Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-1-1994

Tree Structured Grobner Basis Computation on
Parallel Machines

Hemal V. Shah
Purdue University School of Electrical Engineering

Jose A. B. Fortes
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Shah, Hemal V. and Fortes, Jose A. B., "Tree Structured Grobner Basis Computation on Parallel Machines" (1994). ECE Technical

Reports. Paper 199.
http://docs.lib.purdue.edu/ecetr/199

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages

TREE STRUCTURED GROBNER BASIS
COMPUTATION ON PARALLEL
MACHINES

HEMAL V. SHAH
JOsE A. B. FORTES

TR-EE 94-30
OCTOBER 1994

e q,
f%’., % SCHOOL OF ELECTRICAL ENGINEERING
A _A\=% PURDUE UNIVERSITY
ST A
"

¥ WEST LAFAYETTE, INDIANA 47907-1285

)

Tree Structured Grobner Basis Computation on Parallel Machines

Hemal V. Shah and Jose A. B. Fortes
Department d Electrical Engineering
Purdue University
West Lafayette, In 47907, USA
hvs@ecn. purdue.edu
fortes@ecn.purdue.edu

Abstract: With the advent o symbolic mathematical software packages such as
Maple, Mathematica, and Macsyma, symbolic computation has become widely used
in many scientific applications. Though a significant effort has been put in performing
numeric computation on multiprocessors, symbolic computation on parallel machines
isstill in an unexplored state. However, symbolic mathematical applications are ideal
candidates for parallel processing, because they are computationally intensive. This
paper considers the parallel computation o Grobner basis, a specia basis for a mul-
tivariate polynomial ideal over afield that plays a key role in symbolic computation.
Large Grobner basis computation poses a challenging problem due toits dynamic data
dependent behavior and resource-intensiveness. In an attempt to meet this challenge,
a new tree structured approach for Grobner basis computation in parallel is proposed
in this paper. It constructs the Grobner basis o a set o polynomials from Grobner
basis o its subsets. The tree structured approach proposed in this paper lends itself
to parallel implementation and significantly reduces the computation time of large
Grobner basis. Finaly, experimental results illustrating the effectiveness o the new
approach are provided.

Keywords: Symbolic computation, Grobner basis, mathematical software, numeric
computation; parallel machines, SIMD, MIMD.

1 Introduction

In spite of the fact that most scientific computation has been numeric in nature, the availability
of mathematical software packages like Maple, Mathematica, Macsyma, etc., has enabled and
popularized the use d symbolic manipulation in many applications. Problem. areas that require
the usage of symbolic computation or mixed computation include geometric modeling, geometric
theorem proving, robotics and control. Grobner basis, a special multivariate polynomial basis, is
a very impor-ant concept in symbolic computation. Generally, construction d a Grobner basis
is time-consuming and resource intensive, because d both the need d exact arithmetic and the
possibility o generating and analyzing many polynomials. It has been shown that its worst-case
complexity is doubly exponential. [Hof90]. In this paper, atree structured approach for performing
Grobner basis computation is proposed. Using this approach, large polynomial computations can
be performed more efficiently in an uniprocessor and tree-based parallel implementations are
possible. The parallel algorithm presented in this paper is based on divide-and-conquer strategy.

Several researchers have addressed the issue o parallel execution d a Grobner basis algorithm.
In his paper on |MAPLE)||, Siegl [Sie93] described a way o performing parallel symbolic com-
putation using parallel declarative programming language Strand and the sequential computer
algebra systern Maple. Ponder [Pon89, Ponb, Pona] proposed two parallel algorithmsfor Grobner
basis computation (Parallel S-poly and Parallel reduction). In his views, both algorithms were
“less parallel" and dow in convergence. Inferring from his conclusions, exploring other ways to
parallelize Grobner basis computation need to be considered. For parallel Grobner basis computa-
tion, Schreiner and Hong [SH93b, SH93a] showed that by invoking optimized routines o PACLIB,
a system for parallel algebraic computation on shared memory computers, a maximum speedup
d 10 could be achieved on a 20 processor Sequent Symmetry (a MIMD computer with shared
memory) for Grobner basis computation. Senechaud [Sen89, Sen90, Sen91] computed Grobner
basis by computing Grobner basis o the subsets d a set o polynomials and cornbining them. The
algorithm presented in this paper takes a similar approach. Vidal [Vid90] proposed algorithms
for Grobner basis computation on shared memory multiprocessor using synchronization between
processes. In his approach, each processor reduced S-polynomial o an unreduced pair in parallel.
Depending on the result d the reduction, the processor updated the basis and the set of pairs.

