
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-1995

A case study in synchronous parallel discrete event
simulation
José Miguel Alonso
Purdue University School of Electrical and Computer Engineering

José A.B Fortes
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Alonso, José Miguel and Fortes, José A.B, "A case study in synchronous parallel discrete event simulation" (1995). ECE Technical
Reports. Paper 159.
http://docs.lib.purdue.edu/ecetr/159

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4947183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-ECE 95-27
DECEMBER 1995

A case study in synchronous parallel

discrete event simulation

Jose Miguel Alonso 1A*, Jose A.B. Fortes2J

1Departamento de Arquitectura y 2School of Electrical and Computer

Tecnologia de Computadores Engineering
UPV/EHU Purdue University
Apdo. 649 1285 EE Building

20080 San SebastiAn West Lafayette, IN 47907- 1285

SPAIN USA

* This research was conducted while Jose Miguel was a Visiting Scholar a t Purdue

University.

5 This research was partially funded by the National Science Foundation under grants

MIP-9500673 and CDA-9015696.

Table of contents

1 Introduction .. 1

2 Predicting the performance of SPED .. 4

3 Implementation ... 6
4 Experiments ... 8

... 5 Performance results 10

... 6 Improving the performance 13

.. 7 Conclusions 21

References ... 22

Abstract

This paper considers the suitability of SPED, a synchronous parallel

discrete event simulator, for the study of message passing networks. The
simulation algorithm is described, and its potential performance is assessed

showing that, under some simplifying assumptions, SPED might offer

speedups directly proportional to the number of processors used in the
simulation. An implementation of SPED in a distributed memory parallel

system is used to study a model of an interconnection network for a

multicomputer. Experiments show that SPED performs nearly as expected,

as long as the event density imposed on the LPs is above a certain threshold.

If this is not the case, the overhead due t o synchronization plus

communication dominates the execution time, and the achieved speedups are

not as good.

Some ways to improve the performance of SPED are proposed: a method to
reduce the number of messages interchanged during the simulation, and a
new algorithm for synchronous PDES, called PTD-NB (Parallel Time Driven-

No Barriers), which reduces the synchronization overhead by removing

barrier operations and can be easily implemented in multicomputer systems

without support for global synchronization operations.

Keywords

Parallel discrete event simulation, synchronous PDES, multicomputer

networks, performance analysis, barrier synchronization.

Introduction

The study of large and complex models of dynamic systems by means of
computer simulation, a common activity in many science and engineering

fields, is a computationally demanding task. The simulation community is in

continuous search of new techniques to accelerate this kind of studies. One of

the most promising possibilities comes from the use of parallel computers. An
extensive set of techniques can be found in the literature to perform PDES

(Parallel Discrete Event Simulation). Most of those techniques have in

common the fact that parallelism is exploited by model decomposition: the

model to simulate is divided into several parts, and each part is assigned to a
Logical Process (LP). The resulting collection of LPs can run concurrently,

each one simulating its part of the whole. LPs communicate and synchronize

by passing messages that contain events scheduled by one LP (the sender) to

be processed by another LP (the receiver).

In order to maintain the causal relationships among the events in the

simulation, a synchronization mechanism is needed. There are two broad

groups of synchronization mechanisms, which differ in the way (simulated)

time information is perceived by the LPs.

In synchronous methods the simulation clock is global, that is, all the

LPs share a common view of time. Only those events with the same (or

very close) timestamp are executed in parallel [PWM79, Luba88, SSH89,

YTH89, KY91, Sou1921.
In asynchronous methods each LP has its own local clock. The objective

of these methods is to allow events with different timestamps to be
processed in parallel, not necessarily in strict timestamp order but

taking care of maintaining the causal relationships of the events to

ensure simulation correctness. The best known approaches to

asynchronous PDES are those by Chandy-Misra-Bryant [CM79,

Brya771, and Jefferson's Time Warp [Jeff'85].

