
HAL Id: hal-01212761
https://hal.inria.fr/hal-01212761

Submitted on 8 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized Innovation Marking for Neural
Controllers in Embodied Evolution

Iñaki Fernández Pérez, Amine Boumaza, François Charpillet

To cite this version:
Iñaki Fernández Pérez, Amine Boumaza, François Charpillet. Decentralized Innovation Marking for
Neural Controllers in Embodied Evolution. GECCO ’15, 2015 Annual Conference on Genetic and
Evolutionary Computation, Jul 2015, Madrid, Spain. �10.1145/2739480.2754759�. �hal-01212761�

https://hal.inria.fr/hal-01212761
https://hal.archives-ouvertes.fr

Decentralized Innovation Marking for Neural

Controllers

in Embodied Evolution

Iñaki Fernández Pérez Amine Boumaza François Charpillet

Inria, Villers-lès-Nancy, F-54600, France
CNRS, Loria, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France

Université de Lorraine, Loria, UMR 7503, Vandœuvre-lès-Nancy, F-54500, France
firstname.lastname@loria.fr

Abstract

We propose a novel innovation marking method for Neuro-Evolution of Aug-
menting Topologies in Embodied Evolutionary Robotics. This method does not
rely on a centralized clock, which makes it well suited for the decentralized na-
ture of EE where no central evolutionary process governs the adaptation of a
team of robots exchanging messages locally.

This method is inspired from event dating algorithms, based on logical clocks,
that are used in distributed systems, where clock synchronization is not possible.
We compare our method to odNEAT, an algorithm in which agents use local time
clocks as innovation numbers, on two multi-robot learning tasks: navigation and
item collection. Our experiments showed that the proposed method performs as
well as odNEAT, with the added benefit that it does not rely on synchronization
of clocks and is not affected by time drifts.

1 Introduction

Evolutionary robotics (ER) deals with automatic robot behavior learning with
techniques inspired from natural evolution [Nolfi and Floreano, 2000]. Embod-
ied ER [Watson et al., 2002] explores the idea of several agents simultaneously
learning behaviors using evolutionary algorithms that the robots run onboard.
It has been applied on different learning tasks, usually in the context of online
multi-robot adaptation. Similarly to mainstream ER, agents’ controllers are usu-
ally represented as neural networks (neuroevolution) that map sensor inputs to
motor outputs, and the learning algorithm adapts the neural architecture and
parameters such that the agents execute the correct behavior.

When evolving neural controllers, two different approaches are usually fol-
lowed: on the one hand, adaptation can take place at the synaptic level, i.e. the
evolutionary algorithm optimizes the weights of a fixed topology neural network.
On the other hand, adaptation can also take place at the structural level of the
controller, in which case the topology and the synaptic weights of the neural net-
work are optimized simultaneously. Searching in this richer space of topologies

and weight configurations allows for evolution of neural controllers with topolo-
gies adapted to the task and removes the need of hand-tuning the topology.

There exists a large body of work on the evolution of topology in neural net-
works [Gruau, 1993, Stanley and Miikkulainen, 2002, Kowaliw et al., 2014]. How-
ever, many algorithms do not consider cross-over operators, since such operators,
if not designed properly or if applied blindly, often tend to destruct functional
building blocks. Among the algorithms that use cross-over, NEAT (NeuroEvolu-
tion of Augmenting Topologies) [Stanley and Miikkulainen, 2002] introduced a
simple gene marking scheme (called innovation numbers), where each element of
the neural network (neurons and synapses) is uniquely identified and the chrono-
logical order of insertion of such elements is tracked, which allows to correctly
recombine building blocks.

In our work, we are interested in Embodied Evolution (EE) to deal with
a team of coexisting robots performing open-ended behavior learning, where
robots are always adapting to the task at hand [Bredeche et al., 2010]. Each
robot has an active genome that is locally broadcasted when robots cross each
other, and an internal population, which corresponds to a local view of the pop-
ulation that is distributed across all robots. No robot has global knowledge of all
genomes.

In the last years, several works have dealt with Embodied Evolution of neu-
ral robot controllers in general, usually limiting the evolution to the synap-
tic weights of fixed-topology neural networks. Recently, odNEAT (Online Dis-
tributed NEAT) [Silva et al., 2014] proposed a distributed version of NEAT in
the context of Embodied Evolution. The algorithm uses high-resolution clocks
at the robot level to mark structural innovations. However, such clocks may drift,
thus requiring synchronization, especially if the robots are deployed for long pe-
riods of time, which is one of the objectives of EE. In a sense, this requirement is
in contradiction with the distributed aspect of Embodied Evolution.

