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ABSTRACT 

In this paper we propose a new class of output feedback variable structure controll- 

ers and state estimators (observers) for uncertain dynamic systems with hounded uncer- 

tainties. No statistical information about the uncertain elements is assumed. A vari- 

able structure systems (VSS) approach together with the geometric approach to the 

analysis and synthesis of system zeros are employed in the synthesis of the proposed 

output feedback controllers and state estimators. The role of system zeros in the out- 

put feedback stabilization and state estimation, using the VSS approach, is discussed. 

Numerical examples included illustrate the feasibility of the proposed stabilization and 

state estimation schemes. 

1. INTRODUCTION 

An important problem in control theory is the control of incompletely modeled 

dynamical systems. Therefore the process of modeling must be incorporated into the 

controller synthesis process. Hence a fundamental issue in controller design is robust- 

ness of the desired system behavior with respect to the modeling uncertainty. For 

example one common criterion is stability robustness, that is, closed-loop stability under 

plant parameter variations and neglected dynamics. In many cases, the statistical char- 

acterization of the uncertainties and/or nonlinearities in the plant dynamics is not 

available or prohibitively expensive to assess. However, bounds on the uncertainties 

may be known. In such cases a deterministic approach to controller synthesis is viable. 

The theory of variable structure systems (VSS) [2,3,5,18,19,20,21,22] can be used 

for the design of feedback control laws for uncertain dynamical systems. VSS theory 

rests on the concept of changing the structure of the controller in response to the chang- 

ing state of the system in order to obtain a desired response. This is accomplished by 

the use of a high speed switching control action which forces the trajectory of the sys- 

tem onto a chosen manifold in the state space, where it is maintained thereafter. The 



system is insensitive to certain parameter variations and disturbances while the trajec- 

tory is on the manifold. In particular, one can show that variable ~truct~ure controllers 

are robust with respect to the so-called matched uncertainties/disturbances. The vari- 

able structure systems approach has been especially successful in the design of state 

feedback controllers and stable and robust tracking control ([2,3,5,18,19,21,22,23]). 

Note that if only the output y is accessible, then one needs to utilize output feedback 

(see (11 and [8] for output feedback control schemes for linear systems without uncer- 

tainties) or construct a state estimator (observer) which estimates the state vector x. 

White [23], [24] studied the use of output feedback in variable structure systems with no 

uncertainties for a class of controllers. Asymptotic state estimators which approxi- 

mately reconstruct the state vector for linear systems without uncertainties were 

presented by Luenberger ([Ill, [12]). A combination of Luenberger's ideas of asymptotic 

state estimation and techniques prevalent in the deterministic approach. to control of 

uncertain systems led to a new type of observer for nonlinear and/or uncertain dynami- 

cal systems ~LF reported by Walcott and ~ a k  in [20]. Alternative approaches to state 

estimation of nonlinear and/or uncertain systems are reviewed by Misawa and Hedrick 

in [16]. In this paper we use the VSS approach and the geometric approach to the 

analysis and synthesis of system zeros in the output feedback control and state estima- 

tion synthesis. A synergism of the above mentioned approaches allows one to synthesize 

a new class of robust output feedback controllers and state estimators. 

2. SYSTEM DESCRIPTION AND NOTATION 

We consider a class of uncertain dynamic systems modeled by the following equa- 

tions 



k(t) = Ax(t) + B[u(t) + [(t)] , (2.1) 

~ ( t )  = Cx(t) , (2.2) 

where x(t) E lRn is the n-dimensional state vector, u(t) E lRm, y(t) E lRP, and the con- 

stant matrices A, B, and C are of appropriate dimensions. The vector [(t) represents 

the lumped nonlinearities and/or uncertainties of our system. For the ensuing discus- 

sion we will assume the following to be valid: 

A.1. There exists a known nonnegative scalar function p(*,*):lR x IRP -. IR such that 

I I E(t) l l 5 p(t,y(t)) , 

where 1 1  1 I denotes standard Euclidean norm. 

A.2. The pair (A,B) is controllable and the pair (A,C) is observable with the matrices 

B and C being of full rank. 

A.3. p 2 m, that is, the number of output channels is greater than or equal to the 

number of inputs, and rank (CB) = m. The case when rank(CI3) < m is dis- 

cussed in Section 6 of the paper. 

3. BACKGROUND RESULTS 

This section contains some preliminary results related to state feedback which are 

critical to our discussion of output feedback stabilization control. 