This paper studies one particular algorithm in the first group, which we

call SPED (Synchronous Parallel Event Driven). Each LP of a SPED

simulator keeps the same data stl-uctures of a single, sequential event-driven

simulator: clock, state variables, statistics and event calendar. The clocks of

all the LPs always keep the same value, so i t can be said that the LPs share a
common clock. The rest of the data structures are private. The event calendar

stores self-scheduled events (events scheduled by one LP for its own future)
as well as those events scheduled by other LPs and received via m.essages.

clock = 0;

while (clock <= end-of-simulation) (

t = minimum-timestamp(); / * step 1 * /

clock = global-minimum(t); / * step 2 * /

simulate~events(clock); / * step 3 * /

synchronize () ; / * step 4 * /

Figure 1. Outline of a logical process that forms part of a Synchronous Parallel
Event Driven (SPED) simulator.

Each LP performs the basic algorithm depicted in Figure 1. It consists of a
loop where iterations are separated by barriers. Each iteration performs four
steps. First each LP obtains the timestamp of the earliest message of its
event calendar. Then, a global operation is performed to compute the
minimum among those values; the resulting minimum is assigned to the

clock of all the LPs. In the third step each LP consumes all the events whose
timestamp equals the new value of the clock. The last step is the barrier

synchronization; i t is needed to make the LPs start the next iteration a t the

same time. The LPs should not proceed to the next iteration until all the
messages generated in the previous step have been delivered. and safely
stored in the corresponding event calendars.

The algorithm guarantees that a t least one LP will consume one event in
each iteration: the one that was used to compute the new clock. In the worst

case, SPED behaves exactly like a sequential simulator, because i t is possible

that in a given iteration only the LP with the earliest event has something to
do, while the others simply await to proceed to the next iteration. However, in
a well balanced scenario with a reasonable event density (defined as the
average number of events with the same timestamp), SPED can eEciently
exploit the available parallelism, with a moderate synchronization cost. Two
additional positive aspects can be found in this method: the simplicity of the
design (which makes the simulator easy to build and maintain) and the

possibility of an efficient implementation in SIMD systems, while other

approaches to model distribution simulation are best suited for SPMD or
MIMD systems.

The outline of the remainder of this paper is as follows. In $2 a simple

analytical model of SPED is used to predict its performance. In $3 an

implementation of SPED in an Intel Paragon multicomputer is described. A
model of a message passing network for a multicomputer system, described in

$4, has been used to test this implementation. The results of a set of

experiments, along with the conclusions drawn from them, are presented in

$5. In $6 two ways of improving the performance of SPED are proposed and
evaluated: a new algorithm called STD-NB (Synchronous Time Driven-No

Barriers), and a way to reduce the number of messages interchanged in a

synchronous parallel simulation, applicable to both SPED and S'I'D-NB. The

paper ends with a summary of conclusions in $7.

Predicting the performance of SPED

Felderman & Kleinrock perform in [FK90] a comparison of the potential

performance of SPED versus an asynchronous parallel simula.tor such as

Time Warp. The study is simplistic: in the synchronous case the only

overhead that is considered is the time spent synchronizing. In the
asynchronous case it is assumed that the simulator performs its best and no

time is spent in synchronization. Although the main objective of this work is

to compare both methods, in this section we will only use some results

obtained for the synchronous algorithm.

In order to simplify the analytical study, it is assumed that 1' processors

execute K t a s k s sequentially. Each processor p must perform tasks

Tpl.. . Tpk.. . T p ~ in sequential order. A task will take a random amount of time
to complete execution on any processor-this is called the task. time. Each

processor houses exactly one LP, so both terms can be used interchangeably.
Using the synchronous approach, a processor must wait for all other to

complete a step before continuing. Each processor must wait until every

processor has completed task i before starting with task (i + l) . This is a

staged execution with K stages, where each stage takes as long as the slowest

processor.

Under these assumptions, if the task times are exponentially distributed
random variables (with mean lip), the expected completion time for a

synchronous simulator is K times the maximum of P exponentials. This value

can be expressed as [FK90]:

where E = Euler's constant = 0.57722.