Our main motivation in the following work is to propose an algorithm to mark
structural innovations that does not rely on a centralized clock or synchroniza-
tions. This algorithm that we name Gene Clocks (GC), is inspired from logical
clock algorithms used in asynchronous distributed system models. By only using
local exchanges and with a small computational and communication overhead,
GC tracks the historical chronology of genes in the population. In this way the
distributed nature of Embodied Evolution algorithms is preserved.

In the following sections, we will start by describing different algorithms that
addressed neuroevolution of topologies in the embodied and distributed context
and discuss the way innovations are marked. We will then detail our approach,
and explain its links with asynchronous distributed system models and how in-
novation marking is performed in a distributed way. In section 4, we describe
the experiments and discuss the results obtained. Finally, we present some open
questions and research directions that could extend our work.

2 Related Work

Several neuroevolution algorithms dealing with the evolution of neural topol-
ogy along with the synaptic weights, have been proposed ([Angeline et al., 1994],
[Gruau, 1993], [Stanley and Miikkulainen, 2002]). Neural networks can be en-
coded as a set of neuron genes and connection genes. In this case, mutation

2

operators usually add or remove neurons and connection genes with some prob-
ability, to introduce topological innovations in the neural networks. In this con-
text, the goal of cross-over operators is to accurately combine the best functional
characteristics, or building blocks, of two parent networks, to produce offspring
that inherit these building blocks. This raises some problems (e.g. Competing
Conventions problem [Schaffer et al., 1992]), because similar topologies can be
represented with very different genetic encodings. Classical cross-over operators
tend to be disruptive and break existing functional structures, thus hindering
evolution. If cross-over is to be applied between two of such networks, their re-
spective structural elements have to be matched and recombined correctly. This
is the main reason why many topology-evolving neuroevolution algorithms do
not use the cross-over operator [Angeline et al., 1994].

NEAT [Stanley and Miikkulainen, 2002] proposed an elegant solution to re-
duce the effect of the competing conventions problem and perform meaningful
cross-over. The algorithm marks each new neuron or connection with an unique
innovation number, which is a historical marker that identifies the new gene
and keeps track of the chronology of its appearance in the evolutionary process.
These innovation numbers are inherited by offspring networks. The purpose of
innovation numbers is to detect the genes expressing the same neural elements
between two genomes (genes having the same innovation number) without the
need of matching the topology of the two networks. As such, the impact of
the competing conventions problem is reduced, because genes having the same
innovation number in two parent genomes are not repeated when applying cross-
over. These historical markers are implemented in NEAT by keeping a global
counter of innovations and sequentially assigning it to new genes in the genomes
of the population. Furthermore, the algorithm uses a niching mechanism to di-
vide the population in non-overlapping species, based on genotypic similarity.
To promote topological diversity, NEAT uses intra-species fitness sharing, i.e.
networks in the same niche share the same fitness. This results in the protection
of new structures that could lead to fitter individuals but require time to opti-
mize their parameters. The algorithm is a centralized offline EA with one global
population initialized with minimal fully-connected perceptrons, and where all
new genes can be tracked since all information is centralized.

When evolving both weight and topology in an EE context, the same prob-
lems raised in offline centralized setups (competing conventions, see above) oc-
cur. However, a global counter as in NEAT’s innovation marking mechanism
is not directly transferable to Embodied Evolution, because different robots
cannot be simultaneously aware of each other’s innovations. Two topology-
evolving EE algorithms, and more specifically, two mechanisms to mark topolog-
ical innovations in a distributed manner, have been proposed to date: odNEAT
[Silva et al., 2014] and IM-(µ + 1) [Schwarzer et al., 2012].

