
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

2-1-1993

DESIGN OF PARTIALLY SUPERVISED
CLASSIFIERS FOR MULTISPECTRAL IMAGE
DATA
Byeungwoo Jeon
Purdue University School of Electrical Engineering

David Landgrebe
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Jeon, Byeungwoo and Landgrebe, David, "DESIGN OF PARTIALLY SUPERVISED CLASSIFIERS FOR MULTISPECTRAL
IMAGE DATA" (1993). ECE Technical Reports. Paper 220.
http://docs.lib.purdue.edu/ecetr/220

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4947177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages


DESIGN OF 
PARTIALLY SUPERVISED CLASSIFIERS 
FOR MULTISPECTRAL IMAGE DATA 

Byeungwoo Jeon 
David Landgrebe 

TR-EE 93-1 1 
February, 1993 

School of Electrical Engineering 
Purdue University 
West Lafayette, Indiana 47907- 1 285 

This work was sponsored in part by NASA under Grant NAGW-925 



TABLE OF CONTENTS 

Page 

... ABSTRACT ......................................................................................................... III 

CHAPTER 1 INTRODUCTION ........................................................................ 1 
1 . 1 Information and Pattern Classification in Remote Sensing ........... 1 
1.2 Design of Partially Supervised Classifiers .................................... 2 
1.3 Organization of the Report ........................................................... 3 

CHAPTER 2 PARTIALLY SUPERVISED CLASSIFICATION 
WITH OPTIMAL SIGNIFICANCE TESTING ........................... 5 

2.1 Introduction .................................................................................. 5 
2.2 Partially Supervised Classification with Significance Testing ....... 7 
2.3 Optimal Significance Testing ........................................................ 9 
2.4 Estimation of Optimal Acceptance Probability .............................. 13 
2.5 Experiments and Discussion ........................................................ 24 

.................................................................................. 2.6 Conclusions 48 

CHAPTER 3 PARTIALLY SUPERVISED CLASSIFICATION 
WITH UNSUPERVISED CLUS-TERING ................................. 51 

3.1 Introduction .................................................................................. 51 
3.2 Partially Supervised Classification with Unsupervised 

.................................................................................... Clustering -52 
3.3 Estimating the Number of Class-of-Interest Samples .................. 57 
3.4 Experiments and Discussion ........................................................ 63 

...................................................................................... 3.5 Summary 71 
3.6 Conclusions of the Partially Supervised Classification and 

Suggestions for Future Research ................................................. 71 

LIST OF REFERENCES .................................................................................... 73 

APPENDIX A ...................................................................................................... 75 
A.l Introduction .................................................................................. 75 
A.2 Fast Parzen Density Estimation .................................................... 76 
A.3 Experiments and Discussion ......................................................... 80 

.................................................................................. A.4 Conclusions 84 
................................................. A.5 List of References for Appendix A 84 

APPENDIX B Program List for Partially Supervised Classification .................... 85 



ABSTRACT 

'This report addresses a partially supervised classification problem, especially 
when the class definition and corresponding training samples are provided a 
pnori only for just one particular class. In practical applications of pattern 
classification techniques, a frequently observed characteristic is the heavy, often 
nearly impossible requirements on representative prior statistical class 
characteristics of all classes in a given data set. Considering the effort in both 
time and man-power required to have a well-defined, exhaustive list of classes 
with a corresponding representative set of training samples, this "partially" 
supervised capability would be very desirable, assuming adequate classifier 
performance can be obtained. 

Two different classification algorithms are developed to achieve simplicity in 
classifier design by reducing the requirement of prior statistical information 
without sacrificing significant classifying capability. The first olne is based on 
optimal significance testing, where the optimal acceptance probability is 
estimated directly from the data set. 

In the second approach, the partially supervised classification is considered as a 
problem of unsupervised clustering with initially one known cluster or class. A 
weighted unsupervised clustering procedure is developed to automatically define 
other classes and estimate their class statistics. 

