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ABSTRACT

This report addresses a partially supervised classification problem, especially
when the class definition and corresponding training samples are provided a
priori only for just one particular class. In practical applications of pattern
classification techniques, a frequently observed characteristic is the heavy, often
nearly impossible requirements on representative prior statistical class
characteristics of all classes in a given data set. Considering the effort in both
time and man-power required to have a well-defined, exhaustive list of classes
with a corresponding representative set of training samples, this "partially”
supervised capability would be very desirable, assuming adequate classifier
performance can be obtained.

Two different classification algorithms are developed to achieve simplicity in
classifier design by reducing the requirement of prior statistical information
without sacrificing significant classifying capability. The first one is based on
optimal significance testing, where the optimal acceptance probability is
estimated directly from the data set.

In the second approach, the partially supervised classification is considered as a
problem of unsupervised clustering with initially one known cluster or class. A
weighted unsupervised clustering procedure is developed to automatically define
other classes and estimate their class statistics.

The operational simplicity thus realized should makes these partially supervised
classification schemes very viable tools in pattern classification.




CHAPTER 1
INTRODUCTION

1.1 Information and Pattern Classificationin Remote Sensing

For decades, the technology of remote sensing has been successfully applied in
many interdisciplinary applications of Earth observational data. Pattern
classification methods have had a major role in applying remote sensing
technology. A pattern classification system can be described generally as in
following schematic.

) input features — output o
| Sensor Classifier —— Decision
Prior Knowledge

Figure 1.1 General Schematic of Pattern Classification.

The incoming information-bearing data are analyzed and classified into one of
the pre-defined categories. To have a proper classification of given data, one
needs to decide what classifier to employ and which features to use in the
classification. A well-defined, informative, and exhaustive list of classes, and a
representative set of training samples from which the statistical characteristics of
all classes can be estimated is essential.




1 Introduction

If prior knowledge about the statistical characteristics of the categories or classes
is available, usually in terms of training samples, the classifier is referred to as
"supervised." The major portion of prior knowledge is often in the form of training
samples with known class labels. In this case, 'the class statistics are estimated
from the available set of labeled training samples. When there is no prior
knowledge, then, the classifier is referred to as "unsupervised.” In many cases,
the training samples are available only for a subset of classes, or, training
samples are gathered only for those particular classes. Considering the
expensive process of gathering training samples in both man-power and time,
this situation is not uncommon in practice especially when one needs to identify
only a subset of classes. It can be referred as a "partially supervised"
classification problem.

1.2 Design of Partially Supervised Classifiers

In practical applications of pattern classification techniques, it is not unusual to
confront a task in which only a particular subset of classes, for which training
samples are available, are desired to be recognized or identified. A design of
conventional supervised classifier requires training samples for all the classes in
the given data in order to perform optimally. Considering the effort in both time
and man-power required to have a well-defined, exhaustive list of classes with a
corresponding representative set of training samples, this "partially” supervised
capability would be very desirable, assuming adequate classifier performance
can be obtained. This report addresses the partially supervised classification
problem, especially when the class definition and corresponding training samples
are provided a priori only for just one particular class.

Two different approaches are investigated. The first one is based on optimal
significance testing, where the optimal acceptance probability is estimated
directly from the data set. In the second approach, the partially supervised
classification is considered as a problem of unsupervised clustering with initially
one known cluster or class. The definitions and statistics of the other classes are
automatically developed through a weighted unsupervised clustering procedure
which is developed to keep the cluster corresponding to the "class of interest"
from losing its identity as the "class of interest.” Once all the classes are
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developed, a conventional relative classifier such as a maximum likelihood
classifier is used in the classification.

Even though the partially supervised classification algorithms are to perform at
best comparable to one in which all the classes and statistical characteristics are
available, considering the time and effort required for collecting ground truth, or
training samples required for defining all the existent classes in the given data
set, this will be very useful in practice when a data-analyst is interested in
identifying only samples belonging to a certain class.

1.3 Organization of the Report
The outline of this report is as follows.

Chapter 2 addresses an absolute classification approach based on the optimal
significance testing where the optimal accept probability is estimated from the
given data set without user's supervision.

In Chapter 3, the problem of partially supervised classification is formulated as
that of a relative classification with only one a priori known class. Weighted
unsupervised clustering algorithm is investigated for unsupervised development
of class definition and statistical characteristics necessary succeeding relative
classification. Following the experimental results are conclusions and
suggestions for further research regarding the design problem of partially
supervised classifiers.
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CHAPTER 2

PARTIALLY SUPERVISED CLASSIFICATION
WITH OPTIMAL SIGNIFICANCE TESTING

2.1 Introduction

Successful classification of given data sets requires a proper design of
classifiers to be employed. The design or training of classifiers is performed
using prior information which is usually gathered in the form of training samples.
The number of training samples necessary is dependent on the number of
features and the number of classes. Generally, the process of obtaining training
samples is very expensive in terms of both time and manpower. In practical
applications of pattern classification techniques, a frequently observed
characteristic is the heavy, often nearly impossible requirements on
representative prior statistical class characteristics of all classes in a given data
set.

Other Class 3

sampleto be classified (/\ sampleto be classified

e

Class 1
Class of Interest

(a) (b)

Figure 2.1 Two Different Classification Schemes. (a) Absolute Classification
Scheme. (b) Relative Classification Scheme.
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Broadly speaking, classification analysis schemes can be dichotomized into two
different categories, one being based on an absolute classification scheme and
the other based on a relative classification scheme. Classifiers based on the
absolute scheme, such as a parallelepiped classifier (Richards 86), or a
scheme based upon a known absorption feature for a specific material, classify
data samples on an absolute basis, i.e., without regard to the spectral
responses of other materials or classes which may be in the scene. In such
cases, class definition through training samples is required only for the
particular class under consideration. There may be many applications where
one wants to recognize only a single class of pixels. For example, one might be
interested in finding only the pixels belonging to a class, "corn,"” etc. This
absolute classification scheme is very attractive in this case.

The scheme in the second category is "relative classification” where class
decisions are made on a relative basis. The maximum likelihood classifier, one
of the most widely used relative classifiers, assigns a pixel to the class which
has the largest likelihood value relative to other classes. Therefore, even if only
one class is of interest, training samples must be obtained for all other classes
also to adequately train the classifier. The necessity of supplying training
samples for, or otherwise defining all other classes can be an onerous
shortcoming especially when there are large numbers of classes and/or
features to deal with. While a properly designed relative classifier can nearly
always provide better performance, and is very much less sensitive to many
unmanageable factors, e.g., atmospheric conditions, calibration, etc., the
operational simplicity of the absolute scheme may make it the scheme! of choice
in many instances.

This report addresses the design problem of partially supervised classifiers,
especially when the class definition and corresponding training samples are
provided a priori for only one particular class as in the absolute classification
schemes. Two different approaches are investigated. The first one is based on
optimal significance testing. The investigation of this approach addresses the
problem of estimating, without supervision by the data-analyst, an optimal
significance level, or equivalently, an optimal acceptance probability, which is
an indispensable element in significance testing.
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In the second approach which will be introduced in the next Chapter, the
advantages of both a reduced requirement on obtaining training samples in the
absolute classification and the potentially robust and powerful discriminating
capability of a relative classifier are sought by developing an automatic
mechanism of extracting statistical information corresponding to an "others"
class without recourse to the training samples supplied by anallyst. That is, the
classification algorithms proposed can develop class definitions and
corresponding class statistics, requiring the user to supply prior knowledge only
pertaining to the particular class under consideration.

The organization of this Chapter is as follows. After a brief introduction in
Section 2.2 on a partially supervised classification apprcach based on
significance testing, Section 2.3 address on an optimal significance testing
procedure where an estimating algorithm of an optimal acceptisnce probability
with a given optimality criterion is presented. Section 2.4 shows the
experimental results of this optimal significance testing in the context of the
partially supervised classification problem.

2.2 Partially Supervised Classification with Significance Testing

Significance testing is a widely used technique in various applications of
statistical analysis, such as classification, or object detection (Therrien et al. 86).
It is especially useful in such problems as the single hypothesis problem
(Fukunaga et al. 87, Quatieri 83) where one is to identify a particular class of
objects among others with only statistical information pertaining 10 those objects
of interest. This kind of problem can arise when defining all the classes and
gathering corresponding statistical information is impossible, or very expensive
in terms of time and manpower. Examples of applying significance testing
techniques include target detection, object detection out of various backgrounds
(Quatieri 83), texture detection, cloud detection, fault or anomaly detection in
diagnostic monitoring (Bello 92).

Significance testing can be used for partially supervised classification when
there is only one class of interest and the class definition and it class statistics
are available a priori only for that class. Note that significance testing is based
on the absolute classification scheme in Fig. 2.1.(a).
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One of the important elements in significance testing is the acceptance
probability (or, significance level) which must be provided by the data analyst
usually in such a way that the type | (i.e., omission) error rate is kept within a
pre-specified level (Drake 67). Obviously, omission error is not necessarily the
only relevant criterion to consider in determining a suitable acceptance
probability, and there are many other possible optimality conditions. For
instance, the acceptance probability could be selected on the basis of the
Bayes minimum error criterion. The criteria used in the minimax test, or
Neyman-Pearson test (Van Trees 68) might also be used in selecting the
desired acceptance probability.

Unfortunately, lack of prior statistical information other than that of the particular
class of interest may prevent directly applying conventional procedures used in
hypothesis testing. The commission error, or type Il error can not be easily
evaluated unless the relative distribution of all classes in the given data set is
available. Note that a mixture density estimates of the feature vectors can give
an estimate of the probability density of the "others" class if the prior probability
of the class of interest is known. For significance testing, requiring only some
appropriate measure of the distances of samples from the mean of the class of
interest, it suffices to estimate a one dimensional mixture probability density of
the distances, not the multidimensional features vectors.

In the following is presented an algorithm which can automatically estimate the
optimal acceptance probability from the given data set under the selected
optimality conditions, such as Bayes total classification error, minimum class-
averaged classification error, or the generalized total classification error criteria.
With this estimated optimal acceptance probability, classification can be
performed to identify the class of interest.

This automatic estimation of the proper acceptance probability will be
doubtlessly desirable, at least to the user with little prior knowledge about the
data set. The algorithm to be proposed in this chapter can also be applied to the
case where the specific class of interest consists of several sub-classes. When
there are a large number of constituent sub-classes of the given class of interest
and the sample distributions of the sub-classes are quite different from each
other, this automatic estimation capability should be very handy, since one
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doesn't need to undertake the manual selecting process of an acceptance
probability for each sub-class.

2.3 Optimal Significance Testing

Suppose there is a data set, X = {x4, ---, xn} with N samples. Each data point, x;,
iIs a g-dimensional feature vector (g = 1). It is assumed that one is only
interested in identifying a single class which is denoted by C,,, i.e.,
discriminating between it and the "others" class, denoted by Cyhers- The "others”
class might consist of several classes none of which is one's interest. Prior
statistical knowledge is assumed to be available only for the class of interest.
Let fy(x | Cint) and f4(x | Cothers) b€ the probability density functions of classes Ciy
and Cghers, respectively. The prior probabilities of Cj, and Cyihers are indicated
by 1ot and mohers- It 1S @assumed either to know the density function fy(x | C;), oOr,
to have a set of representative training samples of C;,; from which a reasonably
accurate estimate of fy(x | Ci,y) can be made. In general, fy(X | Cothers)s Tint and
Tothers @re Nnot known other than the fact that iy + gihers = 1. The mixture
probability density, denoted as fy(x), is written as,

fX(X) = Tint fx(x | Cint) + Tothers fx(x | Cothers) (2-1)
where, 0 < g, Tothers < 15 Tint + Tothers = 1

Even though the following derivations do not require any specific family of
probability density functions for C;,,, multivariate normality will be assumed for
C;nt for simplicity's sake. Generalization to other probability density functions is
straightforward. Furthermore, without loss of generality, C;,; can be assumed to
have a zero mean, denoted by Oq, and an identity covariance matrix, denoted
by lgxq- This standard multivariate normal distribution will be denoted by
MVN[Og, lgxql-

In significance testing, a single hypothesis Hy : xe Cjy, is tested against all
other alternatives. The degree of support for the hypothesis H; is measured with
test statistic, T(x) which is a function of feature vector x, x € X. With fy(x | Cint)
being MVN[Og, Igxql. @ natural choice for the test statistic would be T(x) = X"x by

,,,,,,
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which the significance test rejects sample x if T(x) > A. Once the test statistic is
selected, the threshold A specifies the rejection region in the feature space.

c 4
.2
:g area = Q,
B /
R
B
:
g
w
=
O
)‘a
Figure 2.2 Threshold A, Corresponding to a Significance Level (1 - a).;

T(x) = x"x and fy(x | C) is MVN[Og, lgxql-

Choosing an appropriate rejection region (or equivalently, the threshold ) is an

important problem which deserves further attention. The availability of the
necessary statistical characterization of C;; enables control of the omission

error, denoted by €4, using,

g =PTx)>A,|Hy}<1-a, O0<ac<i (2.2.a)

The value, (1 - a) defines the maximum allowable omission error and is often
called the significance level or rejection probability. The parameter a will be
called the acceptance probability. The threshold associated with a, denoted by
A4 Can be obtained by solving,

A
[ vy 1 G oy = (2.2.b)

where fy(y | C;y) is the conditional distribution of y = T(x) = x"x, under the
hypothesis Hy. (The notation of Hy and C;; will be used interchangeably). When
fx(x | Cim) is MVN[Og, Igxgl: fy(y | Cia) is known to be the chi-squared distribution

with g degrees of freedom.