In IM-(µ + 1), each robot draws a random number (between 1 and 1000 in
their experiments) to assign it as identifier of a new neuron gene added in any
robot’s genome. The authors state that, if the probability of drawing the same
number, which is referred as an identifier collision, is sufficiently low, the sys-
tem is overall not disturbed, and the impact of colliding innovation numbers is
reduced by selection. Although this may be true in relatively short experiments
with few robots, when dealing with long-term adaptation EE setups, this proba-
bility increases, and genealogy can not be tracked.

odNEAT (Online Distributed NeuroEvolution of Augmenting Topologies)

3

translated NEAT characteristics to a distributed setup. Each local population is
speciated based on a genotypic distance, and the genomes in a species share the
fitness of the species, as in NEAT. Innovation markers are assigned using local,
high-resolution timestamps. Robots mark new genes using their respective local
clocks. Offspring are produced by selecting two parent genomes, recombining
them as in NEAT, and mutating the result with some probability. Mutations
either probabilistically add a new neuron, a connection or add a normal random
variable to every weight in the network. The innovation numbers are used to
sort the genes in a genome to facilitate the matching of common structures with
another genome. As in NEAT, this alignment is used to distinguish between
matching genes and non-matching genes in both genomes, either to compute a
genotypic distance or to mate two parent genomes without repeating structures.
According to the authors, the use of high-resolution timestamps practically guar-
antees identifier uniqueness and allows different robots to retain the chronology
of the innovations across the distributed system.

Since odNEAT runs on all robots that are simultaneously evolving, their re-
spective local clocks have a strong probability of drifting w.r.t. each other. This
is specially true in open-ended long-term adaptation setups, where robots run
for a long time and clock drifting may be considerably more important. In this
case, innovation timestamps would not be coherent, and thus would not correctly
keep track of the actual chronology of innovations. If odNEAT is to be run on
physical robots, it would require a periodical clock synchronization between the
robots, which may be impossible when robots are scattered.

3 odNEAT with logical markers

In our proposed innovation marking algorithm, we view an evolving set of robots
in Embodied Evolution as a distributed computer system. In the asynchronous
distributed system model [Coulouris et al., 2011], several interconnected proces-
sors communicate with each other and perform local computations in order to
solve a common problem. Events in such systems consist of either local compu-
tations or message exchanges. In this work, we consider robots as processors,
computational processes as the evolutionary process of each robot, events as
topological innovations in the system and message exchange between processors
as genome exchange between robots.

One of the fundamental problems in distributed systems is the dating and
ordering of events. Since distributed processors do not have a common clock,
ordering events w.r.t. each other requires a specific mechanism. Logical Clock
algorithms (LC) [Lamport, 1978] were proposed to identify and date events in
the system in a decentralized way. In this mechanism, every processor has an
unique identifier and a monotonically increasing local counter initialized to 0 to
keep track of the events. When an internal event or a message exchange takes
place, the event is marked with the current local counter and the counter is in-
cremented by one. Whenever a processor receives a message, it updates its local
counter with the maximum value between the received counter and its own. This
way, events in the system can be ordered with respect to the moment they oc-
curred. However, two events may have identical counters if they originated in two
different processors and no communication took place between the two proces-
sors during the period in between events. These events are considered concurrent

4

events. Whenever this case occurs, authors order the concurrent events by con-
vention w.r.t. the processor identifier to define a total order between events in
the system.

3.1 Decentralized Marking of Innovations

In our proposed method, each robot has a unique identifier, r, as well as a se-
quential local innovation counter, cr, in the same manner as processors have
identifiers and event counters in a distributed system. We consider innovation
numbers as pairs < r, cr >. Each robot increments its counter cr by one each
time a mutation adds a new gene, as processors do when they date events. When
a robot broadcasts its active genome, all its topological innovations are marked
with such innovation numbers.

Using these innovation numbers, genes in the genome can be ordered, based
on their gene counters, since they keep a chronological sequence of the inno-
vations on each individual robot. However, innovations originated in different
robots can not be chronologically ordered since all robots maintain independent
sequences of innovations. To palliate this issue, in addition to sending its active
genome, a robot broadcasts its current cr, and upon reception, robots update
their respective cr’s with the maximum of the received value and their own, as
it is done in LC. Concurrent innovations are still possible, i.e. two innovations
with the same cr, but originating in different robots that do not communicate
in between. In this case, innovation numbers will be ordered by convention with
respect to the robot’s identifier so all robots sort genes in the exact same manner.

3.2 Evolutionary Algorithm

In our experiments, we use odNEAT as Embodied Evolution algorithm to evolve
the topology and weights of neural networks. The main steps of the algorithm,
that runs on every robot, are shown in Algorithm 1. At all times, each robot
has an active genome that is initialized with a fully-connected single-layer per-
ceptron. Robots locally broadcast their active genomes at every timestep, with
a probability proportional to the fitness of the species of the genome (see below).
Received genomes are stored in a limited-size local population, which also con-
tains previous active genomes. When the population is full, the addition of a fit
genome implies the removal of the worst genome in the population.