3.1 Discussion of System Dynamics on the Switching Surface 

Recall that a variable structure control uses a switching control strategy to drive 

the plant trajectory onto a prespecified switching surface in the state space and main- 

tains the trajectory on this surface for all subsequent time. A trajectory confined to 

such a switching surface is said to be in a sliding mode and system performance is insen- 

sitive to matched disturbances. 



The design of a variable structure control consists of two steps: 

i) The design of the switching surface. The surface is chosen so that the system 

satisfies certain performance specifications, such as asymptotic stability, while on 

the surface. 

ii) The design of the control strategy to steer the state trajectory to the switching sur- 

face. 

In this paper we use switching surfaces of the form {x I Sx = 0) where S E IRmXn. 

We also use Sx = 0 to  denote the switching surface. Let a(x) = Sx. Then 

where si E IR1". We say that the system is in a sliding mode if a(x(t)) =0 for t 2 to, 

where x(t) is the state trajectory and to is a specific time. It follows that in a sliding 

mode the velocity 2 is tangent to the switching surface. Equivalently, 

Hence 

We can characterize the system in sliding mode by 

a(x(t)) = 0 and &(x(t)) = 0. 

Consider the plant (2.1), 

Combining (2.1) and (3.3) we have 



SAx + SBu + SBC = 0. 

If SB is nonsingular then (3.5) gives 

u = -  (sB)-' SAx - [ . 

Substituting (3.6) into (2.1) yields 

2 = [I, - B(SB)-IS] A x  . 

The behavior of the system in sliding is therefore governed by 

x = [I, - B(SB)-' s]Ax {iX = 0 

Note that while in sliding the plant is governed by a reduced set of differential equations 

and it is not affected by matched uncertainties. An algorithm for the design of switch- 

ing surface will be given in Section 4.1. 

3.2 Sliding Mode and System Zeros 

Consider the following square system: 

2 =Ax +Bu, 

where 

S E lRmXn, and det(SB) # 0 . 

We form the so-called system matrix corresponding to the plant represented by 

(3.8) and (3.9) 

Note that the system matrix P(X) is a square matrix of order (n+m). Its determinant 

defines the system zeros of the square dynamical system (3.8), (3.9) (see Kouvaritakis 



and MacFarlane [9]). Let z(X) = det P(X). 

The system zeros are invariant under the following set of transformations (MacFar- 

lane and Karcanias [13]): 

(i) nonsingular coordinate transformations in the state space; 

(ii) nonsingular transformations of the inputs; 

(iii) nonsingular transformations of the outputs; 

(iv) state feedback to the inputs; 

(v) output feedback to the rates of change of the states. 

We also have 

z(X) = det(X1 - A)det{S(XI - A)-'B) . 

Hence 

On the other hand (Verghese et a1 [19]): 

det(X1 - A + B(sB)-~ SA) 

Combining (3.11) and (3.12) yields 

det(X1 - A + ~ ( ~ 1 3 ) - '  SA) = de t ( s~ ) - '  Am z(X) . (3.13) 

We thus conclude that the dynamics of the system (3.8), (3.9) in sliding along a = Sx is 

determined by the system zeros of the system represented by the triple (A,B,S). Related 

observations have also been made by Young et a1 1251, El-Ghezawi et a1 [3], and Ver- 

ghese et a1 [19]. This observation leads to the following interpretation of the switching 

surface design. Switching surface design can be viewed as choosing an output matrix S 

so that the system (3.8), (3.9) has a desired set of system zero locations which in turn 



govern the dynamics of the system in sliding along Sx = 0. 

The above interpretation of the switching surface design enables us to use the 

approach and the theory of system zeros as developed by Kouvaritakis and MacFarlane 

[9] to the synthesis of output feedback controllers. 

4. REGULATION VIA OUTPUT FEEDBACK 

In this Section we consider the problem of regulating the states of system (2.1), 

(2.2) to the origin of the state-space via the use of output feedback. 

Suppose we have a system (2.1), (2.2) with p 2 m. Our goal is to design a vari- 

able structure output feedback controller which drives the system trajectory onto a 

prespecified switching surface, a(y) = Fy, maintains the trajectory on this surface and 

forces x to go asymptotically to zero in spite of the presence of uncertainties. In form- 

ing the feedback loop from output to input via the regulator, a "squaring down" process 

([ lo])  is involved. 