- 10 -
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Class of Interest
1 I
' a,)
Others >
| I Others
J [
I
] | 1 [}
I(oc1 )| . .
LN PR
>
IReL
Figure 2.3 Decision Regions of the Class of Interest with Significance
Testing.; Animproper significance level may result in either an
excessive omission or commission error.;,l - the decision

region of a relative classifier, such as a maximum likelihood
classifier.; I{e,), l(ax,) - the decision regions of significance

testing with levels (1-a,), (1-a,), respectively.

While the omission error g, can be controlled within a certain value specified by
(1-a) through eq. (2.2.a,b), the commission error, denoted by ¢ is generally
very difficult to control, as discussed before, since its evaluation requires
frequently unavailable statistical knowledge about all alternatives. By
increasing the acceptance probability a, the omission error can be reduced, but,
at the same time, the commission will be increased.

The omission error plotted versus the acceptance probability has a slope of -1,
but the slope of commission error is dependent on the closeness of the
distribution of the "others" class to the "class of interest." To avoid potentially
excessive omission or commission errors, the acceptance probability a must be
carefully determined by checking the relative distribution of data samples with
respect to the class of interest. An automatic estimation capability of optimum
acceptance probability is thus very desirable.

Since the estimation problem of optimum acceptance probability will be
addressed in a similar fashion to the hypothesis testing, a brief review of a
simple binary hypothesis testing procedure (Van Trees 68) is worthwhile.
Assume a simple hypothesis test with two hypothesis Hy and Hp from which one
is to be selected. The Bayesian framework requires two sets of parameters, i.e.,
one set including prior probabilities associated with the hypothesis and the
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other set with associated costs. Each cost is associated with the corresponding
course of action as in Fig. 2.4.

Tint H] 3 Hl
Ay Ag
X others H2 A22 S Hz
Figure 2.4 Prior Probabilities (mn,, ®oiners) @and Costs Aj's in a Binary

Hypothesis Test.; Ajj refers to the cost given to accepting
hypothesis H; when Hj is true.

Ajj is the cost given to the action of accepting hypothesis H;j when H; is true. It is
quite logical to set Ay = Ay» =0, that is, no cost is assigned to a correct decision.
Without loss of generality, the other costs can be set as Ayy = A+ Ago with
proper A, A > 0, where Ay, doesn't affect the design of the optimal test and thus,
can be dropped out in the average cost function. The optimal test can be
designed by minimizing the a poderiori expected cost given as,

EBayes = A Tt €1 + Tothers €2 (2.3)

g4 and g, are the omission and commission error probability, respectively and
computed using f,(x | H;), the probability density function of x under H;, i = 1, 2,
as,
£1=J t(x | Hy) dx
22

£2='[Z1fx(x| H,) dx

where, Z;is the decision region for H;, i=1, 2

Note that if (A, Tin, Tothers) are known, then, an optimal Bayes minimum
expected cost test can be designed. It is well known that this test is the
likelihood ratio test (LRT) whose design requires selection of an appropriate
threshold, based upon parameters (A, Tin Mothers)» WHich, in turn, requires
knowledge of g4 and €, as functions of the threshold. In significance testing
which can be viewed as a problem of single hypothesis testing, the optimal
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acceptance probability can be obtained in a similar way to the simple binary
hypothesis counterpart. That is, instead of €4 and €, as functions of the
threshold, they can be obtained as functions of the acceptance probability.
Unfortunately, the expression for commission error € in significance testing, is

ordinarily not readily available a priori, since the probability density function
under hypothesis Hjp is not known. Nevertheless, estimating the commission

error function for a given data set is possible, as will be discussed in following
section. With the estimated &5, the same idea of simple binary hypothesis testing
mentioned above can be applied also to significance testing in estimating the
optimal acceptance probability.

2.4 Estimation of Optimal Acceptance Probability

In this section, an algorithm which can automatically estimate the optimal
acceptance probability by checking the actual relative data distributions is
presented. There can be many different optimality criteria for the acceptance
probability. For example, the acceptance probability can be selected solely on
the basis of the omission error or commission error, or, it can be selected based
on a criterion which is basically a weighted sum of omission and commission
errors. In this section, three different optimality conditions are considered in
selecting a proper acceptance probability.

2.4.1 Omission and Commission Errors as Functions of Acceptance Probability
a

Suppose there are Ny samples belonging to G in the data set X. Nq is
unknown, in general. Then, in the data set X, there will be N5, = N - N4, data
points from the class Cuners- ASSUMe the prior probabilities are,

N 1 Np
Tint =" N and  Tomhers = T

The expected number of data points in X accepted with the acceptance
probability a is denoted as N(a) and written as a functionof a,0 <a <1, as,
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N(o) = N J';"‘ fy(s) ds (2.4)

where fy{y) is the mixture probability density function of y, y = x'x, y 2 0, and A,
is the threshold corresponding to the acceptance probability ain eq. (2.2.b). fy(y
| Cim) is similarly defined as a probability density function of y = x'X, x € Cju.
N(a) is a monotonically increasing function of a in the interval 0 m am 1, since,

dAg 1 0 (2.5.a)
_ > 5.a
da fy (Aq | Cint)
and,
N dA,
dN(a) _ N,fv(ka).[d_:] >0, Osoasl (2.5.b)

Although the mixture density fy (y), is not available a priori, it can be easily
estimated using the y values where y = x'x, x € X. In a similar way, N4(a) and
No(a), the expected numbers of data points accepted with acceptance
probability a, 0 <a <1, and coming from C;; and Cypers. respectively, are
written as,

N1(0) = Ny [ f(sICiu) i (2.6.2)

' Ao
Na(e) = Na [ fy(s(Camers) ds (2.6.0)

fv(Y|Cothers) is the density function of y's corresponding to Ceyihers- N1(a) and
No(a) are also monotonically increasing in 0 < a < 1. From the relations in eq.
(2.1) and eq. (2.2.b), N¢(cx) and No(a) are simplified as,

N1(0.) =Q- N1 (2.7.a)
Na(or) = N(ot) - Ny(or) = N(at) - o+ Ny (2.7.b)

Using eg. (2.5.b) and eq. (2.7.b), an upper bound of prior probability &;,; can be
obtained as,

- 14 -
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fy(y) J
fy(YICind ]y = Ay

Now, compute the omission and commission errors at acceptance probability a.
The omission error rate, denoted by g4(a), is obtained by dividing the number of
C;.t samples rejected at acceptance probability a with Ny.

min
Ty < 01 al 1 (2.8)

£4() =N"T":‘(°‘—) -1-a (2.9)

Similarly, the commission error rate, denoted by ex(a), is obtained by dividing
the number of accepted Cginers Samples by Ns, with given acceptance
probability a.

eala) = g (2.10)

Note that, with respectto a, g4{(a) is a strictly decreasing function with slope -1
and g5(a) is a monotonically increasing function, but the actual rate of increase
of e5(a) is dependent on the behavior of N(ct). The evaluation of €x(a) generally
requires knowledge of Ny, or equivalently, the prior probability ;.

The optimal acceptance probability ais dependent on the criterion which
assesses the optimality. In many situations, a simple average of omission and
commission errors,

Eq(@) = 5 [e1(a) + eo(o)] (2.11.2)

serves as a good candidate for assessing optimality. Under the Bayesian total
probability error criterion, the optimal acceptance probability minimizes,

Eo(a) = iy €4(a) + Mothers €2(X) (2.11.b)

the sum of omission and commission errors weighted with the prior
probabilities. This weighting can be generalized by allowing different cost (or,
risk) between omission and commission errors as,

Eg(®) = A« Tin €4(00) + Tothers E2(Ct) (2.11.¢c)
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Constant A, where A > 0, is the risk or cost on making omission errors relative to
the risk of making commission error being 1. The criteriain eq. (2.11.a,b) can be
considered to be special cases of Ez(a). That is, Ez(a) with A= 1, is the same as
Ex(). Setting A = Rtoihers/Tie Makes Ez(a) equivalent to E4(a). The criterion in
eg. (2.11.c) will be called the "generalized" total classification error criterion.

Note that identifying a specific single class, or detecting specific objects from the
background in a given scene can be considered as a two class classification
problem and a confusion matrix can be drawn as in Table 2.1. (N44 is a number

of Ciny samples correctly classified as Cjy and Naz is a number of Cyyhers
samples correctly classified as Cgihars)-

Table 2.1 Confusion Matrix.

]

Assigned class

Cint Cothers
Actual | Ciy N4 Ny - Nyy
Class | Coppers| No-Noo Noo

Then the classification error probabilities of Ciy and Coyners are equivalentto the
omission and commission errors, respectively.

Nyq

error probabilities of Cj,; =1 - o

g, N
error probabilities of Cyypers =1 - —52

Two criteria have been conventionally used in assessing classification
performance. One is the "overall classification error" which is computed as the
ratio of the total number of errors to the total number of samples in the given
data set. The other is the "class-averaged classification error,"” and it is a simple
average of the classwise classification errors. Notice that the overall
classification error is no more than a weighted sum of the classwise
classification errors according to the prior probabilities. Thus, it is equivalent to
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the total probability of error in eq. (2.11.b). By the way, the "class-averaged
classification error” is equivalent to eq. (2.11.a). The class-averaged
classification error criterion is a very useful indicator of classification
performance especially when there are large differences between prior
probabilities since the overall classification accuracy will be dominated by the
performance of the class having the dominant prior probability. In applying
significance testing, there will be many cases when the number of data points
belonging to one class is dominantly large than the others. In these cases, the
class-averaged classification error in eqg. (2.11.a) will be desirable in assessing
optimality.

2.4.2 Estimating Optimum Acceptance Probability

In following discussion, only the criterion in eq. (2.11.c) will be used since the
others can be derived as special cases of this criterion by setting an appropriate
value of A. The optimal acceptance probability a can be obtained by minimizing
E5(a) with respect to a over the interval, 0 < a< 1. That is, by equating the first
order derivative of E5(a) to O,

dEglo) 1 [ dea() }
da - N[N2ge ANy
(2.12.a)
1 [dN
i, N[ d((x“) i (1+A)-N1]=0

and checking the sign of the second order derivative in eq. (2.12.b) below, the
optimal value of a which gives the minimum value of Eg(a) can be found. Note
that solving eq. (2.12.a) requires, in general, knowledge of N4, or, equivalently,
the prior probability m;q.

d?Ej(w) d%es(0) 1 d2N(a)
daz = nothers daa = N da2 (2.12.b)

Since the second derivative of g¢(e) is zero, eqg. (2.12.b) is only affected by the
commission error, g»(a). Substituting the first order derivative of N(a) given in
eg. (2.5.b) into eq. (2.12.a) results in,
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N fy (Ay) = (14+A) N¢ fy (Ag|Ciny) (2.13)

The first order derivative of Eg(a) being always positive in 0 < a < 1 indicates
that Nfy(A,) on the left side of eq. (2.13) is always larger than the right side,
(L+A)Nfy(Ao|Cin) for all a in the interval [0,1]. Since (1+A) > 1, this means that
the data points expected to be in the infinitesimal region (Ay, Ao+ dA,) are
always more than the expected number of C;,; samples in the region and thus,
considerable commission error will result no matter how restrictive the
acceptance probability is. Therefore, the optimum value of a is expected to be 0.
On the other hands, the first order derivative of Ez(a), being always negative in
the interval, 0 < a < 1, indicates, in the same token, that the data points
expected to be in the infinitesimal region (Ay, A+ dA,) are always less than the
expected number of C;,, samples in the region (which is weighted by (1+A)),
therefore, the possibility of commission error is very low. This will allow
acceptance probability ato increase up to 1.

Since increasing a would not only decrease the omission error but also
increase simultaneously the commission error, other than these two extreme
cases, minimum points of Ez(a) will be located where the degree of increase in
the weighted commission error starts to surpass the decrease of the weighted
omission error. The prior probabilities and relative cost A determine the actual
balancing between omission and commission errors. Due to the closed interval
of a, [0,1], the minimum of Ez(a) always exists and so does the optimum a, even
if there may be no solution satisfying eq. (2.12.b) and the positivity of eq.
(2.12.c). Suppose solutions satisfying these two conditions do exist, and denote
a set of those solutions as S.

2
S={a | d—Edsg =0 and _ddEsz(a) >0 0<sas<i}

Then, each element in Swill correspond to a (local) minimum of Ez{(a). The
global minimum can be selected by comparing the actual values of Ez(a) at
different a's in S in the following way. Suppose «; and a; are elements in S,
then, the difference, Eg(o) - Ez(a;) can be written as,
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Eg(o) - Ealog) —i- (2.19)

where, Aj = [N(aj) - N(aj) - (@ - o) « (1+A) . N4]

By checking the signs of the Aj's, the acceptance probability which attains a
global minimum of Eg(a) can be selected from the set S. Notice that evaluating
eq. (2.14) requires the prior probability, =y, but, in the case of the class-
averaged classification error criterion, it can be evaluated even without knowing
ot SINCe substituting A = mghers/Tint = N2/Nq results in a quantity independent of
Tint AS,

N
1+A)Ny=(1 +5°)Ny=N
(+)1(+N1)1

This property of the class-averaged classification error criterion will be very
useful in actual application of this algorithm since the prior probabilities are
unknown in most problems.