Each robot has an internal virtual energy level that is initialized to a default
task-dependent value. This value represents the performance of the active con-
troller in the task at hand, and it increases and decreases according to robot
behavior. As such, the energy level measures how well a robot solves the given
task. Every control cycle, a robot executes its active controller and updates its
energy level according to its behavior. One of the inherent problems of EE is that
evaluation is noisy, given that different controllers can be evaluated in very dif-
ferent conditions. For example, if a fit controller starts its evaluation surrounded
by obstacles, its energy level will drop until it is able to escape the area. To
alleviate this issue and record a more precise approximation of the actual perfor-
mance, the robots periodically measure their respective energy levels at regular
intervals. The energy measures are averaged to compute the controller’s fitness
fr(t) of robot r at instant t. Finally, whenever the energy level drops below a

5

given threshold, a new offspring is produced and replaces the active genome, and
the energy level is reset to its default initial value.

Algorithm 1: odNEAT algorithm run by every robot.

ga ← random_genome()
//Add also to a new species
P← {ga}
e← einit
while True do

if do_broadcast? then
send(ga, e, neighbors)

forall the g ∈ received do

if Tabu.approves(g) and P.accepts(g) then
//Add also to corresponding species
P← P

⋃

{g}
adjust_species_fitness()

execute(ga)
e← e+ ∆E

∆t

if e ≤ ethreshold and ¬ in_maturation_period then
Tabu← Tabu

⋃

{ga}
if random() < pmate then

p1, p2 ← select_parents(select_species())
goffsp ← mate(p1, p2)

else
goffsp ← select_parent(select_species())

if random() < pmutate then
goffsp ← mutate(goffsp)

//Add also to corresponding species
P← P

⋃

{goffsp}
ga ← goffsp
e← einit

To maintain diversity in local populations, genomes are divided into species
based on a genotypic distance, i.e. the genomes in the population are grouped in
non-overlapping species by genotypic similarity, and fitness sharing is applied in
the same manner as in NEAT.

At each iteration, robots broadcast their active genome with a probability
proportional to the fitness of the genome species. When a broadcast occurs, the
robot’s active genome, its current energy level, and cr in the case of GC, are sent
to all neighboring robots. If a given robot receives the same genome twice, the
energy level is averaged with the previous value to provide a better estimator of
the performance of the stored genome.

Whenever the energy level drops below the threshold, the active controller
is replaced by a new genome generated as follows: First, a species is selected
with a probability proportional to its average adjusted fitness. Then, with a
probability pmate two parents are selected within the chosen species and are re-
combined. Finally, the resulting offspring is mutated with a probability pmutate.
With a probability (1− pmate), only one parent is selected from the species, and

6

is mutated with probability pmutate.
Mutation can be of 2 types, structural mutation and parameter mutation.

Structural mutation includes adding a neuron with a probability pnode by split-
ting a random existing connection or adding a connection with probability pconn
between two random unconnected existing neurons. When adding a connection,
there is a probability precur for this connection to be recurrent. On the other
hand, concerning parameter mutation, there is a probability pw of mutating all
weights by adding a normal random variable with mean 0 and a standard devi-
ation σ. Synaptic weights are maintained in [−10,+10]. The resulting offspring
replaces the previous active genome, its energy level is reset to the default value,
and the new genome starts being executed.

A new genome is given some time Tm to be executed and evaluated even if its
energy level drops below the threshold level. This is known as maturation period
[Bredeche et al., 2010], and it aims firstly at protecting potentially fit controllers
that start their evaluation in difficult conditions, and secondly, at setting a lower
bound to the time a given genome is evaluated to obtain a sufficiently accurate
estimate of its performance.

Taking in account all the aforementioned variation probabilities, standard
deviation of the weight mutation σ, the maturation time Tm, and the local pop-
ulation size, |P|, we need to set values to 9 parameters. For that, we use a tuning
procedure that is described in the next section.

odNEAT also maintains a tabu list to keep track of recent poor genomes,
either genomes dropped because they depleted their energy, or the genomes that
are not competitive enough and are dropped from the population because it was
full. This is used to filter out received genomes that are similar to one or more
individuals in the tabu list, before adding them to the local population, i.e. to
avoid evaluating candidates similar to known poor solutions.

