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N-Type Field-Effect Transistors Using Multiple
Mg-Doped ZnO Nanorods

Sanghyun Ju, Jianye Li, Ninad Pimparkar, Muhammad A. Alam, Fellow, IEEE, R. P. H. Chang, and
David B. Janes, Member, IEEE

Abstract—Nanorod field-effect transistors (FETs) that use
multiple Mg-doped ZnO nanorods and a SiO2 gate insulator
were fabricated and characterized. The use of multiple nanorods
provides higher on-currents without significant degradation in
threshold voltage shift and subthreshold slopes. It has been ob-
served that the on-currents of the multiple ZnO nanorod FETs
increase approximately linearly with the number of nanorods,
with on-currents of 1 A per nanorod and little change in
off-current ( 4 10 12). The subthreshold slopes and on–off
ratios typically improve as the number of nanorods within the
device channel is increased, reflecting good uniformity of prop-
erties from nanorod to nanorod. It is expected that Mg dopants
contribute to high n-type semiconductor characteristics during
ZnO nanorod growth. For comparison, nonintentionally doped
ZnO nanorod FETs are fabricated, and show low conductivity
to compare with Mg-doped ZnO nanorods. In addition, temper-
ature-dependent current–voltage characteristics of single ZnO
nanorod FETs indicate that the activation energy of the drain
current is very low (0.05–0.16 eV) at gate voltages both above and
below threshold.

Index Terms—Multiple, nanorod, transistor, ZnO.

I. INTRODUCTION

TRANSISTORS composed of nanobundles of single-wall
carbon nanotubes (SW-CNTs) [1]–[5] or silicon nanowires

(Si-NWs) as active materials have been the focus of intense
research as a higher performance alternative to a-Si thin film
transistors (TFTs) and poly-Si TFTs [6] with possible appli-
cations in microelectronic display devices, electron transport
media for solar cells, chemical sensors, light-emitting diodes,
and laser diodes [7]–[11]. Nanowires have electrical and me-
chanical merits, physical flexibility, and transparency. One
promising candidate that satisfies these requirements is ZnO
nanowire field-effect transistors (FETs) or ZnO nanorod FETs
because ZnO is a transparent material and nanowires are known
to have inherent flexibility. Wurtzite structure ZnO is one of
the most important II–VI group semiconductors with a direct
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and wide bandgap of 3.37 eV, large exciton binding energy of
60 meV (28 meV for GaN), and high optical gain of 300 cm
(100 cm GaN) at room temperature [12]–[14]. It is of interest
for low-voltage and short wavelength (green or green/blue)
electrooptical devices such as light emitting diodes and laser
diodes. It also can be widely used as transparent ultraviolet
(UV) protection films, transparent conducting oxide materials,
piezoelectric materials, electron-transport medium for solar
cells, chemical sensors, photocatalysts, and so on [11]–[15].
Since the first report of ZnO nanowires in 2000 [17], a great
deal of attention has been focused on the study of 1-D ZnO
nanomaterials such as nanowires [12], [16]–[18] or nanorods
[19]–[23] for their great prospects in fundamental physical
science, novel nanotechnological applications, and significant
potential for nanooptoelectronics. Nano-ZnO has been de-
scribed as the next most important nanomaterial after carbon
nanotubes [24].

In light of the limited current drive per nanowire, significant
issues for nanowire transistor devices include how to obtain rel-
atively large levels of on-current and how to adjust the drive cur-
rent capability of various devices. Low voltage operation and
low power consumption are required in order to replace tech-
nologies such as a-Si TFTs and poly-Si TFTs which are mainly
used to thin-film transistor liquid crystal display (TFT-LCD) de-
vices or active matrix organic light-emitting diode (AMOLED)
display devices. The mobility and gating efficiency clearly play
a key role in maximizing the drive capability per nanowire. In
order to achieve the drive current levels required for applications
such as microwave circuits or display drivers, it will be nec-
essary to develop approaches in which a number of nanowires
can be integrated within a single device. There are a number
of issues that must be addressed in order to maintain high per-
formance within multinanowire structures. Since wire-to-wire
variations can degrade important performance metrics such as
subthreshold slope and on–off ratios, it is important to develop
and characterize multinanowire FETs in order to understand the
performance characteristics that can be achieved.