2.4.3 Optimum Acceptance Probabilities for the Sub-classes of the Class of
Interest

Frequently, one has a class of interest which consists of several sub-classes.
These sub-classes are components of the original class which is often referred
to as an "information class" (Swain 78). The term "information class" implies a
physically meaningful entity. One cannot always model the statistical
distribution of the given information class with a known simple distribution
function. In this case, the information class can be decomposed into several
sub-classes, each of which is described with a simple known probability density
function, such as the Gaussian distribution function. This decomposition of the
information class into a set of sub-classes can be accomplished using
clustering in the feature space (Swain 78). These sub-classes generally might
not correspond to any physically meaningful entity, since they are selected to
describe the data distributions of the information class in the feature space.
When there are several sub-classes belonging to one information class,
significance testing can be performed in following manner.
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Xl (nlsnz)
X
(N, N,) X, (my.m,)

Figure 25 Division of Data Set X into Two Subsets, X4 and Xz.; nq and my are the
numbers of class-of-interest samples respectively in the subsets X4 and
X2. Similarly, np and my are the numbers of samples from the class
"others," found respectively in the subsets X4 and Xz.

Suppose there are two sub-classes. Since the statistical characteristics of the
two sub-classes are assumed available, the given data set X can be divided
into two subsets, one for "sub-class 1" and the other for "sub-class 2" as in Fig.
2.4 by applying any classifier, for example, a maximum likelihood classifier.

Significance testing is applied to each subset to obtain samples which should
be accepted, and the union of samples accepted from each subset is the result
of significance testing applied to the given information class. In this approach,
the optimal acceptance probability is selected separately for each sub-class
according to the relative distributions of samples in the corresponding subset.
The estimating capability of the optimal acceptance probabilities for each sub-
class will certainly be useful when there are a large number of sub-classes and
the relative distributions of samples in each sub-class are quite different from
each other, since one doesn't need to undertake the manual selection process
of proper acceptance probability for each sub-class.

The optimality of the estimated acceptance probabilities can be assessed either
at the sub-class level, or at the information class level. If the acceptance
probabilities are selected to achieve the given optimality independently in each
sub-class, then they are said to be optimal at the "sub-class level." On the other
hand, the acceptance probabilities are called optimal at the "information class
level" if they attain the given optimality for the union of accepted samples from
the sub-classes. The acceptance probabilities optimal at the sub-class level do
not necessarily retain the same optimality at the informationclass level.

Suppose a4 and ao, the optimal acceptance probabilities respectively for sub-

class 1 and 2, are to be estimated employing the generalized total probability of
error criterion of eq. (2.11.¢), written as Ez(ay,0tp), at the information class level.

- 20 -
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Ez(oty,00) = A * iy £4(011,000) + Tothers E2(011,012) (2.15)

where €&;(04,a2) is the omission error of the given information class with a4 and
ap for sub-classes 1 and 2. Similarly, e5(aq,a5) is the corresponding
commission error. Omission error g4(aq,a) has two components. One is e}(al),
the omission error occurring in sub-class 1 and the other, e?{(az), the same
omission error occurring in sub-class 2. Likewise, the commission error
€5(0t4,00) can be computed with two components, ei(a;) and e3(a2), commission
errors occurring respectively in sub-class 1 and 2.

1 2

£1(aty, ) = LEI@D) I:;lml £(@2) (2.16.2)
1 2

£x(0y, 0g) = 12 fa(“l);zmz Ex(a2) (2.16.b)

After a few algebraic operations, Eg(aq,ap) in eg. (2.15) can be written in terms
of the criterion in eq. (2.11.c) evaluated at each sub-class as,

N{+No m4{+Mo
Es(aq,00) == Esloy) + — g~ Eslaz) (2.17.a)
where, E3(o1) = A* 7} gj(o) + ) ed(ay) (2.17.b)
E3(ag) = A+ 2 eX(ap) + 3 €3(02) (2.17.¢)

ol =1 and ii=1- n}

1= n;+np 2= 1

m=—"01__ and ni=1- n}

T mp+my

Note that minimization of eq. (2.17.a) can be achieved by minimizing Eg(ctq)
and Ez(a»o) given in eq. (2.17.b,c) independently. Therefore, in the case of the
(generalized) total classification error criteria in eq. (2.11.b,c), estimating the
optimal acceptance probability independently for each sub-class at the sub-
class level always leads to the same optimality also at the information class
level. Hence, there is no inconsistency in the optimality for those cases. The
result in eq. (2.17.a) is also applicable to the class-averaged classification error
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criterion if the relative weight A is substituted by moipers/®int- As Seen in Eg(oq)
and Ez(ap) in eq. (2.17.b,c), this substitution of the A value doesn't lead to the

same class-averaged classification error criterion in sub-class 1, 2, unless the
following two equations are satisfied.

A-ni=n} and A-ni=nl (2.18.a)
These two equations above can be satisfied if the following relation holds.

N4 mL
e =T (2.18.b)

Therefore, unless eg. (2.18.b) is satisfied, optimality in the sense of the class-
averaged classification error criterion at the information class level cannot be
achieved by applying the same criterion to each sub-class. However, optimality
based on the class-averaged classification error criterion can be accomplished
at the level of the information class if the generalized total classification error
criterion with A satisfying eq. (2.18.a) is used in each sub-class.

2.4.4 Probability Density Function Estimation

In computing an optimum acceptance probability a, density estimation is
required to compute N{a) in eq. (2.4). Since N(a) is the expected number of
samples accepted with acceptance probability a, it can be obtained, in the most
simplistic way, by counting the number of samples whose test statistic is less
than the threshold A, while varying the acceptance probability a. The first order
derivative of N(a) is then obtained by numerical differentiation of N(a). Even
though this method is quite simple and fast enough, it has some drawbacks. For
example, the counting nature in estimation causes discontinuities in N(a) and
consequently, brings difficulties in calculating the derivative. Furthermore,
different ways of discretizing the interval [0,1] of a in counting samples can
produce different estimates of N(a). This is similar to the problem of histogram-
based density estimation where the estimated density can vary depending on
bin definition (Silverman 86). Due to these considerations, the proposed
algorithm uses a kernel-based Parzen density estimate which has been not
only rigorously studied but also has been widely applied in many fields of

- 22 .
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application. If the kernel function is denoted as K(¢), then, the probability density
estimate fy(s), s = 0 can be written as,

fv(S=N1—§Y:[ ] (2.19)

where, J' ** K(s)ds = 1

The summation in eq. (2.19) is carried out for all y's, y = x'x, x € X and N is the
total number of data points in X. The variable h in eq. (2.19), is called the
window size (or, smoothing parameter) of the kernel function. This determines
how much smoothing is allowed in estimating the density. Selecting an
appropriate window size h can be cumbersome sometimes since an improper
window size h can result in either under-smoothing, or over-smoothing which
might cause some degree of uncertainty in locating the optimal acceptance
probability. It is possible to compute an optimal window size which is dependent
on the kernel function, dimensionality and the number of samples N (p.86 in
(Silverman 86)).

Since the values of y are all non-negative, the domain of the density estimation
is [0,+«). In this case, the use of a symmetric kernel function such as the
Gaussian kernel function will result in underestimation near zero since there are
no samples in the negative region. This underestimation can be avoided by
using positive reflection techniques (Boneva et al. 71) in which a new density
estimate is obtained with an augmented set of y's. Suppose fy(s) is the density
estimate acquired with the augmented data set. Then, the desired density
estimate, fy(s), in the region of s > 0, is obtained by doubling the density
estimate acquired with the augmented data set as,

fy(s)=21y(s) ifs20
fy(s)=0 otherwise

The augmented data set is obtained by including the reflected values of y's
against the origin 0 additionally in the original set of y values.

- 23 -
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2.5 Experiments and Discussion

To test the performance of the proposed estimating algorithm for optimal
acceptance probability in significance testing, experiments were carried out with
both simulated and real data. In the case of simulated data, several bivariate
Gaussian data sets were generated to simulate data sets with a wide range of
separability. In the case of real data, Landsat Thematic Mapper (TM) data were
used. For the optimality assessment, the class-averaged classification error and
the total classification error criterion were used.

2.5.1 Experiment with Simulated Data

For a test with simulated data, 1000 samples were generated for the class of
interest to be bivariate Gaussian (i.e., the dimensionality 9 = 2) with zero mean
and an identity covariance matrix. For the class "others," 2000 samples were
generated to be bivariate Gaussian with a mean [d,O]T , d > 0, and an identity
covariance matrix.

(N
S

Figure 2.6 Simulated 2 Class, 2 Dimensional Gaussian Data Sets.; C, : 1000
samples in MVN[Oy, lgxql. Coners : 2000 samples in MVN[[d,O]T, |
(N4 = 1000, N2 = 2000, g=2).

qxq]r

With this set-up, the exact amount of overlap between the two distributions can
be calculated. The term "overlap" is defined here as the volume which is shared
by the two probability density functions. That is, when the distance between two
classes is d, the overlap between the two classes is given as,
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o 2 d/2 1 5
verlap(d) = 1 - 2= Jo exp(-§s ) ds
By varying d, the distance between the two class means, data sets with different
degrees of overlap can be simulated. d was increased from 0.1 to 5 in steps of
0.1. If d = 0.1, there is 96.02% of overlap between the two distributions, and in
the case of d=5, there is only 1.24% of overlap. To avoid any random error due
to the data generation process and its effect on evaluating the experimental
result, data sets were generated 50 times with different seed numbers, and the

averaged result was used in comparison.

d=0.5

100 — ——
?\ [ omission error | [ commission error | / d=1.0
50 \\{ Pd d=1.5

ﬁ
]

60

40

Classification Error (%)

0.4 05 0.6 0.7 08 09 1.0
Acceptance Probability

Figure 2.7 Omission and Commission Errors with Respect to Acceptance
Probability.; d is the distance between two class means.

At first, various different acceptance probability a's were examined in
significance testing by increasing a from 0.01 to 0.99 in steps of 0.01 to see its
dependence on a as shown in Fig. 2.7. As expected, the omission error
decreased linearly with respect to the acceptance probability with slope = -1. In
the case of commission error, the slope of increase depended on the degree of
overlap between the two distributions. When d = 0.5 which resulted in 80.26%
of overlap between the two distributions, the commission error increased almost
linearly with respect to a. This is due to the substantial closeness of the two
distributions. When there was effectively no overlap such as in the case d = 4.5
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(2.44% of overlap), the commission error stayed very low, virtually insensitive to
a. The resulting class-averaged error in eq. (2.11.a) and the total probability

error in eq. (2.11.b) are shown in Fig. 2.8 and 2.9.
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Figure 2.8 Class-Averaged Error versus Acceptance Probability a.; d is the
distance between the two class means.
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Figure 29 Total Classification Error versus Acceptance Probability a.; d is the
distance betweenthe two class means.
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In the cases of d=0.5 and d=1.0, the total probability error and the class-
averaged error had very gentle slopes.

To make a comparison with the estimated values, optimal acceptance
probabilities were manually selected by changing a from 0.01 to 0.99 in steps of
0.01 and choosing the best one based on the selected optimality criterion.
These manually selected were denoted by “scanned" values and compared
with the estimates obtained by the proposed algorithm.

The estimated acceptance probabilities with both the class-averaged and the
total classification error criteria are shown in Fig. 2.10. When applying the total
classification error criterion, the true value of prior probabilities were used.

1.0 7

With class-averaged
08 J classification error criterion

N\

With total classification
eror criterion

=

z .

2 0.6

A

g o 3 h=0.1

s 1 e i

s 1 e h=02

8 024 4 e h=0.3

< 1 -—-=- h=04

] ——— Scanned

0.0 -

Y T T T TTVTY T LER B 1 v mE n T vT T T T
1 i 4 T L 1 4 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

d, Disance Between ClassM eans

Figure 2.10 Estimated Optimal Acceptance Probability versus d, the Distance
Between Two Class Means.; Solid lines show the manually selected

acceptance probabilities. Dotted lines show the estimated optimal

acceptance probabilities using the proposed method. h is window size.
The density estimate required for N(a) was obtained employing a Gaussian
Kernel-based parzen density estimate with the data set augmented by positive
reflection (Boneva et al. 71). Even though an appropriate kernel window size h
was computed as 0.2 based on (Silverman 86), several different values were
also tested to see its effect on the estimated acceptance probabilities. In Fig.
2.10, the estimated values followed very closely those manually selected
especially when the distance d was large. The optimal acceptance probability
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based on the total classification error criterion was near 0 when d was not large
enough, since the total classification error was an increasing function of
acceptance probability for those small d values as seen in Fig. 2.9. For
example, when d < 1.0, the number of commission errors increases almost at
the same rate as that by which omissions decreased due to the significant
amount of overlap between the two class distributions as seen in Fig. 2.7.
Because the prior probability of C, is less than that of Cgihers, the omission
error is weighted less than the commission error under the total classification
error criterion. This explains why the acceptance probabilities when d < 1.0,
were very small under the total classification error criterion. When d < 1.0 with
the class-averaged classification error criterion, some degree of difference was
observed between the estimated and the manually selected value. Since the
curve of class-averaged classification error was nearly flat when d < 1.0 as seen
in Fig. 2.8, an exact location of the minimum of the class-averaged classification
error was hard to pinpoint and thus, there was a relatively large standard
deviation not only in the estimated but also in the manually selected optimum a
values as shown in Fig. 2.11.

0.3
1= With class-averaged With to1al classification
¥y I\ Y classification error criterion ErTor criterion
53 ] \. Scanned -——
= 0.2 T Estimated —_—
35 * \1
> 2 1 3
2o, ] A,
=) - A\
=8 o1 >
- = 4 i A
55 AT
s B j ""':555;'_/'—\
g 4O
w< 0‘0 ryevwew ":Vl""‘r L ] LERJE L llil'_llrllfl'l]'
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d, Distance Between Class Means
Figure 2.11 Standard Deviation of Optimal Acceptance Probabilities versus the

Distance Between the Two Class Means.; Window size h=0.2.

