast. Statistics for the unsteady mesh adaptation algorithm for different num-
ber of sub-intervals nadap using the P1-conservative interpolation. From left to right, average
number of vertices per sub-interval Ñver and final meshes number of vertices Nver(nadap),
percentage of the total CPU time for the interpolation (Itp), the flow solver (Flow) and the
metric computation and mesh generation (Mesh) stages. The total space-time mesh number
of vertices is nadap × Ñver.

Figure 15: City blast. Space-time error (Equation (8)) vs. space-time complexity (Equation
(9)) for the adaptive simulations with the P1 interpolation (green) and the P1-conservative
interpolation (red) from 4 to 128 sub-intervals.

solution if solutions are defined at the elements. In that case, a high-order gauss quadrature
is considered to recover the mass of the solution field and all the derivatives (up to order k).
However, the extension to Pk-representation of the solution defined at vertices requires more
work.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 29

References

References

[1] C. Geuzaine, B. Meys, F. Henrotte, P. Dular, W. Legros, A Galerkin projection method
for mixed finite elements, IEEE Transactions on Magnetics 35 (3) (1999) 1438–1441.

[2] X. Jiao, M. Heath, Common-refinement-based data transfer between non-matching
meshes in multiphysics simulations, Int. J. Numer. Meth. Engng61 (14) (2004) 2402–
2427.

[3] T. Ringler, D. Randall, A potential enstrophy and energy conserving numerical scheme
for solution of the shallow-water equations on a geodesic grid, Monthly Weather Review
130 (5) (2002) 1397–1410.

[4] J. Thuburn, Some conservation issues for the dynamical cores of NWP and climate
models, J. Comp. Phys.227 (7) (2007) 3715–3730.

[5] F. Alauzet, P. Frey, P. George, B. Mohammadi, 3D transient fixed point mesh adapta-
tion for time-dependent problems: Application to CFD simulations, J. Comp. Phys.222
(2007) 592–623.

[6] F. Alauzet, M. Mehrenberger, P1-conservative solution interpolation on unstructured
triangular meshes, Int. J. Numer. Meth. Engng84 (13) (2010) 1552–1588.

[7] P. Farrell, M. Piggott, C. Pain, G. Gorman, Conservative interpolation between unstruc-
tured meshes via supermesh construction, Comput. Methods Appl. Mech. Engrg.198 (33-
36) (2009) 2632–2642.

[8] D. S. S. Menon, Conservative interpolation on unstructured polyhedral meshes: An
extension of the supermesh approach to cell-centered finite-volume variables, Comput.
Methods Appl. Mech. Engrg.200 (41-44) (2011) 2797–2804.

[9] P. Farrell, J. Maddison, Conservative interpolation between volume meshes by local
galerkin projection, Comput. Methods Appl. Mech. Engrg.200 (1-4) (2011) 89–100.

[10] P. George, H. Borouchaki, Delaunay triangulation and meshing. Application to finite
elements, Hermès, Paris, 1998.

[11] J. Grandy, Conservative remapping and regions overlays by intersecting polyhedra, J.
Comp. Phys.148 (2) (1999) 433–466.

[12] D. Eberly, 3D game engine design: a practical approach to real-time computer graphics
(The Morgan Kaufmann Series in Interactive 3D Technology), 2nd Edition, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[13] P. Frey, P. George, Mesh generation. Application to finite elements, 2nd Edition, ISTE
Ltd and John Wiley & Sons, 2008.

[14] R. Löhner, Robust, vectorized search algorithms for interpolation on unstructured grids,
J. Comp. Phys.118 (2) (1995) 380–387.

[15] C. Hoffmann, The problems of accuracy and robustness in geometric computation, Com-
puter 22 (3) (1989) 31–39.

[16] A. Stewart, Local robustness and its application to polyhedral intersection, International
Journal of Computational Geometry and Applications 4 (1) (1994) 87–118.

[17] R. Seidel, Convex hull computations, in: The Handbook of Discrete and Computational
Geometry, Edited by J.E. Goodman and J. O’Rourke, Chapman & Hall/CRC, 2004,
Ch. 22, pp. 495–512.

RR n° 8785

30 F. Alauzet

[18] H. Cundy, A. Rollett, Mathematical Models, 3rd Edition, Tarquin Publications, Strad-
broke, England, 1989.

[19] F. Hill Jr., The pleasures of ’perp dot’ products, in: Graphics Gems IV, Paul S. Heckbert
Edition, Academic Press, San Diego, CA, 1994, Ch. II.5, pp. 138–148.

