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Abstract: With the advent of symbolic mathematical software packages such as 
Maple, Mathematics, and Macsyma, symbolic computation has become widely used 
in many scientific applications. Though a significant effort has been put in performing 
numeric computation on multiprocessors, symbolic computation on parallel machines 
is still in an unexplored state. However, symbolic mathematical applications are ideal 
candidates for parallel processing, because they are computationally intensive. This 
paper considers the parallel computation of Grobner basis, a special basis for a mul- 
tivariate polynomial ideal over a field that plays a key role in symbolic computation. 
Large G.robner basis computation poses a challenging problem due to its dynamic data 
dependent behavior and resource-intensiveness. In an attempt to meet this challenge, 
a new tree structured approach for Grijbner basis computation in parallel is proposed 
in this paper. It constructs the Grobner basis of a set of polynomials fi-om Grobner 
basis of its subsets. The tree structured approach proposed in this paper lends itself 
to parallel implementation and significantly reduces the computation time of large 
Grobner basis. Finally, experimental results illustrating the effectiveness of the new 
approacll are provided. 

Keywords: Symbolic computation, Grobner basis, mathematical software, numeric 
computation; parallel machines, SIMD, MIMD. 



1 Introduction 

In spite of the fact that most scientific computation has been numeric in nature, the availability 
of mathemat:~cal software packages like Maple, Mathematica, Macsyma, etc., has enabled and 
popularized the use of symbolic manipulation in many applications. Problem. areas that require 
the usage of symbolic computation or mixed computation include geometric modeling, geometric 
theorem proving, robotics and control. Grobner basis, a special multivariate polynomial basis, is 
a very impos;ant concept in symbolic computation. Generally, construction of a Grobner basis 
is time-consu:rning and resource intensive, because of both the need of exact arithmetic and the 
possibility of generating and analyzing many polynomials. It has been shown that its worst-case 
complexity is doubly exponential. [HofSO]. In this paper, a tree structured approach for performing 
Grobner bask computation is proposed. Using this approach, large polynomial computations can 
be performed more efficiently in an uniprocessor and tree-based parallel implementations are 
possible. The parallel algorithm presented in this paper is based on divide-and-conquer strategy. 

Several researchers have addressed the issue of parallel execution of a Grobn~er basis algorithm. 
In his paper on IIMAPLE)J, Siegl [Sie93] described a way of performing parallel symbolic com- 
putation using parallel declarative programming language Strand and the sequential computer 
algebra systern Maple. Ponder [Pon89, Ponb, Pona] proposed two parallel algorithms for Grobner 
basis computiition (Parallel S-poly and Parallel reduction). In his views, bo1,h algorithms were 
Yess parallel'' and slow in convergence. Inferring from his conclusions, exploring other ways to 
parallelize Grijbner basis computation need to be considered. For parallel Grobner basis computa- 
tion, Schreiner and Hong [SH93b7 SH93al showed that by invoking optimized routines of PACLIB, 
a system for parallel algebraic computation on shared memory computers, a maximum speedup 
of 10 could be achieved on a 20 processor Sequent Symmetry (a MIMD corr~puter with shared 
memory) for Grobner basis computation. Senechaud [Sen89, Sen90, Sen911 computed Grobner 
basis by computing Grobner basis of the subsets of a set of polynomials and cornbining them. The 
algorithm presented in this paper takes a similar approach. Vidal [VidSO] proposed algorithms 
for Grobner basis computation on shared memory multiprocessor using synchronization between 
processes. In his approach, each processor reduced S-polynomial of an unreduced pair in parallel. 
Depending on the result of the reduction, the processor updated the basis and the set of pairs. 

Despite previous research on parallel computation of Grobner basis, there is a room for im- 
provement. 111 this paper, a variant of Buchberger7s algorithm for Grobner basis computation is 
presented. The new algorithm is easy to visualize as a tree structured computation and provides 
more insights into parallel Grobner basis computation. In the next section, l~asic concepts and 
definitions related to polynomials and Grobner basis computation are briefly reviewed. In Section 
3, a parallel algorithm for Grobner basis computation is described and its correctness is proven. 
Finally, some results and conclusions are provided in Section 4. 



2 Polynomials and Grobner Basis 

2.1 Definitions 

In this subsection, basic concepts related to polynomials and Grobner basis computation are 
presented for later use in the paper. An example illustrating the use of definitions is given before 
subsection 2.2. The definitions are quite similar to those of [BW93, CL0931. 