The previous result depends on the assumption of an exponential
distribution for task times. If now it is assumed that task times are uniformly

distributed between 0 and X, the expected value of the execution time can be

expressed as [FK901:

From these results, and assuming that no method can achieve a speedup

greater than P for P processors, Felderman & Kleinrock state that the
maximum achievable speedup of SPED is (Plln P) under the assumption of

exponential task times, and P under the assumption of uniform task times.

They also conjecture that the results for exponential task times are due to the

infinite tail of the exponential distribution and may therefore be applicable to

other distribution with infinite tails. Similarly, the results for uniform task

times could be applied to any distribution with finite support.

For the kind of models we are studying, a task is a set of events with the
same timestamp, simulated in the same iteration (stage). The execution time
of an event is approximately constant, but the number of events in each stage

is random, in such a way that the size of that set (times a consta:nt) is a good

approximation of the task time as previously defined.

The duration of each stage is bounded: each LP simulates a finite number

of model elements, and the number of events that can happen in each of those

elements in each cycle of simulated time is also finite. According to the

previous discussion, we can expect that, to a first approximati'on, speedup
should be proportional to the number of processors. However, the analysis in

[FK90] does not consider other costs of SPED, such as the interchange of
messages among LP in order t o schedule events. This overhead increases

with the number of processors, so it should come as no surprise :if the actual

performance is not up to our expectations.

3 Implementation

The SPED algorithm described in the introduction has been implemented
in an Intel Paragon multicomputer, using the ANSI C programming language

with Intel's NX library for parallel programming. This library includes point

to point communication in different styles: blocking, nonblocking, interrupts,

etc. We have used the blocking functions:

Csend() sends a message. This function returns to the calling process

immediately, once the message has been stored in a system bufTer.
C r e w () receives a message. This function blocks the calling process

until a message is received.

Each message sent must have a tag or message type, in such a way that a

receive function may select just those messages with a given tag.

NX also provide global communication functions. Arnorig those, a

particularly interesting one for our purposes is gilow(), which synchronizes

all the processing elements that participate in an application and then

computes the minimum (integer) value among those provided by the calling

processes. Gsync() provides just the synchronization (a barrier), without

performing any reduction operation.

Using these functions, the basic design of a LP in our implementation of

the SPED simulator follows, in broad lines, the description given'before. Each

LPi executes a loop of 4 basic operations:

Clock advance. LPi computes the minimum timestamp among the events

stored in the local event calendar, ti. Collectively, the LPs compute the

minimum among all those values, c = min(ti). This global operation also

performs a barrier synchronization.

Event consumption. LPi advances its clock to reach c. All the events with
this timestamp can be executed safely, because there are no causality
relationships among them. During this step, internal events are stored

in the local event calendar, while external events are stored in an

auxiliary data structure.

Message distribution. LPi sends the external events generated in the

previous step, by means of messages. This is done in two phases: (a)

every neighbor is informed about how many messages will be sent to it

and (b) the messages are actually sent.

Message gathering. LPi reads all the external events generated in other

LPs and sent to it. Again, this is done in two phases: (a) gather from the

neighbors the number of messages to receive and (b) actually receiving

the messages.

The resulting code for a LP is sketched in Figure 2. The design of the

message distribution and message gathering phases, along with the barrier

at the beginning of each phase, ensures that all the messages generated in

one iteration are safely received and stored in the same iteration, without

interfering with the next one.

process SPED-LP:

while (clock <= end-of-simulation) (

ts = minimum-timestamp();

clock = gilow(ts);

while (next-event-time () == clock) {

m = next-event();

consume (m) ;

1

send-messages () ;

receive-messageso;

Figure 2. Sketch of the main loop of a logical process that uses the SPED
synchronization mechanism, as implemented in the Paragon.

4 Experiments

To test our implementation of SPED we used a model of a message passing

network for a multicomputer system. The details of this model can also be
found in [Arru93]. It is basically a torus network of message routing elements
(routers). Each router (Figure 3) is connected to four neighbors and to a

processing element, via bi-directional channels. All the messages have the

same length. The flow-control mechanism is cut-through and, for this reason,

message queues are needed, which are associated to each output channel.