The operational simplicity thus realized should makes these partially supervised 
classification schemes very viable tools in pattern classification. 



CHAPTER 1 

INTRODUCTION 

1.1 Information and Pattern Classification in Remote Sensing 

For decades, the technology of remote sensing has been successfully applied in 
many interdisciplinary applications of Earth observational data. Pattern 
classification methods have had a major role in applying remote sensing 

technology. A pattern classification system can be described generally as in 

following schematic. 

input ' - features output 
Sensor - Classifier -+ Decision 

Figure 1.1 General Schematic of Pattern Classification. 

The incoming information-bearing data are analyzed and classified into one of 
the pre-defined categories. To have a proper classification of given data, one 

needs to decide what classifier to employ and which features to use in the 
classification. A well-defined, informative, and exhaustive list of classes, and a 

representative set of training samples from which the statistical characteristics of 

all classes can be estimated is essential. 



If prior knowledge about the statistical characteristics of the categories or classes 

is available, usually in terms of training samples, the classifier is referred to as 
"supervised." The major portion of prior knowledge is often in the form of training 

samples with known class labels. In this case, 'the class statistics are estimated 

from the available set of labeled training samples. When there is no prior 

knowledge, then, the classifier is referred to as "unsupervised." In many cases, 
the training samples are available only for a subset of classes, or, training 
samples are gathered only for those particular classes. Considering the 
expensive process of gathering training samples in both man-power and time, 
this situation is not uncommon in practice especially when one needs to identify 
only a subset of classes. It can be referred as a "partially supervised" 
classification problem. 

1.2 Design of Partially Supervised Classifiers 

In practical applications of pattern classification techniques, it is not unusual to 

confront a task in which only a particular subset of classes, for which training 
samples are available, are desired to be recognized or identified. A design of 

conventional Supe~ised classifier requires training samples for all the classes in 
the given data in order to perform optimally. Considering the effort in both time 
and man-power required to have a well-defined, exhaustive list of classes with a 
corresponding representative set of training samples, this "partially" supervised 

capability would be very desirable, assuming adequate classifier performance 
can be obtained. This report addresses the partially supervised classification 
problem, especially when the class definition and corresponding training samples 

are provided a priori only for just one particular class. 

Two different approaches are investigated. The first one is based on optimal 
significance testing, where the optimal acceptance probability is estimated 

directly from the data set. In the second approach, the partially supervised 
classification is considered as a problem of unsupervised clustering with initially 
one known cluster or class. The definitions and statistics of the other classes are 
automatically developed through a weighted unsupervised clustering procedure 

which is developed to keep the cluster corresponding to the "class of interest" 
from losing its identity as the "class of interest." Once all the classes are 



developed, a conventional relative classifier such as a maximum likelihood 
classifier is used in the classification. 
Even though the partially supervised classification algorithms are to perform at 
best comparable to one in which all ,the classes and statistical characteristics are 

available, considering the time and effort required for collecting ground truth, or 
training samples required for defining all the existent classes in the given data 

set, this will be very useful in practice when a data-analyst is interested in 

identifying only samples belonging to a certain class. 

1.3 Organization of the Report 

The outline of this report is as follows. 

Chapter 2 addresses an absolute classification approach based on the optimal 
significance testing where the optimal accept probability is estimated from the 

given data set without user's supervision. 

In Chapter 3, the problem of partially supervised classification is formulated as 
that of a relative classification with only one a priori known class. Weighted 

unsupervised clustering algorithm is investigated for unsupervised development 

of class definition and statistical characteristics necessary succeeding relative 
classification. Following the experimental results are conclusions and 
suggestions for further research regarding the design problem of partially 
supervised classifiers. 



