
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-1-1994

Tree Structured Grobner Basis Computation on
Parallel Machines
Hemal V. Shah
Purdue University School of Electrical Engineering

Jose A. B. Fortes
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Shah, Hemal V. and Fortes, Jose A. B., "Tree Structured Grobner Basis Computation on Parallel Machines" (1994). ECE Technical
Reports. Paper 199.
http://docs.lib.purdue.edu/ecetr/199

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-EE 94-30
OCTOBER 1994

Tree Strilctured Grobner Basis Computation on Parallel Machines

Hemal V. Shah and Jose A. B. Fortes
Department of Electrical Engineering

Purdue University
West Lafayette, In 47907, USA

hvs@ecn. purdue.edu

Abstract: With the advent of symbolic mathematical software packages such as
Maple, Mathematics, and Macsyma, symbolic computation has become widely used
in many scientific applications. Though a significant effort has been put in performing
numeric computation on multiprocessors, symbolic computation on parallel machines
is still in an unexplored state. However, symbolic mathematical applications are ideal
candidates for parallel processing, because they are computationally intensive. This
paper considers the parallel computation of Grobner basis, a special basis for a mul-
tivariate polynomial ideal over a field that plays a key role in symbolic computation.
Large G.robner basis computation poses a challenging problem due to its dynamic data
dependent behavior and resource-intensiveness. In an attempt to meet this challenge,
a new tree structured approach for Grijbner basis computation in parallel is proposed
in this paper. It constructs the Grobner basis of a set of polynomials fi-om Grobner
basis of its subsets. The tree structured approach proposed in this paper lends itself
to parallel implementation and significantly reduces the computation time of large
Grobner basis. Finally, experimental results illustrating the effectiveness of the new
approacll are provided.

Keywords: Symbolic computation, Grobner basis, mathematical software, numeric
computation; parallel machines, SIMD, MIMD.

1 Introduction

In spite of the fact that most scientific computation has been numeric in nature, the availability
of mathemat:~cal software packages like Maple, Mathematica, Macsyma, etc., has enabled and
popularized the use of symbolic manipulation in many applications. Problem. areas that require
the usage of symbolic computation or mixed computation include geometric modeling, geometric
theorem proving, robotics and control. Grobner basis, a special multivariate polynomial basis, is
a very impos;ant concept in symbolic computation. Generally, construction of a Grobner basis
is time-consu:rning and resource intensive, because of both the need of exact arithmetic and the
possibility of generating and analyzing many polynomials. It has been shown that its worst-case
complexity is doubly exponential. [HofSO]. In this paper, a tree structured approach for performing
Grobner bask computation is proposed. Using this approach, large polynomial computations can
be performed more efficiently in an uniprocessor and tree-based parallel implementations are
possible. The parallel algorithm presented in this paper is based on divide-and-conquer strategy.

Several researchers have addressed the issue of parallel execution of a Grobn~er basis algorithm.
In his paper on IIMAPLE)J, Siegl [Sie93] described a way of performing parallel symbolic com-
putation using parallel declarative programming language Strand and the sequential computer
algebra systern Maple. Ponder [Pon89, Ponb, Pona] proposed two parallel algorithms for Grobner
basis computiition (Parallel S-poly and Parallel reduction). In his views, bo1,h algorithms were
Yess parallel'' and slow in convergence. Inferring from his conclusions, exploring other ways to
parallelize Grijbner basis computation need to be considered. For parallel Grobner basis computa-
tion, Schreiner and Hong [SH93b7 SH93al showed that by invoking optimized routines of PACLIB,
a system for parallel algebraic computation on shared memory computers, a maximum speedup
of 10 could be achieved on a 20 processor Sequent Symmetry (a MIMD corr~puter with shared
memory) for Grobner basis computation. Senechaud [Sen89, Sen90, Sen911 computed Grobner
basis by computing Grobner basis of the subsets of a set of polynomials and cornbining them. The
algorithm presented in this paper takes a similar approach. Vidal [VidSO] proposed algorithms
for Grobner basis computation on shared memory multiprocessor using synchronization between
processes. In his approach, each processor reduced S-polynomial of an unreduced pair in parallel.
Depending on the result of the reduction, the processor updated the basis and the set of pairs.