4.1. Switching Surface Design 

In this section, we present a procedure for the design of a switching surface Fy = 0 

using only the output variable. This procedure is related to the design of a switching 

surface Sx = 0 for the state variable x via the output equation y = Cx. Examples will 

be given at  the end of the section to illustrate the design procedure. 

We first give necessary and sufficient conditions for the existence of a state switch- 

ing surface on which the nominal system has prescribed eigenvalues. A method for the 

design of a state switching surface is contained implicitly in the proof of the following 

theorem. A more explicit description will be given later. 



Theorem 4.1. 

Suppose we have the nominal system 

k = A x + B u  

y = Cx, 

which satisfies assumptions A.l, A.2, A.3 in Section 2. Then there exits a matrix 

S E IRmm so that 

(1) the system k=Ax+Bu restricted to the surface Sx=O has n-m prescribed 

distinct, nonzero, real eigenvalues {A1 ,..., A,-,). 

(2) SB is nonsingular 

if and only if there exist full rank matrices W E IRnX[n-m), W
g 

E IR(n-m)m so that 

(3) WgW = I ,-,, Wg B = 0, and WgAW = diag{A1, . . . , A,-,). 

Proof: 

(Necessity) Assume conditions (1) and (2). As shown in Section 3.1, the plant 

matrix of the given plant on Sx = 0 is 

(I, - B (sB)-I S)A. 

Let J = diag{A1, . . . , A,-,). Since A1, . . . , A,-, , the eigenvalues of the plant on 

Sx =0, are distinct, there exists a full rank matrix W so that 

(I, - B(SB)-I S)AW = WJ . 

Thus 

Since the Aj's are nonzero, J is nonsingular and we have SW = 0. Heme W is a full 

rank right annihilator of S. Combined with the fact that SB is nonsingular, we have 



Range B fI Range W = (0) . 

Since B, W have full rank and Range B n Range W = 0, the matrix [B i W] is inverti- 

ble. We write its inverse as 

with BgB=Im, BgW =0, WgB =0, and W
g
W =I,-,. Premultiply (4.1) by Wg to 

obtain 

Condition (3) is proved. 

(Sufficiency). Suppose we have (3). Let S EIRmm be a full rank left annihilator 

of W, or equivalently, SW = O  and Sz = O  if and only if z €Range W. We first show that 

SB is nonsingular. Suppose x EIRm and SBx =O. Then by the definition of S, there 

exists y E IRn-m so that Bx = Wy. Hence 

Thus Bx =O. Since B has full rank by assumption, we have x =O. We conclude that SB 

is nonsingular, which is condition (2). The plant matrix on the surface Sx=O is 

[I, -B(sB)-~s]A. It follows from condition (3) and SW = O  that 

[I, - B(SB)-~S]AW - WJ C ker S n ker W
g . 

As before, x E ker S implies that x = Wy for some y. Thus if x E ker S n ker W
g 

we have 

0 = Wgx = W
g
Wy =y. It follows that x =O. Thus ker S n ker W

g 
= (0) and 

[I, - B(SB)-I S]AW = W J  . 

This is equivalent to the fact that X I ,  . . . , A,-, are the eigenvalues of [I, -B(sB)-'S]A 

on the surface Sx = O  since the columns of W span the surface. The proof is complete. 



The above theorem gives precise conditions on the existence of a state switching 

surface. I t  is reasonable to assume that if a state switching surface cannot be designed 

to specifications, then an output switching strategy would be equally impossible. There- 

fore we assume that a state switching surface can be designed on which the nominal sys- 

tem has the desired eigenvalues. 

Clearly if Sx = O  and F satisfies FC = S, then 

defines a switching surface for the output variable y. We will use the solution of FC =S 

in the design of output feedback controllers. 

To complete our design, we need to characterize C and S for which F C  = S is solv- 

able. First we prove the following technical lemma. 

Lemma 4.1. 

Let F1 ,F2  E IRkxe 
be full rank left annihilators of W E IRext .  Then there is 

Q € IRkxk so that  F2 =QF1. 

Proof: 

Since F1, F2 are full rank annihilators, we have ker F1 ==kerF2. Let 

N = ker F l  = ker F2.  Let {el, ..., ej } c d be a basis of N' . Then both {Flel, . . . ,Fie,) 

and {F2el, ..., F2ej ) are linearly independent sets. Define Q by Q(Flei) =lp2ei on F(N' ) 

and Q(x) =x  for x E [F(N' )I' . Clearly Q is well defined and we haye F2 = QFl. The 

proof is complete. 