, , where Definition 2.1 (Monomial) A monomial in XI , .  . . , x, is a product of the forrn xyl . . xffn 
all exponents a l , .  - .  , a, are nonnegative integers. The total degree of the monomial is the sum 
al + . . . + a,, The following notation is used hereon: 

For example, let n = 2; if x = (xl, x2), a = (2, l), then x" = xTx2. 

Definition 2.2 (Polynomial) A polynomial f in X I , .  - . , x, with coefficients in field k is a finite 
linear combination of monomials. A polynomial f is written as 

where the sun1 is over a finite number of n-tuples a = (al,. . ,a,). The set of all polynomials in 
xl ,  . . , x, with coefficients in k is denoted by k[xl, - - , x,]. 

A simple example of the last definition is f = 2xTx2 - XI + x2 - 1. 

Definition 2.3 (Ideals) A subset I C k[xl, - . . , x,] is an ideal if it contains 0 and it is closed 
under polynornial addition and polynomial multiplication, i.e. 

2. If f , g  E I, then f + g  E I, 

3. I f f  E I and h E ~ [ X ~ , . ~ . , X , ] ,  then hf E I. 

Definition 2 . 4  (Monomial Ordering) A monomial ordering on k[xl, - .  . , x,,] is any relation > 
on Z:,, or eqoivalently, any relation on the set of monomials xa, a E Z:,, satisfying: 

1. > is a total (or linear) ordering on Z:,, - 



2. If a > )I? and y E .Z30, - then a +  y > p + y, 

3. > is a well-ordering on 23,. This means that every nonempty subset of 23, has a smallest - - 
element; under > . 

Lexicographic,al ordering which is used in the remaining paper is defined next. 

Definition 2.5 (Lexicographical Ordering) Let a , P  E 23,. The exponent vector a! is Iex- 
icographicall~ greater than P written as a >leX P, iff, in a -- P ,  the leftmoist nonzero entry is 
positive. Similarly, xa >re, s o ,  if a >leX P. For example, if x = (xl,  2 2 ) ,  then a:x2 >lex 1, because 
(271) > l a  (070). 

Other mononlial ordering used in symbolic computations are Inverse !exicogruphical, Graded Eex- 
icographical, and Graded reverse lexicographical. 

Definition 2.6 (Coefficient, Term, Multidegree, Leading Coefficient., Leading Mono- 
mial, Leading Term) Let 

f = x a,xa be a polynomial in k[xl,. . . , x,]. 
ff 

1. a, is thl: coeficient of the monomial xff , 

2. If a, # 0, then a,xa is a term off, 

3. The multidegree off is multideg(f) = max(a E 23, - : a, # 0) with respect to lexicographical 
ordering, 

4. The leading coeficient off  is LC( f )  = amultideg(j) E k, 

5. The leading monomial of f is LM( f )  = xm"'tideg(f), 

6. The leading term off  is LT(f)  = LC(f)LM(f).  

Definition 2.7 (S-polynomial) The S-polynomial of two polynomials 

f = x a,xa and g = aex"s 
ff D 

where xY = Ll:M(LM(f), LM(g)) is the least common multiple of LM(f )  and LM(g). 



2 Definiti0r.s 2.6 and 2.7 are now illustrated for two polynomials, fl = 2~,2x :~-  1 and f2  = xlx2- 
X I  with X I  >!,, 2 2 .  The multidegrees of fl and f 2  are rnultideg(fl) = (2, I) ,  rnultideg(f2) = (1,2), 
their leading coefficients are LC(fl) = 2, LC(f2) = 1, their leading mononlials are LM(fl) = 
x;x2, LM( f2)  = ~1x22, their leading terms are LT( fl) = 2x:x2, LT( f2)  = xlxi, the least common 

2 multiple of the leading monomials is, LCM(LM(fl),  LM(f2)) = LCM(x?x2, x1x2) = X;X;. The 
S-polynomial of fl and f 2  is 

In the next subsection, a polynomial division algorithm that aids in finding a normal form of 
a polynomial with respect to a set of polynomials is provided. Using this normal form algorithm, 
a set of polyriomials can be reduced. 

2.2 Normal Form Algorithm 

In this subsection, a normal form algorithm which will be used later in Grobner basis computation 
is discussed. A normal form algorithm computes the fully reduced form of a polynomial with 
respect to a set of polynomials F. A normal form of a polynomial p with respect to a set of 
polynomials j? is denoted by NF(p,  F). The algorithm as described in [Hof9OJ is as follows: 

Algor i thm ;!.I (Normal  Form) 
Input: A set F of polynomials, and a polynomial p. 

Output: A normal form NF(p,  F) of p with respect to F. 

