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On Finite-time Stabilization via Relay Feedback Control

Andrey Polyakov and Laurentiu Hetel

Abstract— The problem of finite-time stabilization of multi-
input linear system by means of relay feedback is considered.
A new control design procedure, which combines convex em-
bedding technique with implicit Lyapunov function method,
is developed. The issues of practical implementation of the
obtained implicit relay feedback are discussed. Theoretical
result is supported by numerical simulation.

I. INTRODUCTION

Theory of relay automatic control systems has a long
outstanding history. Relay feedbacks appeared in the early
technological developments of the 19th century. However, the
first theoretical study of relay control methods was provided
in 1950s [1], [2]. The modern frequency domain approach
to analysis of the relay systems can be found in [3]

When the sliding mode control methodology [4] was
invented, it suggested to utilize a proper fast relay switching
strategy in order to maintain the motion of the control
system on a prescribed surface in the state space. Indeed,
the classical example of the sliding mode system has the
form of relay feedback:

ẋ(t) = − sign[x(t)], t > 0, x(0) = x0 ∈ R,

where the sign function is defined as follows: sign[ρ] = 1
if ρ > 0 and sign[ρ] = −1 if ρ < 0. Any trajectory of
this system reaches the state x = 0 in a finite time and
remains thereafter. In fact, finite-time stability frequently
accompanies the relay and sliding mode feedback systems
[4], [5], [6], [7]. The main application domains of sliding
mode approach are electrical and electro-mechanical systems
[4], [8].

The modern theoretical framework of hybrid dynamical
systems [9], [10] includes the relay feedbacks as a particular
case of switched affine systems [11], [12], [13], [14]. Re-
cently, the ideas of convex embedding have been applied in
order to design an exponentially stabilizing relay switching
law based on the existence of a stabilizing static linear
feedback [15]. The present paper addresses the finite-time
stabilization of linear multi-input system using relay control.
The main goal of the article is to show how the convex
embedding procedure can be used with the implicit Lyapunov
function method [16], [17], [18] in order to derive a finite-
time stabilizing relay feedback.

The paper is organized as follows. The next section
presents notations used in the paper. After that, the prob-
lem statement and basic assumptions are discussed. Some
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preliminary facts are considered in Section IV. Next, the
main results are presented. Finally, numerical simulation
example and concluding remarks are given. Some supporting
constructions are provided in Appendix.

II. NOTATION

• R is the set of real numbers; R+ = {x ∈ R : x > 0};
• ‖x‖ denotes the Euclidian norm of the vector x ∈ Rn;
• range(B) is the column space of the matrix B ∈ Rn×m;
• diag{λ1, ..., λn} is a diagonal matrix with elements λi;
• the order relation P > 0(< 0,≥ 0,≤ 0) for P ∈

Rn×n means that P is symmetric and positive (negative)
definite (semidefinite);

• if P > 0 then the matrix P 1/2 := B is such that B2 =
P ;

• λmax(P ) and λmin(P ) denote maximum and minimum
eigenvalues of the symmetric matrix P ∈ Rn×n;

• Im ∈ Rm×m is the identity matrix;
• a continuous function σ : R+ → R+ belongs to the

class K if it is monotone increasing and σ(s)→ +0 as
s→ +0;

• co(U) is the convex closure of the set U ⊂ Rn; int{U}
denotes the interior of the set U .

III. PROBLEM STATEMENT

Let us consider a model of a control system described by
the ordinary differential equation (ODE):

ẋ(t) = Ax(t) +Bu(t), t ∈ R+, (1)

where x ∈ Rn is the state vector, u ∈ Rm is the vector of
control inputs, A ∈ Rn×n is the system matrix, B ∈ Rn×m
is the matrix of control gains.

It is assumed that the matrices A and B are known,
rank(B) = m ≤ n and the pair (A,B) is controllable; the
whole state vector x can be measured and utilized for control
purpose. The control input u is assumed to be generalized
relay, i.e. it can take values from a given discrete set:

u(t) ∈ U := {v1, v2, ..., vN} , vi ∈ Rm, t ∈ R+, (2)

where N is a natural number. In addition, the assumption

0 ∈ int{co(U)} ⊂ Rm (3)

is possessed in order to guarantee the existence of the
stabilizing relay control (see, [15] for the details). As we
will see further, this configuration includes as a particular
case the classical sliding control generated by sign functions.
This control configuration may also be related to the simplex
method in [19], [20] and to the stabilization of switched
affine systems [12], [13]. Filippov theory of differential



equations with discontinuous right-hand sides [21] is utilized
below in order to take into account the discontinuity of the
control law.