We can now characterize the systems and corresponding state swit'ching surfaces 

that  can be factored to give an output switching strategy. 



Theorem 4.2. 

Let C ERPm,  W E R ~ ~ [ ~ - ~ )  have full rank. Let S E R m m  be a full rank left 

annihilator of W. Then there exists F ERmXP so that S =FC if and only if rank 

(CW) = p  -m. 

Proof: 

Recall that n 2 p 2 m. Suppose S has full rank and S =FC. Then F must also 

have full rank m. Since F(CW) =SW =0,  we have rank (CW) 5 dimkerF =p  -m. On 

the other hand, by Sylvester's inequality, (Gantmacher [4], p. 66) 

rank (CW) 2 rank C + rank W - n 

Thus we have rank (CW) =p-m. 

Conversely, suppose rank (CW) = p-m. Let E IRmXP be a full rank left annihila- 

tor of CW. Then clearly FC EIRmXn has rank I m. Since F EIRmXP is a full rank left 

annihilator of CW and rank (CW)=p-m, we have rank F=m.  By assumption, 

rank C =p. Thus by Sylvester's inequality: 

rank (Fc) 2 rank F + rank C - p 

Hence rank (Fc) = m  and thus FC is a full rank annihilator of W. Since S is also a full 

rank left annihilator of W, we have by Lemma 4.1 that 

s = ~ ( 6 % )  

for some Q. Let F =QF. The proof is complete. 



We now give an equivalent formulation of condition (3) of Theorem 4.1 which is 

easier to use in practice. 

Theorem 4.3. 

Let B E RnXm, W E I R ~ ~ ( ~ - ~ )  be full rank matrices. The following conditions are 

equivalent: 

(I) Range B fl RangeW = {0), Range (AW - WJ) C Range B 

(2) there exists a full rank matrix Wg SO that WgW=I,-,, WgB=O, and 

W
g
AW = J. 

Proof: 

Assume (1). Then [B i W] is invertible with inverse 

where B
g
B=I,, B

g
W=O, W

g
B=O, and WgW=I,-,. Since WgB=O and 

Range(AW - WJ) CRange B, it follows that W
g
AW = J. Hence (I) implies (2). 

Suppose (2) holds. Let y €Range(AW - WJ). Then y =(AW-WJ)x for some x. 

Thus 

Hence Range(AW -WJ) C ker Wg. Sine W
g 

is a full rank annihilator of B, we have 

Range(AW - WJ) cRange  B. If y ERangeB fl Range W, then y =Bx = Wz. Thus 

z = WgWz = WgBx =O. It follows that y =Wz = O  and RangeB fl Range W = (0). 



The above results lead us to the design method of an output switching surface. We 

know that choosing the desired poles A, ,  . . . ,A,-, of the system in sliding is 

equivalent to choosing the desired system zeros of the "squared-down" plant (A, B, FC). 

In the selection process of X i ,  i =1, ..., n-m, we have to take into account the fact that 

the system zeros of a non-square system are always system zeros of any "squared-down" 

system (MacFarlane and Karcanias [13]). Thus we should obey the following rules 

(Kouvaritakis and MacFarlane [lo]): 

(i) The matrix J must contain among its diagonal elements all the existing sys- 

tem zeros of the system triple (A,B,C) whose outputs are being squared down. 

(ii) No more than n-m-n, new zeros should be specified, where n, denotes the 

number of system zeros of the system represented by the triple (A,B,C). 

Observe that if we have p =m and det(CB) # O  then for any nonsingular F EIRmMn, 

the system zeros of the system (A,B,C) are the same as the system zeros of the system 

(A,B,FC). This is because, as we mentioned in Section 3.2, the system zeros are invari- 

ant under nonsingular transformations of the outputs. Hence, in the case when p =m, 

output regulation also requires that all the system zeros be located in the open left half 

complex plane. 

We can now summarize Theorems 4.1, 4.2, and 4.3 in the following output switch- 

ing surface design algorithm. 

O u t p u t  Switching Surface Design Algorithm 

Given: A, B, C. 

S t e p  1. Check if the finite system zeros of the plant (A,B,C) are in the desired loca- 

tions. If not, modify the input map B and/or output map C so that the systems zeros 

are in the desired locations. 