Both the tabu list filtering and the speciation mechanism rely on computing
a genotypic distance, that is measured as follows:

d(g1, g2) =
c1 ·E

N
+

c2 ·D

N
+ c3 ·W (1)

where W is the average of the weight difference between matching genes, i.e.
genes corresponding to the same structural elements in g1 and g2. Non-matching
genes are considered in two fashions, depending on the chronology of the com-
pared genes: D is the number of disjoint genes, that is non-matching genes in
the middle of the genome, and E is the number of excess genes, non-matching
genes in the end of the largest genome. N is the number of genes of the largest
of both genomes, and c1, c2, c3 are coefficients weighting the relative importance
of each of the three elements. The way to distinguish between matching, disjoint
and excess genes consists in aligning two genomes using the innovation numbers
presented above. Furthermore, the cross-over operator in odNEAT (as NEAT)
also uses historical markers to distinguish between matching, disjoint and excess
genes between two parent genomes (see [Stanley and Miikkulainen, 2002] for de-
tails).

7

4 Experiments

In our experiments, we compare the results of odNEAT using Gene Clocks and
using timestamps as innovation numbers. Timestamps in a system where local
clocks are synchronized allow for a perfect sorting of genes in a genome, provided
that no drift occurs, whereas, in the case of concurrent innovations, GC sorts
genes by convention. Our main hypothesis is that Gene Clocks approximate
sufficiently the chronology of innovations to lead to performance levels similar to
those obtained using timestamps while relying exclusively on local information
and exchanges. Our experiments, presented below, corroborate this hypothesis,
in terms of the quality of learned behaviors and in terms of the architecture of
the evolved controllers.

4.1 Experimental Setup

We conducted our experiments on two well-studied tasks in ER [Nolfi and Floreano, 2000],
navigation with obstacle avoidance and item collection. In the navigation with
obstacle avoidance task, robots must learn to move as fast and as straight as pos-
sible in a bounded environment, while avoiding both moving and static obstacles
(other robots and walls). In the item collection task, food items are placed in the
environment and robots must collect as many of them as possible.

We performed all our experiments in the RoboRobo simulator [Bredeche et al., 2013],
which simulates a team of robots deployed in a bounded environment containing
obstacles (black lines in Figure 1), as well as food items in the case of the item
collection task (green circles). All robots have the same morphology, sensors and
motors. 8 obstacle proximity sensors, that measure the distance to obstacles and
other robots, are evenly distributed around the robot. An additional sensor mea-
sures the current energy level of the robot. In the case of the item collection task,
robots perceive food using 8 additional food item sensors with the same range as
the obstacle sensors. The robots move using two differential drive wheels. Be-
ing morphologically homogeneous, behavior difference between robots originates
from having different controllers. A robot’s neural controller is initialized with a
bias neuron and as many inputs as there are sensors (9 in the case of navigation
and 17 in the case of item collection). The two outputs of the neurocontroller
correspond to the right and left wheel velocities.

An active genome’s life cycle, or genome’s evaluation, consists on executing it,
updating the energy level and probabilistically broadcasting it to nearby robots,
until its energy level is below a threshold. At this point, the genome is considered
unfit to the task, and is replaced by a new one, generated as presented in Section
3.2. The energy level of the new genome is reset to the default value of 100 units,
its maximal value being 200 units. A robot updates its energy level every control
cycle as follows:

• Navigation:

∆E

∆t
= fn(|vl + vr| · (1−

√

|vl − vr|) · (1− d)) (2)

where vl and vr are the left and right wheel velocities and d is the distance
to the closest obstacle. The fn function is a linear mapping from the inter-
val [0, 1] to [−1, 1]. Thus, if a robot moves fast, straight and far from obsta-
cles it will gain energy, and it will lose energy otherwise. This is the same

8

Figure 1: The simulation environment containing robots (red dots with thin hair-
lines representing sensors), obstacles (dark lines) and food items (green dots).

energy update function in which odNEAT was studied [Silva et al., 2014],
and it is inspired from [Nolfi and Floreano, 2000].