The control aim is to stabilize the origin of the system
(1) in a finite time and to specify the corresponding set of
admissible initial conditions (i.e. the domain of finite-time
attraction).

Following the ideas of [15] the relay stabilizing control
law can designed in two steps. Initially, some continuous
finite-time stabilizing feedback should be selected. For this
purpose the method of the Implicit Lyapunov Functions
(ILF) is utilized [16], [17], [18], [22]. Next, a proper convex
embedding procedure [15] is applied in order to construct
the relay switching law in the form

u(t) ∈ ur(x(t)) = argmin
v∈U

ΓT (t, x(t))v, (4)

where Γ : Rn+1 → Rm is a continuous (outside the
origin) nonlinear function to be defined. The inclusion in
(4) indicates that argmin is not unique in general case.
In particular, if m = 1 and U = {−1, 1} then ur(x) =
−sign[Γ(x)] similarly to the sliding mode control [4], where

sign[ρ] =

 1 if ρ > 0,
−1 if ρ < 0,
{−1, 1} if ρ = 0.

Note that in order to define the control input at the current
state x(t) according to the formula (4) we just need to
find the minimum of ΓT (x(t))v over finite set of values
v ∈ U . This operation does not need applying any finite
or infinite dimensional optimization procedure. We just need
to calculate N scalar products ΓT (x(t))vi, i = 1, . . . , N
and select the minimum.

IV. PRELIMINARIES

A. Finite-Time Stability

Let us consider the system of the form

ẋ(t) = f(x(t)), x(0) = x0, t ∈ R+, (5)

where x ∈ Rn is the state vector, f : Rn → Rn is
a nonlinear discontinuous (but locally measurable) vector
field. Let Filippov procedure be applied for regularization
of the discontinuous ODE, i.e by definition, an absolute
continuous function x(·, x0) is a solution to the Cauchy
problem associated to (5) if x(0, x0) = x0 and almost
everywhere it satisfies the differential inclusion

ẋ ∈ F (x) =
⋂
δ>0

⋂
µ(N)=0

co f(x+B(δ)\N), (6)

where µ(N) = 0 means that a set N ⊂ Rn has measure 0.
Let the origin be an equilibrium point of the system (5),

i.e. 0 ∈ F (0). Only strong uniform stability properties of the
system (5) are studied in the this paper, so the corresponding
words ”strong uniform” will be omitted below for shortness
and simplicity of the presentation.

Definition 1 ([23], [24], [5]): The origin of system (5) is
said to be finite-time stable if it is asymptotically stable and

finite-time attractive, i.e. for any x0 ∈ M\{0} there exists
T (x0) ∈ R+ such that x(t, x0) = 0 for all t ≥ T (x0),
where M is a neighborhood of the origin and T is called
the settling-time function of the system (5). IfM = Rn then
the origin is globally finite-time stable.

B. Implicit Lyapunov Function Method

The next theorem is utilized below in order to design the
feedback law.

Theorem 2: [18] If there exists a continuous function Q :
R+ × Rn → R that satisfies the conditions

C1) Q is continuously differentiable in R+ × Rn\{0};
C2) for any x ∈ Rn\{0} there exist V ∈ R+ such that

Q(V, x) = 0;
C3) let Ω = {(V, x) ∈ R+ × Rn : Q(V, x) = 0} and

lim
x→0

(V,x)∈Ω

V = 0+, lim
V→0+

(V,x)∈Ω

‖x‖ = 0, lim
‖x‖→∞
(V,x)∈Ω

V = +∞;

C4) the inequality ∂Q(V,x)
∂V < 0 holds for all V ∈ R+ and

x ∈ Rn\{0};
C5) there exist c ∈ R+ and µ ∈ (0, 1] such that

sup
t∈R+,y∈K[f ](t,x)

∂Q(V, x)

∂x
y ≤ cV 1−µ ∂Q(V, x)

∂V
, (V, x) ∈ Ω;

then the origin of system (5) is globally finite time stable with
the following settling time estimate: T (x0) ≤ V µ0

cµ , where
V0 ∈ R+ : Q(V0, x0) = 0.
Theorem 2 provides the sufficient conditions of finite-time
stability for implicit definition of Lyapunov function. The
conditions C1)-C4) guarantee existence and uniqueness of
a continuously differentiable (outside the origin) positive
definite radially unbounded function V : Rn → R+, which is
implicitly defined by the equation Q(V, x) = 0. The implicit
function theorem [28] gives

∂V

∂x
= −

[
∂Q

∂V

]−1
∂Q

∂x
.