Despite previous research on parallel computation of Grobner basis, there is a room for im-
provement. 111 this paper, a variant of Buchberger7s algorithm for Grobner basis computation is
presented. The new algorithm is easy to visualize as a tree structured computation and provides
more insights into parallel Grobner basis computation. In the next section, l~asic concepts and
definitions related to polynomials and Grobner basis computation are briefly reviewed. In Section
3, a parallel algorithm for Grobner basis computation is described and its correctness is proven.
Finally, some results and conclusions are provided in Section 4.

2 Polynomials and Grobner Basis

2.1 Definitions

In this subsection, basic concepts related to polynomials and Grobner basis computation are
presented for later use in the paper. An example illustrating the use of definitions is given before
subsection 2.2. The definitions are quite similar to those of [BW93, CL0931.

, , where Definition 2.1 (Monomial) A monomial in XI , . . . , x, is a product of the forrn xyl . . xffn
all exponents a l , . - . , a, are nonnegative integers. The total degree of the monomial is the sum
al + . . . + a,, The following notation is used hereon:

For example, let n = 2; if x = (xl, x2), a = (2, l), then x" = xTx2.

Definition 2.2 (Polynomial) A polynomial f in X I , . - . , x, with coefficients in field k is a finite
linear combination of monomials. A polynomial f is written as

where the sun1 is over a finite number of n-tuples a = (al,. . ,a,). The set of all polynomials in
xl , . . , x, with coefficients in k is denoted by k[xl, - - , x,].

A simple example of the last definition is f = 2xTx2 - XI + x2 - 1.

Definition 2.3 (Ideals) A subset I C k[xl, - . . , x,] is an ideal if it contains 0 and it is closed
under polynornial addition and polynomial multiplication, i.e.

2. If f , g E I, then f + g E I,

3. I f f E I and h E ~ [X ~ , . ~ . , X ,] , then hf E I.

Definition 2 . 4 (Monomial Ordering) A monomial ordering on k[xl, - . . , x,,] is any relation >
on Z:,, or eqoivalently, any relation on the set of monomials xa, a E Z:,, satisfying:

1. > is a total (or linear) ordering on Z:,, -

2. If a >)I? and y E .Z30, - then a + y > p + y,

3. > is a well-ordering on 23,. This means that every nonempty subset of 23, has a smallest - -
element; under > .

Lexicographic,al ordering which is used in the remaining paper is defined next.

Definition 2.5 (Lexicographical Ordering) Let a , P E 23,. The exponent vector a! is Iex-
icographicall~ greater than P written as a >leX P, iff, in a -- P , the leftmoist nonzero entry is
positive. Similarly, xa >re, s o , if a >leX P. For example, if x = (xl, 2 2) , then a:x2 >lex 1, because
(271) > l a (070).

Other mononlial ordering used in symbolic computations are Inverse !exicogruphical, Graded Eex-
icographical, and Graded reverse lexicographical.

Definition 2.6 (Coefficient, Term, Multidegree, Leading Coefficient., Leading Mono-
mial, Leading Term) Let

f = x a,xa be a polynomial in k[xl,. . . , x,].
ff

1. a, is thl: coeficient of the monomial xff ,

2. If a, # 0, then a,xa is a term off,

3. The multidegree off is multideg(f) = max(a E 23, - : a, # 0) with respect to lexicographical
ordering,

4. The leading coeficient off is LC(f) = amultideg(j) E k,

5. The leading monomial of f is LM(f) = xm"'tideg(f),

6. The leading term off is LT(f) = LC(f)LM(f).

Definition 2.7 (S-polynomial) The S-polynomial of two polynomials

f = x a,xa and g = aex"s
ff D

where xY = Ll:M(LM(f), LM(g)) is the least common multiple of LM(f) and LM(g).