• Item collection:
∆E

∆t
= −0.1 + 10 · c(t) (3)

where c(t) is a boolean function indicating if an item was collected at t. At
each time step, the robot loses 0.1 energy units, and when it picks up an
item, it gains 10 units. In the experiments, 75 items are randomly placed in
the environment. When a robot collects an item, it disappears, and a new
one is randomly placed in the environment to keep the number of items
constant.

In all experiments, 100 robots were deployed in the environment. Each robot
runs Algorithm 1 for 40000 cycles in the navigation task and 60000 cycles in the
collection task. We performed 64 independent runs for both innovation marking
methods in both tasks. Every 100 cycles, we measure:

• The average fitness of all robots, or swarm fitness
Fs(t) = 1

|team|

∑

r∈team fr(t). It represents the overall performance of the

evolving robots at instant t.

• The average number of species over the local populations of all robots. The
number of species provides information on the overall topological diversity
in the robots population.

• The average size of active controllers of all robots. In our work, we con-
sider the number of connections and neurons as the size of a given neural
controller. This gives an idea of the complexity of the evolved solutions.

In Embodied Evolution, the best fitness reached during evolution is not a reli-
able measure of the overall performance of the robots. Measures must emphasize

9

the online nature of the algorithms, i.e. since robots adapt during the actual ex-
ecution, an instantaneous measure would not be a reliable indicator of their per-
formance. To consider this in the analysis of our experiments, we use the metrics
of performance that were previously introduced in [naki Fernández Pérez et al., 2014].
These metrics reflect information on the evolutionary process in general by inte-
grating information spanning over time (see Figure 2).

f

tgb

fc

f
t

fb

gb

f

t

ft

gf t

f

ft

fa

Figure 2: A pictorial description of the four comparison measures. From top to
bottom and left to right: the average accumulated swarm fitness, fc, the fixed
budget swarm fitness, fb, the time to reach target gf , and the accumulated fitness
above target, fa.

In order to set the appropriate values for the 9 parameters of the algorithm
(see 3.2), we performed a tuning procedure. For each task the parameters were
independently tuned using Iterated Race for Automatic Algorithm Configura-
tion (irace) [López-Ibáñez et al., 2011], a parameter tuning algorithm that opti-
mizes a given quality measure of complete runs of the evolutionary algorithm.
The quality measure we used in irace is fc, as presented above.

The tuning procedure was performed using timestamps as innovation num-
bers, and a total budget of 1200 runs was allotted to irace to find parameters
maximizing fc, for both tasks. At the end of these procedures, we obtain two
sets of parameters, one for each task. All the experiments presented below used
these sets of parameters, that are summarized in Table 1.

4.2 Results and analysis

In summary, we performed four experiments (two innovation marking mech-
anisms in two tasks), in order to test if our proposed method for innovation
marking leads to similar results as the original timestamps-based mechanism of
odNEAT. For each experiment, we performed 64 independent runs to provide
statistically sound results. Figure 3 (resp. Figure 4) shows the swarm fitness Fs

10

Table 1: Summary of the tuned and fixed parameters of odNEAT in our experi-
ments, as described in section 3.2.

Tuned Fixed
Navigation Collection

pmate 0.842 0.212 c1 0.5
pmutate 0.154 0.244 c2 1.5

pw 0.575 0.559 c3 0.4
pnode 0.057 0.422 #Robots 100
pconn 0.184 0.275 #Items 75
precur 0.376 0.526
σ 0.442 0.114
Tm 19 cycles 27 cycles
|P| 5 7

(the average fitness of the robots) during evolution, for both innovation marking
algorithms in the navigation task (resp. the item collection task).

Figure 3: Swarm fitness, Fs, over time of the 64 runs for the navigation and
obstacle avoidance task. The lines correspond to the median value between all
runs, and the shaded areas show the interquartile range.

For the navigation task (Figure 3), both dating methods lead to the learning
of proper behaviors, achieving around the end of the experiments values between
75% and 90% of the maximum level of swarm fitness (fixed in the experiments at
200). Upon inspection of some of the evolved behaviors, we observed that, while
having a limited range of perception, the robots are able to rapidly react to other
incoming robots, avoid each other and keep moving straight and fast. As for the
comparison between GC and the timestamp based dating method, the trend of
Fs for both is roughly the same in median value and interquartile range.

Similarly, in the item collection task (Figure 4) both experiments managed to
evolve controllers that searched the environment and effectively collected items,
with performances falling between 70% and 80% of the maximum value around

11

Figure 4: Same as Figure 3 for the item collection task.

