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Abstract 

This paper considers the suitability of SPED, a synchronous parallel 

discrete event simulator, for the study of message passing networks. The 
simulation algorithm is described, and its potential performance is assessed 

showing that, under some simplifying assumptions, SPED might offer 

speedups directly proportional to  the number of processors used in the 
simulation. An implementation of SPED in a distributed memory parallel 

system is used to study a model of an interconnection network for a 

multicomputer. Experiments show that SPED performs nearly as expected, 

as long as the event density imposed on the LPs is above a certain threshold. 

If this is  not the case, the overhead due t o  synchronization plus 

communication dominates the execution time, and the achieved speedups are 

not as good. 

Some ways to improve the performance of SPED are proposed: a method to 
reduce the number of messages interchanged during the simulation, and a 
new algorithm for synchronous PDES, called PTD-NB (Parallel Time Driven- 

No Barriers), which reduces the synchronization overhead by removing 

barrier operations and can be easily implemented in multicomputer systems 

without support for global synchronization operations. 

Keywords 

Parallel discrete event simulation, synchronous PDES, multicomputer 

networks, performance analysis, barrier synchronization. 



Introduction 

The study of large and complex models of dynamic systems by means of 
computer simulation, a common activity in many science and engineering 

fields, is a computationally demanding task. The simulation community is in 

continuous search of new techniques to accelerate this kind of studies. One of 

the most promising possibilities comes from the use of parallel computers. An 
extensive set of techniques can be found in the literature to perform PDES 

(Parallel Discrete Event Simulation). Most of those techniques have in 

common the fact that parallelism is exploited by model decomposition: the 

model to  simulate is divided into several parts, and each part is assigned to a 
Logical Process (LP). The resulting collection of LPs can run concurrently, 

each one simulating its part of the whole. LPs communicate and synchronize 

by passing messages that contain events scheduled by one LP (the sender) to 

be processed by another LP (the receiver). 

In order to maintain the causal relationships among the events in the 

simulation, a synchronization mechanism is needed. There are two broad 

groups of synchronization mechanisms, which differ in the way (simulated) 

time information is perceived by the LPs. 

In synchronous methods the simulation clock is global, that is, all the 

LPs share a common view of time. Only those events with the same (or 

very close) timestamp are executed in parallel [PWM79, Luba88, SSH89, 

YTH89, KY91, Sou1921. 
In asynchronous methods each LP has its own local clock. The objective 

of these methods is to allow events with different timestamps to be 
processed in parallel, not necessarily in strict timestamp order but 

taking care of maintaining the causal relationships of the events to 

ensure simulation correctness. The best known approaches to 

asynchronous PDES are those by Chandy-Misra-Bryant [CM79, 

Brya771, and Jefferson's Time Warp [Jeff'85]. 

This paper studies one particular algorithm in the first group, which we 

call SPED (Synchronous Parallel Event Driven). Each LP of a SPED 

simulator keeps the same data stl-uctures of a single, sequential event-driven 

simulator: clock, state variables, statistics and event calendar. The clocks of 



all the LPs always keep the same value, so i t  can be said that the LPs share a 
common clock. The rest of the data structures are private. The event calendar 

stores self-scheduled events (events scheduled by one LP for its own future) 
as well as those events scheduled by other LPs and received via m.essages. 

clock = 0; 

while (clock <= end-of-simulation) ( 

t = minimum-timestamp(); / *  step 1 * /  

clock = global-minimum(t); / *  step 2 * /  

simulate~events(clock); / *  step 3 * /  

synchronize ( ) ; / *  step 4 * /  

Figure 1. Outline of a logical process that forms part of a Synchronous Parallel 
Event Driven (SPED) simulator. 

Each LP performs the basic algorithm depicted in Figure 1. It consists of a 
loop where iterations are separated by barriers. Each iteration performs four 
steps. First each LP obtains the timestamp of the earliest message of its 
event calendar. Then, a global operation is performed to compute the 
minimum among those values; the resulting minimum is  assigned to the 

clock of all the LPs. In the third step each LP consumes all the events whose 
timestamp equals the new value of the clock. The last step is the barrier 

synchronization; i t  is needed to make the LPs start the next iteration a t  the 

same time. The LPs should not proceed to the next iteration until all the 
messages generated in  the previous step have been delivered. and safely 
stored in  the corresponding event calendars. 