Despite previous research on parallel computation o Grobner basis, there is a room for im-
provement. In this paper, a variant o Buchberger's algorithm for Grobner basis computation is
presented. The new algorithm is easy to visualize as a tree structured computation and provides
more insights into parallel Grobner basis computation. In the next section, basic concepts and
definitions related to polynomials and Grobner basis computation are briefly reviewed. In Section
3, a parallel algorithm for Grobner basis computation is described and its correctness is proven.
Finally, some results and conclusions are provided in Section 4.

2 Polynomialsand Grobner Bass
2.1 Definitions

In this subsection, basic concepts related to polynomials and Grobner basis computation are
presented for later use in the paper. An exampleillustrating the use o definitionsis given before
subsection 2.2. The definitions are quite similar to those of [BW93, CLO93].

Definition 2.1 (Monomial) A monomial inz,-..,z, isaproduct o theforrn z3* . -. 2§, where
al exponents a4,-++,a, are nonnegative integers. The total degree o the monomial is the sum
a1 + ... Ta,, Thefollowing notation is used hereon:

o = (ala"'aan)7

Qn

o _— L0,
% =] ",

lal = a1 + -+ + an,
For example, let n = 2; if x = (z1,22),a= (2,1), then z* = ziz,.

Definition 2.2 (Polynomial) A polynomial f in z,,--.,z, with coefficientsin field k is afinite
linear combination o monomials. A polynomia f iswritten as

f=> a.z%aq €k,
where the sum is over a finite number of n-tuples a= (e, -.,a,). Theset d all polynomialsin
z1,..,T, With coefficientsin k is denoted by k[z1, -, z,).

A simple exaraple o the last definition isf = 223z, — 21 T 25 — 1.

Definition 2.3 (Ideals) A subset | C k[z1,-..,x] isan ideal if it contains 0 and it is closed
under polynomial addition and polynomial multiplication, i.e.

1.0€ 1,
2. If f,gel,then f+g€l,
3. Iffelandhe€k[z, -,za],then hf € I.

Definition 2.4 (Monomial Ordering) A monomial ordering on k[z1,--.,X,] isany relation >
on 23, or equivalently, any relation on the set & monomiasz®, a€ Z3,, satisfying:

1. > isatotal (or linear) ordering on Z%,

2. If a>pandy € Z%y, thena+y > g ty,

3. > isawell-ordering on Z%,. This means that every nonempty subset o Z%, has a smallest
element; under >. - -

Lezicographical ordering which is used in the remaining paper is defined next.

Definition 2.5 (Lexicographical Ordering) Let «, 8 € ZZ,. The exponent vector « is lez-
icographically greater than 8 written as a >, 8, iff, in a— 3, the leftmost nonzero entry is
positive. Similarly, z* >, P, if & > 8. For example, if x = (1, z2), then 2%z, >, 1, because
(2,1) >iex (0,0).

Other monomial ordering used in symbolic computations are Inverse lexicographical, Graded lez-
icographical, and Graded reverse lexicographical.

Definition 2.6 (Coefficient, Term, Multidegree, Leading Coefficient.,Leading M ono-
mial, Leading Term) Let

f =) a,z* be a polynomial in k[zy,-..,x].