In spite of those discrepancies in estimated a values when d < 1.0, there was
not much difference in the resulting class-averaged classification errors. Note
that the slope of the total classification error curve in Fig. 2.9 was nearly zero in
the lower acceptance probability region. For the same reason, in Fig. 2.11, there
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was observed also relatively large deviations under the total classification error
criterionin the region 1.0 < d < 20.

Since less than 1% of difference in classification errors were observed under
both optimality error criteria by varying the window size, classification results
are shown only for h=0.2 in following Fig. 2.12 and 2.13.
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d, Distance Between Class M eans

Figure 2.12 Class-Averaged Classification Error versus the Distance Between the
Two Class Means.; Acceptance probabilities were estimated with the
class-averaged classification error criterion. "REL-ML" is a result with the
relative maximum likelihood classifier. Window size h = 0.2.
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Figure 2.13 Total Classification Error versus the Distance Between the Two Class
Means.; Acceptance probabilities are estimated with the total
classification error criterion. "REL-MAP" is a result with the relative
maximum a posteriori classifier. Window size h=0.2.

The significance test deals with only the values of the selected test statistic,
therefore there is a dimensionality reduction of feature vectors to one-
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dimensional space of the selected test statistic, and this causes loss of valuable
information in classification. To see the effect of dimensionality reduction, a
(relative) maximum likelihood classifier (denoted as "REL-ML") and a maximum
a posteriori classifier (denoted as "REL-MAP") were designed in the original q-
dimensional space with known class statistics of Cjy and Cothers- Their
classification results were also included in Fig. 2.12 and 2.13 to see the effect of
dimension reduction. Under both optimality conditions, the estimated optimal
acceptance probabilities resulted in almost the same performances with
manually selected values. There was a maximum of about 12% error increase
due to the dimensionality reduction.

To see the effect of the data reflection on estimating optimal acceptance
probabilities, the same experiment was performed, but without data reflection.
Density estimation without reflected data would be expected to introduce
underestimation of the probability density fy(y) near y = O due to using a
symmetric kernel function with only positive y values. This underestimation in
fy(y) and subsequently in N{(a) near y = 0 would cause underestimation of
commission errors, therefore, the optimal acceptance probability estimates
would be expected to be larger than they should be. Since the Gaussian kernel
function rapidly decreases as its argument becomes larger, this effect of under-
estimation would exist only in the region near y=0. Figure 2.14 shows the
differences in estimated acceptance probabilities, computed as, twithout positive

reflection = Qwith positive reflection.
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Figure 2.14 Differences in Acceptance Probabilities with and without Data

Reflection under the Total Classification Error Criterion.; h is the
kernel window size.
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No difference was observed with the class-averaged classification error
criterion. However, there were differences in the case of the total classification
error criterion. As seen in Fig. 2.14, the estimated optimal acceptance
probabilities without data reflection were larger by as much as 0.2 compared to
those with data reflection in the region of d < 1.5. However, there was no
significant difference when d > 1.5. Greater differences were observed as the
window size h became larger, since the large window size would have more
reflected samples in the summation of the kernel function values. The reflection
technique in estimating a probability density function is observed to be
necessary if the acceptance probabilities are expected to be near zero.
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Figure 2.15 Corresponding Differences in the Total ClassificationErrors.

Figure 2.15 shows the corresponding differences in the total classification error
without data reflection. The discrepancies in acceptance probabilities due to
lack of data reflection in Fig. 2.14 cause as much as 5% difference in the total
classification error in the region d < 1.5.

2.5.2 Experiment with Real Data

For a test with real data, a Landsat Thematic Mapper data set which was
acquired over an agricultural area in Tippecanoe County, Indiana in July, 1986
was used with all seven features (i.e., the dimensionality 9 = 7). From the
available ground truth data, 4 different information classes - corn, soybeans,
wheat and alfalfa/oats - were identified. About 10% of the samples were
randomly selected from each information class to serve as training samples.
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The total number of training samples were 2124, and there were 21,924 test
samples. Figure 2.16 shows the July data set and Fig. 2.17 is the associated
ground truth map.

Band 1 (0.45 - 0.52 pm)

Band 4 (0.76 - 0.90 pm) Band 5 (1.55 - 1.75 pm) Band 6 {2.08 - 2.35 pm)

Band 7 (104 - 12.5 pm)

Figure 2.16 July Thematic Mapper (TM) Data Set.



2 Optimal Significance Testing

Since the information classes might consist of several sub-classes, clustering
was performed on the training samples belonging to each information class to
obtain a set of constituent sub-classes, each of which can be described with a
multivariate normal distribution (Swain 78).

Corn
Soybeans

Wheat
B Alfalfa/Oats
(] Unknowns

Figure 2.17 Associated Ground Truth Map.



2 Optimal Significance Testing

Table 2.2 Training and Test Samples of Landsat Thematic Mapper Data.

L id4mm
— —_—_ ———— — — __— _— . —_

Information Number of
Classes Sub Training Test
classes Samples Samples
Corn 2 913 9371
Soybeans 2 824 8455
Wheat 4 181 1923
Alfalfa/Oat 4 206 2175

Total 12 2124 21924

In a manner similar to the previous experiment with the simulated data, the
acceptance probability was increased from 0.01 to 0.99 in steps of 0.01 to see
how the omission and commission, class-averaged and total classification
errors would change with respect to acceptance probabilities. The graphs of
classification error versus acceptance probability are shown in Fig. 2.18 - 2.20.

The rate of decrease in omission error with respect to increasing acceptance
probability can give some indication of how representative the training samples
are. That is, if the training samples are very representative of the samples
belonging to that class, then, the omission error will decrease almost linearly
with respect to acceptance probability. The commission error curve also is able
to show how separable the given class of interest is from the others class. Sub-
class 2 of corn and sub-class 3 and 4 of wheat seemed to be much more
separable than the others since the commission error curves were virtually not
increasing with respect to increasing acceptance probability. Commission error
increased rather sharply in all sub-classes of soybeans and alfalfa/oats.
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Figure 2.19 Classification Errors versus Acceptance Probability in
Significance Testing with Landsat Thematic Mapper Data (Class
wheat). (a) Sub-class 1 of wheat. (b) Sub-class 2 of wheat. (C)
Sub-class 3 of wheat. (d) Sub-class 4 of wheat.
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Figure 2.20 Classification Errors versus Acceptance Probability in Significance

Testing with Landsat Thematic Mapper Data (Class alfalfa/oats). (a) Sub-
class 1 of alfalfdoats. (b) Sub-class 2 of alfalfa/oats. (c) Sub-class 3 of
alfalfdoats. (d) Sub-class 4 of affalfa/oats.
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The class-averaged classification error criterion in eq. (2.11.a) was applied to
each information class to estimate the optimum acceptance probabilities at the
sub-class level, and the results are shown in Table 2.3. The performances in
information class level were obtained by assessing omission and commission
errors after optimal acceptance probabilities were selected separately for each
sub-class. A Gaussian kernel function was used in density estimation with the
positive reflection technique. Although an optimal window size can be
computed as in (Silverman 86), various window sizes (h=0.1 = h=0.6 in steps of
0.1) were examined to observe virtually no differences. The suggested optimal
window sizes (Silverman 86) were in the range of 0.14 ~ 0.27. The results
reported here were obtained with h=0.5.

In order to make a comparison with the estimated optimal acceptance
probability, a specific value which attained the given optimality condition was
manually determined as before. This value is referred as "optimum acceptance
probability determined by scanning" in Table 2.3. As seen in the table, the
estimated values of optimal acceptance probabilities using the proposed
method agreed quite well with those manually selected. The class-averaged
classification errors evaluated for each sub-class with estimated optimum
acceptance probability were also very close to those obtained with the manually
selected acceptance probabilities. The maximum difference between the
estimated and the manually selected acceptance probabilities was only 0.03,
except for the sub-class 4 of "alfalfa/oats" which had a difference of 0.08. The
corresponding difference in the class-averaged classification error in this sub-
class was only 0.34%.

Inspecting Fig. 2.20.(d) reveals that the class-averaged classification error was
not changing much in the region of 0.7 < a ¢ 0.9. The resulting class-averaged
classification errors of the sub-classes with the estimated acceptance
probabilities were all equal or slightly larger than those with manually selected
optimal acceptance probabilities.

The proposed algorithm was also applied at the information class level as
reported in Table 2.4, and its results were seen to be also very satisfactory since
the acceptance probabilities deviated no more than 0.04 and the corresponding
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maximum difference in the class-averaged classification error was less than
1%.

Table 2.3 Significance Testing of Landsat Thematic Mapper Data with the Class-
Averaged Classification Error Criterion Applied at the Sub-class Level.

All errors are in percent units

Optimum acceptance probability | Estimated optimum acceptance
determined by scanning probability
Classes | o ej(a) ep(e) Eq(a) Ep(e)| a* eq(a) ep(ar) Eq(ax’) Epfar)

Comn1 096 512 784 648 533 (098 355 1034 695 4.09
Corn 2 099 433 266 350 319|098 546 186 3.66 299

Corn - 464 279 3.72 358 - 471 207 339 3.9

Soybeans 1| 094 873 887 880 877 |09 729 1050 889 8.27
Soybeans 2 | 0.85 17.31 1154 1443 13.05| 0.87 1572 13.25 14.49 13.90

Soybeans - 1294 11.17 12.05 11.85 - 1143 12.86 12.14 1231

Wheat 1 097 10.57 2253 1655 1935 095 14.16 20.08 17.12 18.50
Wheat 2 0.97 1477 827 1152 1036| 097 14.77 827 11.52 10.36
Wheat 3 099 1031 724 877 749 | 096 1532 436 9.84 525
Wheat4 099 639 297 468 310099 639 297 468 3.10

Wheat - 1045 538 792 582 - 1227 465 846 531

Alfalfa/Oats 1| 0.80 28.50 25.06 26.78 26.17| 0.83 26.42 27.54 26.98 27.18
Alfalfa/Oats 2| 0.90 17.28 19.63 18.45 19.50( 0.89 18.66 18.73 18.70 18.73
Alfalfa/Oats 3| 0.80 40.07 24.93 32.50 25.74( 0.81 39.72 25.98 32.85 26.72
Alfalfa/Oats 4| 0.79 20.93 20.36 20.65 20.69| 0.88 14.92 27.06 20.99 20.13

Alfalfa/Oats - 2414 21.31 22.72 21.59 - 2262 21.26 21.94 21.39

a : Optimum acceptance probability

gq(a) :Omission error with the acceptance probability a*

go(a’) 1 Commission error with the acceptance probability a*

Eq(a') : Class-averaged classification error with the acceptance probability a
Eo(a’) : Total classification error with the acceptance probability a
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Table 2.4

All errors are in percent units

Significance Testing of Landsat Thematic Mapper Data with
the Class-Averaged Classification Error Criterion Applied at
the Information Class Level.

determined by scanning probability
Classes a__e1(a*eg(e) Ey(anEa(a)| a e(a)ea(e) E(aEx (o)
Comn1 099 235 1348 792 324 | 099 235 1348 792 324
Corn 2 098 546 18 366 299|097 638 154 396 3.06
Comn - 424 215 319 3.04 - 479 184 332 310
Soybeans 1| 099 395 16.17 1006 7.69 | 098 518 13.02 910 758
Soybeans 2| 0.78 2276 7.79 1528 11711 0.78 22.76 7.79 15.28 11.71
Soybeans 1318 896 11.07 10.58 - 1380 852 11.16 1055
Wheat 1 099 634 2805 17.19 2227 | 097 1057 2253 1655 19.35
Wheat 2 099 1136 1195 1166 1176 ] 099 1136 1195 1166 11.76
Wheat 3 0.99 1031 724 877 749|095 16.16 356 9.86 459
Wheat4 099 639 297 468 310] 096 1243 162 703 205
Wheat - 848 594 721 6.16 1238 393 8.15 467
Alfalfa/Oats 1| 0.98 11.05 61.21 36.13 44.97| 0.95 15.37 48.14 31.76 37.53
Alfaifa/Oats 2| 0.77 30.90 11.76 21.33 12.84| 0.75 32.66 10.95 21.81 12.18
Alfalfa/Oats 3| 0.51 66.55 794 37.24 11.10] 0.54 64.81 9.07 36.94 12.08
Alfalfa/Oats 4| 0.99 174 65.21 33.48 28.98| 0.99 1.74 65.21 33.48 28.98
Alfalfa/Oats - 23.40 1484 19.12 15.68 - 2497 13.80 19.38 14.90
a - Optimum acceptance probability

gq(a") : Omission error with the acceptance probability a

ga(ar)

: Commission error with the acceptance probability a

Eq(a") : Class-averaged classification error with the acceptance probability a

Ea(a)

: Total classification error with the acceptance probability a*
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The class-averaged classification errors evaluated for each information class
are compared in Fig. 2.21. Note that, as discussed in previous section, imposing
the class-averaged classification error optimality criterion at the sub-class level
didn't necessarily hold the same optimality at the information class level as
seen in Fig. 2.21 in the corn and alfalfa/oats classes.

25 7| At sub-class level At information class level l
4 7 ]

~ : Scanned E] Scanned CRELML] [

& 207 Estimated Estimated

= 4
BE s
& 15 7 -
oo p
E=) -
‘? = 10 Y
28 ]
S
0@

2 -

Q

Wheat Alfalfa/Oats

Infor mation Classes

Figure 2.21 Comparisons of Class-Averaged Classification Errors Evaluated for Each
Information Class.; Optimal acceptance probabilities were selected using
the class-averaged classification error criterion. The first two columns for
each information class show the class-averaged classification errors
based on the optimal acceptance probabilities at the sub-class level. The
next two columns correspond to the case when the optimal acceptance
probabilities are acquired at the information class level. "REL-ML" is the
result obtained with a (relative) maximum likelihood classifier designed
with all 12 sub-classes.