Table 2: p-values of the Mann-Whitney two-sided tests between the four mea-
sures for Gene Clocks and timestamp-based dating mechanisms and both navi-
gation and item collection tasks. The differences are not statistically significant
for any comparison.

fc fb tf fa
Navigation 0.134 0.175 0.489 0.074
Collection 0.698 0.956 0.373 0.697

the end of the experiments. When comparing GC to timestamps, we observe
an even clearer overlap between the curves. The approximation of the global
time with our decentralized method seems to have no impact with respect to the
swarm fitness.

To further support this claim, we computed the four aforementioned mea-
sures on the 64 runs of each experiment. Box-and-whisker diagrams are pre-
sented in Figures 5 and 6 for each task. We performed two-sided Mann-Whitney
tests comparing both dating mechanisms in both tasks, and over all four mea-
sures. The p-values of all tests are all over 0.05, i.e. there is no statistical differ-
ence between the dating methods with respect to any of the measures (see Table
2). This confirms our main hypothesis that Gene Clocks approximate a perfect
innovation ordering sufficiently to have no impact on the reached fitness level.

We also investigated the size of the architecture of evolved controllers and the
size of the species in local populations to compare both methods in terms of the
controllers they produce. The average number of species over time is presented in
Figure 7 for the navigation task and in Figure 8 for the item collection task. The
average size of the neural controller over time, measured as the sum of neurons
and connections, is presented in Figures 9 (navigation) and 10 (item collection).

The average number of species per local population follows a similar trend
over time in both methods, especially in the navigation task, in which they
are almost undistinguishable. As for the item collection task, the median value
(around 3.75 species per robot) is the same for both experiments, while the vari-

12

Figure 5: Performance measures of the 64 runs for the navigation task. From left
to right and from top to bottom, fc, fb, tf and fa.

Figure 6: Same as Figure 5 for the collection task.

ance is slightly larger through evolution for the experiment with timestamps (in-
terquartile range of around ± 0.40 species) than for GC (around ± 0.25 species).
Although the difference is slim, the timestamps marking mechanism seems to in-
duce slightly more variability w.r.t. the number of species. This suggests that the
timestamps create more topological diversity in the local populations than our
method that shows less variability. We believe that the cause for the disparity is
related to innovations being sorted by convention during alignment in GC. In the
experiments, the coefficients c1 for excess genes, and c2 for disjoint genes, used
when computing genotypic distance, were set to 0.5 and 1.5 respectively, which

13

means that excess genes have less impact on genome distance. Given that species
are computed based on this value, one possible explanation for the lower disper-
sion of number of species with GC may be a bias towards alignments resulting in
more genes at the end of the genome. Indeed, this requires further investigation
regarding the effect that the coefficients have in the alignments resulting from
the sorting using Gene Clocks.

With respect to size of the evolved controllers, the use of GC creates net-
works with around 3 ± 1.25 added connections or neurons in the navigation
task, against around 2.25 ± 1 for the timestamp mechanism. In the item collec-
tion size, 3.75 ± 1 neural elements were added to controllers when using Gene
Clocks, and 3 ± 0.8 in the case of the timestamps. GC learns controllers with ap-
proximately 0.75 more neural elements in both tasks. We computed the average
accumulated size of the neural controllers during the last 10% of evolution (as for
the swarm fitness above). The results in Figure 11 show that the difference be-
tween both dating methods is not statistically significant in both tasks (p-values
> 0.9). This requires further investigation to ascertain if there is a bias induced
by GC towards slightly larger networks compared to marking with a global clock
shared by all robots.

We compared our proposed decentralized innovation marking method with
the timestamps mechanism originally proposed for odNEAT in two multi-robot
tasks, navigation with obstacle avoidance and item collection. The results com-
fort our motivation in proposing a completely decentralized innovation marking
method that does not hinder the performance of the timestamp method, and
that behaves in the same fashion. Furthermore, our method is completely decen-
tralized, and only requires the addition of one integer to broadcasted genomes
(the current robot’s cr), a considerably small communication overhead.

Figure 7: Mean number of species on all the robots, w.r.t. time, over the 64 runs
for the navigation task.

14

Figure 8: Same as Figure 7 for the collection task.

Figure 9: Mean size of the active neural controllers among the robots, measured
as the sum of neurons and connections of active genomes, w.r.t. time, over the
64 runs for the navigation task.