- local processor

Figure 3. A model of message router. The actual model being simula.ted is a
torus network were each node is a <router, processor> pair, representing a
multicomputer system.

Three important parameters of this model are:

Message length (M), measured in flits (flow-control digit). It; is assumed

that a flit advances from one router t o another in one cycle (of simulated

time).

Load of the network (L) . It is the amount of information generated by the

processing nodes, measured from 0 (none) to 100 (theoretical maximum).

The maximum (100) corresponds to the bisection bandwidth (in flits) of
the network, that is, t o a situation where the channels of the network

bisection are continuously utilized. A given load level can be reached

with many short messages or with few long messages.
Size of the network (S). Number of <router, processor> pairs.

These three parameters have a direct influence on the event density of the
simulation: it increases with L and S, and decreases with M.

Other characteristics of the model such as the size of the router queues, the

communication patterns and the routing strategy were fixed, although they

could be easily changed. The transit queues can hold 10 messages, while the

injection queue has enough room for 4 messages. A random con~munication

pattern was used: a node can send messages t o any of the other nodes, with

the same probability. The (time) separation between messages generated a t a

given node is exponentially distributed, with a mean that is directly

proportional to the message length and inversely proportional to the network
size and load. The routing strategy is oblivious in order of dimemion (first X,
then Y), following a technique described in [Arrua93, Izu941 to avoid

communication deadlocks. This is needed because the topology is .a toms.

To perform a parallel simulation the simulated network is divided in

squares of the same size, and each square is assigned to a logical process.

This means that each LP simulates an aggregate of routers, not only one. The

size of the square depends on the number of available processi:ng elements
(PEs): exactly one LP is mapped onto each PE.

A sequential event-driven simulator was also implemented, in order to
have a reference point t o assess the achieved performance of the parallel

simulators under different configurations and workloads. After measuring

the execution time of a sequential and a parallel simulation of the same

model, a speedup figure can be computed. The model simulated by the

sequential and parallel programs are basically the same but, in order to make

fair comparisons, some optimizations were included in the sequential version

that take advantage of the use of a single memory space.

5 Performance results

An exhaustive set of experiments performed with SPED simulating the

model described in the previous section led to the following conclusions: for a

given value of P (number of processing elements) the performailce of SPED

increases with the event density, that is, the best conditions for SPED come

with large values of L (load) and S (size), and small values of .M (message

length); additionally, for a given event density (L, S and hf), speedup

increases with P.
These results are illustrated in Figure 4, which shows the speedups

achieved when performing the following experiments:

Experiment 1: using a number of processors P ranging fro:m 1 to 64, a
network of S = 24x24 routers is simulated during 4000 cycles. The

values of the other parameters are L = 50 and M = 4.

Experiment 2: using a number of processors P ranging from 1 to 100, a
network of S = 90x90 routers is simulated during 1000 cycles. The

remaining parameters are the same as in experiment 1.

Separately, each experiment tells us how well the execution time improves

with the number of processors. If the attention is fixed on the re,sults of both

experiments for a given number of processors, the influence of the event

density (in this case, only of S) can be seen.

Figure 4. Speedups achieved with SPED running experiments 1 and 2. The same
experiments, using an optimized version of the model, were run with a
sequential simulator, whose execution times were used as the reference to
compute speedups.

1 1 1 [1 1 1 [1 1 1 [~ 1 1 , ~ 1 1 ,

/ -
/ - - S = 90x90 /

-
--e-- S = 24x24

/

/ - -
/ - - - - - Linear speedup

/

/ -

The obtained results are, for the case of high event density (experiment 2)

nearly as expected from the analytical study of $2: linear with the number of

processors. However, when this density is smaller, the performance is not

very good when many processors are used. We hypothesize that; this should

be due to overheads not considered in the study of Felderman & Kleinrock,

such as communication among processors, which increases with the number
of processors.