S t e p  2. Select desired eigenvalues X I ,  . . . ,A,-, and form J=diag{X,, . . . ,A,-,). 



Step 3. Choose a full rank matrix W E I R ~ ~ ( ~ - ~ )  which satisfies: 
' 

a) The columns of AW-WJ are in Range B 

b) Range B n Range W = (0). 

c) rank CW = p - m. 

Step 4. Find a full rank F EIRmXP such that FCW = 0. 

Form output switching surface: Fy = 0. 

We now illustrate the design algorithm with two examples. 

Example 4.1. 

Consider the following plant model 

We use the algorithm to design an output switching surface. 

Step 1. We use the technique proposed by Kouvaritakis and MacFarlane ([lo], pp. 168, 

169) to compute the finite system zeros. Our plant does not have finite zeros. 

Step 2. We choose the poles for the system in sliding to be XI =-I, X2 ---2. We take 

J = diag{-1, -2). 

Step 3. We choose w E I R ~ ~ ~  to satisfy conditions (a), (b), and (c) in step 3 of the algo- 

rithm. One can take W to be 



Thus 

Step 4. A full rank left annihilator of CW is F = [2 11. The design of the output 

switching surface is complete. The output switching surface is [2 11 y = 0. 

We next give an example where p =m. 

Example 4.2. 

Consider the following model of a dynamical system 

where a is an adjustable parameter. 

In this case p = m  =l. Thus the design of an output switching surface is reduced 

to a mere scaling of the output measurement. Such a transformation does not influence 

the location of system zeros, and hence the dynamics of the system in sliding on the sur- 

face F Cx = 0 is fixed. However, if the system zeros are in the open left hand complex 

plane then we can take Cx = 0 as a switching surface. The system zeros are the eigen- 

values of the matrix 

where W is any matrix which satisfies 



We can take the following matrix W 

Hence, for example 

does the job. We have 

Thus the system zero is "good". 

4.2. Output Feedback Stabilizing Controller Synthesis 

After the switching surface design is completed the next step is to synthesize an 

output feedback control strategy such that the state x converges to a(x) = FCx in finite 

time in the presence of a bounded f. Once this switching surface is reached the con- 

troller should keep x sliding along a(x) = 0 towards the origin of the state-space. 

In general, a variable structure controller varies its structure depending on the 

position of x relative to the switching surface and may have the form 

It can be shown (Utkin, [22]), that if oT(x)lr(x) < 0 then the system trajectory is 

directed towards the switching surface. Once the trajectory hits the surface the condi- 

tion oT(x)b(x) < 0 guarantees that it will be maintained on a(x) thereafter. The motion 

of the system is not affected by matched uncertainties, that is the uncertainties which 

influence the system dynamics via the input matrix B like in our case, when the 



trajectory is on the switching surface; see Section 3.1. 

We now focus our attention on choosing the feedback gains using only output 

measurements such that  systems trajectories converge to the switching surface and enter 

a sliding mode. In general, the matrix FCB is not diagonal. We can then construct a 

control law 

where Q E IRmXm is a nonsingular matrix which can be used t o  satisfy certain design 

specifications. In our considerations we assume Q = I,. 

To assure the attractiveness of the sliding surface, it is enough that  the following 

holds 

Our goal is to synthesize an output feedback control strategy such that  (4.3) is 

satisfied. However, one can see that there is the term FCAx in (4.3) in which the state 

vector is present. If however there exists some matrix M E IRmXP such that  

FCA = MC (4-4) 

then 

FCAx = MCx = M y ,  

and (4.3) will take the form 

aTb = aT [ M ~  + ii + (FCB)f] < 0 . 

Let 

(M)i and (FCB)i 

denote the i-th rows of the matrices M and FCB, respectively. Then, if the entries 6;  



- 
and 6; are chosen to satisfy 

, + 
Ui < -(M)~Y - (FCB)i J if a; (y) > o , 

and 

then the sufficient condition for the existence and reachability of sliding mode are 

satisfied. Note that the conditions (4.7) force each term in the summation 

m 
aTb = C qbi to be negative. Of course, other sufficient conditions for the existence of 

i= l  

a sliding mode can also be used during the controller synthesis. We mention here that 

the control actually implemented is 

u = (FCB)-I Q u . (4.8) 

The critical condition in the above control synthesis is (4.4). We now give a 

sufficient condition for solvability of equation (4.4). 