2 Definiti0r.s 2.6 and 2.7 are now illustrated for two polynomials, fl = 2~,2x :~- 1 and f2 = xlx2-
X I with X I >!,, 2 2 . The multidegrees of fl and f 2 are rnultideg(fl) = (2, I) , rnultideg(f2) = (1,2),
their leading coefficients are LC(fl) = 2, LC(f2) = 1, their leading mononlials are LM(fl) =
x;x2, LM(f2) = ~1x22, their leading terms are LT(fl) = 2x:x2, LT(f2) = xlxi, the least common

2 multiple of the leading monomials is, LCM(LM(fl), LM(f2)) = LCM(x?x2, x1x2) = X;X;. The
S-polynomial of fl and f 2 is

In the next subsection, a polynomial division algorithm that aids in finding a normal form of
a polynomial with respect to a set of polynomials is provided. Using this normal form algorithm,
a set of polyriomials can be reduced.

2.2 Normal Form Algorithm

In this subsection, a normal form algorithm which will be used later in Grobner basis computation
is discussed. A normal form algorithm computes the fully reduced form of a polynomial with
respect to a set of polynomials F. A normal form of a polynomial p with respect to a set of
polynomials j? is denoted by NF(p, F). The algorithm as described in [Hof9OJ is as follows:

Algor i thm ;!.I (Normal Form)
Input: A set F of polynomials, and a polynomial p.

Output: A normal form NF(p, F) of p with respect to F.

Algorithm:

1. Set po =: p and i = 0.

2. For i = 0,1,2, - , repeat step 3 until p; cannot be rewritten; then output p; and stop.

3. If there is a polynomial f in F such that the leading monomial of f divides a term a,xa in
p;, then rewrite p; as = p; - L T (f) '

Using the normal form algorithm, a set of polynomials F can be reduced on itself by replacing
each polynomial f E F with its normal form with respect to set F - { f) . The rleduction algorithm
[BW93] is described as below:

Algor i thm 2.2 (Reduce)
Input: A set AP of polynomials.

Output: A reduced set F' = Reduce(F) of polynomials.

begin
F' + F
While there is p E F' which is reducible on F' - {p) do

Select p from F'
F' c F' - {p)
h c NF(p, F')
if h # 0 then

F' + F' U {h)
end

end
F' + {f /Hc(f : l l f E F')

end

To d e r n o n ~ t r ~ ~ t e the functionality of these algorithms, an example is presented next. Let F =
{x; - 2 2 , -XI + xi) , with X I >lez 52. The reduced set of F is computed by algorithm Reduce as
follows.

Initially, F' = {x: - 5 2 , -XI + x;), then p = z: - 2 2 is selected, leading to F' = {-xl +
xi). Now, the computation of N F (~ , F') is carried out using algorithm 2.1. Initially, po =

2 2 p = 2, - 22. After executing step 3 of algorithm 2.1, pl = xt - x2 + (-xl + xi)x2 = xlx2 -
x2, then, p2 = (xlxi - x2) + (-x1 + x;)xE = xi - 2 2 . Therefore, h = IVF(p, F') = xi -
22, and algorithm Reduce updates F' to F' = {xi - x2, -XI + xi). Continui~lg the execution of
algorithm Reduce, p = -xl + xi, is selected leading to F' = {xi - x2), NF(p , 8'') = -XI + xi.
So, the final educed set is,

The definitions and reduction algorithms presented in the last two subsections are used in Grobner
basis computiition next.

2.3 Grolmer Basis Computation

In this subsection, the definition of Grobner basis and Buchberger's algorithm to compute it are
provided.

Definition 2.8 Let F be a set of polynomials. Then a basis G for Id (F) , ideal generated by F,
is a Grobner hasis iff

1. for all pairs (gi, gj), i # j, the remainder of the division of Spoly(g;, gj) by G is zero, in other
words ArF(Spoly (gi, gj), G) = 0, and

2. the ideals generated by F and G are identical.

Definition 2.9 A minimal Grobner basis for a polynomial ideal I is a Grobner basis G for I such
that

1. LC(p) := 1 for all p E G and

2. for all 11 E G ; LT(p) 3 Id(LT(G - { p))) .

Definition :!.lo A reduced Grobner basis for a polynomial ideal I is a Griibner basis G for I
such that

1. LC(p) := 1 for all p E G and

2. for all p~ E G, no monomial of p lies in Id(LT(G - { p))) .