Due to conditions C4), C5) the estimate

V̇ (x) ≤ sup
y∈F (x)

∂V

∂x
y ≤ −cV 1−µ

implies the finite-time stability of the origin of (5).
Corollary 3: If the conditions C1)-C4) of Theorem 2 are

fulfilled then the set

ε(V0) = {z ∈ Rn : Q(V0, z) ≤ 0} (7)

is the V0-level set {s ∈ Rn : V (s) ≤ V0} of the positive
definite function V : Rn → R+ implicitly defined by the
equation Q(V, s) = 0.

Proof: Indeed, if s̃ ∈ Rn is such that V (s̃) = α, where
α ∈ R+ then Q(α, s̃) = 0, i.e. s̃ ∈ ε(α, P ). The condition
C4) implies that Q(V ′, s̃) < 0 (i.e s̃ ∈ ε(V ′)) for any V ′ > α
and Q(V ′′, s̃) > 0 (i.e. s̃ /∈ ε(V ′)) for any V ′′ < α.

Corollary 3 allows us to adapt Theorem 2 to local finite-
time stability analysis possessing the condition C5) locally,
i.e. 0 < V < V and x ∈ ε(V ) for some given V ∈ R+. In
this case the level set ε(V ) specifies the finite-time attraction
domain M (see Definition 1).



V. IMPLICIT RELAY FEEDBACK LAW

A. Block Decomposition

Let us initially decompose the original multi-input system
(1) to a block form [25]. The block decomposition procedure
studied in [26], [22] is briefly discussed in Appendix. It
constructs the non-singular coordinate transformation

s = Θx (8)

reducing the original system (1) to the block form

ṡ(t) = Ãs+ B̃(u+Klins), (9)

where Klin ∈ Rm×n is a rectangular matrix,

Ã=


0 A12 ... 0
... ... ... ...
0 ... ... Ak−1 k

0 ... ... 0

, B̃=


0
...
0

Akk+1

∈Rn×nk , (10)

Ai i+1 ∈ Rni×ni+1 are matrices of full row rank, i =
1, 2, .., k, n1 + ... + nk = n, nk = m and B0 ∈ Rm×m
is a nonsingular matrix.

B. Relay Feedback Design

Introduce the ILF function

Q(V, s) := sTDr(V
−1)PDr(V

−1)s− 1, (11)

where s = (s1, ..., sk)T , si ∈ Rni , V ∈ R+, Dr(λ) is the
dilation matrix of the form

Dr(λ) =


λr1In1

0 ... 0
0 λr2In2

... 0
... ... ... ...
0 ... 0 λrkInk

 , (12)

with

λ ∈ R+, ri = 1 + (k − i)µ, i = 1, 2, .., k, 0 < µ ≤ 1

and P ∈ Rn×n is a symmetric positive definite matrix, i.e.
P = PT > 0. Denote Hµ := diag{riIni}ki=1 – the block
diagonal matrix.

Theorem 4: Let µ ∈ (0, 1), X ∈ Rn×n and Y ∈ Rnk×n
satisfy the system of matrix inequalities:

ÃX +XÃT + B̃Y + Y T B̃T +HµX +XHµ = 0,

XHµ +HµX > 0, X > 0.
(13)

Consider V : Rn → R+ implicitly defined by the equation
Q(V, s) = 0 and the function Q given by (11) with P :=
X−1. Then the control of the form (4) with

ΓT (x) = xTΘTDr

(
1

V (Θx)

)
PDr

(
1

V (Θx)

)
B̃, (14)

locally stabilizes the origin of the system (1) in a finite time.
The settling-time function is bounded as follows

T (x0) ≤ V µ0
µ
, ∀x0 ∈ ε(V ) (15)

where V0 ∈ R+ : Q(V0,Θx0) = 0, the set ε(V ) is the
finite-time attraction given by (7) with a positive V ∈ R+:

V = sup
V ∈R+:ε(V )⊂CU

V,

CU=
{
z ∈ Rn : V 1−µ(Θz)YP−1Dr

(
V −1(Θz)

)
Θz ∈ co(U)

}
.