With all 12 sub-classes and their class statistics, a relative maximum likelihood
classifier in the original seven dimensional space was designed and its result
(denoted by "REL-ML") is also included in Fig. 2.21 to show the effect of
dimensionality reduction. In the corn and wheat classes, there seemed to be not
much information loss due to dimensionality reduction. However, there was as

much as 3 = 5% of class-averaged classification error increase in soybeans and
alfalfa/oats.

Finally, the total classification error criterion was used with the relative weight A
=1 and these results are presented in Table 2.5.
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Table 2.5 Significance Testing of Landsat Thematic Mapper Data with the
Total Classification Error Criterion.

All errors are in percent units

e me—

Optimum acceptance probability| Estimated optimum acceptance

determined by scanning probability

*

Classes o 81(a')82(0..) E1(a')E2(a.) a 81(a')eg(a') Eqa )Ez(a')
Cornl 099 235 1348 792 324|099 235 1348 792 324
Corn 2 098 546 186 366 299|097 638 154 396 3.06

Corn - 424 215 319 3.04 - 479 184 332 310

Soybeans 1| 098 518 1302 910 758 | 096 729 1050 889 827
0.74 2563 659 1611 1157 ] 067 3140 484 1812 11.78

Soybeans - 1521 749 11.35 1045 - 1911 563 12.37 10.79

Wheat 1 0.76 2918 1011 1965 1519| 0.76 29.18 1011 19.65 15.19
Wheat 2 091 2121 467 1294 999 | 091 2121 467 1294 999
Wheat3 080 2897 114 1506 343 | 074 3343 080 1711 347
Wheat4 086 2096 0.78 1087 158 | 069 39.08 035 19.71 1.88
Wheat - 2454 167 1311 3.67 - 3068 131 16.00 3.87

Alfalfa/Oats 1| 0.58 4888 1125 30.06 2343 | 048 5734 7.61 3247 2371
Alfalfa/Oats 2| 0.00 100.00 0.00 50.00 5.64 | 0.00 100.00 0.00 50.00 5.64
Alfalfa/Oats 3| 0.07 94.77 0.12 4745 523 | 003 9791 008 4899 536
Alfalfa/Qats 4| 0.89 1357 2809 20.83 19.80 | 0.89 1357 28.09 20.83 19.80

Alfalfa/Oats - 65.20 126 33.23 7.56 - 6786 103 3445 7.62

a - Optimum acceptance probability

81(a') : Omission error with the acceptance probability a

ez(a‘) : Commission error with the acceptance probability a

E4(a*): Class-averaged classification error with the acceptance probability &
Ez(a') : Total classification error with the acceptance probability &
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Notice that applying this error criterion at the sub-class level always attains the
same optimality at the informationclass level, too. In most of the sub-classes, as
in previous cases, the estimated optimal acceptance probabilities were very
close to those manually selected. In the case of sub-classes 2, and 3 of
alfalfa/oats, optimal acceptance probabilities were found to be very small since
the total classification errors in these sub-classes were rapidly increasing with
respect to acceptance probabilities.

~ 15 - At information class level
S § F] Scanned
b 1 B Estimated
= .
s 10
= ]
L 1 -
= ]
= 1 3:;};-'7"}',;‘/’::
b e
2 5 77
[ b ':/' ?;;
o LA,
[-‘ 0 T L T

Corn Soybeans Wheat Alfaifa/Oats

Information Classes
Figure 2.22 Comparison of Total Classification Errors Evaluated at the Information

Class Level.; Optimal acceptance probabilities were selected using the
total error criterion.

Total classification errors evaluated for each information class are presented in
Fig. 2.22 which shows a very good matches between total classification errors
obtained with "true" and estimated optimal acceptance probabilities.

For visual comparison of performances, Fig. 2.23 ~ 2.26 show the locations of
the samples identified by the sigrificance testing and the relative maximum
likelihood classifier (REL-ML) which is included to see the effect of
dimensionality reduction of feature vectors.
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(e)

Figure 2.23

) @ (h)

Results for the Class "Corn" Samples. (a) Ground truth location of corn
samples. (b) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at sub-class level. (c)
Significance testing with acceptance probability manually selected under
the class-averaged error criterion at information class level. (d)
Significance testing with acceptance probability manually selected under
the total error criterion. (e) Relative maximum likelihood classifier {(REL-
ML). (f) Significance testing with acceptance probability estimated under
the class-averaged error criterion at sub-class level. (g) Significance
testing with acceptance probability estimated under the class-averaged
error criterion at information class level. (h) Significance testing with
acceptance probability estimated under the total error criterion.
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(e)

Figure 2.24 Results for the Class "Soybeans" Samples. (a) Ground truth location of
soybeans samples. (b) Significance testing with acceptance probability
manually selected under the class-averaged error criterion at sub-class
level. (c) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at information class
level. (d) Significance testing with acceptance probability manually
selected under the total error criterion. (e) Relative maximum likelihood
classifier (REL-ML). (f) Significance testing with acceptance probability
estimated under the class-averaged error criterion at sub-class level. (g)
Significance testing with acceptance probability estimated under the
class-averaged error criterion at information class level. (h) Significance
testing with acceptance probability estimated under the total error
criterion.
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(e)

Figure 2.25

(f) (9) (h)

Results for the Class "Wheat" Samples. (a) Ground truth location of wheat
samples. (b) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at sub-class level. (c)
Significance testing with acceptance probability manually selected under
the class-averaged error criterion at information class level. (d)
Significance testing with acceptance probability manually selected under
the total error criterion. (e) Relative maximum likelihood classifier (REL-
ML). (f) Significance testing with acceptance probability estimated under
the class-averaged error criterion at sub-class level. (g) Significance
testing with acceptance probability estimated under the class-averaged
error criterion at information class level. (h) Significance testing with
acceptance probability estimated under the total error criterion.
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(e) (f) (9) (h)

Figure 2.26 Results for the Class "Alfalfa/Oats™ Samples. (a) Ground truth location of
alfalfa/oats samples. (b) Significance testing with acceptance probability
manually selected under the class-averaged error criterion at sub-class
level. (c) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at information class
level. (d) Significance testing with acceptance probability manually
selected under the total error criterion. (e) Relative maximum likelihood
classifier (REL-ML). (f) Significance testing with acceptance probability
estimated under the class-averaged error criterion at sub-class level. (g)
Significance testing with acceptance probability estimated under the
class-averaged error criterion at information class level. (h) Significance
testing with acceptance probability estimated under the total error
criterion.
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The significance testing procedure produced reasonably good classification
maps, except for the classes, soybeans and alfalfaloats, compared to the
relative maximum likelihood classifier, which not only requires a complete list of
classes to be defined and their class statistics computed, but also classifies
samples in the original feature space without dimensionality reduction. The
estimated optimum acceptance probabilities produced classification maps
which were hardly differentiable with those obtained with manually selected
optimum acceptance probabilities.

To see the effect of data reflection on the estimation of acceptance probabilities,
the same experiments with both class-averaged and total classification error
criteria were performed with varying window sizes (h= 0.1 ~ 0.6 in steps of 0.1)
without data reflection. There were observed no differences except of sub-class
3 of alfalfa/oats with h=0.6 where the optimum accept probability without data
reflection was estimated as 0 instead of 0.03 under the total classification error
criterion. Data reflection would change the density estimate values only where
the (xTx)o'5 values are less than about 3-4 times the selected window size, h,
due to the exponential term in the Gaussian kernel function. Considering a
(xTx)O'5 value corresponding to an acceptance probability a= 0.5 in the seven
dimensional space is 2.52, which is only comparable to 4 times the largest
window size h=0.6. In most of the sub-classes except for sub-classes 2 and 3 of
alfalfaloats, the estimated acceptance probabilities would not be affected by
data reflection since the estimated acceptance probabilities were mostly much
larger than 0.5.

2.6 Conclusions

In this chapter, a problem of estimating the optimal acceptance probability in
significance testing was addressed. Estimating the optimal acceptance
probability using a given data set should be very useful in applying a
significance testing procedure. As optimality criteria, both class-averaged
classification error and generalized total classification error criteria were
considered. It is shown that the generalized total classification error criterion
applied to each sub-class also attains the same optimality at the information
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class level. To have an optimal class-averaged classification error criterion at
the information class level, however, the generalized total classification error
criterion with a relative weight should be applied to each sub-class. If the class
of interest doesn't need to be decomposed into sub-classes, the class-averaged
classification error criterion can be applied even without the knowledge of prior
probabilities. A data reflection technique required in mixture density estimation
was observed to be useful when the underestimation of a density function in the
region near 0 in the one-dimensional space of the selected test statistic causes
overestimation of optimal acceptance probabilities. This estimation algorithm for
acceptance probability should be very useful when one doesn't have enough
prior knowledge about the data set to select the proper acceptance probability.
This automatic estimation procedure can replace the lengthy and tedious
process of manual selection of acceptance probability especially when the
given class of interest consists of a large number of sub-classes.
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CHAPTER 3

PARTIALLY SUPERVISED CLASSIFICATION
WITH UNSUPERVISED CLUSTERING

3.1 Introduction

In this chapter, partially supervised classification with only one known class is
formulated as a relative classification problem. Advantages of both reduced
requirements for necessary prior knowledge in an absolute scheme and the
potentially robust and powerful discriminating capability of a relative one are
sought by developing an automatic mechanism for extracting statistical
information corresponding to the "others" class without recourse to prior
knowledge supplied by ‘the data-analyst. Even though the classifiers to be
proposed in this chapter make decisions ultimately on a relative basis, the
terminology "absolute" classifier will be interchangeably used with partially
supervised classifier to emphasize its reduced dependence on prior knowledge.

The class "others" are decomposed into a set of sub-classes so that the density
function of each sub-class can be modeled with a known parametric density
function, for example, with the Gaussian density function. This decomposition is
achieved through a weighted unsupervised clustering procedure which
subsequently develops the unknown class definitions and their corresponding
class statistics through a unsupervised clustering. Once the class statistics of the
constituent components of the "others" class are found, conventional relative
classifier such as a maximum likelihood classifier can be usecl to identify the
samples belonging to the class of interest.
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3.2 Partially Supervised Classification with Unsupervised Clustering

The given partially supervised classification problem with only one known class,
which is the only class of interest, can be considered as an L class relative
classification problem with unknown number L. The unknown sub-classes
pertaining to the "others" and their statistical characteristics are developed using
unsupervised clustering. Once the class statistics are developed, any relative
classification scheme can be put to use. This problem is different from that of
general unsupervised clustering in the following senses: (1) One is interested in
finding samples of only one particular cluster (or class) and, one has prior
statistical information, such as the probability density function of that class, or has
a representative set of training samples of that class from which the statistical
properties can be estimated. (2) The clusters corresponding to the class "others"
do not need to be meaningful as useful informational classes and, the confusion
between those clusters are not important as long as they are differentiable from
the class of interest. Under this approach, the mixture density f,(x) is written as a
weighted sum of L probability density functions as,

L
Fe(x) = kZ1nk fx(x | Cy) (3.1)

where, wyt+ --- +m =1

and m, and f,(+ | Cy) are the prior probability and probability density function of the
ki class, respectively, k=1, --- , L. The notation of C; and C,, ---, C, means that
C, =Cinand Cy, -, C_ are the sub-classes of Cqyiners Which will be found through
unsupervised clustering. In the given partially supervised classification, only
fx(x|C4) is known.

Any unsupervised clustering procedure (Fukunaga 90) can be used to decide the
number of classes, L and to obtain the initial specification of clusters which can
initiate subsequent supervised clustering. Special care should be taken so that
there is no confusion between C;,; and the clusters corresponding to Cyhers- 1IN
other words, the cluster statistics of Cghers Should not be biased by the samples
belonging to C4. One conceivable approach for reducing the bias is to find the
clusters of Coimers by performing clustering with a subset of data in which a
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significant portion of the C4 samples are removed through significance testing. In
addition to the difficulty in selecting the proper significance level, however, the
approach still has the bias problem, especially when Cgihers IS N0t well separated
from C, Instead of removing the effect of C{ samples in a rather absolute way, it
is possible to assign to each sample a weight factor which is related to the
relative likelihood of belonging to Cqhers @and to use it in the unsupervised

clustering.

Let the weight denoted by wj; in eq. (3.2.a) indicate the relative likelihood of
sample x; being to Cyiners:

Wi =1 - W (3.2.2)

fy(xj] C
where, wj, :nl% (3.2.b)

Note that evaluating the weight factor, wi; requires ‘the additional knowledge of =,
(or Ny since m; = N; / N, where N, is the total number of samples belonging to the
class of interest.) and the mixture density f,(x;)'s. Assume for now that the prior n;
(or, Ny) is available (the estimation of N, will be discussed later). Since the
purpose of this unsupervised clustering is to provide an initial specification of
clusters to initiate the clustering process, an exact evaluation of the probability
density ratio in eq. (3.2.b) would not be necessary. A direct estimation of fx(x;)
through non-parametric density estimation, would require complex computation,
but an approximation can be obtained by noting that wj; can be expressed as a
ratio,

N; fx(xi | CAV
Wit =7 N, (x)AV

(3.3)

Assume a data point x; is inside a hypersphere with volume AV. Then, Nfy(x;)AV
in eq. (3.3) can be approximated by,

Nf (x)AV = N[ _ . fx(x)dx (3.4)

The right side of eq. (3.4) is the expected number of data samples found inside
the hypersphere. Therefore, the approximate value for it can be obtained by
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counting the number of samples in the hypersphere. In the same way, the
numerator in eqg. (3.3) can be approximated by,

Ny te(xi| Co)AV = N[ x(x|Cy)dx (3.5.a)

This is the expected number of samples from the class C;, found inside the
volume AV. This can be computed using the known probability density function
fx(x|C4). Instead of discretizing the whole feature space by picking a certain value
of AV and counting the data points inside the hyperspheres, a simple clustering
routine using a Euclidean distance measure is used to find a set of hyperspheres
which can effectively cover the feature space, as in Fig. 3.1.