Algorithm: 

1. Set po =: p and i = 0. 

2. For i = 0,1,2, - ,  repeat step 3 until p; cannot be rewritten; then output p; and stop. 

3. If there is a polynomial f in F such that the leading monomial of f divides a term a,xa in 
p;, then rewrite p; as = p; - L T ( f )  ' 

Using the normal form algorithm, a set of polynomials F can be reduced on itself by replacing 
each polynomial f E F with its normal form with respect to set F - { f) .  The rleduction algorithm 
[BW93] is described as below: 

Algor i thm 2.2 (Reduce)  
Input: A set AP of polynomials. 

Output: A reduced set F' = Reduce(F) of polynomials. 



begin 
F' + F 
While there is p E F' which is reducible on F' - {p) do 

Select p from F' 
F' c F' - {p) 
h c NF(p, F') 
if h # 0 then 

F' + F' U {h) 
end 

end 
F' + {f /Hc(f : l l f  E F') 

end 

To d e r n o n ~ t r ~ ~ t e  the functionality of these algorithms, an example is presented next. Let F = 
{x; - 2 2 ,  -XI + xi) ,  with X I  >lez 52. The reduced set of F is computed by algorithm Reduce as 
follows. 

Initially, F' = {x: - 5 2 ,  -XI + x;), then p = z: - 2 2  is selected, leading to F' = {-xl + 
xi). Now, the computation of N F ( ~ ,  F') is carried out using algorithm 2.1. Initially, po = 

2 2 p = 2, - 22. After executing step 3 of algorithm 2.1, pl = xt - x2 + (-xl + xi)x2 = xlx2 - 
x2, then, p2 = (xlxi - x2) + (-x1 + x;)xE = xi  - 2 2 .  Therefore, h = IVF(p, F') = xi - 
22, and algorithm Reduce updates F' to F' = {xi - x2, -XI + xi). Continui~lg the execution of 
algorithm Reduce, p = -xl + xi,  is selected leading to F' = {xi - x2), NF(p ,  8'') = -XI + xi. 
So, the final   educed set is, 

The definitions and reduction algorithms presented in the last two subsections are used in Grobner 
basis computiition next. 

2.3 Grolmer Basis Computation 

In this subsection, the definition of Grobner basis and Buchberger's algorithm to compute it are 
provided. 

Definition 2.8 Let F be a set of polynomials. Then a basis G for Id (F) ,  ideal generated by F, 
is a Grobner hasis iff 

1. for all pairs (gi, gj), i # j, the remainder of the division of Spoly(g;, gj) by G is zero, in other 
words ArF(Spoly (gi, gj), G) = 0, and 

2. the ideals generated by F and G are identical. 



Definition 2.9 A minimal Grobner basis for a polynomial ideal I  is a Grobner basis G for I  such 
that 

1. LC(p)  := 1 for all p E G and 

2. for all 11 E G ;  LT(p)  3 Id(LT(G - { p ) ) ) .  

Definition :!.lo A reduced Grobner basis for a polynomial ideal I  is a Griibner basis G for I  
such that 

1. LC(p)  := 1 for all p E G and 

2. for all p~ E G, no monomial of p lies in Id(LT(G - { p ) ) ) .  

A well-known algorithm for the computation of Grobner basis of a given set of polynomials is 
due to Buchberger in [Buc85a]. A reduced Grobner basis can be obtained by running the algorithm 
Reduce on the Grobner basis computed by Buchberger's algorithm. 

Algorithm 2.3 (Grobner) 
Input: F = { f l , . - , , f , ) .  

Output: A Grobner basis G = { g l ,  . - , g t )  = Grobner(F); such that Id (F)  = .ld(G). 

begin 
G + 17  

B t { ( g i , g j ) J g i , g j  E G with i # j )  
While B # q5 do 

Select ( g i ,  g j )  from B 

B B - {(gi ,gj))  
h S P ~ ~ Y ( Y ~ , Y ~ )  
ho t N F ( h ,  G )  
if ho # 0 then 

B B u {(g,ho)Is E G )  
G t G U  {ho) 

end 
end 

end 

The following; is an illustration of the execution of the above algorithm. Let F be a set of two- 
variate polynomials 

F = {x: - " 2 ,  - X I  + x i ) .  



Initially, G =: {x: - x2, -XI + x:), B = {(g1,92)). A pair (gl, g2) is selected by algorithm Griibner 
leading to h = Spoly(g1, g2) = xlxi - x2, ho = NF(h ,  G) = x; - x2 f 0. The algorithm 
Grobner then updates G and B to G = {x; - x2, -XI + xi, x; - x2), B =: g3), (g2, g3)). 
Furthermore, NF(Spoly (gl, g3), G) = 0 and hTF(Spoly(g2, g3), G) = 0. So, the algorithm Grobner 
terminates with the Grobner basis 

And, the reduced Grobner basis computed by algorithm Reduce is 

Though Buc:?berger1s algorithm is a vital step in symbolic computation, it can be resource- 
intensive ancl time-consuming for large polynomial computations. Furtherinore, it is difficult 
to parallelize. A new parallel algorithm to overcome these drawbacks is provided in the next 
section. 