A well-known algorithm for the computation of Grobner basis of a given set of polynomials is
due to Buchberger in [Buc85a]. A reduced Grobner basis can be obtained by running the algorithm
Reduce on the Grobner basis computed by Buchberger's algorithm.

Algorithm 2.3 (Grobner)
Input: F = { f l , . - , , f ,) .

Output: A Grobner basis G = { g l , . - , g t) = Grobner(F); such that Id (F) = .ld(G).

begin
G + 17

B t { (g i , g j) J g i , g j E G with i # j)
While B # q5 do

Select (g i , g j) from B

B B - {(gi ,gj))
h S P ~ ~ Y (Y ~ , Y ~)
ho t N F (h , G)
if ho # 0 then

B B u {(g,ho)Is E G)
G t G U {ho)

end
end

end

The following; is an illustration of the execution of the above algorithm. Let F be a set of two-
variate polynomials

F = {x: - " 2 , - X I + x i) .

Initially, G =: {x: - x2, -XI + x:), B = {(g1,92)). A pair (gl, g2) is selected by algorithm Griibner
leading to h = Spoly(g1, g2) = xlxi - x2, ho = NF(h , G) = x; - x2 f 0. The algorithm
Grobner then updates G and B to G = {x; - x2, -XI + xi, x; - x2), B =: g3), (g2, g3)).
Furthermore, NF(Spoly (gl, g3), G) = 0 and hTF(Spoly(g2, g3), G) = 0. So, the algorithm Grobner
terminates with the Grobner basis

And, the reduced Grobner basis computed by algorithm Reduce is

Though Buc:?berger1s algorithm is a vital step in symbolic computation, it can be resource-
intensive ancl time-consuming for large polynomial computations. Furtherinore, it is difficult
to parallelize. A new parallel algorithm to overcome these drawbacks is provided in the next
section.

3 Para~llelization of Grobner Basis computation
In the previoils section, the Grobner basis computation details were provided. Due to its dynamic
input depend.ent behavior, Buchberger's algorithm is difficult to parallelize efficiently. In this
section a new variant of Buchberger's algorithm is presented which can be inferred from [Sengo].
The main idea behind the alternative approach is to compute Grobner basis of a given set from
the Grobner basis of its subsets. The parallel algorithm presented next assumes availability of 2 p

processors.
A New Parallel Algorithm for Griibner Basis computation

Algorithm 3.1 (Par-Griibner-Tree)
Input: F = { , f i , - . , f,) given in 2P subsets Fl, - . , F 2 p such that F = u?L1 Fi.
Output: A reduced Grobner basis G = {gl,. . . ,gt) = Par-Grobner-Tree(F); such that Id(G) =
Id(F) .

begin
for i == 1 to 2 P pardo

G; = Grobner-Tree(F;)
G; = Reduce(Ga)

end
for i == 1 to p do

for j = I to 2P step 2i pardo
Gj = Grobner-Combine(Gj7 Gj+2i-1)

end
end
G =

end

Algorithm 3.1 invokes other algorithms called Grobner-Combine and Grobner- Tree described as
below. Grobner-Combine is almost the same as Buchberger's algorithm. But, here pairs of the
same set are not considered because they are from the same Grobner basis sei, thus they possess
the first property of the definition 2.8. On a similar note, Grobner- Tree is the algorithm which
sequentially c:omputes the Grobner basis of a given set in a tree structure.

Algorithm 3.2 (Grobner-Combine)
Input: Two reduced Grobner basis sets G I , G2.

Output: A reduced Grobner basis G = Grobner-Combine(G1, G2) ; such that ItE(G) = Id(G1uG2).

begin
G + (21 U G2
B + ((~ i , gj) 19; E G1, gj E G2, criteria(g;, gj) # 0)
While B # 4 do

Select a pair (g i 7 g j) from B
B + B - { (~ i , ~ j))
h + S P O ~ Y (9; 7 g j)
ho +- N F (h , G)
if ho # 0 then

B + B U { (g , ho) lg E G, criteria(h0, g) # 0)
G + G u {ho)

end
end
G = reduce(G)

end

Algorithm 3.3 (Grobner-Tree)
Input: A set of polynomials F = ifi,. . . , f,), where s = 2".