The system of matrix inequalities (13) can be easily solved
using LMI toolbox of MATLAB or, for example, SeDuMi
solver. The solution of (13) also can be constructed analyti-
cally using the proof (see, [22]) of the next proposition.

Proposition 5 ([22]): The system of matrix inequalities
(13) is feasible for any µ ∈ R+.

VI. PRACTICAL IMPLEMENTATION

In order to realize the control algorithm (4), (14) in
practice we need to know V . In some cases the function
V can be calculated analytically. See, for example [27],
where the analytical derivation has been provided for the case
n = 2,m = 1. The function V can also be approximated
numerically on a grid, which is constructed in the finite-
time attraction domain ε(V ). Finally, the relay control law
(4) can be applied by means of on-line estimation of V . The
following corollary may be utilized for this purpose.

Corollary 6: If
1) the conditions of Theorem 4 hold;
2) {ti}+∞i=0 is an arbitrary sequence of time instances such
that 0 = t0 < t1 < t2 < ... and limi→+∞ ti = +∞;
3) the relay control ur has the form (4) with the sampled
computation of the switching function Γ(t, x) = Γ̃i(Θx) for
t ∈ [ti, ti+1), where

Γ̃Ti (s) = sTDr(V
−1
i )PDr(V

−1
i )B̃, Q(Vi, s(ti)) = 0.

Then the closed-loop system (1), (4) is globally asymptoti-
cally stable.

The corollary shows that if a the switching function is
re-computed only at a countable number of time instants
ti, then the asymptotic stability of the closed loop system
is guaranteed. In practice, the estimation of the switching
parameter Vi can be obtained using the following algorithm
[22].

Algorithm 7:
INITIALIZATION: V0 = 1; a = Vmin; b = 1;
STEP :
If sTi Dr(b

−1)PDr(b
−1)si > 1 then a = b;b = 2b;

elseif sTi Dr(a
−1)PDr(a

−1)si < 1 then
b = a; a = max{a2 , Vmin};

else
c = a+b

2 ;
If sTi Dr(c

−1)PDr(c
−1)si < 1 then b = c;
else a = max{Vmin, c};

endif;
endif;
Vi = b;
If si ∈ Rn is some given vector and STEP of the presented

algorithm is applied recurrently many times to the same si
then Algorithm 7 realizes:

1) a localization of the unique positive root of the equation
Q(V, si) = 0, i.e. Vi ∈ [a, b];

2) improvement of the obtained localization by means of
the bisection method, i.e. (b− a)→ 0.



Such an application of Algorithm 7 allows us to calculate
Vi with rather high precision but it requests a high compu-
tational capability of a control device. If the computational
power is very restricted, then STEP of Algorithm 7 may be
realized just once at each sampled instant of time. Indeed,
in the proof of Corollary 6 we show that the ellipsoid ε(Vi)
is an invariant set of the closed-loop system (1), (4) with
Γ(x) = Γ̃i(Θx). If the root of the equation Q(V, si) = 0
is localized, Algorithm 7 always selects the upper estimate
of Vi providing that s(ti) ∈ ε(Vi), i.e. Vi do not increase in
time.

The parameter Vmin defines lower admissible value of
V . In practice, this parameter cannot be selected arbitrary
small due to finite numerical precision of digital devices
and measurement errors, which may imply s(ti) /∈ ε(Vi).
Therefore, the real-life realization of the relay control may
provide the only practical stabilization of the system with
the attractive set ε(Vmin).

VII. ACADEMIC EXAMPLE

Let us consider the system (1) with

A =

 0 1 −0.5
1 −0.3 0.9

0.5 0 0.7

 , B =

 0 0
0.5 0
0 1


and U = {v1, v2, v3},

v1 =

(
0√
3

3

)
, v2 =

(
0.5

−
√

3
6

)
, v3 =

(
−0.5

−
√

3
6

)
.

The considered system already has the required block form
(9) with B̃ = B

Ã =

 0 1 −0.5
0 0 0
0 0 0

 ,Klin =

(
2 −0.6 1.8

0.5 0 0.7

)
.

The solution to the LMI (13) was obtained for µ = 0.999:

X =

 0.0109 −0.0109 0.0218
−0.0109 0.0374 0.0206
0.0218 0.0206 0.1496

 ,

Y =

(
0.0114 −0.0748 −0.0412
−0.0112 −0.0207 −0.1496

)
.