3 Para~llelization of Grobner Basis computation 
In the previoils section, the Grobner basis computation details were provided. Due to its dynamic 
input depend.ent behavior, Buchberger's algorithm is difficult to parallelize efficiently. In this 
section a new variant of Buchberger's algorithm is presented which can be inferred from [Sengo]. 
The main idea behind the alternative approach is to compute Grobner basis of a given set from 
the Grobner basis of its subsets. The parallel algorithm presented next assumes availability of 2 p  

processors. 
A New Parallel Algorithm for Griibner Basis computation 

Algorithm 3.1 (Par-Griibner-Tree) 
Input: F = { , f i ,  - . , f,) given in 2P subsets Fl, - . , F 2 p  such that F = u?L1 Fi. 
Output: A reduced Grobner basis G = {gl,. . . ,gt)  = Par-Grobner-Tree(F); such that Id(G) = 
Id(F) .  

begin 
for i == 1 to 2 P  pardo 

G; = Grobner-Tree(F;) 
G; = Reduce(Ga) 

end 
for i == 1 to p do 



for j = I to 2P step 2i pardo 
Gj = Grobner-Combine(Gj7 Gj+2i-1 ) 

end 
end 
G = 

end 

Algorithm 3.1 invokes other algorithms called Grobner-Combine and Grobner- Tree described as 
below. Grobner-Combine is almost the same as Buchberger's algorithm. But, here pairs of the 
same set are not considered because they are from the same Grobner basis sei, thus they possess 
the first property of the definition 2.8. On a similar note, Grobner- Tree is the algorithm which 
sequentially c:omputes the Grobner basis of a given set in a tree structure. 

Algorithm 3.2 (Grobner-Combine) 
Input: Two reduced Grobner basis sets G I ,  G2. 

Output: A reduced Grobner basis G = Grobner-Combine(G1, G2) ;  such that ItE(G) = Id(G1uG2).  

begin 
G + (21 U G2 
B + ( ( ~ i ,  gj) 19; E G1, gj E G2, criteria(g;, gj) # 0 )  
While B # 4 do 

Select a pair ( g i 7 g j )  from B 
B + B - { ( ~ i , ~ j ) )  
h + S P O ~ Y  (9; 7 g j  ) 
ho +- N F ( h ,  G )  
if ho # 0 then 

B + B U { ( g ,  ho) lg E G, criteria(h0, g) # 0 )  
G + G u  {ho) 

end 
end 
G = reduce(G) 

end 

Algorithm 3.3 (Grobner-Tree) 
Input: A set of polynomials F = ifi,. . . , f,), where s = 2". 

Output: A reduced Grobner basis G = {g l , .  . - ,gt)  = Grabner-Tree(F); such that Id(G) = Id(F) .  

begin 
for i == 1 to IF1 do 



G.i = { fd) 
end 
for i == 1 to log, (FI do 

for j = 1 to IF) step 2; do 
Gj = Grobner-Combine(Gj, Gj+,i-I) 

end 
end 

end 

Here, criteria( f ,  g) [Buc79] is the check which returns zero if NF(Spoly (f,  g), G) is zero. This 
is very useful in computation, because by detecting this criteria, one will avoid an entry to B 
and then del'etion of it from B later on. From implementation point of view, this results in an 
improvement to overall performance of the algorithm. Next, the correctness of Par-Grobner-Tree 
is discussed. 

3.1 Cor~rectness of the New Parallel Algorithm for Czrobner Basis 
Conlput at ion 

In order to p:rove the correctness of Par-Grobner-Tree, the following two theorems are presented. 

Theorem 3.1 The basis G generated from basis G1, G2 by algorithm Grobner-Combine, is the 
reduced G r i h e r  basis of ideal generated by set F ,  where F = Fl U F2, G1 and G2 are reduced 
Grobner basis of sets Fl and F2 respectively. 

Proof: Here G is the reduced basis generated from two sets G1 and G2, so 

2. from algorithm Grobner-Combine it is evident that for all pairs i # j, NF  (Spoly(gi, gj), G) = 
0, where g;, gj E G. 

Therefore, basis G generated by the algorithm Grobner-Combine is the reduced Grobner basis of 
ideal generated by set F. 