To further understand the behavior of this SPED implementation we

instrumented the simulator to measure how much time LPs speind executing

events and how much performing synchronization tasks. This is shown in
Figure 5. The total execution time is divided into four parts:

I

Tsim is the time spent managing and executing events; management tasks

are event calendar insertions and deletions.
Tsen is the time spent sending messages to other LPs.

-

-

-
-

Trec is the time LPs spent awaiting to receive, from their four neighbors,
messages generated as a result of iteration completions. Trec is basically
synchronization time, because it includes the time a LP spends awaiting
its neighbors to finish, plus a small overhead due to the invocation of a
system call.

Tbar is the time LPs spent computing the value of the clock a t the
beginning of each iteration. This global minimum operation. is a form of
barrier, so this time is also devoted to synchronization.

4 9 16 36 64

Numher of processors

Experiment 1. Network 24x24 routers. Experiment 2. Network 90x90 routers.

Figure 5. Distribution of total execution time among simulation and
synchronization for experiments 1 and 2 , expressed as a percentage of the total
time. Tbar = time spent barrier-synchronizing; Trec = time spent receiving
messages; Trec = time spent sending messages; Tsim = time spent executing
events.

It is easy to see how a highly loaded simulator performs better because it is
able to spend most of its time executing useful work. If the load is lowered
then the ratio of computation time t o synchronization time degrades
considerably.

6 Improving the performance

The experimental evaluation of SPED presented in the previous section
shows that the performance of SPED is quite satisfactory. However, the study
of the time that the simulator spends in computation, synchronization and
communication activities suggested that performance could be further
improved if some of the overheads were reduced. In this section two of such
optimizations are analyzed, which have been implemented and tested, giving
satisfactory results. The first one reduces the synchronization time by
eliminating barrier operations. The second one reduces colrlmunication
overheads, grouping events to allow the simulator t o interchange fewer
messages of larger size.

6.1 Removing barriers

The experiments performed with SPED show that, in most cases, the
number of barriers executed by the LPs is equal to the number of simulation
cycles, which means that the clock advance from iteration to iteration is
always one time unit or, in other words, that SPED actually works as a time-
driven simulator. In fact, we implemented and tested the algorithm of Figure
6, which we will call PTD (Parallel Time Driven), obtaining the same results

for the majority of the performed experiments. The exceptions were some

experiments with an extremely low event density, where SPED performed

slightly better than PTD.

process PTD-LP:

clock = 0;

while (clock <= end-of-simulation) (

gsync () ; / * Sync. 1 * /

while (next-event-t ime () == clock) (

m = next-event () ;

consume (m) ;

1

send-messages () ;

receive-messages(); / * Sync. 2 * /

clock++;

Figure 6. Sketch of a logical process using the PTD synchronization mechanism.

The PTD algorithm shows that each LP must perform two levels of

synchronization, indicated in the figure. The first one is the barrier, which

ensures that all the LPs starts the next iteration a t the same time. This

barrier substitutes the global operation performed in SPED to compute the

timestamp of the events to process. With PTD that computation is no longer

needed, because the clock always advances one unit. The second point of

synchronization is not global, as the barrier, but affects just a LP and its

neighbors: function receive-messageso returns only after the neighbors

have finished simulating the events the current value of the clock, and have

executed send-messages().

The fact is that the barrier is not necessary a t all, if we provide the LPs

with a means of guaranteeing that messages generated during two different
iterations are never mixed. However, the straightforward impleinentation of

send-messageso and, particularly, of receive-messages0 do not prevent

the mixture of messages, thus requiring the use of the barrier.

Fortunately, some minor changes t o these functions can make the

simulation work properly without the barriers. Figure 7 shows the resulting
algorithm, that we will call PTD-NB (Parallel Time Driven-No Barrier).

process PTD-NB-LP:

clock = 0;

while (clock <= end-of-simulation) (

while (next-event-time() == clock) {

send_messages2();

receive_messages2(); / * Sync. * /

clock++;

Figure 7. Sketch of a logical process using the PTD-NB synchronization
mechanism.