The algorithm guarantees that a t  least one LP will consume one event in 
each iteration: the one that was used to compute the new clock. In the worst 

case, SPED behaves exactly like a sequential simulator, because i t  is possible 

that in a given iteration only the LP with the earliest event has something to 
do, while the others simply await to proceed to the next iteration. However, in  
a well balanced scenario with a reasonable event density (defined as  the 
average number of events with the same timestamp), SPED can eEciently 
exploit the available parallelism, with a moderate synchronization cost. Two 
additional positive aspects can be found in this method: the simplicity of the 
design (which makes the simulator easy to build and maintain) and the 



possibility of an efficient implementation in SIMD systems, while other 

approaches to model distribution simulation are best suited for SPMD or 
MIMD systems. 

The outline of the remainder of this paper is as follows. In $2 a simple 

analytical model of SPED is used to predict its performance. In $3 an 

implementation of SPED in an Intel Paragon multicomputer is described. A 
model of a message passing network for a multicomputer system, described in 

$4, has been used to test this implementation. The results of a set of 

experiments, along with the conclusions drawn from them, are presented in 

$5. In $6 two ways of improving the performance of SPED are proposed and 
evaluated: a new algorithm called STD-NB (Synchronous Time Driven-No 

Barriers), and a way to reduce the number of messages interchanged in a 

synchronous parallel simulation, applicable to both SPED and S'I'D-NB. The 

paper ends with a summary of conclusions in $7. 



Predicting the performance of SPED 

Felderman & Kleinrock perform in [FK90] a comparison of the potential 

performance of SPED versus an asynchronous parallel simula.tor such as 

Time Warp. The study is simplistic: in the synchronous case the only 

overhead that is considered is the time spent synchronizing. In the 
asynchronous case it is assumed that the simulator performs its best and no 

time is spent in synchronization. Although the main objective of this work is 

to compare both methods, in this section we will only use some results 

obtained for the synchronous algorithm. 

In order to simplify the analytical study, it  is assumed that 1' processors 

execute K t a s k s  sequentially. Each processor p must perform tasks 

Tpl.. . Tpk.. . T p ~  in sequential order. A task will take a random amount of time 
to complete execution on any processor-this is called the task. time. Each 

processor houses exactly one LP, so both terms can be used interchangeably. 
Using the synchronous approach, a processor must wait for all other to 

complete a step before continuing. Each processor must wait until every 

processor has completed task i before starting with task ( i + l ) .  This is a 

staged execution with K stages, where each stage takes as long as the slowest 

processor. 

Under these assumptions, if the task times are exponentially distributed 
random variables (with mean lip), the expected completion time for a 

synchronous simulator is K times the maximum of P exponentials. This value 

can be expressed as [FK90]: 

where E = Euler's constant = 0.57722. 

The previous result depends on the assumption of an exponential 
distribution for task times. If now it is assumed that task times are uniformly 

distributed between 0 and X, the expected value of the execution time can be 

expressed as [FK901: 



From these results, and assuming that no method can achieve a speedup 

greater than P for P processors, Felderman & Kleinrock state that the 
maximum achievable speedup of SPED is (Plln P) under the assumption of 

exponential task times, and P under the assumption of uniform task times. 

They also conjecture that the results for exponential task times are due to the 

infinite tail of the exponential distribution and may therefore be applicable to 

other distribution with infinite tails. Similarly, the results for uniform task 

times could be applied to  any distribution with finite support. 

For the kind of models we are studying, a task is a set of events with the 
same timestamp, simulated in the same iteration (stage). The execution time 
of an event is approximately constant, but the number of events in each stage 

is random, in such a way that the size of that set (times a consta:nt) is a good 

approximation of the task time as previously defined. 

The duration of each stage is bounded: each LP simulates a finite number 

of model elements, and the number of events that can happen in each of those 

elements in each cycle of simulated time is also finite. According to the 

previous discussion, we can expect that, to  a first approximati'on, speedup 
should be proportional to the number of processors. However, the analysis in 

[FK90] does not consider other costs of SPED, such as the interchange of 
messages among LP in order t o  schedule events. This overhead increases 

with the number of processors, so it should come as no surprise :if the actual 

performance is not up to our expectations. 