1. a, isthe coefficient of the monomial =,
2. If a, # 0, then aqz® is a term off,

3. The multidegreeoff ismultideg(f) = maz(a € ZZ, : @, # 0) with respect to lexicographical
ordering,

4. The leading coefficient off is LC(f) = amuitideq(s) € K,
5. The leading monomial of f is LM (f) = gmuitides(s)

6. The leading term off is LT(f) = LC(f)LM(f).
Definition 2.7 (S-polynomial) The S-polynomial o two polynomials

f =) a,z* and g=2aﬁmﬁ is
o B8

LO)e"f _ L0/}
SPoll) = Ty T TIvG)

where ¥ = LOM(LM(f), LM(g)) istheleast common multipledf LM(f) and LM(g).

Definitiors 2.6 and 2.7 are now illustrated for two polynomials, f; = 2z2z,~1 and f, = ;22—
r1 with €1 >1ez 2. The multidegrees of f; and f. are multideg(f1) = (2,1), multideg(f2) = (1,2),
their leading coefficientsare LC(f1) = 2,LC(f2) = 1, their leading monomials are LM (f,) =
T3z, LM (f2) = 123, their leading termsare LT(f1) = 222z2, LT(f2) = 2122, the least common
multiple of the leading monomialsis, LCM(LM(f1), LM(f;)) = LCM(z3z,, z122) = 22z2. The
S-polynomial o f; and f; is

. 1.2222.(22%z, — 1 2.2222 (2122 — z
‘:’POZy(flafZ): - 2(2 -)_ - 2(122 1) :21'%_:32-
TiT2 T1%3

In the next subsection, a polynomial division algorithm that aidsin finding a normal form of
a polynomial with respect to a set o polynomialsis provided. Using this normal form algorithm,
a set of polyriomias can be reduced.

2.2 Normal Form Algorithm

In this subsection, a normal form algorithm which will be used later in Grébner basis computation
is discussed. A normal form algorithm computes the fully reduced form o a polynomia with
respect to a set of polynomias F. A normal form of a polynomia p with respect to a set o
polynomials i is denoted by N F(p, F).The algorithm as described in [Hof90] is as follows:

Algorithm 2.1 (Normal Form)
Input: A set ¥ of polynomials, and a polynomial p.
Output: A normal form NF(p, F) o p with respect to F.

Algorithm:
1. Set po=pand:=0.
2. For:=0,1,2,--. repeat step 3 until p; cannot be rewritten; then output p; and stop.

3. If thereis a polynomial f in F such that the leading monomial of f dividesaterma,z® in
p;, then rewrite p; &s piy1 = p, — S

Using the normal form algorithm, a set o polynomials F' can be reduced on itself by replacing
each polynomial f € F with its normal form with respect to set F— {f). Thereduction algorithm
[BW93] is described as below:

Algorithm 2.2 (Reduce)
Input: A set # o polynomials.

Output: A reduced set F' = Reduce(F) o polynomials.

begin

F' — F
While thereis p € F' which is reducibleon F' — {p) do
Select p from F'
F—F —-{p
h— NF(p, F)
if hs# 0 then
F—Fu{h)
end
end

F' — {f/HC(f)|f € F'}
end

To demonstrate the functionality of these algorithms, an example is presented next. Let F =
{z? - 29, — 14 + z2}, with 1 > z2. The reduced set of Fis computed by algorithm Reduce as
follows.

Initially, F" = {z? — z,,—2; T 22}, then p = ? — z; isselected, leading to F' = {-z;, T
z2}. Now, the computation of NF(p,F') is carried out using algorithm 2.1. Initially, po =
p = 22 — z,. After executmg_step 3df algonthm 21, pp = 2 — 2yt (—zy T ey, = a:la:§ -
z,, then, p; = (z:23 — z2) :z:1) x2 = zj — 2. Therefore h= NF(p,F') = zi -
zq, and algorithm Reduce updates F'to F' = {z} — 2, —z; T 22}. Continuing the execution of
algorithm Reduce, p = —z; T 2, is selected leading to F' = {a% — z,}, NF(p, F') = —z; T 22
So, the final reduced set is,

F' = {z% — 25,2, — z%}.
The definitions and reduction algorithms presented in thelast two subsections are used in Grobner

basis computation next.