The relay control (4) with Γ of the form (14), P = X−1

is applied using the algorithm 7 with Vmin = 10−3. The
explicit Euler discretization with the step size 10−3 is utilized
for the numerical simulation. The trajectories are depicted on
Fig. 1.

The upper estimate of the settling time (15) gives 1.4734.
The simulation confirms this.

The numerical simulation (see Fig. 2) shows fast control
switchings approving the expectable fact that the finite-
time stabilization by means of the relay control implies
appearance of sliding mode in the closed-loop system.
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Fig. 1. Evolution of the system states of the closed-loop system
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VIII. CONCLUSION

The paper presents relay feedback control algorithm for
stabilization of linear multi-input system provided non-
asymptotic transitions. The control design procedure com-
bines the ILF method and convex embedding technique.
This approach allows us to provide simple procedure for
implicit switching surface design using LMIs. The algorithm
of practical implementation of the obtained implicit relay
feedback is also presented and justified. The robustness
analysis of the proposed control scheme is considered as
the subject for future research.
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IX. APPENDIX

A. Transformation to Block Form

Let us denote by rown(W ) the number of rows of a matrix
W and by null(W ) the matrix that has the columns defining
an orthonormal basis of the null space of a matrix W .

Let the orthogonal matrices Ti be defined by the following
simple algorithm:
Initialization : A0 = A, B0 = B, T0 = In, k = 0.
Loop: While rank(Bk) < rown(Ak) do

Ak+1 = B⊥k Ak
(
B⊥k
)T
, Bk+1 = B⊥k AkB̂k,

Tk+1 =

(
B⊥k
B̂k

)
, k = k + 1,

where B⊥k =
(
null(BTk )

)T
, B̂k =

(
null

(
B⊥k
))T

.

In the paper [26] it was proven that the orthogonal matrix

G=
(
Tk 0
0 Iwk

)(
Tk−1 0

0 Iwk−1

)
...

(
T2 0
0 Iw2

)
T1,

where wi := n− rown(Ti)
(16)

provides

GAGT=


A11 A12 0 ... 0
A21 A22 A23 ... 0
... ... ... ... ...

Ak-1 1 Ak-1 2 ... Ak-1 k-1 Ak-1 k
Ak1 Ak2 ... Akk−1 Akk

 ,

GB =
(

0 0 ... 0 ATk k+1

)T
,

where Ak k+1 = B̂0B0, Aij ∈ Rni×nj , ni := rank(Bk−i),
i, j = 1, 2, ..., k and rank(Ai i+1) = ni.

Recall that the B has full column rank (rank(B) =
m). Consequently, Ak k+1 is square and nonsingular. Since
rank(Ai i+1) = ni = rown(Ai i+1) then Ai i+1A

T
i i+1 is

invertible and A+
i i+1 = ATi i+1(Ai i+1A

T
i i+1)−1 is the right

inverse matrix of Ai i+1. Introduce the linear coordinate
transformation s = Φy, s = (s1, ..., sk)T , si ∈ Rni ,
y = (y1, ..., yk)T , yi ∈ Rni by the formulas:

si = yi + ϕi, i = 1, 2, ..., k, ϕ1 = 0,

ϕi+1 = A+
i i+1

(
i∑

j=1

Aijyj +
i∑

r=1

∂ϕi
∂yr

r+1∑
j=1

Arjyj

)
.

(17)

The presented coordinate transformation is linear and non-
singular. The inverse transformation y = Φ−1s is defined as
follows:

yi = si + ψi, i = 1, 2, ..., k, ψ1 = 0,

ψi+1 = A+
ii+1

 i∑
k=1

∂ψi
∂sk

Aii+1sk+1 −
i∑

j=1

Aij(sj + ψj)

 .

For example, if k = 3 then the matrix Φ has the form

Φ=

 In1
0 0

A+
12A11 In2 0

A+
23(A21+A+

12A
2
11) A+

23(A22+A+
12A11A12) In3

 .

In general case, the transformation Φ can be calculated
numerically.

Applying the transformation s = Θx with Θ = ΦG to the
system (1) we obtain the system

ṡ =


0 A12 ... 0
... ... ... ...
0 ... ... Ak−1 k

Ãk1 ... ... Ãkk

 s+ B̃u,

which is equivalent to (9) with

Klin = B+
0

(
Ãk1 ... ... Ãkk

)
(please see [26] for more details).