The tree stru.ctured computation for the algorithm Par-Grobner-Tree is shown in figure 1. The 
relationship hetween the algorithms Grobner and Grobner-combine is as below: 

where F = FL U F2. 



Figure 1: Grobner Basis Computation Viewed as a Tree Computation 

Theorem 3.2 In the tree structured computation of the algorithm Par-Grdrbner-Tree, G is the 
reduced Grobner basis of ideal generated by set F. 

Proof: I:I this proof, the associativity of union and Grobner-Combine, and the relationship 
between Grobner and Grobner-Combine algorithms are used. 

2 p  

= .Reduce(GrGbner(U <(O))) (from equation(1)) 

This proves the correctness of the algorithm Par-Grobner-Tree. Furthermore, in Grobner-Tree, 
a reduced G~,obner basis of the union of two sets is always computed. So, by executing algorithm 



Par-Grobner- Tree, the reduced Grobner basis of a set of polynomials is obtained. The tree struc- 
tured compui;ation gives the best performance when the initial set on each node is itself a Grobner 
basis. In that case, Par-Grobner-Tree(F) = F. But, in the worst case, the time complexity of 
Par-Grobner-Tree can be doubly exponential same as that of the Buchberger's algorithm. The 
complexity measure used here is based upon the maximum total degree of the resulting polynomi- 
als during the computation. The effectiveness of the new algorithm is demonstrated by the results 
provided in the following section. 

4 Results and Conclusions 

4.1 Results 

The results provided in this section are based on experiments performed on Intel Paragon, a 
distributed memory parallel machine. Two different types of polynomial equations are considered. 
The lexicogra.phical term ordering is used to order the terms of polynomials. The first type of set 
of polynomials arises from the equations of n cylinders in n-dimensional space. The form of the 
polynomial equations is as described below: 

F = {f l , . . . , fn ) ,  where 

lsjsn 
f = ( ) - 1, for 1 i n and x > x > - > l e x  xn. 

j#; 

The second type of set of polynomials consists of the following equations, 

F = {f l , . - .  , f n ) ,  where 

Figure 2 shows the execution times of both the tree structured algorithm Grotlner- Tree and Buch- 
berger's algorithm for both types of polynomials. It can be ascertained that, for the same 
set of polynomials, the computation time for executing Buchberger's algorithm grows expo- 
nentially faster than the time required to compute the Grobner basis using the tree algorithm 
(Grobner-Tree). This suggests that for a large set of polynomials, Grobner basis can be sequen- 
tially compu'ted more efficiently and faster by using tree structured algorithm Grobner- Tree than 
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that by Buchberger's algorithm. Furthermore, the tree structured computation can be naturally 
parallelized using algorithm Par-Grobner-Tree. The parallel execution times obtained using this 
algorithm call be seen in Figures 3 and 4. 

The poly~iomial sets which are initially combined at the lowest level affect the execution times 
of the parallem1 algorithm. For the first type of polynomials, the different initial combinations tried 
are 

From Figure 3, it can be inferred that the execution times for the same set of polynomials differ for 
different initial combinations. However, for all combinations, a significant reduction in execution 
time is achielred up to a certain number of processors (4 in this example). On the other hand, an 
increase in the number of processors after a certain limit results in an increase in communication 
time without a significant reduction in computation time. 

For the second type of polynomial equations, different problem sizes are: used to  study the 
effect of scaling the problem on the computation and communication times. As shown in Figure 
4, as the prot)lem size increases, the ratio of the computation time to the comnlunication time also 
increases. The amount of speed-up achieved is limited after a certain number of processors (4 in 
this case). Tlle main reason for this behavior is unbalanced load distribution across processors and 
computation granularity that increases with the level of the nodes in the tree. The nodes at high 
levels in the computational tree tend to dominate the execution time of the whole computation. 
So, using more than four processors results in very small execution time savings due to parallel 
computation at  low levels of the tree. 

In this paper, an alternative approach for Grobner basis computation was presented. For large 
computations, this approach results in faster execution times than Buchberger's algorithm. Fur- 
thermore, in this study, parallelism in the tree structured Grijbner basis computation was exploited 
and the bott lenecks were identified. The tree structured Grobner basis compiltation presented in 
this paper provides a structure which is easy to parallelize. On the other h.and, the limitation 
imposed on speed-up achievable by using this approach suggests that the parallelism available in- 
side each node of the computational tree needs to be exploited. This is the basis for an approach, 
currently being pursued by the authors, that will result in a balanced tree structured Grobner ba- 
sis computation. Other issues such as reducing coefficient growth, efficient memory management, 
and avoiding unnecessary computations are also being considered. 
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