2.3 Grobner Basi s Computation

In this subsection, the definition o Grobner basis and Buchberger's algorithm to compute it are
provided.

Definition 2.8 Let F be aset o polynomials. Then a basis G for Id(F), ideal generated by F,
Is a Grobner basis iff

1. forall pairs (gi, 9;),¢ # j, theremainder & the division of Spoly(g:,g;) by G is zero, in other
words N F(Spoly(gi,g;),G) = 0, and

2. theideals generated by F and G are identical.

Definition 2.9 A minimal Grobner basisfor a polynomial ideal | isa Grobner basis G for | such
that

1. LC(p) :=1for al p€ G and
2. foral pe G; LT(p) > Id(LT(G - {p))).

Definition 2.10 A reduced Grobner basis for a polynomial ideal | is a Griibner basis G for |
such that

1. LC(p)=1fordl pe G and
2. for al p € G, no monomia o pliesin Id(LT(G - {p))).

A well-known algorithm for the computation of Grébner basis o a given set d polynomialsis
due to Buchberger in [Buc85a]. A reduced Grobner basis can be obtained by running the algorithm
Reduce on the Grobner basis computed by Buchberger's algorithm.

Algorithm 2.3 (Grobner)
Input: F={f1, -, fs}.

Output: A Grobner pasis G = {gl, g = Grébner(F); such that Id(F) = ,[d(G).

begin
G« F
B« {(9i,9;)l9:,9; € G with i # j}
While B # ¢ do
Select (g, 9;) from B
B« B —{(gi,9,)}
h — Spoly(gi,9;,)
ho — NF(h,G)
if ho # 0 then
B — BU{(g,ho)lg € G}
G — G U {ho}
end
end
end

The following;is an illustration d the execution o the above algorithm. Let F be a set of two-
variate polynomials

F:{$f—$2,—$1+l'§ .

Initially, G = {? — 25, —z: T 22}, B = {(91,92)}. A pair (g1, 92) is selected by algorithm Grébner
leading to h = Spoly(g1,92) = z12% — z9,hg = NF(h,G) = z§ — 2z, # 0. The algorithm
Grobner then updates G and B to G = {a? — 23, —a1 T 22,24 — 2,},B = {(91,93), (g2,93)}.
Furthermore, N F'(Spoly(g1, g3), G) =0 and N F(Spoly(g2,9s), G) = 0. So, thealgorithm Grobner
terminates with the Grobner basis

G=A{2?—z9,—71 + x%,a:g — x2}.
And, the reduced Grobner basis computed by algorithm Reduceis
G = {z1 — 22,75 — 3}

Though Buchberger’s algorithm is a vital step in symbolic computation, it can be resource-
intensive ancl time-consuming for large polynomial computations. Furthermore, it is difficult
to parallelize. A new parallel algorithm to overcome these drawbacks is provided in the next
section.

3 Parallelization of Grobner Basis computation

In the previous section, the Grobner basis computation details were provided. Due to its dynamic
input dependent behavior, Buchberger's algorithm is difficult to parallelize efficiently. In this
section a new variant of Buchberger's algorithm is presented which can be inferred from [Sen90].
The main idea behind the alternative approach is to compute Grobner basis o a given set from
the Grobner basis of its subsets. The parallel algorithm presented next assumes availability of 27
processors.

A New Parallel Algorithm for Griibner Basis computation

Algorithm 8.1 (Par-Griibner-Tree)
Input: F={fi,-.-,fs} givenin 2 subsets Fi,-., Fy such that F= U, F;.

Output: A reduced Grobner basis G = {g1,..,9:} = Par_Grobner_Tree(F); such that Id(G) =
Id(F).

begin
for i == 1 to 2° pardo
G; = Griobner Tree(F;)
G; = Reduce(G;)
end
fori==1topdo

for j =1 to 27 step 2° pardo
G; = Grobner_Combine(Gj, G 4i-1)
end
end
G=0G
end

Algorithm 3.1 invokes other algorithms called Grobner-Combine and Grobner-Tree described as
below. Grobner-Combineis almost the same as Buchberger’s algorithm. But, here pairs of the
same set are not considered because they are from the same Grobner basis set, thus they possess
the first property o the definition 2.8. On a similar note, Grobner-Tree is the algorithm which
sequentially computes the Grobner basis o a given set in a tree structure.