[20] P. George, F. Hermeline, Delaunay’s mesh of a convex polygon in dimension d. Appli-
cation to arbitrary polyedra, Int. J. Numer. Meth. Engng33 (1992) 975–995.

[21] F. Alauzet, A. Loseille, On the use of space filling curves for parallel anisotropic mesh
adaptation, in: Proceedings of the 18th International Meshing Roundtable, Springer,
2009, pp. 337–357.

[22] L. Maréchal, A parallelization framework for numerical simulation. The LP3 library,
Documentation, INRIA (Jun 2010).

[23] L. Maréchal, Handling unstructured meshes in multithreaded environments with the
help of Hilbert renumbering and dynamic scheduling, Parallel ComputingSubmitted.

[24] C. Bottasso, Anisotropic mesh adaption by metric-driven optimization, Int. J. Numer.
Meth. Engng60 (2004) 597–639.

[25] L. Formaggia, S. Micheletti, S. Perotto, Anisotropic mesh adaptation in computational
fluid dynamics: Application to the advection-diffusion-reaction and the Stokes problems,
Appl. Numer. Math.51 (4) (2004) 511–533.

[26] P. Frey, F. Alauzet, Anisotropic mesh adaptation for CFD computations, Comput. Meth-
ods Appl. Mech. Engrg.194 (48-49) (2005) 5068–5082.

[27] C. Gruau, T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation
with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech.
Engrg. 194 (48-49) (2005) 4951–4976.

[28] F. Hecht, B. Mohammadi, Mesh adaptation by metric control for multi-scale phenomena
and turbulence, in: 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-1997-
0859, Reno, NV, USA, 1997.

[29] C. Pain, A. Humpleby, C. de Oliveira, A. Goddard, Tetrahedral mesh optimisation and
adaptivity for steady-state and transient finite element calculations, Comput. Methods
Appl. Mech. Engrg.190 (2001) 3771–3796.

[30] A. Loseille, F. Alauzet, Continuous mesh framework. Part I: well-posed continuous in-
terpolation error, SIAM J. Numer. Anal.49 (1) (2011) 38–60.

[31] F. Alauzet, Contributions aux méthodes numériques pour l’adaptation de maillage et le
maillage mobile, Habilitation à Diriger des Recherches, Université Pierre et Marie Curie,
Paris VI, Paris, France, 2012.

[32] F. Alauzet, Size gradation control of anisotropic meshes, Finite Elem. Anal. Des.46
(2010) 181–202.

[33] A. Loseille, R. Löhner, Adaptive anisotropic simulations in aerodynamics, in: 48th AIAA
Aerospace Sciences Meeting, AIAA Paper 2010-169, Orlando, FL, USA, 2010.

[34] A. Loseille, V. Menier, Serial and parallel mesh modification through a unique cavity-
based primitive, in: Proceedings of the 22th International Meshing Roundtable,
Springer, 2013, pp. 541–558.

Inria

A parallel matrix-free conservative solution interpolation on tetrahedral meshes 31

Figure 16: City blast. Reference density solution (left) at a-dimensioned time T = 15 and
final adapted reference mesh (right) containing 4, 187, 548 vertices and 25, 249, 618 tetrahedra.

Figure 17: City blast. Density solution (left) at a-dimensioned time T = 15 and final
adapted mesh (right) containing 487, 440 vertices and 2, 802, 472 tetrahedra obtained with the
P1-conservative interpolation for nadap = 128.

RR n° 8785

32 F. Alauzet

Figure 18: City blast. Density solution (left) at a-dimensioned time T = 15 and final
adapted mesh (right) containing 314, 963 vertices and 1, 788, 719 tetrahedra obtained with the
P1 interpolation for nadap = 128.

Inria

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Definitions and notations
	Linear interpolation operator
	Localization algorithm
	Classical linear interpolation

	Matrix-free P1-exact conservative interpolation
	Mesh intersection algorithm
	Tetrahedron-tetrahedron intersection
	Overlapped tetrahedra detection

	P1-conservative reconstruction
	Solution defined at elements
	Verifying the maximum principle
	Solution defined at vertices
	Non-matching discrete boundaries

	Accuracy and convergence study on analytical functions
	Parallelization of the conservative interpolation algorithm
	Application to mesh adaptation
	Unsteady mesh adaptation scheme
	Numerical simulations
	Spherical blast
	A blast in a town

	Conclusion