3 Implementation 

The SPED algorithm described in the introduction has been implemented 
in an Intel Paragon multicomputer, using the ANSI C programming language 

with Intel's NX library for parallel programming. This library includes point 

to point communication in different styles: blocking, nonblocking, interrupts, 

etc. We have used the blocking functions: 

Csend() sends a message. This function returns to the calling process 

immediately, once the message has been stored in a system bufTer. 
C r e w ( )  receives a message. This function blocks the calling process 

until a message is received. 

Each message sent must have a tag or message type, in such a way that a 

receive function may select just those messages with a given tag. 

NX also provide global communication functions. Arnorig those, a 

particularly interesting one for our purposes is gilow(), which synchronizes 

all the processing elements that participate in an application and then 

computes the minimum (integer) value among those provided by the calling 

processes. Gsync() provides just the synchronization (a barrier), without 

performing any reduction operation. 

Using these functions, the basic design of a LP in our implementation of 

the SPED simulator follows, in broad lines, the description given'before. Each 

LPi executes a loop of 4 basic operations: 

Clock advance. LPi computes the minimum timestamp among the events 

stored in the local event calendar, ti. Collectively, the LPs compute the 

minimum among all those values, c = min(ti). This global operation also 

performs a barrier synchronization. 

Event consumption. LPi advances its clock to  reach c. All the events with 
this timestamp can be executed safely, because there are no causality 
relationships among them. During this step, internal events are stored 

in the local event calendar, while external events are stored in an 

auxiliary data structure. 

Message distribution. LPi sends the external events generated in the 

previous step, by means of messages. This is done in two phases: (a) 



every neighbor is informed about how many messages will be sent to it 

and (b) the messages are actually sent. 

Message gathering. LPi reads all the external events generated in other 

LPs and sent to it. Again, this is done in two phases: (a) gather from the 

neighbors the number of messages to receive and (b) actually receiving 

the messages. 

The resulting code for a LP is sketched in Figure 2. The design of the 

message distribution and message gathering phases, along with the barrier 

at the beginning of each phase, ensures that all the messages generated in 

one iteration are safely received and stored in the same iteration, without 

interfering with the next one. 

process SPED-LP: 

while (clock <= end-of-simulation) ( 

ts = minimum-timestamp(); 

clock = gilow(ts); 

while (next-event-time ( ) == clock) { 

m = next-event(); 

consume (m) ; 

1 

send-messages ( ) ; 

receive-messageso; 

Figure 2. Sketch of the main loop of a logical process that uses the SPED 
synchronization mechanism, as implemented in the Paragon. 



4 Experiments 

To test our implementation of SPED we used a model of a message passing 

network for a multicomputer system. The details of this model can also be 
found in [Arru93]. It is basically a torus network of message routing elements 
(routers). Each router (Figure 3) is connected to four neighbors and to  a 

processing element, via bi-directional channels. All the messages have the 

same length. The flow-control mechanism is cut-through and, for this reason, 

message queues are needed, which are associated to each output channel. 

- local processor 

Figure 3. A model of message router. The actual model being simula.ted is a 
torus network were each node is a <router, processor> pair, representing a 
multicomputer system. 

Three important parameters of this model are: 

Message length (M),  measured in flits (flow-control digit). It; is assumed 

that a flit advances from one router t o  another in one cycle (of simulated 

time). 

Load of the network (L) . It is the amount of information generated by the 

processing nodes, measured from 0 (none) to 100 (theoretical maximum). 

The maximum (100) corresponds to the bisection bandwidth (in flits) of 
the network, that is, t o  a situation where the channels of the network 

bisection are continuously utilized. A given load level can be reached 

with many short messages or with few long messages. 
Size of the network (S). Number of <router, processor> pairs. 



These three parameters have a direct influence on the event density of the 
simulation: it  increases with L and S, and decreases with M. 

Other characteristics of the model such as the size of the router queues, the 

communication patterns and the routing strategy were fixed, although they 

could be easily changed. The transit queues can hold 10 messages, while the 

injection queue has enough room for 4 messages. A random con~munication 

pattern was used: a node can send messages t o  any of the other nodes, with 

the same probability. The (time) separation between messages generated a t  a 

given node is exponentially distributed, with a mean that  is directly 

proportional to the message length and inversely proportional to the network 
size and load. The routing strategy is oblivious in order of dimemion (first X, 
then Y), following a technique described in  [Arrua93, Izu941 to avoid 

communication deadlocks. This is needed because the topology is .a toms. 