Algorithm 3.2 (Grobner-Combine)
Input: Two reduced Grobner basis sets G, Ga.

Output: A reduced Grobner basis G = Grobner_Combine(Gy, Gz); such that Id(G) = Id(G1UG3).

begin
G — GLUG,
B — {(9:i,9;)|9i € G1,g; € Gz, criteria(gi, g;) # 0}
While B # ¢ do
Select a pair (g:,9;) from B
B « B —{(¢9:,9i)}
h « Spoly(gi,g;)
ho «— NF(h,G)
if ho # 0 then
B — BU{(g,k0)|g € G,criteria(ho,g) # 0}
G — G u {ho}
end
end
G = reduce(G)
end

Algorithm 3.3 (Grobner_Tree)
Input: A set of polynomials F = {fi,-.., f;}, where s = 2™.

Output: Areduced Grobner basisG = {g1,".",9:} = Grobner_Tree(F); such that Id(G) = Id(F).

begin
for i == 1to |F|do

G; = {fi}

end

for i ==1tolog, |F| do
for j = 1to |F| step 2° do

G; = Grobner_Combine(Gj, G 5i—1)

end

end

end

Here, criteria(f ,g) [Buc79] is the check which returns zero if NF(Spoly(f.g),G) iszero. This
is very useful in computation, because by detecting this criteria, one will avoid an entry to B
and then deletion o it from B later on. From implementation point o view, this results in an
improvement to overall performance d the algorithm. Next, the correctness of Par-Grobner-Tree
is discussed.

31 Correctness of the New Parallel Algorithm for Grobner Basis
Computation

In order to prove the correctness d Par-Grobner-Treg, the following two theorems are presented.

Theorem 3.1 The basis G generated from basis (G;, G, by algorithm Grobner-Combine, is the
reduced Grobner basis of ideal generated by set F, where F = F} U F3, G; and (G, are reduced
Grobner basis of sets Fy and F; respectively.

Proof: Here G is the reduced basis generated from two sets G; and G,, so

1. Id(G) = 1d(G; U G,) = Id(F, U Fy) = Id(F),

2. fromalgorithm Grobner-Combineit isevident that for all pairsi # j, NF(Spoly(g:,9;),G) =
0, whereg;, g; € G.

Therefore, basis G generated by the algorithm Grobner-Combineis the reduced Grobner basis of
ideal generated by set F.

The tree structured computation for the algorithm Par-Grobner-Tree is shown in figure 1. The
relationship between the algorithms Grobner and Grobner-combineis as below:

Reduce(Grobner(F)) = Grobner_Combine(Reduce(Grobner(Fy)) U Reduce(Grébner(Fz))), (1)

where F= F, U F,.

10

VAN

(p-1) (p-1)
/G\1 72\
L]
L H .0

..
L] g ..
4.. E L J
8 i

/N 1N\

(1) (1) (1 1)

[-] G . G ..
/ \ / zil-l / \Pl
0y (0) (0) (0) 0) () 0) (0)
G

G G, G, G, csessssssssssassascassansens
P P P P
t 2 3 ¢ 2-3 2 -2 2-12

12

Figure 1: Grobner Basis Computation Viewed as a Tree Computation

Theorem 3.2 In the tree structured computation o the algorithm Par_Grébner_Tree, G is the
reduced Grébner basis o ideal generated by set F.

Proof: Ia this proof, the associativity d union and Grobner-Combine, and the relationship
between Grobner and Grobner-Combine algorithms are used.