Figure 3.1 Computation of Weights Using Clustering.; Clustering is performed to
find a set of hyperspheres effectively covering the feature space.

With an appropriate clustering condition, unsupervised clustering can be
performed to divide the feature space into a set of small hyperspheres which
cover effectively all given data samples. The critical distance for creating a new
cluster is set up in such a way that each hypersphere corresponds to a cluster,
and inside the hyperspheres, the probability density functions, f,(x) and f,(x|C4)
should not change much. In each hypersphere or cluster, eq. (3.5.a) is computed
as,

N, f(Xj] C1)AV = N; fx(xo|C1)AV (3.5.b)
where, xge AV
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Xg is a location inside the given hypersphere. The cluster mean is used for x,
when the probability density f,(<|C,) is evaluated. While the value in eq. (3.5.b) is
an approximation of the expected number of C; data points inside the given
hypersphere, the count of data points inside the hypersphere is an approximated
value from eq. (3.4). The weight factor is computed using these two values in eq.
(3.2.a) and eq. (3.3) and this same weight value is assigned to all the data points
inside that hypersphere.

With these weight factors, an unsupervised clustering is performed to find the
initial clusters corresponding to Cgihers- Since the weight wi; in eq. (3.2.a)
indicates the relative likelihood that a data sample is from Ces, data samples of
C; will have very small weights. Any cluster which has most samples with
negligible weight factors should be deleted since the samples in it are mainly
from C,. Therefore, the unsupervised clustering with these weights can avoid the
potential influence of the data points belonging to C; upon new clusters of Cgpers-
For each cluster k corresponding to Cgpers, (thatis, k = 2, ---, L), the effective
number of elements in the cluster, N, is computed as a sum of the weights of
data samples in the ki cluster as,

Nk= z Wiy (3.6.a)
ie Ik

where I is the index set of the K cluster (i.e., if i € I, then x; € C,). This effective
number will indicate the possibility of being part of Cyhers- ANy cluster with a
negligible effective number of membersis deleted.

Ny
k= Number of samples in cluster C,

R (3.6.b)
The ratio of the effective number to the actual sample number assigned to the
cluster in eq. (3.6.b) is also checked, and any cluster with a small value of this
ratio is deleted since most samples In the cluster have negligible weight factors.
When the number of class-of-interest samples, N4 is under-estimated, this ratio
checking is very important since there are extraneous clusters generated in the
region where most of the class-of-interest samples are located. This ratio
checking should also be effective when the class-of-interest samples are
distributed slightly differently from the known distribution function in some




3 With Unsupervised Clustering

hyperspheres so that the numbers computed with eq. (3.5.b) deviate from those
statistically expected. Without the ratio-checking, smaller values of eq. (3.5.b) in
some hyperspheres than they should be would allow generating clusters of
Cothers Which would take a significant portion of class-of-interest samples.

The effective cluster mean M, is computed as,

M= 1y 2 W % (3.6.0)
iely

Note that the influence of data point x;j on the cluster means of Cghers iS
accordingly weighted by w;;. If second order statistics are necessary for
clustering, then, the effective cluster covariance can also be computed with
weightsin a similar fashion. A few iterations of this unsupervised clustering with
weights will suffice to provide a list of clusters corresponding to Coners and their
initial specifications for the subsequent supervised clustering process.

Once the number of clusters and the specifications of the clusters are obtained
through unsupervised clustering with weights, then a supervised clustering
procedure can be started to develop the unknown class statistics. The class
statistics developed are used in the relative classification scheme chosen. In
certain cases, especially in analyzing high dimensional feature vectors, second
order statistics, which are usually characterized by interband correlation
structures, provide very crucial informationto use in classification or clustering. In
this case, a conventional clustering procedure such as the ISODATA (Hall and
Ball 65) algorithm s not likely to perform well in developing class statistics since
the algorithm does not account for interband correlation in the data set. Thus, a
clustering based on the EM algorithm (Titterington et al. 85, Redner and Walker
84, Dempster et al. 77) can be used. That is, in the ml iteration of clustering,
weight factors, wik[i}(m)], fori=1,---, Nand k =1, ---, L, are computed as,
(Expectation - step),

~(m) 2(m)
~ e |
wid = — B L (il G (3.7)

3 2™ ™ 1 )
j=1
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where ?,fm)(xilcl)=fx(xi | Cy) for all m, and vy is the set of parameters of the

unknown probability density functions. For example, if the unknown probability
density functions are Gaussian, then y = [r5, ---, T, My, ---, M|, 2o, ---, Z ]. With
the weight in eq. (3.7), a new maximum likelihood estimate of v, (i.e., 4"} is
obtained (Maximization - step). These two steps are iteratively performed until
convergence. Each iteration of these two steps is known to increase the joint
likelihood of data samples (Titterington et al. 85, Redner and Walker 84,
Dempster et al. 77). After convergence, the estimates of y specify the probability
density functions of the clusters which can be used in the subsequent relative

classification.

In summary, a flowchart of the proposed classifier based on clustering is shown
in Fig. 3.2.

START

Estimate N,
I
Compute weight for

each d?tipoint

Find initial clusters using

unsupervised clustering
with weights |

1
Develop class statistics
and perform relative

classification

1

END

Figure 3.2 Flowchart of a Partially Supervised Classification with
Unsupervised Clustering.

3.3 Estimating the Number of Class-of-Interest Samples

In order to have the initial cluster definition in the previous section, it is required
to know N4, the number of samples belonging to the class of interest. Due to the
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limited prior knowledge and approximation involved in the estimation process,
typically, an accurate estimation of this is another difficult task. Therefore, it will
be very desirable to design a partially supervised classification algorithm which is
not critically dependent on the estimate of this unknown. The objective of this
section is to obtain a simple and reasonable estimate of Ny which can produce a
meaningful initial cluster definition, rather than developing a very rigorous
estimation algorithm.

The unknown number N4 will be estimated by "matching" two functions. Note that
the probability density function f,(x|C;) can be estimated in two different ways. It
is typically estimated from the training samples supplied by user. But it can be
also computed using the mixture density estimate f,(x) if the probability density
function of Cginers: fx(X|Cothers) @nd mq are available. Note that the mixture density
fx(x) in eq. (3.1) can be written as,

f(X) = 703 F(X|Cq) + (1-71) f(X|Coters) (3.8.2)
L
where, (1-14) fx(X|Cothers) = 2, Tk fx(x | Ck)
k=2

In a specific region where the second term in eg. (3.8.a) is negligible compared to
the first term, the estimate of f,(x|C4) can be evaluated from the estimate f,(x) if a
specific value is assumed for ;. It will be a function of ny. These two estimates
can be matched together to find the best ny. The function to be matched needs
not be necessarily f,(x|C4) even though it is a natural choice in the given partially
supetrvised classification problem where prior information, other than the class
statistics of C4, is non-existent. Any function derivable from it can be matched.

To be general, denote the function to be matched as h(x). This function is
selected in such a way that it can be both evaluated from the probability density
function of C4 and estimated using the given data set if the prior probability of C,
is available. Therefore, the estimate of h(x) should be computable using the
unlabeled samples when a certain value is assumed for the unknown prior
probability. The estimate, based on a specific value of ny, is denoted as h(x|ry). It
is compared with the function h(x) evaluated using f,(x|C¢), which is estimated
from the training samples, to find the unknown prior probability which causes
h(x|m4) to be nearest to h(x). This matching doesn't necessarily need to take
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place in the original feature space. It can be accomplished in any space derived
from the original space. The measure of closeness of h(x) and h(x|m{) should be
defined according to the specific function h(x) chosen. In this paper, f,(x|C4) is
selected as h(x). Over the sub-space in which the unknown quantity, (1-
) e (X|Cothers) 1N €0. (3.8.a), is negligible compared to n4f,(x|C,), the estimate
h(x|r4) is approximated as,

h(x | y) = (3.8.b)

As for the measure of closeness, the expected squared error may be used, with a
weight function w(x) included to account for the possibility of different weights for
different x's.

Error(ny) = By {[h(x | m) - h(x)]2w(x)} (3.8.c)

The expectation of the weighted squared error is taken over the entire feature
space, or over the selected subspace as required. With the approximation of eq.
(3.8.b), the expectation is computed only over the region where eq. (3.8.b)
remains valid. Equation (3.8.c) can be equivalently written as a function of Ny

explicitly as follows.

Error(N,) = E,, {[Nf - Nyfy(x|C1) ]Pw(x )} (3.8.d)

This is a matching process of weighted probability density functions, Nf,(x) and
N,f(x|C4). In the case of the multivariate Gaussian distribution of f,(x]C4), it is
possible to know the region where most of the samples are located. Note that this
matching process can be also performed in the one dimensional ¥ space where y
= x'x. If the dimensionality is not high, it is possible to select an appropriate yq
and corresponding region specified by x'x <y, where most of C; samples are
found. Therefore, with a suitable value of y,, the matching of eq. (3.8.d) can be

processed.
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A
' Nf, (y)
§ Ny 1G)
é fy(y!C)
B yrT
Figure 3.3 Matching of Two Weighted Probability Density Functions.; Nfy(y) is

matched with N,t,(y|C,) over the region 0 <y <y,, y = x'x to find the
best N,. fy(y) is the probability density function of y's. f,(y|C,) is the
density function in y space corresponding to C, samples. y, is a user-
specified threshold.

An illustration in the y space is shown in Fig. 3.3 where the density function
f.(x|C4) is assumed to be the standard multivariate Gaussian.

The matching is performed in the region 0 <y < yg where yg is a user-specified
value indicating the region where the approximation of eg. (3.8.b) holds.

The unknown number N, is determined to minimize the expected error between
h(x) and h(x|r,) as,
J [WO () (XIC4)Jfx(x)ax
= N
‘ J [w(x)fx(xIC1)]fy(x)eix

N (3.9)
The integration is performed over the selected region. In computing eq. (3.9), the
expectationis replaced by the ensemble average over the x's in the given region.
Note that due to taking expectation, the squared error between Nf,(x) and
N.i(x|C4) in eqg. (3.8.d) is in fact weighted according to the density function of
f.(x). If the least square error is desired, this weight can be canceled out by using
the weight function w(x) = 1/f,(x). This matching process can also be applied at

the level of the cumulative distribution function and this can be achieved with the

error function in eq. (3.8.d) by employing the following weight function which
further cancels out the effect of ,(x|Cy).

i
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1
WX) = £ (XIC )]

Then, the estimated value N, is computed as,

JNMde
Nooo

1—I&Uw0dx (3.10.a)

The numerator in eq. (3.10.a) is the expected number of samples found in the
selected region. Since the samples of C; are assumed to dominate in their
numbers over the samples from the "others" class in the given region, the
numerator in eq. (3.10.a) will be the approximated number of samples from C;.
Suppose the integrated value of the denominator is a,

a = [1(x|C;) dx (3.10.b)

which is the probability of class C4 for the given region. By performing the
significance testing with the acceptance probability a, the estimate of N, in eq.
(3.10.a) can be easily obtained by counting the number of samples accepted and
dividing by 'the selected acceptance probability a. The estimate in eq. (3.10.a) will
be in most cases an over-estimated value, since there should be samples not
belonging to class C; in the count of the numerator in eq. (3.110.a). This over-
estimation will be significant, especially when there is insufficient separability
between the class of interest and the class of "others." In developing the initial
clusters specification, experimental results show that this over-estimation is not
critical to the performance, but an under-estimated value could be problematic
since it results in non-trivial w;; values and causes clusters generated in the
region where most of the class-of-interest samples are located. These
extraneous clusters would take a significant portions of class C{ samples away.

In the experiment, eq. (3.10.a) is used in the one dimensional y space wherey =
xTx due to its simplicity. Note that this matching can be computationally
burdensome unless the matching is processed in a lower dimensional space,
such as the one-dimensional y space.
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For those cases when the region for the matching process cannot be easily
selected, a slightly different algorithm is developed. Note that, using the weight
wjq's in eg. (3.2.b), the probability density function f4(x}C{) can be estimated from
the unlabeled samples with weights. For example, under the Gaussian
assumption of f4(x|C4), the mean and covariance matrix of it (denoted as M(mn)
and Z(r4), respectively) can be estimated as,

N
M(ry) = V_:,; Z Wi1 Xj (3.11.a)
i=1
N
B = W 3 wir G- M) - M) (3.11)

where W, is the sum of weights wj4's and is computed as,

N
W= wy
=

and the function h(x | m4) is the Gaussian density function with mean and
covariance matrix, M(xt4) and Z(r4). h(x | =4) will be compared with the function
h(x) while varying 4. This is a recursive process since the best value of the prior
w4 IS found by checking the value my with which the estimated h(x | =4) is most
similar to h(x). Note that this is based on the assumption that the nearer to the
true value the unknown =, is, the more h(x | ©4) match well with h{x).