In this study, we report the development of FET devices using
multiple Mg-doped ZnO nanorods as the channel material and
SiO as the gate insulator. The on-current is observed to scale
approximately linearly with the number of nanorods within
a device. In addition, on–off ratios improve as the number
of nanorods is increased without degrading the subthreshold
slope and the threshold voltage, indicating good uniformity of
nanorod electrical properties. Investigations of the temperature
dependence of the current–voltage characteristics of the devices
provide insights about the conduction mechanism.

1536-125X/$25.00 © 2007 IEEE
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Fig. 1. (a) Cross-sectional view of SiO -based ZnO nanorod FET device struc-
ture, along with top-view scanning electron micrograph. (b) Top view schematic
of the nanorod FET illustrating that the effective channel length of each nanorod
depends on its orientation.

II. EXPERIMENT

The ZnO nanorods reported here were grown via a vapor
transport method [25] in a horizontal fused quartz tube inside
a tube furnace [25]. The raw material was a mixture of ZnO
(99.999%, Alfa Aesar), graphite carbon powders (99.9995%,
Alfa Aesar) and Mg N (99.6%, Alfa Aesar). Graphite carbon
powders were used to lower the vaporizing temperature of
source material [26]. The substrates were catalyst-patterned
polished amorphous silicon dioxide wafers treated as follows:
First, polished amorphous silicon dioxide wafers (silicon wafers
with 1 m thick amorphous thermal oxide) were cleaned using
piranha solution (1 : 3 conc. hydrogen peroxide; conc. H SO ),
and then the catalyst regions were physically written on the
wafer surface by an iron rod coated with Ni NO solution
[26]. The raw material and the catalyst-patterned substrates
were loaded into a fused quartz boat with a separation of
11–16 cm, and the boat was placed into the quartz tube, with
the raw material located at the center (highest temperature zone)
of the tube furnace. The furnace was heated under a steady flow
of argon (ultrahigh purity, Airgas) of about 50 standard cubic
centimeters per minute (sccm). When 930 C was reached, the
temperature was kept constant for 5–8 h. The furnace was then
switched off and allowed to cool to room temperature quickly.
A representative field emission scanning electron microscopy
(FESEM, Hitachi S-4500 cFEG SEM) image of the as-grown
ZnO nanorods reveals that the ZnO nanorods are uniform, with
smooth surfaces, and diameters ranging from several tens of
nanometers to 300 nm.

Mg-doped multiple ZnO nanorod FETs devices were fabri-
cated on a 60 nm-thick thermally grown SiO layer used as
the gate insulator. A heavily doped n-type Si substrate

-cm was used as a back gate. Fig. 1 shows the cross
section of the SiO -based ZnO nanorod FET device. The ZnO
nanorods were dispersed in very large scale integrated circuit
(VLSI) grade 2-propanol, and transferred onto the SiO gate
insulator after completely cleaning the SiO surface. The av-
erage diameter and length of ZnO nanorods in this study is
300 nm and 5 m, respectively. Aluminum source/drain con-
tacts (150 nm) were deposited by e-beam evaporation (deposi-
tion rate s). Interdigitated source/drain electrodes were
used to contact a number of nanorods in parallel within each de-
vice. Devices were observed with 1–22 nanorods in the channel
region without overlap between the ZnO nanorods. The number

Fig. 2. Drain current versus gate-source voltage (I -V ) for three single ZnO
nanorod FETs.

of nanorods within a device was determined by imaging in a
Hitachi S-4800 FESEM following electrical characterization. In
order to protect the nanorods from H O, O , and N ambient,
the devices were passivated with SiO (300 nm) before elec-
trical characterization. Electrical measurements were performed
using a Keithley 4200 semiconductor characterization system.
Variable temperature measurements were performed in vacuum
using a MMR variable temperature probe station. The tempera-
ture was swept from 300 K to 180 K with 25 K step.

III. RESULTS AND DISCUSSION

The characteristics of FETs containing single nanorods were
initially studied. Fig. 2 shows the measured drain current versus
gate voltage characteristics for three FETs, each containing
a single Mg-doped ZnO nanorod. The devices display drain
current versus gate voltage - characteristics which are
typical of n-type FETs. The substitution of O by Mg should
result in acceptor doping, so the Mg-doped nanorods should
yield p-channel conduction, or at least less efficient n-channel
conduction. However, n-type conduction was observed in
our study. It is possible that the Mg dopant may contribute
to n-type semiconductor characteristics during ZnO nanorod
growth [27]. It should also be noted that oxygen vacancies act
as donors in ZnO, and may account for the n-channel behavior.
For comparison, nonintentionally doped ZnO nanorod FETs
have also been fabricated, and show low conductivity ( 1 nA
at V, V) compared with Mg-doped ZnO
nanorods. ( 0.6 A at , ).