5 Conclusion and future work

In this article, we introduced Gene Clocks, a decentralized mechanism to mark
genes with innovation numbers in embodied evolution of the topology and weights
of neural controllers in a multi-robot distributed context. We have presented our
experiments using odNEAT in two experiments involving 100 simulated robots:
navigation with obstacle avoidance and item collection. We compared the per-
formances obtained with GC to a method marking genes with local timestamps,

15

Figure 10: Same as Figure 9 for the collection task.

Figure 11: Controller size for the navigation task (left) and the item collection
task (right).

which requires periodical synchronizations to be implemented on real robots.
Both methods reach the same level of performances in the considered tasks, and
the evolutionary dynamics are similar with respect to the number of species and
the size of the controllers. In general terms, GC innovation numbers approxi-
mate the global time, leading to similar performances and dynamics, while being
computed in a completely decentralized manner with a low communication and
computational overhead.

One of our motivations to propose a decentralized mechanism to mark in-
novations in a distributed evolutionary robot system comes from the high cost,
or even impossibility, of periodically synchronizing robots in such a framework.
This is specially the case in large environments where robot encounters are rare,
or more generally, in environments where the robot density is low. Future work
aims at evaluating the scalability of the proposed method w.r.t. robot density

16

to test if the innovation marking mechanism keeps functioning correctly when
robot encounters are rare.

Innovation numbers contain information on the chronological relative age of
genes in the genomes. We are interested in investigating if it is possible to fur-
ther exploit this information to define more informed cross-over operators or
genotypic distance measures.

References

[Angeline et al., 1994] Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1994). An evolutionary
algorithm that constructs recurrent neural networks. Neural Networks, IEEE Transactions on,
5(1):54–65.

[Bredeche et al., 2010] Bredeche, N., Haasdijk, E., and Eiben, A. (2010). On-line, on-board evolu-
tion of robot controllers. In Artifical Evolution, pages 110–121. Springer.

[Bredeche et al., 2013] Bredeche, N., Montanier, J.-M., Weel, B., and Haasdijk, E. (2013).
Roborobo! a fast robot simulator for swarm and collective robotics. CoRR, abs/1304.2888.

[Coulouris et al., 2011] Coulouris, G., Dollimore, J., Kindberg, T., and Blair, G. (2011). Distributed
Systems: Concepts and Design. Addison-Wesley, 5th edition.

[Gruau, 1993] Gruau, F. (1993). Genetic synthesis of modular neural networks. In GECCO’93,
pages 318–325. Morgan Kaufmann.

[Kowaliw et al., 2014] Kowaliw, T., Bredeche, N., and Doursat, R. (2014). Growing Adaptive Ma-
chines: Combining Development and Learning in Artificial Neural Networks. Springer Publishing
Company, Incorporated.

[Lamport, 1978] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565.

[López-Ibáñez et al., 2011] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M.
(2011). The irace package, iterated race for automatic algorithm configuration. Technical report,
Université Libre de Bruxelles, Belgium.

[naki Fernández Pérez et al., 2014] naki Fernández Pérez, I., Boumaza, A., and Charpillet, F.
(2014). Comparison of selection methods in on-line distributed evolutionary robotics. In Pro-
ceedings of the Int. Conf. on the Synthesis and Simulation of Living Systems (Alife’14), pages
282–289, New York. MIT Press.

[Nolfi and Floreano, 2000] Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics. MIT Press.

[Schaffer et al., 1992] Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992). Combinations of
genetic algorithms and neural networks: A survey of the state of the art. In COGANN-92, pages
1–37. IEEE.

[Schwarzer et al., 2012] Schwarzer, C., Schlachter, F., and Michiels, N. K. (2012). Online evolution
in dynamic environments using neural networks in autonomous robots. International Journal On
Advances in Intelligent Systems, 4(3 and 4):288–298.

[Silva et al., 2014] Silva, F., Urbano, P., Correia, L., and Christensen, A. L. (2014). odneat: An
algorithm for decentralised online evolution of robotic controllers. Evol. Comput. MIT Press.
Available online.

[Stanley and Miikkulainen, 2002] Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural net-
works through augmenting topologies. Evol. Comput., 10(2):99–127.

[Watson et al., 2002] Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002). Embodied evolution:
Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Syst.
Elsevier.

17