For comparison of the two functions, any statistical separability measure, such as
the divergence, the Jeffries-Matusita (JM) distance, or the transformed
divergence (Swain 78) can be used to quantify the similarity. This procedure
doesn't require specifying the region over which the matching should take place.
Note that, at least in principle, this procedure is not limited to the parametric
case, although the computation required in estimating recursively h(x | =) and
evaluating the similarity measure in a non-parametric case may be formidable. In
computing the weights wijq's, the simple procedure in eq. (3.3) in previcus section
can be used.
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3.4 Experiments and Discussion

To test the performance of the partially supervised classification algorithm
proposed in this chapter, experiments were carried out with both simulated and
real data. The partially supervised classification algorithm should be effective
even when the class of interest is not well separated from the others. To test the
proposed algorithm over a wide range of separability, several bivariate Gaussian
data sets were generated with different degrees of separability as in the previous
chapter. In the case of real data, the July LANDSAT Thematic Mapper (TM) data
introduced in previous Chapter were used. For comparison, the (relative)
maximum likelihood classifier (denoted as "REL-ML") was designed with the
known class statistics, and the classification error was used for evaluation.

3.4.1 Experiments and Discussion

For a test with simulated data, as in previous chapter, bivariate (q= 2) Gaussian
data were generated. 1000 samples were generated for the class of interest, Cin
with zero mean and an identity covariance matrix. The class "others," Cethers, Was
assumed to be Gaussian with mean [d,O]T , d > 0, and an identity covariance
matrix. 2000 samples were generated for Cgyners-

To avoid any random error due to the data generation process and its effect on
evaluating experimental results, data sets were generated 50 times with different
seed numbers and the averaged result used in comparison.

Equation (3.10.a) was used to obtain the N, estimate with varying acceptance
probability, a, in eq. (3.10.b) as in Fig. 3.4. The estimated values were not much
different for different a's. As expected, unless the separability between the two
classes is sufficient, there was significant over-estimation.
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Figure 3.4 Estimated Number of Class-of-Interest Samples with Different Values
of Acceptance Probability a's Using eq. (3.10.3, b).

Using the N, estimate, the weights wi;'s were computed and used in
unsupervised clustering to develop clusters corresponding to the "others" class.
Any cluster which had a negligible effective number from eq. (3.6.a), or a
negligible ratio from eq. (3.6.b) was deleted. Without the ratio checking, due to
non-trivial weights wi;'s in the regions where the weights should be negligible, an
under-estimated value of N; would result in extraneous clusters and cause large
omission error. For those clusters, the effective numbers of samplesin eqg. (3.6.a)
would be much smaller than the actual sample numbers grouped to those
clusters since significant portions of the samples in those clusters are from the
class of interest. Those extraneous clusters can also be observed even though
N, is not much under-estimated in such cases when the actual distribution of the
class-of-interest samples is slightly different from that predicted by the probability
density function f,(x|C).

Figure 3.5 shows the class-averaged classification error comparisons of the
relative maximum likelihood classifier (denoted as "REL-ML"), a partially
supervised classifier based on significance testing (denoted as "ABS-SIG") and
the proposed classifier based on unsupervised clustering with three different
acceptance probability a's for the N4 estimation (denoted with three different a

values).
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The class-averaged classification error is a simple average of the omission and
commission errors. The result of the significance testing is obtained by scanning
the significance level in the interval [0.01, 0.991 in steps of 0.01, choosing the
best one. Therefore, this is the best one attainable with significance testing.
While significance testing had about 5 ~ 10% greater error than the relative
maximum likelihood classifier unless the distance d between two class means
was sufficiently large, the proposed algorithm closely followed the performance of
the maximum likelihood classifier. Only when the overlap between two classes is
significant (see the case d < 2, for example) and the N, value iis severely over-
estimated, was there as much as 5% error increase compared to the maximum
likelihood classifier.

< 50 7
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= 1 e a=0.3
g ] —o0— a=0.1
= 30 7

[#) e

s 4

7] -

a 20

&) o

< ]

oo 10 -

l— 4

4 %ﬁ:

E 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
&

d, Distance Between Class M eans

Figure 3.5 Class-Averaged Classification Error Comparison.; The proposed
classifier based on unsupervised clustering is denoted by the a value of
eg. (3.10.b) used in estimating the number of class-of-interest samples.
"REL-ML" is the relative maximum likelihood classifier with known class
statistics, and "ABS-SIG" is the best result for significance testing
attainable with significance levels in the interval [0.01, 0.99].

To see the sensitivity of the proposed classification algorithm to the N4 estimate
and its amount of under- or over-estimation, several different values of Ny were
used in computing the weights w;;'s in the clustering without estimating it. The
classification result is shown in Fig. 3.6.
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Figure 3.6 Sensitivity on the Estimate N, of the Proposed Classifier.; Several
different values of N, were used in computing the weights Wi1's in the
clusteringwithout estimating.

There was almost negligible difference in class-averaged classification error
when N, was varied from 750 to 1500 (not shown). When an over-estimated N,
was used, there was as much as 2% (N4 = 2000, 100% over-estimation) or 5%
(N, = 3000, 200% over-estimation) error increase compared to the maximum
likelihood classifier when d < 2. An over-estimated value of Ny increases the
commission error and its effect becomes more noticeable as the overlap between
two classes increases. Although the proposed algorithm was very tolerable of the
degree of over-estimation, it was less so with under-estimation as shown for the
case Ny = 500 (50% under-estimation) in Fig. 3.6. When d > 2.5, the class-
averaged classification error increased since the clusters containing a non-trivial
portion of the class-of-interest samples survived the cluster deletion test of eq.
(3.6.a,b) and many class-of-interest samples were deleted to increase omission
error. Note that, as shown in Fig. 3.4, the N, estimate with eq. (3.10.a,b) is in
general slightly over-estimated due to the commission of "others" samples in the
numerator of eq. (3.10.a). Therefore the under-estimation is not so problematic
unless the training samples of the class of interest are not representative enough
to adequately model its distribution function.
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3.4.2 Experiment with Thematic Mapper data

For a test with real data, the July LANDSAT Thematic Mapper(T'i) data which
was also used in the previous chapter was used. For a description of training and
test samples, referto Table 2.2.

For comparison of classification performance, a maximum likelihood classifier
was designed with all 12 sub-classes and the classification errors were
evaluated. The performance of the classifier was assessed in terms of class-
averaged classification error, total classification error and a simple average of
these two. As discussed in the previous chapter, note that while the class-
averaged classification error is a simple average of the omission and commission
errors, the total classification error is a weighted average of those two errors
according to the prior probabilities of the class of interest and the others.

Classification was also performed with significance testing and the proposed
algorithm based on unsupervised clustering. Since there are more than one sub-
class for each information class, the whole data set was first divided using a
maximum likelihood classifier into n sub-groups where n is the number of sub-
classes of a given information class. For each sub-group, the proposed classifier
was applied to identify the samples belonging to the corresponding sub-class.

Figure 3.7 shows the classification error comparison of significance testing and
the proposed partially supervised classifier based on unsupervised clustering. As
before, various values were tried to find the best significance level for each sub-
class. When estimating N, in the proposed classifier, five different values of a
(0.1, 0.2, 0.3, 0.4 and 0.5) were used and the estimated numbers;N, were mostly
over-estimated. Since less than 1% of the differences are observed in the
classification error even though there were large differences in the degree of
over-estimation (21% ~ 177%), only the result with a = 0.9 is shown in Fig. 3.7.
The proposed algorithm is seen ¢ perform better in all classes by about 1 ~ 6%
than the best significance testing case where the significance levels were
deliberately chosen manually.
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Figure 3.7 Classification Error Comparison of Significance Testing (ABS-SIG) and
the Proposed Classifier Based on Unsupervised Clustering (ABS-
UNSUP).; N, was estimated with a=0.9. The comparison is made with
class-averaged classification error (denoted as "ERR1"), total
classification error (denoted as, "ERR2") and the simple average of
those two (denoted as "AVG").
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Classification Error Comparison of the Proposed Classifier (ABS-
UNSUP) with the Relative Maximum Likelihood Classifier (REL-ML).;
The comparison is made with the class-averaged classification error
(denoted as "ERR1"), the total classificationerror (denoted as, "ERR2")
and the simple average of those two (denoted as "AVG").
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In Fig. 3.8, the classification error comparison is made with the relative maximum
likelihood classifier. Except for the class, "alfalta/oats”, there was only 1 ~ 2%
difference in classification error compared to the relative maximum likelihood
classifier. As for the class "alfalfa/oats”, there was about 7% increase in
commission error compared to the maximum likelihood classifier.

Figures 3.9 to 3.12 show the locations of the samples identified by the proposed
partially supervised classifiers and the relative maximum likelihood classifier.

(@) B (b) () (d)

Figure 3.9 Results For the Class "Corn" Samples. (a) Ground truth location of
corn samples. (b) Result for the relative maximum likelihood
classifier (REL-ML). (c) Result for the best significance!testing (ABS-
SIG). (d) Result for the unsupervised clustering based proposed
classification (ABS-UNSUP).

Figure 3.10 Results for the Class "Soybeans" Samples. (a) Grouncl truth location
of soybean samples. (b) Result for the relative maximum likelihood
classifier (REL-ML). (c) Result for the best significance testing (ABS-
SIG). (d) Result for the unsupervised clustering based proposed

classifier (ABS-UNSUP).
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(a) (b) () (d)

Figure 3.11 Results for the Class "Wheat" Samples. (a) Ground truth location of
wheat samples. (b) Result for the relative maximum likelihood classifier
(REL-ML). (c) Result for the best significance testing (ABS-SIG). (d)
Result for the unsupervised clustering based proposed classifier (ABS-
UNSUP).

(a) (b) () (d)

Figure 3.12 Results for the Class "Alfalfa/Oats” Samples. (a) Ground truth location
of alfalfa/oat samples. (b) Result for the relative maximum likelihood
classifier (REL-ML). (c) Result for the best significance testing (ABS-
SIG). (d) Result for the unsupervised clustering based proposed
classifier (ABS-UNSUP).

Compared to the relative maximum likelihood classifier, which requires a
complete list of classes to be defined and their class statistics computed, the
proposed classification algorithm was very successful in its classification
performance even though prior knowledge was provided only for the specific
information class under consideration. The computational complexity was
increased over the relative maximum likelihood classifier, but not prohibitively so
in view of the time savings for the manual portion of the analysis task. In the

—— e
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experiment with Thematic Mapper data in identifying one information class, it
took on average about 3 times more computational time than the maximum
likelihood classifier.

3.5 Summary

In this chapter, we have proposed a partially supervised classification algorithm
based on unsupervised clustering. Initiated with only prior knowledge pertaining
to a particular class to be identified, the proposed classifier develops class
statistics of "others" class through a weighted unsupervised clustering procedure.
The user only needs to provide the information for a particular class one actually
wants to identify.

Experiments with both simulated and real Thematic Mapper data showed very
satisfactory classification performance compared to the standard relative
maximum likelihood classifier. The proposed classification algorithm is also
computationally moderated compared to the maximum likelihocd classifier. The
operational simplicity should make this algorithm useful in many practical
applications.

3.6  Conclusions of the Partially Supervised classification and Suggestions for
Future Research

In Chapter 2 and 3, the problem of partially supervised classification especially
when the class definition and corresponding class statistics are available a priori
only for a particular class of interest. This problem can be frequently encountered
in many real application of pattern classification techniques. Two approaches,
one being based on significance testing, which belongs to the absolute
classification scheme, and the other being based on the unsupervised clustering,
belonging to the relative classification scheme, were proposed.

The experiments both with simulated and real LANDSAT Thematic Mapper data
showed very satisfactory results compared to the maximum likelihood classifier
which was designed with complete prior knowledge.



3  With Unsupervised Clustering

The optimal acceptance probabilities estimated without supervision for
significance testing matched very well with the manually selected optimal values.
Significance testing inherently has a limitation in its classification performance
due to the dimensional reduction of the feature space. This effect was noticeable
in the experiments. However, the second approach based on unsupervised
clustering doesn't have this limitation since it performs classification in the original
feature space without dimensionality reduction. But this requires the knowledge
of a number of class-of-interest samples in the given data set. The simple
procedure based on thresholding and counting numbers of samples accepted
with the given thresholding was found to be satisfactory for initiating the
unsupervised clustering to find the clusters corresponding to the unknown class
of "others."

However, there are needs for deciding a priori various parameter values which
control the clustering procedure. For the proposed algorithm based on clustering
to be fully and easily usable by users with little prior knowledge about the data
set, there must be a dependable algorithm which can suggest at least a proper
range of parameter values for clustering. These parameter values are expected
to be also dependent on the particular clustering algorithm selected. In fact, this
is very closely related to the general clustering problem.