To perform a parallel simulation the simulated network is divided in 

squares of the same size, and each square is assigned to a logical process. 

This means that  each LP simulates an aggregate of routers, not only one. The 

size of the square depends on the number of available processi:ng elements 
(PEs): exactly one LP is mapped onto each PE. 

A sequential event-driven simulator was also implemented, in order to 
have a reference point t o  assess the achieved performance of the parallel 

simulators under different configurations and workloads. After measuring 

the execution time of a sequential and a parallel simulation of the same 

model, a speedup figure can be computed. The model simulated by the 

sequential and parallel programs are basically the same but, in order to make 

fair comparisons, some optimizations were included in the sequential version 

that  take advantage of the use of a single memory space. 



5 Performance results 

An exhaustive set of experiments performed with SPED simulating the 

model described in the previous section led to the following conclusions: for a 

given value of P (number of processing elements) the performailce of SPED 

increases with the event density, that is, the best conditions for SPED come 

with large values of L (load) and S (size), and small values of .M (message 

length); additionally, for a given event density (L, S and hf), speedup 

increases with P. 
These results are illustrated in Figure 4, which shows the speedups 

achieved when performing the following experiments: 

Experiment 1: using a number of processors P ranging fro:m 1 to 64, a 
network of S = 24x24 routers is simulated during 4000 cycles. The 

values of the other parameters are L = 50 and M = 4. 

Experiment 2: using a number of processors P ranging from 1 to 100, a 
network of S = 90x90 routers is simulated during 1000 cycles. The 

remaining parameters are the same as in experiment 1. 

Separately, each experiment tells us how well the execution time improves 

with the number of processors. If the attention is fixed on the re,sults of both 

experiments for a given number of processors, the influence of the event 

density (in this case, only of S) can be seen. 



Figure 4. Speedups achieved with SPED running experiments 1 and 2. The same 
experiments, using an optimized version of the model, were run with a 
sequential simulator, whose execution times were used as the reference to 
compute speedups. 

1 1 1 [ 1 1 1 [ 1 1 1 [ ~ 1 1 , ~ 1 1 ,  

/ - 
/ - - S = 90x90 / 

- 
--e-- S = 24x24 

/ 

/ - - 
/ - - - - -  Linear speedup 

/ 

/ - 

The obtained results are, for the case of high event density (experiment 2) 

nearly as expected from the analytical study of $2: linear with the number of 

processors. However, when this density is smaller, the performance is not 

very good when many processors are used. We hypothesize that; this should 

be due to overheads not considered in the study of Felderman & Kleinrock, 

such as communication among processors, which increases with the number 
of processors. 

To further understand the behavior of this SPED implementation we 

instrumented the simulator to  measure how much time LPs speind executing 

events and how much performing synchronization tasks. This is shown in 
Figure 5. The total execution time is divided into four parts: 

I 

Tsim is the time spent managing and executing events; management tasks 

are event calendar insertions and deletions. 
Tsen is the time spent sending messages to other LPs. 

- 

- 

- 
- 



Trec is the time LPs spent awaiting to receive, from their four neighbors, 
messages generated as a result of iteration completions. Trec is basically 
synchronization time, because it includes the time a LP spends awaiting 
its neighbors to finish, plus a small overhead due to the invocation of a 
system call. 

Tbar is the time LPs spent computing the value of the clock a t  the 
beginning of each iteration. This global minimum operation. is a form of 
barrier, so this time is also devoted to synchronization. 

4 9 16 36 64 

Numher of processors 

Experiment 1. Network 24x24 routers. Experiment 2. Network 90x90 routers. 

Figure 5. Distribution of total execution time among simulation and 
synchronization for experiments 1 and 2 ,  expressed as a percentage of the total 
time. Tbar = time spent barrier-synchronizing; Trec = time spent receiving 
messages; Trec = time spent sending messages; Tsim = time spent executing 
events. 