Output: A reduced Grobner basis G = {g l , . . - ,gt) = Grabner-Tree(F); such that Id(G) = Id(F) .

begin
for i == 1 to IF1 do

G.i = { fd)
end
for i == 1 to log, (FI do

for j = 1 to IF) step 2; do
Gj = Grobner-Combine(Gj, Gj+,i-I)

end
end

end

Here, criteria(f , g) [Buc79] is the check which returns zero if NF(Spoly (f, g), G) is zero. This
is very useful in computation, because by detecting this criteria, one will avoid an entry to B
and then del'etion of it from B later on. From implementation point of view, this results in an
improvement to overall performance of the algorithm. Next, the correctness of Par-Grobner-Tree
is discussed.

3.1 Cor~rectness of the New Parallel Algorithm for Czrobner Basis
Conlput at ion

In order to p:rove the correctness of Par-Grobner-Tree, the following two theorems are presented.

Theorem 3.1 The basis G generated from basis G1, G2 by algorithm Grobner-Combine, is the
reduced G r i h e r basis of ideal generated by set F , where F = Fl U F2, G1 and G2 are reduced
Grobner basis of sets Fl and F2 respectively.

Proof: Here G is the reduced basis generated from two sets G1 and G2, so

2. from algorithm Grobner-Combine it is evident that for all pairs i # j, NF (Spoly(gi, gj), G) =
0, where g;, gj E G.

Therefore, basis G generated by the algorithm Grobner-Combine is the reduced Grobner basis of
ideal generated by set F.

The tree stru.ctured computation for the algorithm Par-Grobner-Tree is shown in figure 1. The
relationship hetween the algorithms Grobner and Grobner-combine is as below:

where F = FL U F2.

Figure 1: Grobner Basis Computation Viewed as a Tree Computation

Theorem 3.2 In the tree structured computation of the algorithm Par-Grdrbner-Tree, G is the
reduced Grobner basis of ideal generated by set F.

Proof: I:I this proof, the associativity of union and Grobner-Combine, and the relationship
between Grobner and Grobner-Combine algorithms are used.

2 p

= .Reduce(GrGbner(U <(O))) (from equation(1))

This proves the correctness of the algorithm Par-Grobner-Tree. Furthermore, in Grobner-Tree,
a reduced G~,obner basis of the union of two sets is always computed. So, by executing algorithm

Par-Grobner- Tree, the reduced Grobner basis of a set of polynomials is obtained. The tree struc-
tured compui;ation gives the best performance when the initial set on each node is itself a Grobner
basis. In that case, Par-Grobner-Tree(F) = F. But, in the worst case, the time complexity of
Par-Grobner-Tree can be doubly exponential same as that of the Buchberger's algorithm. The
complexity measure used here is based upon the maximum total degree of the resulting polynomi-
als during the computation. The effectiveness of the new algorithm is demonstrated by the results
provided in the following section.

4 Results and Conclusions

4.1 Results

The results provided in this section are based on experiments performed on Intel Paragon, a
distributed memory parallel machine. Two different types of polynomial equations are considered.
The lexicogra.phical term ordering is used to order the terms of polynomials. The first type of set
of polynomials arises from the equations of n cylinders in n-dimensional space. The form of the
polynomial equations is as described below:

F = {f l , . . . , fn) , where

lsjsn
f = () - 1, for 1 i n and x > x > - > l e x xn.

j#;

The second type of set of polynomials consists of the following equations,

F = {f l , . - . , f n) , where

Figure 2 shows the execution times of both the tree structured algorithm Grotlner- Tree and Buch-
berger's algorithm for both types of polynomials. It can be ascertained that, for the same
set of polynomials, the computation time for executing Buchberger's algorithm grows expo-
nentially faster than the time required to compute the Grobner basis using the tree algorithm
(Grobner-Tree). This suggests that for a large set of polynomials, Grobner basis can be sequen-
tially compu'ted more efficiently and faster by using tree structured algorithm Grobner- Tree than