G = Par_Grobner Tree(F) = G (2)
= Grobner Tree(GP™ U GP™) (3)
= Grobner_Tree(Grébner Tree(GP™2 U GY™) U Grébner Tree(GF2 U GP2)) (4)
= Gr(')'bner_Tree((G(lp_g) U Gg”‘z)) UGy Gf{"z))) (5)
= Grébner_Tree(--- (GO UG U-- UG, UG-) (6)

2p
= Grobner_Tree(| | GEO)) (7)
=1
2P
= Grobner_Tree(| Reduce(Grébner(F™))) (8)
=1
2P
= Reduce(Grobner(|) E(O))) (from equation(1)) (9)
=1
= Reduce(Grobner(F)) (10)

This provesthe correctnessd the algorithm Par-Grobner-Tree. Furthermore, in Grobner-Tree,
a reduced Grébner basis o the union d two sets is always computed. So, by executing algorithm

11

Par_Grobner_Tree, the reduced Grobner basis o aset d polynomiasis obtained. The tree struc-
tured compuration givesthe best performance when the initial set on each node isitself a Grobner
basis. In that case, Par_Grobner_Tree(F) = F. But, in the worst case, the time complexity o
Par_Grobner_Tree can be doubly exponential same as that d the Buchberger's algorithm. The
complexity measure used hereis based upon the maximum total degree d the resulting polynomi-
als during the computation. The effectivenessd the new algorithm is demonstrated by the results
provided in the following section.

4 Results and Conclusons

4.1 Results

The results provided in this section are based on experiments performed on Intel Paragon, a
distributed memory parallel machine. Two different types d polynomial equations are considered.
The lezicographical term ordering is used to order the terms o polynomials. The first type of set
o polynomials arises from the equations of n cylindersin n-dimensional space. The form d the
polynomial equationsis as described below:

F= {fl""’fn}’ where

1<jign
fi = (:c? —1, for1<:<nand 21 Dz T3 Stex *** Slex Tn-
J#

The second type d set o polynomials consists d the following equations,

F={fi,--,f.}, where

fion=—2? 4227 —z? for2<i<n—1,

foo1 = 2.7;?1_1 — mi,fn = .7:3 -1,

and L1 Dlex T2 Dlex ¢ Plex Tn-

Figure 2 shows the execution times d both the tree structured algorithm Grobner_Tree and Buch-
berger’s algorithm for both types d polynomials. It can be ascertained that, for the same
set of polynomials, the computation time for executing Buchberger's algcrithm grows expo-
nentially faster than the time required to compute the Grobner basis using the tree algorithm
(Grobner_Tree). This suggests that for a large set o polynomials, Grobner basis can be sequen-
tially computed more efficiently and faster by using tree structured algorithm Grobner-Tree than

12

Type 1 polynomials Type 2 polynomials /
8-
2.5 Buchberger's Buchbarger's
Algorithm 7k Algorithm

N
o [+2]
T T

£
T

Time to compute Groebner Basls in seconds
B3
Time to compute Groebner Basls in seconds

1} 3 Tree
Algorithm

TTee 2} %
Algoritgm

a5 /'H L’ ‘
-7 1 ,

4
o % L L 0 1 . -
0 5 10 15 20 0 20 40 60 80

Number of polynomials Number of polynomials

Figure 2. Comparison o Grébner_Tree algorithm with Buchberger's Algorithm

6 L} T L
5F Number of polynomials 1
=32
4r Total time
o e T et et *
c m *
g Computation time
& 8
o
E
’_
oF
Total lime
e B m 4
1]- ’(f‘r\mpufaﬂ_gn_ﬂr\n *
1
Communicationtimes 4
0 -+ R bates et Sl U
o] 2 4 8 10 12 14 16

Number of processors

Figure 3. Timinginformation o Par-Grobner-Tree algorithm for Type 1 polynomials

13

o o
IS @

Time in seconds
o
N

15

Time 'n seconds

Number of polynomials ;4 otal
=32 ~ time

ce

-

;% Communication
, time _+

5 10 15
Number of processors

20

Number of ponhomiaIs '
=128

Total time

e -=
Computation time
*

K

Communication time

20 40 60
Number of processors

80

n
(4]