In order to understand the conduction mechanisms in these
devices, the temperature-dependent - and the drain
current versus drain-source voltage - characteristics
of a single ZnO nanorod FET were measured at temperatures
ranging from 275 K to 200 K in 25 K steps and an Arrhenius
plot (Fig. 3) was generated at V. The linear charac-
teristic confirms the validity the relationship
between current and thermal energy. The extracted activation
energies at three different gate biases ( 1, 0, and 1 V)
are 0.16, 0.08, and 0.05 eV, respectively. The activation energy
is very low (0.05 to 0.16 eV) at gate voltages both above and
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Fig. 3. Arrhenius plot of a single ZnO nanorod FET.

Fig. 4. Drain current versus drain-source voltage (I -V ) characteristics
ZnO nanorod FETs containing: (a) a single nanorod, (b) 9 nanorods, and
(c) 20 nanorods.

below threshold. The electron affinity of ZnO, , is 4.29 eV,
yielding an effective work function eV for mod-
erately doped n-type material. Based on the work function of
Al eV , it is expected that aluminum source/drain
contacts form relatively low barrier height interfaces to n-type
ZnO. For a FET with low-barrier source/drain contacts, the
electron barrier height should be small in the “on” region,
and positive gate bias should decrease , whereas negative
gate bias should increase . These trends are consistent with
the trends in extracted activation energy values.

The - characteristics of representative multiple
SiO -based ZnO nanorod FETs m are shown in

Fig. 5. Drain current versus gate-source voltage (I -V ) for ZnO nanorod
FETs with indicated number of nanorods. (1, 5, 9, and 20 nanorods). (a) linear-
scale drain current. (b) Log-scale drain current.

Fig. 4(a)–(c). For the single-nanorod device [Fig. 4(a)], the
on-current is A at V, V. The
9-nanorod device [Fig. 4(b)] and 20-nanorod device [Fig. 4(c)]
show on-currents of 7.0 A (at V, V)
and 20.0 A (at V, V), respectively.
The devices exhibit typical long-channel FET behavior, with
clear saturation in the drain current, and do not reflect behavior
associated with contact resistance limited current.

Fig. 5 shows the - characteristics for representative
single and multiple ZnO nanorod FET devices, with the current
axis shown on a linear scale in Fig. 5(a) and a log scale in
Fig. 5(b). SiO -based ZnO nanorod FETs composed of 1, 5, 9,
and 20 nanorods exhibited on-currents at V of 0.094,
0.43, 0.64, and 1.8 A, respectively. The measured off-currents
of the devices remain around 4 10 A which is found
to be approximately constant for various devices and is a lower
limit of the current measurement apparatus, yielding on–off
ratios varying from 10 for the single-nanorod device to

10 for the device with 20 nanorods. The devices with 1,
5, 9, and 20 nanorods have field-effect mobilities of 12,
14, 11, and 13 cm V-s, and subthreshold slopes of 900, 300,
250, and 300 mV/dec. The values are calculated using
the capacitance estimated using the cylinder over plate model,
multiplied by the number of nanowires in a given device.
The observation that the subthreshold slope does not degrade
with increasing number of nanorods, along with the scaling
of on-currents, indicates good uniformity of device properties
from nanorod to nanorod. Specifically, variations in threshold
voltage would be expected to smear out the near-threshold
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Fig. 6. Measured on-current and off-current of nanorod transistors versus
number of nanorods (1, 5, 8, 9, 10, 20, and 22 nanorods). Dashed lines for
on-current is a result of theoretical calculations [28] and the error bar is
corresponding theoretical prediction of the variation in current purely based
on random nanorod orientations, but there could be some more effects causing
additional variation in current.

characteristics, resulting in a poorer subthreshold slope. In ad-
dition, significant variations in threshold voltage from nanorod
to nanorod would result in different effective gate potentials
in each wire, which would yield on-currents that did not scale
with the number of nanorods. The threshold voltages of the
devices using 5 nanorods, 9 nanorods, and 20 nanorods are
comparable V . The transfer curve of the single
nanorod transistor is not a scaled version of the transfer curves
for the transistors containing 5, 9, and 20 nanorods; this may
be due to the effects of defects or interface traps. Furthermore,
the interface traps present at the gate oxide–nanorod interface
degrade the device subthreshold slope [28], so we anticipate
that the subthreshold characteristics can be improved further
by modifications in processing conditions.