It is easy to see how a highly loaded simulator performs better because it is 
able to spend most of its time executing useful work. If the load is lowered 
then the ratio of computation time t o  synchronization time degrades 
considerably. 



6 Improving the performance 

The experimental evaluation of SPED presented in the previous section 
shows that the performance of SPED is quite satisfactory. However, the study 
of the time that the simulator spends in computation, synchronization and 
communication activities suggested that performance could be further 
improved if some of the overheads were reduced. In this section two of such 
optimizations are analyzed, which have been implemented and tested, giving 
satisfactory results. The first one reduces the synchronization time by 
eliminating barrier operations. The second one reduces colrlmunication 
overheads, grouping events to allow the simulator t o  interchange fewer 
messages of larger size. 

6.1 Removing barriers 

The experiments performed with SPED show that, in most cases, the 
number of barriers executed by the LPs is equal to  the number of simulation 
cycles, which means that the clock advance from iteration to  iteration is 
always one time unit or, in other words, that SPED actually works as a time- 
driven simulator. In fact, we implemented and tested the algorithm of Figure 
6, which we will call PTD (Parallel Time Driven), obtaining the same results 

for the majority of the performed experiments. The exceptions were some 

experiments with an extremely low event density, where SPED performed 

slightly better than PTD. 



process PTD-LP: 

clock = 0; 

while (clock <= end-of-simulation) ( 

gsync ( ) ; / *  Sync. 1 * /  

while (next-event-t ime ( ) == clock) ( 

m = next-event ( ) ; 

consume (m) ; 

1 

send-messages ( ) ; 

receive-messages(); / *  Sync. 2 * /  

clock++; 

Figure 6. Sketch of a logical process using the PTD synchronization mechanism. 

The PTD algorithm shows that  each LP must perform two levels of 

synchronization, indicated in the figure. The first one is the barrier, which 

ensures that  all the LPs starts the next iteration a t  the same time. This 

barrier substitutes the global operation performed in SPED to compute the 

timestamp of the events to process. With PTD that computation is no longer 

needed, because the clock always advances one unit. The second point of 

synchronization is not global, as  the barrier, but affects just a LP and its 

neighbors: function receive-messageso returns only after the neighbors 

have finished simulating the events the current value of the clock, and have 

executed send-messages( ). 

The fact is that  the barrier is not necessary a t  all, if we provide the LPs 

with a means of guaranteeing that messages generated during two different 
iterations are never mixed. However, the straightforward impleinentation of 

send-messageso and, particularly, of receive-messages0 do not prevent 

the mixture of messages, thus requiring the use of the barrier. 

Fortunately, some minor changes t o  these functions can make the 

simulation work properly without the barriers. Figure 7 shows the resulting 
algorithm, that we will call PTD-NB (Parallel Time Driven-No Barrier). 



process PTD-NB-LP: 

clock = 0; 

while (clock <= end-of-simulation) ( 

while (next-event-time() == clock) { 

send_messages2(); 

receive_messages2(); / *  Sync. * /  

clock++; 

Figure 7. Sketch of a logical process using the PTD-NB synchronization 
mechanism. 

In PTD-NB the message distribution phase, send_messages2() is slightly 
different from send-messages(), Every message is tagged, before being sent, 
with a label with two fields: 

Type of the message. Possible values are ANNOUNCE an.d USEFUL. 
Firstly, a message of the ANNOUNCE type is sent to  each neighbor, to  
inform about how many USEFUL messages are being sent as a result of 

the iteration just finished. Then as many USEFUL messages as 
previously advertised are sent. 

Sending timestamp. Both ANNOUNCE and USEFUL messages are 

tagged with the current value of the clock. 

With this information, the message gathering phase can also perform the 
necessary synchronization t o  separate one step from the next. 'This is done 
using the message labels. Function receive_messages2() executed a t  the 
end of iteration i proceeds as follows: 

The LP awaits to receive as messages as neighbours, selecting only those 
tagged <ANNOUNCE, i>. Then it knows how many USEFUL messages 
will be received, say m.  



Then the LP awaits to receive exactly m messages tagged <TJSEFUL, i>. 
When the m messages have been received, i t  is sure that no new 

messages belonging to iteration i will be received. 

After receive_messages2() returns the LP knows that iteration i has 
finished, so the clock can be incremented and the next iteration starts. 