NuerEber of polynomial;
§ 2 i Total time . -.x
© e
§ 1.5} X
£ omputation time
05| +- EoTnmuniczation time 1
t+7
nlt N L N
"0 10 20 30 40
Number of processors
150
8 Number of polynomials
5 100%= 256
3
(0]
(73] .
< - EO@ leﬁ_. - =X
50 omputation tipe
-
ommunication time
+ 4+ —-—-F-=-==
N
'0 50 100 150

Number of processors

Figure 4: Timing information d Par_Grobner_Tree algorithm for Type 2 polynomials

14

that by Buchberger’s algorithm. Furthermore, the tree structured computation can be naturally
parallelized using algorithm Par-Grobner-Tree. The parallel execution times obtained using this
algorithm can be seen in Figures 3 and 4.

The polynomial sets which are initially combined at the lowest level affect the execution times
o the parallel algorithm. For thefirst type d polynomials, the different initial combinations tried
are

1. (Fl,FQ:I,(F;;,F‘;),"',(Fn_l,Fn),
2. (FlaFB)a(FZ’F4)’(F5’F7)"'"(Fﬂ—Z’Fn)a
3. (F], F5:|, (Fz, Fe), (F3, F7), (F4, Fg), ey, (Fn_4, Fn)

From Figure 3, it can beinferred that the execution timesfor the same set d polynomials differ for
different initial combinations. However, for all combinations, a significant reduction in execution
timeis achieved up to a certain number of processors (4 in this example). On the other hand, an
increase in the number o processors after a certain limit results in an increase in communication
time without a significant reduction in computation time.

For the second type d polynomial equations, different problem sizes are: used to study the
effect o scaling the problem on the computation and communication times. As shown in Figure
4, asthe problem size increases, theratio o the computation timeto the communication timealso
increases. The amount o speed-up achieved is limited after a certain number o processors (4 in
this case). The main reason for this behavior is unbalanced load distribution across processors and
computation granularity that increases with the level o the nodesin the tree. The nodes at high
levels in the computational tree tend to dominate the execution time o the whole computation.
So, using mere than four processors results in very small execution time savings due to parallel
computation at low levels o the tree.

4.2 Conclusions

In this paper, an alternative approach for Grobner basis computation was presented. For large
computations, this approach results in faster execution times than Buchberger’s algorithm. Fur-
thermore, in thisstudy, parallelismin the tree structured Grébner basis computation was exploited
and the bottlenecks were identified. The tree structured Grobner basis computation presented in
this paper provides a structure which is easy to parallelize. On the other hand, the limitation
imposed on speed-up achievable by using this approach suggests that the parallelism available in-
side each node d the computational tree needs to be exploited. Thisisthe basisfor an approach,
currently being pursued by the authors, that will result in a balanced tree structured Grobner ba-
sis computation. Other issues such as reducing coefficient growth, efficient memory management,
and avoiding unnecessary computations are aso being considered.

15

References

[BucT9]

[Buc83|

[Buc85]

[Buc85a]

[BvzGH82]

[BW93)

[CGG]

[CLO93]
[Gan84]

[Hof90]
[Joh89]

[JSSRV]

[Kiic90]

[Mis89]

13 Buchberger, "A criterion for detecting unnecessary reductions in the construction
d Grobner-basis’, In EUROSAM, pages 1-21, 1979.

13 Buchberger, "A note on the complexity o constructing Grobner-basis", In EU-
ROCAL, pages 137-145, 1983.

13. Buchberger, "The parallel 1-machine for symbolic computation”, In EUROCAL,
pages 541-542. Linz, Austria, 1985.

13 Buchberger. "Grobner Bases: An AlgorithmicMethod in Polynomial ideal Theory™
Multidimensional Systems Theory, pages 184-232, 1985.

A. Borodin, J. von zur Gathen, and J. E. Hopcroft, "Fast parallel matrix and gcd
computations”, Information and Control, Vol. 52, pages 241-256, 1982.

'T. Becker and V. Weispfenning, "Grobner Basis: a computational approach to com-
mutative algebra', New York : Springer-Verlag, 1993.