Type 1 polynomials

0 5 10 15 20
Number of polynomials

-
Type 2 polynomials

8 -

m

Number of polynomials

Figure 2: Comparison of Gr6bner- Tree algorithm with Buchberger's Algorithm

Number of polynomials
-32

I Communication times I

4

U1 u

1 z 3 - .-

E' .-
F

2

1

Number of processors

Figure 3: Timing information of Par-Grobner-Tree algorithm for Type :I polynomials

- Total time
-.-.-.-.-.- ".

at

Computatlon time

-
Total lime

* .-.-.-.-.-.-.-.-.-:<
- "# Computatlon tlme ". 36

umber of polynomials : A otal
Oa61 :32 _ . - . ' time

/ time .+ .
utation time

Number of processors

= 128

Total time
Q)
V) Computation time
C .- ' 'I- Communication time i= 1

I Number of polynomial:;

Total time_. , . x
. - '

/ . /.x-.-

Gomputation rn time
/
- - ,JP

- ' ifohmunitation time

"0' 10 20 30 40
Number of procerssors

Number of polynomial's

C .-
50 .-

"ti 20 40 60 80
Number of processors

"0 50 100 150
Number of processors

Figure 4: Timing information of Par-Griibner-Tree algorithm for Type 2 polynomials

that by Buchberger's algorithm. Furthermore, the tree structured computation can be naturally
parallelized using algorithm Par-Grobner-Tree. The parallel execution times obtained using this
algorithm call be seen in Figures 3 and 4.

The poly~iomial sets which are initially combined at the lowest level affect the execution times
of the parallem1 algorithm. For the first type of polynomials, the different initial combinations tried
are

From Figure 3, it can be inferred that the execution times for the same set of polynomials differ for
different initial combinations. However, for all combinations, a significant reduction in execution
time is achielred up to a certain number of processors (4 in this example). On the other hand, an
increase in the number of processors after a certain limit results in an increase in communication
time without a significant reduction in computation time.

For the second type of polynomial equations, different problem sizes are: used to study the
effect of scaling the problem on the computation and communication times. As shown in Figure
4, as the prot)lem size increases, the ratio of the computation time to the comnlunication time also
increases. The amount of speed-up achieved is limited after a certain number of processors (4 in
this case). Tlle main reason for this behavior is unbalanced load distribution across processors and
computation granularity that increases with the level of the nodes in the tree. The nodes at high
levels in the computational tree tend to dominate the execution time of the whole computation.
So, using more than four processors results in very small execution time savings due to parallel
computation at low levels of the tree.

In this paper, an alternative approach for Grobner basis computation was presented. For large
computations, this approach results in faster execution times than Buchberger's algorithm. Fur-
thermore, in this study, parallelism in the tree structured Grijbner basis computation was exploited
and the bott lenecks were identified. The tree structured Grobner basis compiltation presented in
this paper provides a structure which is easy to parallelize. On the other h.and, the limitation
imposed on speed-up achievable by using this approach suggests that the parallelism available in-
side each node of the computational tree needs to be exploited. This is the basis for an approach,
currently being pursued by the authors, that will result in a balanced tree structured Grobner ba-
sis computation. Other issues such as reducing coefficient growth, efficient memory management,
and avoiding unnecessary computations are also being considered.

[Buc79] 13. Buchberger, "A criterion for detecting unnecessary reductions in the construction
of Grobner-basis", In EUROSAM, pages 1-21, 1979.

[Buc83] 13. Buchberger, "A note on the complexity of constructing Grobner-basis", In EU-
ROCAL, pages 137-145, 1983.

[Buc85] 13. Buchberger, "The parallel 1-machine for symbolic computation", In EUROCAL,
pages 541-542. Linz, Austria, 1985.

LBuc85a.I 13. Buchberger. "Grobner Bases: An Algorithmic Method in Polynsomial ideal Theory"
l~lultidimensional Systems Theory, pages 184-232, 1985.

[BvzGH82] A. Borodin, J . von zur Gathen, and J . E. Hopcroft, "Fast parallel matrix and gcd
c:omputationsV , Information and Control, Vol. 52, pages 241-256., 1982.

[BW93] 'I?. Becker and V. Weispfenning, "Grobner Basis: a cornputati~n~zl approach to com-
~nutative algebra", New York : Springer-Verlag, 1993.