In designing a partially supervised classifier, the quality of training samples is of
utmost importance. To properly design the classifier, the training samples must
be representative of the same class samples in the given data set to be
classified. To fulfill this requirement in the previous experiments, random
sampling was carried out to sample about 10% of data from the data set to use
as training samples and the resultant randomly selected training samples were
found to be satisfactorily representative. However, in a practical application of the
classifier, the limited training samples won't be always very representative all the
time. In a conventional totally supervised relative classification, there is
somewhat of a wide tolerance for the representativity requirement, due to its
relative consideration in decision making, but, in the partially supervised
classification case, there is expected to be less tolerance. Therefore, developing
a robust partially supervised classifier will be very important.
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APPENDIX A

Fast Parzen Density Estimate Using Clustering-Based Branch and Bound

A.l Introduction

Applying statistical pattern recognition techniques often requires the probability
density functions of given data samples. If the distribution of the given data can
be assumed to follow a certain known parametric form, such as a Gaussian
distribution, then, the parameters specifying the density function can be
estimated. However, it is not always possible to assume a certain parametric
distribution function for the given data set without causing significant error. In this
case, a non-parametric approach can be taken by employing a density estimation
technique [A.1]. Since the process of density estimation usually takes substantial
computation, it might not be feasible to adopt this non-parametric approach,
especially in an on-line application. There has been research on reducing the
computational requirement of the density estimation based on k nearest neighbor
[A.2,3] by saving the number of evaluations of quadratic terms which are required
to find the k nearest neighbors. As for the Parzen density estimate, there has
also been research on selecting a representative subset of the given training data
set [A.4]. The reduced subset of training samples are selected in such a way that
the Parzen density estimate with the reduced set matches as closely as possible
with that with full data set in the sense of the entropy measure of similarity
between two estimates. If the Parzen density estimate is to be evaluated on a
regular grids, for example, in plotting the density function or drawing a contour
diagram, the fast Fourier transform (FFT) can be used by noting that the Parzen
density estimate is the convolution of the data with the kernel function [A.5]. In
the general case of evaluating at irregular points, this algorithm is not applicable.

In this appendix, similarly to the efficient density estimate based on k nearest
neighbor [A.2,3], the branch-and-bound procedure is applied in Parzen density
estimation to reduce the number of evaluations of quadratic terms. Noting that
the contribution of a training (or design) sample on the evaluated density
estimate rapidly diminishes if it is far away from the location of evaluation,
therefore, without causing much error, some of the training samples could be left
out in evaluating the kernel functions if the distances from the location of
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evaluation to those samples exceed a certain critical distance. The computation
required for checking the distances can be significantly reduced by utilizing the
branch-and-bound procedure. Experimental results are presented to show the
effectiveness of the proposed approach in reducing the computational load on
the Parzen density estimation. Notice that, to further reduce the computational
burden, this proposed algorithm also can be used in addition to the data
reduction algorithm in [A.4].

A.2 Fast Parzen Density Estimation

Suppose there is a training data set, Y with N elements from which the unknown
density function should be estimated. The dimensionality of the data is denoted
by q(g= 1). The g-dimensional feature space is indicated by RY. The Parzen
density estimate ?X(x) of the unknown probability density function at x, x € RS, is
obtained as a sum of kernel functions placed at each sampleyin Y as,

2 1 X-y
fx(x) = N > K[ h ] (A.1.a)
yeY

where K(+) is the selected kernel function and h is the smoothing parameter (or,
window size). The kernel function satisfies the following condition,

LE q Ko dx=1 (A.1.b)

Since the estimated density f(x) will inherit all the properties of the selected
kernel function, the kernel function is often chosen in such a way that it has
mathematically tractable properties such as continuity or differentiability. Some
examples include the Gaussian kernel function, Epanechnikov kernel function, or
the rectangular kernel function [A.1]. The value of the kernel function rapidly
decreases as the distance from the origin increases. Therefore, the contribution
of a sample in Y to the estimated probability density at a certain x will become
negligible if the distance between x and the sample in Y becomes large. Without

introducing significant error, in many situations, it is possible to select a "critical
distance", D and to assume the contribution of a sample yin Y is negligible if the
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distance to x is more than this critical distance. In estimating a density, a

truncated and rescaled version of the original kernel function is used to satisfy
the condition in eqg. {A.1.b). Suppose the truncation level is denoted by B, then,
the critical distance D¢ with window size h=1, is computed as,

B=J K(x) dx , 0<B<1 (A.2.a)
XTXSD%

The critical distance with window size h is then obtained by multiplying h with the
D¢ calculated in eqg. (A.2.a). The truncated kernel function with truncation level B
is denoted by K'(x; B) and given as,

K'(x; B) = —Kiﬁﬁ xTx < D2
(A.2.b)
=0 otherwise

Depending on the specific application and the degree of permissible trade-off
between accuracy and speed, an appropriate value of B in eq. (A.2.a) can be
selected. Some kernel functions such as the Epanechnikov kernel function or the
rectangular kernel function have compact support in the given feature space only
on which the function has non zero values. In these cases, it is straightforward to
select the value D, without losing any accuracy, and there is no need for

truncation and normalization.

Denote the distance between two samples, x and y as L(x, y). If the Euclidean
distance measure is used, then, L(x, y) is computed as,

L(x, y) = N (ey)T(xy) (A.3.9)

If different smoothing parameters are to be allowed for different coordinate
directions, then, a slightly modified measure of distance can be used with the
kernel covariance matrix Z,

Lix, y) = \ xy)T 27 (xy) (A.3.b)
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Note that the distance measure in eq. (A.3.b) is equivalent to the Euclidean
distance measure in eq. (A.3.a) after pre-whitening [A.6] with the appropriate Z.
Pre-whitening is assumed to be already performed, if required, to the data Y and
x's to deal with the need of different smoothing parameters, and in the
subsequent discussion, the Euclidean distance measure will be used.

Suppose the Parzen density estimate is evaluated at x. Notice that a sample y in
Y which doesn't satisfy,

L(x, y) < D¢ (A.4)

can be excluded from the computation in eq. (A.l). The number of checking
distances in eq. (A.4) can be significantly reduced by using the critical distance
D. and applying the branch and bound algorithm [A.3] with clustering.

Suppose clustering is performedto group the samplesin Y into clusters. To each
cluster, for example, to the jlh cluster C;, three variables, {lj, M;, Dmax(j)} are
associated. M;is the cluster mean and ;is the index set of cluster C; defined as,

|, ={i| i" sample y;belongs to cluster C;, yi e Y }

Drmax() i€ j {LOG. M)}
Dmax(i) denotes the maximum distance from the cluster mean, M; to the samples
in cluster C;. Notice that the distance from x to any sample in C; should be larger
than L(x, M;) - Dmax(j). Therefore all the samples belonging to the cluster C; which
don't satisfy the inequality in eqg. (A.5) can be excluded in evaluating the density
estimate at x as shown in Figure A.1.

L(x, M;) - Dmax() < D¢ (A.5)

Therefore, the calculation of distances from x to each sample in Y can be
significantly reduced by checking this inequality and deleting clusters
appropriately. Note that this same idea can be also applied to reduce the number
of clusters which need be checked with this inequality by creating a hierarchical
grouping of the clusters, but we will not elaborate here.

- 78 -
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L(x,M;) - D_..()

max
Dmax(j)

Figure A.l Efficient Computation of Parzen Density Estimate Using
Clustering.; Samples grouped into clusters other than C5 and

C4 in this figure need not be considered in the computation
of Parzen density estimate.

The computation required for the clustering may be not trivial, but it is required
only once for each training data set. If the number of locations for which the
probability density should be computed is large, then this one-time extra
computation for clustering should be worthwhile. When the probability density is
actually evaluated, there exists another extra computation required for the
distances from given location x to each cluster center. Considering the savings
due to skipping a subset of distant training samples, this will be quite negligible
uriless the number of clusters is comparable to the number of total training
samples.

In unsupervised clustering, a new cluster is generated if the minimum distance to
the existing clusters exceeds the pre-specified distance (let us denote this by
Tereate)- TO achieve a maximal efficiency in reducing computational load, care
must be exercised in selecting a proper value of Tgeate- TO0 small a value of
Tereate Will result in a large number of small clusters into which very small
numbers of samples are grouped. In this case, the overhead of clustering and
checking the inequality in eq. (A.5) will surpass the savings obtained by skipping
the samples grouped in distant clusters. On the other hand, a small number of
large clusters due to too large a value of T¢eate Might Not be able to eliminate any
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clusters in evaluating the density estimate. The value of Tgate Should be related
to the critical distance D

A3 Experiments and Discussion

To verify the effectiveness of the fast Parzen density estimation algorithm
proposed, an experiment with simulated data was performed. For a training data
set, 1000 samples of bivariate (@ = 2) normal data were generated. The mean
and covariance matrix were set to [0, 0]T and the identity matrix, respectively.
The density estimate was evaluated at four different groups of locations. That is,
four sets of bivariate Gaussian samples, each containing 100 samples, were
generated with means at [+1.5, 0]" and [0, £1.5]". The covariance matrices were
all set to the identify matrix.

To see the effect on the efficiency of this algorithm, the parameter for new cluster
generation, T¢eate: Was selected as,

Tcreate =Q Dc (A-G)

and the value a wes varied to see its effect on the effectiveness of the proposed
algorithm. (In clustering, if the squared distance to the nearest cluster is more
than 9T02,eate, then a new cluster is generated. Therefore, the maximum distance
Dmax(®) in eq. (A.5) is \f(_JTcreate). The effectiveness of this algorithm was
measured in terms of percent of the number of distance computations actually
evaluated in density estimation.

average number of quadratic distance computation
number of training samples

R = 100 x (A.7)
In the numerator in eq. (A.7), the number of distance computations to the cluster
centers is also included even though it might be negligible in most cases. The
averaging is carried out for the test samples. In the case of conventional Parzen
density estimation, the percent ratio R in eq. (A.7) is 100. If the overhead of
computing distances to the cluster centers surpasses the savings acquired by
deleting some of the distant clusters, the ratio R can be greater than 100.



Appendix A Fast Parzen Densitv Estimation

First, the Epanechnikov kernel function was used since it is straightforward to
choose the critical distance D¢, which is equal to the window size h. As
suggested in (p.86 in [A.1]), the window size h was set to 0.56 in the case of this
Epanechnikov kernel function. Under this setting, only 4.24% of the training
samples on the average actually contributed in the density estimation. The value
a in eq. (A.6) was varied from 0.01 to 8 to see the effect of the numbers of
clusters on deleting some of the distant clusters. Only one iteration of clustering
was performed since a crude grouping of the samples is sufficient. As a in eq.
(A.6) decreases (in other words, as the number of clusters increases), the
savings in distance computation increases up to a certain point, and after which
the overhead of distance computation to the cluster centers overwhelms the
savings attained by skipping some of the training samples as seen in Fig. A.2.
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Figure A.2 R, Average Number of Distance Computationsin eq. (A.7)Expressed

as a Percent.; The Epanechnikov kernel function was used with
different cluster creation conditions as in eq. (A.6) where a was varied
from 0.01 to 8.; window size h = 0.56, and critical distance D, = 0.56.

Unless a is extremely small (unless a < 0.02 in this experiment), the overhead

was negligible. About 80% of the savings was observed in distance computation
with the value ain 0.5 ~ 10.

The same experiment was performed with the Gaussian kernel function, which
has non-zero values in the entire feature space. The truncation was performed
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with truncation level B asin eq. (A.2. a & b). The window size was set to h=0.304
as suggested in (p.86 in [A.1]). The truncation level B was varied from 0.8 ~
0.999. Notice that there are some training samples which do not make any
contribution in the density estimate even without using the truncated kernel
function. In other words, due to the numerically finite precision, the value of the
exponential function in Gaussian kernel function becomes (numerical) zero if its
argument is too small.
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Figure A3 Percent Average Effective Number of Training Samples versus

Truncation Level.; This shows the percent average effective number of
training samples which have non-zero contribution to the density
estimate and the corresponding average percent difference between
density estimates obtained with and without truncation.; The Truncated
Gaussian kernel function was used with different truncation level B's.;
the window size was set to h = 0.304.

Figure A3 shows the average number of effective training samples which give
non-zero values of the exponential function when a truncated Gaussian kernel
function with truncation level B is used. The number obtained without truncation is
considered as that of B=1.0. There must be error introduced due to the truncation
of the kernel function and the amount of error is measured by the average
percent difference between the two density estimates obtained with and without
truncation as,
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| B - B0 (A8)
B |

Ave ageperoant difference = 100 x Ex

where ?x(x) denotes the density estimate without truncation and 'fx(x; B) denotes
the density estimate with the truncation level set to B. The expectationin eq. (A.8)
is obtained by computing the mean over the given 40Q test samples. As sgen in
Fig. A3, even when B = 1.0, there were only 38.64% of the tfa;in‘ing samples
which actually contributed to the density estimate due to the numerically finite
precision. When B = 0.999, the effective number of training samples dropped to
16.46%, but there was only 0.19% difference to the average between ?‘x‘(x) and
?x(x; B). If p=0.99, the percent difference was 1.47% with 11.17% of the effective
training samples. Whether or not this error due to truncation is acceptable
depends on each particular application of the estimated density in mind.

Percent Average Number
of Distance Computation

]
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a
Figure A.4 Percent Average Number of Distance Computation R.; Truncated

Gaussian kernel function with truncation tevel B. The parameter a in
the cluster creation condition of eq. (A.6) was varied from 0.01t0 8.;
window size h = 0.304.

As before, while the parameter ain eq. (A.6) is varied from 0.01 to 8, the average
number of actual distance computations is shown in Fig. A.4. As the truncation
level B becomes larger, the amount savings in distance computation increases. In
both Fig. A3 and A4, very small or very large values of a were not acceptable,

since they produce too many small clusters or just one or two large clusters. With
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ain the range of 0.2 ~ 1.0, it is observed that about 40 ~ 80% savings in distance
computation can be achieved.

A4 Conclusions

In this appendix, a computationally efficient Parzen density estimation algorithm
is developed by adopting the idea of the branch and bound method with
clustering. Not only those kernel functions having finite support for non-zero
values such as the Epanechnikov kernel function, but also the kernel functions
having non-zero values over the entire feature space was applicable with this
algorithm with truncation. By choosing a proper parameter setting for D for new
cluster generation, the savings in computation is observed to be maximized. The
experimental results verified significant savings in computation.
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APPENDIX B Program List for Partially Supervised Classification

Program list for the partially classifiers discussed in this report is available upon
request.
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