With these results, we can observe that the transistor charac-
teristics improve as the number of nanorods is increased. These
results indicate that multiple nanorod ZnO nanorod FETs can
be used for devices which require high on-currents while main-
taining high on–off ratios. Fig. 6 displays the measured on-cur-
rents and off-currents versus the number of nanorods (1, 5, 8,
9, 10, 20, and 22) within the device. The dashed line shows the
result of theoretical calculations where the absolute value of cur-
rent per unit length of tube is scaled to fit the experimental data.
The theory shows that the on-currents of the devices scale ap-
proximately linearly with the number of nanorods, meaning that
each wire contributes a comparable amount to the device con-
ductance. The on-currents of the devices are observed to linearly
increase with the number of nanorods, but the off-currents of
the devices remain at approximately 4 10 . The reason that
the on-current level is not exactly proportional to the number
of nanorods can be associated with variations of conductivity
and threshold voltage from nanorod to nanorod, or with pos-
sible high-resistance contacts to a fraction of the nanorods. The-
oretically some variation is also introduced in the drain current
by statistical variations in the orientation of the nanorods in the
channel, as shown in Fig. 1(b). For a nanorod aligned to the
channel axis (perpendicular to source/drain boundary), the ef-
fective channel length (the length intercepted by source/drain)
is smaller and current is higher than a nanorod making an angle

Fig. 7. Simulated number of nanorods versus drain current for nanorod length
of LR = 10 �m and channel length of LC = 1, 2, 4, 6 �m. The drain current is
inversely proportional to nanorod length. The variation of current for any given
channel length is purely due to the different orientations of the nanorods with
respect to channel axis.

with the channel axis. Analytical calculations can be used to cal-
culate an expected distribution for the number nanowires corre-
sponding to a given current level, assuming that all the nanorods
are randomly arranged on the substrate [29]. Fig. 7 shows the
number of nanorods versus current for nanorod length of

m and various channel lengths. Note that the maximum cur-
rent is inversely proportional to the channel length. Based on
the relatively small variation in the drain current observed in
this study, it appears that a large portion of the nanorods are
oriented close to perpendicular to the channel [29, Fig. 7]. The
figure shows that about 90 of the nanorods that bridge
source/drain are within 15 of the maximum current. The
error bar in the on-current of Fig. 6 shows the variation intro-
duced by orientation for multiple nanorods.

The development of devices in which the on-current levels
can be controlled by increasing the number of nanorods, while
still maintaining good uniformity in subthreshold slope and
off-currents, also provides the ability to realize transistors with
varying current drive capabilities. Although the increments
in on-current level for the nanorod transistors are discrete
(corresponding to the integer number of nanorods), this control
provides a capability comparable to width scaling of conven-
tional transistors. The current devices are not optimized for
high speed operation, but the development of devices with
sufficiently low parasitic capacitances to allow GHz operation
appears feasible.

IV. CONCLUSION

Mg-doped multiple ZnO nanorod FETs with SiO as a gate
insulator were demonstrated to achieve higher on-currents
without significant degradation in on–off ratio, in threshold
voltage shifts, or in subthreshold slopes. Mg doping provides
more robust n-type conduction than is observed in nominally
undoped devices. This is believed to correspond to the doping
effects of Mg, which may induce a net donor density in spite
of the fact that Mg substitution for O would result in acceptor
doping. Increasing the number of nanorods significantly in-
creased current level in ZnO nanorod FETs without sacrificing
the low-voltage operation. These results indicate that the low
on-current deficiencies of nanorod devices can be corrected
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by using multiple ZnO nanorod FET devices. It demonstrates
that multiple ZnO nanorod FETs can be adapted as driving
transistors and switching transistors for display applications.
In addition, current–voltage measurements at different temper-
atures (300 K–180 K, 25 K step) of SiO -based single ZnO
nanorod FETs show low activation energies, reflecting low
barrier injection from the contacts to the channel.
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