[CGGl 13. Char, "First leaves : a tutorial introduction to Maple V", New York : Springer-
'Jerlag, 1992.

[CL093] I). Cox, J. Little, and D. O'Shea, "Ideals, Varieties, and Algorithms", 1993.

[Gan84] .I. Ganthen, "Parallel algorithms for algebraic problems", SIAM Journal of Cornput-
j'ng, pages 802-824, 1984.

[HofgO] (2. Hoffmann, "Geometric and Solid Modeling", Morgan Kaufmann, 1989.

[Joh89] .I. Johnson, "Some issues in designing algebraic algorithms for the Cray X-MP"
I:n Della Dora and Fitch, editors, Computer algebra and parallelism, pages 178-195.
,icademic Press, 1989.

[JSSRV] tl. Roch, P. Senechaud, F. Siebert-Roch, and G. Villard, "Computer algebra on MIMD
machine", pages 423-439.

[KiicgO] . Kuchlin, "The s-threads environment for parallel symbolic computation", In
:Cippel, editor, Computer algebra and parallelism, pages 1-18. 1,NCS 584, Springer
'ferlag, 1990.

[Mis89] 13ud Mishra, "Notes on Grobner basis", Information Sciences, Vol. 48, pages 219-252,
:1989.

[NM90]

[Pona]

[Ponb]

[Pon89]

11. Melenk and W. Neun, "Parallel polynomial operations in the large Buchberger
algorithm", In Della Dora and Fitch, editors, Computer algebra and parallelism, pages
1.43-158. Academic Press, 1989.

TN. Neun and H. Melenk, "Very large Grobner basis calculations", In Zippel, editor,
t7omputer algebra and parallelism, pages 90-99. LNCS 584, Springer Verlag, 1990.

(2. G. Ponder, ('Parallel processors and systems for algebraic manipulation: Current
~vork" , pages 15-21, SIGSAM Bulletin.

(2. G. Ponder, "Parallelism and algorithms for algebraic manipulation: Current work",
pages 7-14, SIGSAM Bulletin.

(2. Ponder, "Evaluation of "performance enhancements" in algebraic manipulation
~~ystems", In Della Dora and Fitch, editors, Computer algebra and parallelism, pages
51-73. Academic Press, 1989.

;I. Roch, "An environment for parallel algebraic computation", In Zippel, editor,
Computer algebra and parallelism, pages 33-50. LNCS 584, Springer Verlag, 1990.

1'. Senechaud, "Implementation of a parallel algorithm to compute a Grobner basis
on boolean polynomials", In Della Dora and Fitch, editors, Computer algebra and
parallelism, pages 159-166. Academic Press, 1989.

1'. Senechaud, "Boolean Grobner basis and their MIMD implementation" In Zippel,
editor, Computer algebra and parallelism, pages 90-99. LNCS 584, Springer Verlag,
1.990.

1'. Senechaud, "A MIMD implementation of the Buchberger al@;orithm for boolean
]>olynomials", Parallel Computing, Vol. 17, pages 29-37, 1991.

'N . Schreiner and H. Hong, "A new library for parallel algebraic computation", In
Sixth SIAM Conference on Parallel Processing for Scientific Computing, pages 776-
'183, 1993.

'N. Schreiner and H. Hong, "PACLIB - a system for parallel algebraic computation on
shared memory multiprocessors" In Parallel Systems Fair at the Seventh International
.Parallel Processing Symposium, Newport Beach, CA, pages 56-61., 1993.

:K. Siegl, "J(MAPLE1J - a system for parallel symbolic computation" In Parallel
,Systems Fair at the Seventh International Parallel Processing Symposium, Newport
.Beach, CA, 1993.

[VidgO] .I. Vidal, "The Computation of Grobner Basis on a Shared Memory Multiprocessor",
I:n Proceedings DISCO 'SO, pages 81-90, 1990.

	Purdue University
	Purdue e-Pubs
	10-1-1994

	Tree Structured Grobner Basis Computation on Parallel Machines
	Hemal V. Shah
	Jose A. B. Fortes