In PTD-NB the message distribution phase, send_messages2() is slightly
different from send-messages(), Every message is tagged, before being sent,
with a label with two fields:

Type of the message. Possible values are ANNOUNCE an.d USEFUL.
Firstly, a message of the ANNOUNCE type is sent to each neighbor, to
inform about how many USEFUL messages are being sent as a result of

the iteration just finished. Then as many USEFUL messages as
previously advertised are sent.

Sending timestamp. Both ANNOUNCE and USEFUL messages are

tagged with the current value of the clock.

With this information, the message gathering phase can also perform the
necessary synchronization t o separate one step from the next. 'This is done
using the message labels. Function receive_messages2() executed a t the
end of iteration i proceeds as follows:

The LP awaits to receive as messages as neighbours, selecting only those
tagged <ANNOUNCE, i>. Then it knows how many USEFUL messages
will be received, say m.

Then the LP awaits to receive exactly m messages tagged <TJSEFUL, i>.
When the m messages have been received, i t is sure that no new

messages belonging to iteration i will be received.

After receive_messages2() returns the LP knows that iteration i has
finished, so the clock can be incremented and the next iteration starts.

I t should be clear that the synchronization effort is very similar with or

without barriers. Although under some circumstances it is possible that the

LPs need to spend less time blocked (see Figure 8), a slow LP would make its

neighbors slow down, and those would do the same, thus slowing down the
simulation as a whole. However, removing barriers can reduce the total

execution time because it avoids calling, at the beginning of each iteration a

costly system call. Another advantage of PTD-NB is its suitability t o be
implemented in multicomputers that lack support for global oper. ~3 t' ions.

Figure 8. Evolution of a collection of LPs using PTD (left) and PTD-NH (right).
Each line represents one LP. The black part is the time spent consuming events
(computation phase), while the gray part is waiting time (synchronization
phase). In PTD each LP finishes an iteration when all the LPs finish the
computation phase. In PTD-NB a LP finish an iteration when it and all its
neighbors-in this case, the one a t the left and the one a t the right-finish their
computation phases.

The first point has been confirmed performing some experiments in the
Paragon. A reduction in execution time proportional to the number of

simulation cycles (i.e., of barriers in PTD or SPED) can be achieved. This

reduction is more significant when the number of processors involved in the

barriers is high. Figure 9 compares SPED to PTD-NB running Experiment 1.
Execution times of PTD-NB are always shorter, and the time gain improves

with the number of processors, the reason being that the cost of a barrier

increases with the number of nodes to synchronize.

. . - . - SPED - - PTD-NB - SPED-S

-
-
-
-
-
-
-
-
-
-

-
I 1 1 1 1 1 I 1 I I 1

Nu~nber of processors

Figure 9. Execution times of SPED, PTD-NB and SPED-S ($6.2) running
Experiment 1 (network of 24x24 routers). PTD-NB improves significantly with
the number of processors, because the cost of a barrier increases with this
number while the number of barriers remains constant. SPED-S takes about 6%
less time to complete than SPED, so the effect of this improvement is more
noticeable when only a few processors are used and, therefore, execution times
are longer.

Figure 10 (left) shows the distribution of execution time among simulation

(Tsim), sending messages (Tsen) and receiving messages (Trec) for

Experiment 1. Compare with Figure 5 (left). The proportion of time spent

receiving messages is now, as expected, much higher, because it. includes all

the synchronization costs. The proportion of time spent executing events and

sending messages also higher. Although the absolute values of Tsim and Trec

are the same for SPED and PTD-NB, in the latter case the cost of performing
barrier operations has been removed and, therefore, the overall

synchronization overhead has been significantly reduced, specisilly for large

numbers of processors.

To finish this section, we must mention that both PTD and PTD-NB have a

pitfall that prevents them from being of general use. This is that LPs can not

schedule events with zero timestamp increment, except for self-scheduled

events. In other words, a LP i t i s not allowed to schedu1.e an event

timestamped i for another LP when the simulation clock is i. The reason is

simple: if that event was scheduled, i t would be sent as a message a t the end

of iteration i , and would not be processed because next iteration would only
simulate events timestamped i+l. The event-driven simulator, SPED does
not have this limitation.