Theorem 4.2 

Let S = FC and let the row space of S be spanned by a set of m left eigenvectors of 

A labelled vl , ..., v,. Then there exists a matrix M E RmXP such that 

S A = M C .  

Proof 

We can proceed as in [26]. By the assumption there exists a nonsingular matrix N such 

that 



NSA 

where 

Hence 

A  = diag {A1, ..., A,) . 

SA=N-l A N S = N - I  A N F C = M C ,  

where 

M = N - ~  A N F  

and the proof is complete. 

Example 4.1 (continued) 

We now attempt to synthesize an output feedback control strategy for the plant 

whose model is given in Example 4.1. Recall that the output switching surface we have 

designed is 

In order to be able to synthesize the control law of the form (4.7) we have to solve equa- 

tion (4.4) for M. In this example 

FC = [6 , 9 , 01 

and 

FCA=[O , 6 , 91. 

It is obvious that there is no M such that 



FCA = MC 

since FCA (3' Range C. So we cannot proceed with the synthesis of an output feedback 

controller of the form (4.7). However, we know that the system zeros, or equivalently 

the poles of the system in sliding along a(x) = FCx A Sx are invariant under output 

feedback. Hence, if there is no M such that SA = MC one may suggest to solve the fol- 

lowing equation 

S(A - BKC) = MC (4.10) 

for M and K. Thus the controller would consist of two portions: a linear part 

ul = -Ky and the nonlinear part u2 of the form (4.7). Unfortunately, this trick cannot 

be used because if (4.10) is possible then so is (4.4) with M = SBK + M. 

Observe that for p = m the existence of M which satisfies SA=MC i~nplies that the 

pair (A,C) is not observable. 

Indeed, let S = FC where detF # 0. Then FCA = MC can be written as 

CA = MC, where M = F-'M. Hence 

and thus the pair (A,C) is unobservable since the rank of the observability matrix will 

be equal to p < n. 

However, the converse is not true as the following example shows. 

Let 

The pair (A,C) is not observable. But this does not imply that CA = MC for some M. 

Indeed CA = [0 1 11 (3' Range C. 



The good news is that when p > m then satisfaction of the condition FCA = MC 

does not necessarily require nor imply the unobservability of the pair (A,C). Indeed, let 

p = 2, m = 1, where 

The pair (A,C) is observable, however, 

FCA = [I 1 0] €Range C . 

When there is no solution to SA = MC, one is forced to modify the type of the out- 

put feedback control strategy. 

However, even when there is no solution to SA = MC the bounded controllers of 

the form 

u = -p(FCB)- = - p ( ~ ~ ~ ) - l  
FCx 

I Ia(y)I I IIFCxll ' 

U = -  (FCB)-I 

where p > 0 is a design parameter, will locally stabilize the closed-loop system. One 

can also estimate the stability regions for systems driven by the controllers (4.11) or 

(4.12). The stability regions estimation can be performed using methods proposed by 

Madani-Esfahani et a1 in 114) or by Hui and ~ a k  in [7]. 

where pi > 0, i = 1, ..., m, are design parameters, or of the form 

- - 
PI sgn 01 (Y) 

Pm Sgn grn(y) 
- 

IU1 sgn S l X  

= -(FcB)-I (4.11) 

sgn s,x 



In the next Section we discuss the problem of state estimation for plants modeled 

by (2.1) and (2.2). 

6 .  STATE ESTIMATION OF UNCERTAIN SYSTEMS 

In this Section we propose new types of estimators of the state of the plants 

modeled by (2.1) and (2.2). 

5.1. The Full Order State Estimators 

Let F be the estimate, obtained from the state estimator, of the plant state x. We 

denote the estimation error by e(t), that is, 

e(t) = F(t) - x(t) . 

Let the dynamics of the state estimator be given by 

where the vector v will be defined later. 

For the above estimator the error satisfies the following equation 

We now investigate the stability of the error equation (5.2). 

Let 

a(e) = FCe , (5.3) 

where the matrix F E lRmXP is chosen using methods of Section 4 in such a way that the 

triple (A, B, FC) has its system zeros in the open left hand complex plane. Thus, if we 

can find v E lRm so that the error reaches the surface ale) and then enters a sliding 

mode along this surface then (5.2) restricted to a(e) will be asymptotically stable. Con- 

sider now the following condition 



d(e)ir(e) = O ~ ( ~ ) ( F C A ~  - FCBC + FCBv) . 