13 Char, "First leaves - a tutorial introduction to Maple ¥, New York : Springer-
Verlag, 1992.

D. Cox, J. Little, and D. O’Shea, "Ideals, Varieties, and Algorithms", 1993.

J. Ganthen, "Parallel algorithms for algebraic problems”, SIAM Journal d Comput-
ing, pages 802-824, 1984.

C. Hoffmann, "Geometric and Solid Modeling", Morgan Kaufmann, 1989.

J. Johnson, "Some issues in designing algebraic algorithms for the Cray X-MP"
In Della Dora and Fitch, editors, Computer algebra and parallelism, pages 178-195.
Academic Press, 1989.

J. Roch, P. Senechaud, F. Siebert-Roch, and G. Villard, "Computer algebraon MIMD
machine", pages 423-439.

. Kuchlin, "The s-threads environment for parallel symbolic computation”, In
Zippel, editor, Computer algebra and parallelism, pages 1-18. LNCS 584, Springer
Verlag, 1990.

13ud Mishra, “Notes on Grobner basis”, Information Sciences, Val. 48, pages 219-252,
1989.

16

[MN8Y]

[NM90]

[Pona]

[Ponb]

[Pon89]

[Roc90]

[Sen89]

[Sen90]

[Sen91]

[SH93a]

[SHY3b]

[Sie93]

H. Melenk and W. Neun, "Parallel polynomia operations in the large Buchberger
algorithm”, In Della Dora and Fitch, editors, Computer algebra and parallelism, pages
1.43-158. Academic Press, 1989.

W. Neun and H. Melenk, "Very large Grobner basis calculations”, In Zippel, editor,
Computer algebra and parallelism, pages 90-99. LNCS 584, Springer Verlag, 1990.

C. G Ponder, “Parallel processors and systems for algebraic manipulation: Current
work”, pages 15-21, SIGSAM Bulletin.

C. G. Ponder, “Parallelism and algorithmsfor algebraic manipulation: Current work™,
pages 7-14, SIGSAM Bulletin.

C. Ponder, "Evaluation o "performance enhancements” in algebraic manipulation
systems”, In Della Dora and Fitch, editors, Computer algebra and parallelism, pages
51-73. Academic Press, 1989.

J. Roch, "An environment for parallel algebraic computation”, In Zippel, editor,
Computer agebra and parallelism, pages 33-50. LNCS 584, Springer Verlag, 1990.

1 Senechaud, "Implementation of a parallel algorithm to compute a Grobner basis
on boolean polynomials®, In Della Dora and Fitch, editors, Computer agebra and
parallelism, pages 159-166. Academic Press, 1989.

1 Senechaud, "Boolean Grobner basis and their MIMD implementation” In Zippel,
editor, Computer algebra and parallelism, pages 90-99. LNCS 584, Springer Verlag,
1990.

P. Senechaud, "A MIMD implementation of the Buchberger algorithm for boolean
polynomials”, Parallel Computing, Vol. 17, pages 29-37, 1991.

W. Schreiner and H. Hong, "A new library for parallel algebraic computation”, In
Sizth SIAM Conference on Parallel Processing for Scientific Computing, pages 776—
783, 1993.

'W. Schreiner and H. Hong, "PACLIB - asystem for parallel algebraic computation on
shared memory multiprocessors” In Parallel Systems Fair at the Seventh International
.Parallel Processing Symposium, Newport Beach, CA, pages 56-61., 1993.

K. Siegl, “||MAPLE|| - a system for parallel symbolic computation” In Parallel
Systems Fair at the Seventh International Parallel Processing Symposium, Newport
.Beach, CA, 1993.

17

[Vid90] J. Vidal, "The Computation o Grobner Basis on a Shared Memeocry Multiprocessor”,
In Proceedings DISCO’90, pages 81-90, 1990.

18

	Purdue University
	Purdue e-Pubs
	10-1-1994

	Tree Structured Grobner Basis Computation on Parallel Machines
	Hemal V. Shah
	Jose A. B. Fortes