4 9 16 36 64

Number of processors

FTD-NB SPED-S

Figure 10. Distribution of the total execution time for PTD-NB and SPED-S
running Experiment 1 (compare to Figure 5 - left). For all the cases Tsim
remains constant in absolute terms but the overhead reduction leads to a higher
efficiency in the use of the processors.

6.2 Reducing the number of messages

In the description of the previous algorithms, SPED, F'TD and F'TD-NB, i t

has been assumed that, for each event scheduled by a LP for a dif'ferent one, a

message must be sent. The implementation is this way because i t shares
most of the code with other parallel, asynchronous simula.tors, where

messages are sent as soon as possible to reduce the synchronization effort.

However, SPED allows an alternative way of dealing with messages.

Communication operations are very expensive in most parallel computers,

so a reduction in the number of messages immediately results in a

performance improvement. This is true even if the amount of information

actually interchanged remain fixed, because sendinglreceiving a message has

a significant cost in terms of software overhead, which is specially significant
if messages are short. The longer the message, the smaller the [overhead, in

relative terms. Under these conditions, SPED (PTD, PTD-NB) can be adapted

to reduce the number of messages sent by a LP a t the end of each iteration, to

a number equal to the number of neighbors. This is done by grouping all the

events scheduled for a neighbor in a single message of variable size.

In order to realize this message reduction, the send-messages0 operation

must be changed. Now it is not necessary t o advertise how many messages

are going to be sent to each neighbor, and then send each event in a message.

I t is enough to send a single message that might be empty or contain many

events grouped together.
The receive-messageso operation must change accordingly. The main

problem is that the length of a message is not known in advance, so it must

be obtained a t run time. This forces the receive operation to be split in several

parts:

Await for a message to arrive, using function cprobeo, available in the

NX library.
Obtain the message length, using infocount(). This way i t i.s possible to

know how many events are arriving, dividing the obtained result by the

size of the data structure that stores an event.

After allocating the right buffer size, actually receive the message with

crecv0.

This improvement has been implemented and tested running Experiment.
1, the network of 24x24 routers. Figure 9 shows the execution time of SPED

(the version that sends a message per event plus a message per iteration and

per neighbor), versus SPED-S (the new version that sends only one message

per iteration and per neighbor). SPED-S always runs faster, being the

execution times are about a 6% shorter.
When the execution time of the simulator is split into components, i t can

be seen that SPED-S spends noticeably less time sending messa.ges, because

the effort in terms of system calls is considerably reduced. The time spent

receiving messages is also reduced, but not as much, because (a) splitting the

receive operation now requires more system calls and, (b) most of the time the

simulator spends in receive operations is actually waiting time, that is, does

not depend on the way messages are received but on the time it takes all the

neighbors to finish their computations. The other components of the time

(computation, barriers) does not improve. Figure 10 (right) shows the new

distribution of time for the case of Experiment 1.
The advantage of grouping is, in absolute terms, proportional to the event

density: if a LP needs to send many messages each iteration, those are longer,

and make a better use of the communication mechanisms of the target

multicomputer. For this reason the improvement in Experiment 1 is not very

important for the case of 64 processors.

Conclusions

In this paper we have described SPED, a synchronous, pa:rallel, event

driven simulator, which is specially attractive due to the sim:plicity of its
design: it is like a sequential, event driven simulator but many events can be

processed simultaneously, if they have the same timestamp (and, thus, they

do not depend on each other). Despite its simplicity, i t has been shown how i t

has the potential to offer speedups proportional to the number of processors.

An implementation of SPED in a Paragon parallel computer hias been used

to simulate a model of a message passing interconnection network, designed
to constitute the communication infrastructure of a multicomputer.