Suppose the following is satisfied for some matrix M 

FCA = MC . (5.5) 

Using (5.5) we can represent (5.4) as follows 

$6 = J(Mc~ - FCBE + FCBv) . (5.6) 

Our goal now is to  select v so that 

d(e);r(e) < o , (5.7) 

thus guaranteeing the attractivity of the surface a(e) = FCe. Note that while choosing 

v we can use the elements of Ce since 

C ~ = C ? - C X = C T - ~ .  (5.8) 

Let (M)i and (FCB)i denote the i-th rows of the matrices M and FCB respectively. Let 

v = (FCB)-~; . (5.9) 

Then, if the components Gi of G are chosen to satisfy 

i; < -(M)iCe + (FCB)i[ if q ( e )  > 0 ,  (5.10a) 

and 

- 
Gi > -(M)iCe + (FCB)i[ if ai (e) < 0 (5. lob) 

then (5.7) is satisfied, and the error equation (5.2) is asymptotically stable towards the 

origin. 

Note that the proposed estimator (5.2) suffers from the same drawbacks as the out- 

put feedback controller (4.7). The critical condition in the above construction is the sol- 

vability of the equation SA = MC for M. If one attempts to synthesiz

e 

the estimator 

(5.2) for the plant in Example 4.1 then one will fail since the equation SA = MC does 

not have a solution for this plant. One then may try to modify the estimator (5.2) in 



the following way 

hoping to be able to find a matrix L so that for some M 

FC(A - LC) = MC . 

However, if (5.12) is possible then M = FCL + M will satisfy (5.5). 

Another drawback of the estimators (5.2) and (5.11) is the fact that sufficient con- 

ditions for their synthesis are also sufficient conditions for the existence of an output 

feedback stabilizer. This fact makes the above discussed full order estimators impracti- 

cal. It turns out, however, that we can synthesize reduced order estimators using the 

theory advanced in Sections 3 and 4. The proposed reduced order estimators do not 

require (5.5). 

5.2. The Reduced Order State Estimators 

Consider a dynamical system model given by (2.1) and (2.2). Suppose we were able 

to find an appropriate output switching surface u(y) = Fy so that the plant (A, B, FC) 

has asymptotically stable system zeros. The result of the switching surface synthesis are 

the matrices 

and 

such that 



WgW =I,-, , FCW = O  , W
g
B = O .  

Let 

Observe that o is determined from the output measurements since Cx = y. Note that 

the matrix T in (5.13) is invertible since det[W i B] # 0 and 

Let us now consider the dynamics of the following reduced order estimator 

of z = Wgx, where G is to be specified. Thus, we should like to be able to use the out- 

puts to determine m of the xi's and design an estimator of order n-m to estimate the 

rest. We choose G to satisfy 

W g A - J W g = G C .  (5.16) 

It is instructive to note that we arrive at the above equation by setting 

Then since W
g
B = 0, we have 

Hence 

The eigenvalues of J are all negative, thus 



In order to recover all states we invert the equations 

- 
z = wgx 

a = FCx 

The proposed estimation scheme is illustrated in Fig. 5.1. 

15 PLANT 
I I I 

Fig. 5.1. The reduced order state estimator for uncertain dynamic systems. 



Remark 5.1. 

Once a state estimator has been designed, the next step is to  combine the controller 

and estimator. For a discussion of the combined estimator-controller compensator syn- 

thesis from the variable structure systems standpoint the reader is referred to Hui and 

~ a k  [7]. 

Example 5.1. 

Suppose we are given the following model of a dynamical system 

We have p = m = 1, and CB = 1 # 0. One can check that the system zero is located a t  

= -1. Thus we can take a(y) = y (F = 1) as the output switching surface. Note, 

however, that  there is no solution to  CA = MC. Indeed CA = [0 , 11 while 

MC = M[1 11. Fortunately, the sufficiency condition (5.16) for the existence of the 

reduced order estimator is satisfied. Indeed, if we take J = [-I], wT = [I -11, 

Wg = [l 01, then WgA - JW
g 
= GC becomes [l 11 = G[l  11. Hence G = 1. The 

reduced order estimator is 

and 

Hence the estimate of the state vector x of the plant is 



Having designed a state estimator one can then proceed with a state feedback con- 

troller synthesis assuming availability of all the components of the state vector. The 

estimator has been constructed. The final step consists of combining the controller and 

the estimator. 

Example 4.1 (continued.) 