I t  should be clear that the synchronization effort is very similar with or 

without barriers. Although under some circumstances it is possible that the 

LPs need to spend less time blocked (see Figure 8), a slow LP would make its 

neighbors slow down, and those would do the same, thus slowing down the 
simulation as a whole. However, removing barriers can reduce the total 

execution time because it avoids calling, at  the beginning of each iteration a 

costly system call. Another advantage of PTD-NB is its suitability t o  be 
implemented in multicomputers that lack support for global oper. ~3 t' ions. 

Figure 8. Evolution of a collection of LPs using PTD (left) and PTD-NH (right). 
Each line represents one LP. The black part is the time spent consuming events 
(computation phase), while the gray part is waiting time (synchronization 
phase). In PTD each LP finishes an iteration when all the LPs finish the 
computation phase. In PTD-NB a LP finish an iteration when it  and all its 
neighbors-in this case, the one a t  the left and the one a t  the right-finish their 
computation phases. 

The first point has been confirmed performing some experiments in the 
Paragon. A reduction in execution time proportional to the number of 

simulation cycles (i.e., of barriers in PTD or SPED) can be achieved. This 

reduction is more significant when the number of processors involved in the 

barriers is high. Figure 9 compares SPED to PTD-NB running Experiment 1. 
Execution times of PTD-NB are always shorter, and the time gain improves 



with the number of processors, the reason being that the cost of a barrier 

increases with the number of nodes to synchronize. 

. . - .  - SPED - - PTD-NB - SPED-S 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
I 1  1 1 1 1  I 1 I I 1  

Nu~nber of processors 

Figure 9. Execution times of SPED, PTD-NB and SPED-S ($6.2) running 
Experiment 1 (network of 24x24 routers). PTD-NB improves significantly with 
the number of processors, because the cost of a barrier increases with this 
number while the number of barriers remains constant. SPED-S takes about 6% 
less time to complete than SPED, so the effect of this improvement is more 
noticeable when only a few processors are used and, therefore, execution times 
are longer. 

Figure 10 (left) shows the distribution of execution time among simulation 

(Tsim), sending messages (Tsen) and receiving messages (Trec) for 

Experiment 1.  Compare with Figure 5 (left). The proportion of time spent 

receiving messages is now, as expected, much higher, because it. includes all 

the synchronization costs. The proportion of time spent executing events and 

sending messages also higher. Although the absolute values of Tsim and Trec 

are the same for SPED and PTD-NB, in the latter case the cost of performing 
barrier operations has  been removed and, therefore, the  overall 

synchronization overhead has been significantly reduced, specisilly for large 

numbers of processors. 



To finish this section, we must mention that both PTD and PTD-NB have a 

pitfall that prevents them from being of general use. This is that LPs can not 

schedule events with zero timestamp increment, except for self-scheduled 

events. In other words, a LP i t  i s  not allowed to schedu1.e an event 

timestamped i for another LP when the simulation clock is i. The reason is 

simple: if that event was scheduled, i t  would be sent as a message a t  the end 

of iteration i ,  and would not be processed because next iteration would only 
simulate events timestamped i+l. The event-driven simulator, SPED does 
not have this limitation. 

4 9 16 36 64 

Number of processors 

FTD-NB SPED-S 

Figure 10. Distribution of the total execution time for PTD-NB and SPED-S 
running Experiment 1 (compare to Figure 5 - left). For all the cases Tsim 
remains constant in absolute terms but the overhead reduction leads to a higher 
efficiency in the use of the processors. 

6.2 Reducing the number of messages 

In the description of the previous algorithms, SPED, F'TD and F'TD-NB, i t  

has been assumed that, for each event scheduled by a LP for a dif'ferent one, a 

message must be sent. The implementation is this way because i t  shares 
most of the code with other parallel, asynchronous simula.tors, where 

messages are sent as soon as possible to reduce the synchronization effort. 

However, SPED allows an alternative way of dealing with messages. 