Experiments with different parameters of the model, and different number of

processors, allowed to identify the factors that improves the pel-formance of
SPED. If the workload imposed by the model, measured in terms of event

density (number of events per unit of simulated time) is high, SPED spends

most of i ts time performing useful computation. In these circum~stances, the

achieved speedups are nearly a s predicted, that is, proportional to the

number of processors. However, if the LPs have only a few events to consume

a t each iteration, synchronization and communication takes most of the time,

and the achieved efficiency is not as good as expected.

Although the overall performance of our SPED implementation is
satisfactory, i t is possible to improve it. We have introduced PTD-NB, a new

algorithm to perform time driven parallel simulation without requiring the

use of barrier synchronization operations. Although PTD-N:B has some

restrictions that prevent its use for any kind of models, for the one used in

our experiments the behavior of SPED and PTD-NB are identical, being

PTD-NB faster. The new algorithm is specially interesting when barrier

operations are expensive (including cases where a large number of processors

are involved) or, simply, not available.

Another change that can be introduced in our implementations of SPED
and PTD-NB is a reduction of the number of messages interchanged by the

LPs of the simulator, by grouping several events in a single message of

variable size. This optimization is suitable for current paral1e:l computers,

where sending messages incurs in severe overheads. Its use i:mproves the

execution speed, reducing run time by about 6%, for the performed

experiments.

References

[Arm931 A. Arruabarrena. Analisis y evaluaci6n de sistemas de
interconexi6n para procesadores masivamente paralelos. PhD
dissertation, Departamento de Arquitectura y Tecnollogia de
Computadores, Universidad del Pais Vasco, Sept. 1993.

[Brya77] R.E. Bryant. Simulation ofpacket communications architecture
computer systems. MIT-LCS-TR-188, Massachusetts Institute of
Technology, 1977.

[CM79] K.M. Chandy and J. Misra. "Distributed simulation: a case study
in design and verification of distributed programs". IEEE
Transactions on Softu~are Engineering, Vol. SE-5, No. 5, Sept.
1979,440--452.

[FKgOI R.E. Felderman and L. Kleinrock. "An upper bound on the
improvement of asynchronous versus synchronous distributed
processing". Distributed S im~la~ t ion 1990, 131-136.

[Izu94] C. Izu. Andlisis, eualuaci6n y aportaciones a1 diseiio de
arquitecturas para encaminadores de mensajes. PhD
dissertation, Departamento de Arquitectura y TecnoWogia de
Computadores, Universidad del Pais Vasco, May 1994.

[Jeff1351 D.R. Jefferson. 'Virtual time". ACM Trans. on Progrczmming
LanguaC7ges and Systems, Vol. 7, No. 3, July 1985, 4 0 4 4 2 5 .

rKY911 P. Konas and P-C. Yew. "Parallel discrete event simulation on
shared memory multiprocessors". Proc. of the 24th Annual
Simulation Symposiuln, New Orleans, Luisiana, April 1991,
134--148.

[Luba88] B.D. Lubachevsky. "Bounded lag distributed discrete! event
simulation". Proc. SCS Multiconference on Distributed
Simulation, Feb. 1988, 183-19 1.

[PWM79] J.K. Peacock, J.W. Wong and E.G. Manning. "Distributed
simulation using a network of processors". Computer Networks,
Vol. 3, NO. 1, 1979, 44-56.

[Soul921 L. Soul& Parallel logic simulation: an evaluation of centralized-
time and distributed-time algorithms. PhD dissertation. Stanford
Univ. Technical Report CSL-TR-92-527, June 1992.

[SSH89] L.M. Sokol, B.K. Stucky and V.S. Hwang. "MTW: a control
mechanism for parallel discrete simulation", Proc. Int. Conf:
Parallel Processing, Vol. 111, Aug. 1989,250-254.

WH891 Q. Yu, D. Towsley and P. Heidelberger. "Time-driven parallel
simulation of multistage interconnection networks". Distributed
Simulation 1989,191-196.

	Purdue University
	Purdue e-Pubs
	12-1-1995

	A case study in synchronous parallel discrete event simulation
	José Miguel Alonso
	José A.B Fortes