We now design the reduced order state estimator for the plant given in Example 

4.1. Recall that 

0 0 

.J = [-: -:] and Wg = 1-i - 

Hence (5.16) for this example becomes 

The reduced order estimator then is 

and 



Hence, the estimate of the state vector x of the plant is 

A possible variable structure state feedback control law for this example can be 

synthesized using a(x) = FCx = Sx as the switching surface. The controller gains can 

be obtained from the condition 

aT(x)6(x) = aT(Mx + SBu + SBE) < 0 . 

We have 

and 

where 

It1 5 P .  

A possible implementation of the controller can have the form 

where Fly &, and X3 are the estimates of state vector components of the plant and are 

the outputs of the reduced order state estimator. Thus, we have synthesized a 



nonlinear dynamic, of order 2, output feedback global robust stabilizer for an unstable 

uncertain third order plant. 

6. GENERALIZATIONS TO THE CASE WHEN rank(CB) < m 

When the matrix CB is not of full rank we take linear combinations of appropriate 

derivatives of the outputs as suggested in [15] and [19]. This enables one to use the VSS 

techniques in a similar fashion as in the case when the matrix CB is of full rank. We 

proceed as follows: 

Let 

q0 = rank(CB) < m . 

Then there exists a nonsingular p x p matrix Uo such that 

where 

Co uo C, Do = C,B has qo rows, rank Do = qo, and Co E IR(P-~O) n. 

Consider now the matrix 

Let 

ql = rank [eriB] . 

If ql < m then there exists a nonsingular p x p matrix U1 such that 



where 

D1 E l€tql m ,  rank Dl = ql , 

The remainder of the sequence is defined inductively as follows 

If for some i = a, q, = m then we stop. 

Thus we obtain 

and 



Let 

rank 

Then the above outlined procedure yields 

If we then consider the system represented by the triple (A, B, E), where 

- - 
- 

Co B 
C1 A B  . 
C O L ~ ~  B 

- 

and 

= m .  

rank (CB) = m 

then we can proceed as in the case when rank (CB) = m. Note that the triple 

(A, B, 6) can be viewed as one which represents the original system (A, B, C) in which 

the output y is operated upon by a bank of differentiators specified by the operator N 



where 

where 

Thus 

Remark 6.1 

The above outlined procedure for generating i: so that r a n k ( e ~ )  = m is based on 

Silverman's Inversion Algorithm [17] for constructing an inverse of a multivariable 

linear dynamical system. Therefore the procedure will result in an appropriate 1: if and 

only if the system (A, B, C) is left invertible in the sense of Silverman [17]. Hence cri- 

teria for invertibility given by Silverman can also be utilized in our problem. One can 

extend the proposed algorithm to a class of nonlinear system using results of Hirschorn 

[GI. 



Remark 6.2 

Observe that the systems (A, B, C) and (A, B, 6 )  may have different system zeros. 

To illustrate the above observation consider the following system model 

The above system does not have any finite system zeros. 

Let us now instead of C = 11 01 consider C = C A  = [0 11. The system model 

represented by the triple (A, B, C) has one system zero a t  s = 0. 

Remark 6.3 

Having constructed C so that r a n k ( C ~ )  = m we can then proceed as in the case of 

a dynamical model (A, B, C) where rank(CB) = m. However working with the new sys- 

tem (A, B, C) will result in the switching surface that involves linear combinations of 

the derivatives of the outputs, that is 

7. CONCLUSIONS 

A variable structure systems (VSS) approach combined with the geometric 

approach to the analysis and synthesis of system zeros have been employed in the syn- 

thesis of new robust output feedback stabilization schemes and robust state estimators 

for a class of uncertain dynamic systems. The employment of system zeros in the study 

of VSS has provided further insight into properties of these systems. Furthermore, it 

has also revealed an important role of systems zeros in the variable structure control. 

In particular, we have shown how the system zeros influence the sliding mode behavior 



and discussed their role in the state estimation. The blending of VSS approach and sys- 

tem zeros was also used in the synthesis of robust variable structure output feedback 

stabilizers for the class of uncertain systems for which the matrix CB is not of full rank. 

Numerical examples included have illustrated the feasibility of the proposed stabilizing 

controllers and state estimators. 

The results of Marino [15], see also [6] and [27], are promising in extending the 

results of this paper to a large class of uncertain nonlinear systems resulting in practical 

algorithms for designing output feedback stabilizers and state estimators for such sys- 

tems. 
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