Communication operations are very expensive in most parallel computers, 

so a reduction in  the number of messages immediately results in  a 

performance improvement. This is true even if the amount of information 

actually interchanged remain fixed, because sendinglreceiving a message has 

a significant cost in terms of software overhead, which is specially significant 
if messages are short. The longer the message, the smaller the [overhead, in 

relative terms. Under these conditions, SPED (PTD, PTD-NB) can be adapted 

to reduce the number of messages sent by a LP a t  the end of each iteration, to 

a number equal to the number of neighbors. This is done by grouping all the 

events scheduled for a neighbor in a single message of variable size. 

In order to realize this message reduction, the send-messages0 operation 

must be changed. Now it is not necessary t o  advertise how many messages 

are going to be sent to each neighbor, and then send each event in a message. 

I t  is enough to send a single message that might be empty or contain many 

events grouped together. 
The receive-messageso operation must change accordingly. The main 

problem is that  the length of a message is not known in advance, so it must 

be obtained a t  run time. This forces the receive operation to be split in several 

parts: 

Await for a message to arrive, using function cprobeo, available in the 

NX library. 
Obtain the message length, using infocount(). This way i t  i.s possible to 

know how many events are arriving, dividing the obtained result by the 

size of the data structure that stores an event. 

After allocating the right buffer size, actually receive the message with 

crecv0. 

This improvement has been implemented and tested running Experiment. 
1, the network of 24x24 routers. Figure 9 shows the execution time of SPED 

(the version that sends a message per event plus a message per iteration and 

per neighbor), versus SPED-S (the new version that sends only one message 

per iteration and per neighbor). SPED-S always runs faster, being the 

execution times are about a 6% shorter. 
When the execution time of the simulator is split into components, i t  can 

be seen that SPED-S spends noticeably less time sending messa.ges, because 



the effort in terms of system calls is considerably reduced. The time spent 

receiving messages is also reduced, but not as much, because (a) splitting the 

receive operation now requires more system calls and, (b) most of the time the 

simulator spends in receive operations is actually waiting time, that is, does 

not depend on the way messages are received but on the time it takes all the 

neighbors to finish their computations. The other components of the time 

(computation, barriers) does not improve. Figure 10 (right) shows the new 

distribution of time for the case of Experiment 1.  
The advantage of grouping is, in absolute terms, proportional to the event 

density: if a LP needs to send many messages each iteration, those are longer, 

and make a better use of the communication mechanisms of the target 

multicomputer. For this reason the improvement in Experiment 1 is not very 

important for the case of 64 processors. 



Conclusions 

In this paper we have described SPED, a synchronous, pa:rallel, event 

driven simulator, which is specially attractive due to the sim:plicity of its 
design: it is like a sequential, event driven simulator but many events can be 

processed simultaneously, if they have the same timestamp (and, thus, they 

do not depend on each other). Despite its simplicity, i t  has been shown how i t  

has the potential to offer speedups proportional to the number of processors. 

An implementation of SPED in a Paragon parallel computer hias been used 

to simulate a model of a message passing interconnection network, designed 
to constitute the communication infrastructure of a multicomputer. 

Experiments with different parameters of the model, and different number of 

processors, allowed to identify the factors that improves the pel-formance of 
SPED. If the workload imposed by the model, measured in terms of event 

density (number of events per unit of simulated time) is high, SPED spends 

most of i ts  time performing useful computation. In these circum~stances, the 

achieved speedups are nearly a s  predicted, that  is, proportional to the 

number of processors. However, if the LPs have only a few events to consume 

a t  each iteration, synchronization and communication takes most of the time, 

and the achieved efficiency is not as  good as expected. 

Although the overall performance of our SPED implementation is 
satisfactory, i t  is possible to improve it. We have introduced PTD-NB, a new 

algorithm to perform time driven parallel simulation without requiring the 

use of barrier synchronization operations. Although PTD-N:B has some 

restrictions that prevent its use for any kind of models, for the one used in  

our experiments the behavior of SPED and PTD-NB are identical, being 

PTD-NB faster. The new algorithm is specially interesting when barrier 

operations are expensive (including cases where a large number of processors 

are involved) or, simply, not available. 

Another change that can be introduced in  our implementations of SPED 
and PTD-NB is a reduction of the number of messages interchanged by the 

LPs of the simulator, by grouping several events in a single message of 

variable size. This optimization is suitable for current paral1e:l computers, 

where sending messages incurs in severe overheads. Its use i:mproves the 

execution speed, reducing run time by about 6%, for the performed 

experiments. 
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