1 Introduction 



CHAPTER 2 

PARTIALLY SUPERVISED CLASSIFICATION 
WITH OPTIMAL SIGNIFICANCE TESTING 

2.1 Introduction 

Successful classification of given data sets requires a proper design of 
classifiers to be employed. The design or training of classifiers is performed 

using prior information which is usually gathered in the form of training samples. 
The number of training samples necessary is dependent on the number of 

features and the number of classes. Generally, the process of obtaining training 
samples is very expensive in terms of both time and manpower. In practical 

applications of pattern classification techniques, a frequently observed 
characteristic is the heavy, often nearly impossible requirements on 

representative prior statistical class characteristics of all classes in a given data 
set. 

Other 
other /7 Class 2 zys 

n u f '-J sample to be classified 
1.- / 

I -f sample to be classified 

0 Class 1 

Figure 2.1 Two Different Classification Schemes. (a) Absolute Classification 
Scheme. (b) Relative Classification Scheme. 
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Broadly speaking, classification analysis schemes can be dichotomized into two 

different categories, one being based on an absolute classification scheme and 

the other based on a relative classification scheme. Classifiers based on the 

absolute scheme, such as a parallelepiped classifier (Richards R6), or a 

scheme based upon a known absorption feature for a specific material, classify 
data samples on an absolute basis, i.e., without regard to the spectral 
responses of other materials or classes which may be in the scene. In such 
cases, class definition through training samples is required only for the 

particular class under consideration. There may be many applications where 
one wants to recognize only a single class of pixels. For example, one might be 
interested in finding only the pixels belonging to a class, "corn," etc. This 
absolute classification scheme is very attractive in this case. 

The scheme in the second category is "relative classification" where class 
decisions are made on a relative basis. The maximum likelihood classifier, one 

of the most widely used relative classifiers, assigns a pixel to the class which 
has the largest likelihood value relative to other classes. Therefore, even if only 

one class is of interest, training samples must be obtained for all other classes 

also to adequately train the classifier. The necessity of supplying training 

samples for, or otherwise defining all other classes can be an onerous 
shortcoming especially when there are large numbers of classes and/or 
features to deal with. While a properly designed relative classifier can nearly 
always provide better performance, and is very much less sensitive to many 

unmanageable factors, e.g., atmospheric conditions, calibration, etc., the 

operational simplicity of the absolute scheme may make it the scheme! of choice 

in many instances. 

This report addresses the design problem of partially supervised classifiers, 
especially when the class definition and corresponding training samples are 
provided a priori for only one particular class as in the absolute classification 
schemes. Two different approaches are investigated. The first one is based on 
optimal significance testing. The investigation of this approach addresses the 

problem of estimating, without supervision by the data-analyst, an optimal 
significance level, or equivalently, an optimal acceptance probability, which is 
an indispensable element in significance testing. 



2 Optimal Significance Testinq 

In the second approach which will be introduced in the next Chapter, the 

advantages of both a reduced requirement on obtaining training samples in the 
absolute classification and the potentially robust and powerful discriminating 
capability of a relative classifier are sought by developing an automatic 
mechanism of extracting statistical information corresponding to an "others" 

class without recourse to the training saniples supplied by anallyst. That is, the 
classification algorithms proposed can develop class definitions and 

corresponding class statistics, requiring the user to supply prior knowledge only 
pertaining to the particular class under consideration. 
The organization of this Chapter is as follows. After a brief introduction in 
Section 2.2 on a partially supervised classification apprclach based on 

significance testing, Section 2.3 address on an optimal significance testing 
procedure where an estimating algorithm of an optimal acceptisnce probability 

with a given optimality criterion is presented. Section 2.4 shows the 
experimental results of this optimal significance testing in the context of the 

partially supervised classification problem. 

2.2 Partially Supervised Classification with Significance Testinlg 

Significance testing is a widely used technique in various applications of 
statistical analysis, such as classification, or object detection (Therrien et a/. 86). 

It is especially useful in such problems as the single hypothesis problem 

(Fukunaga et a/. 87, Quatieri 83) where one is to identify a particular class of 

objects among others with only statistical information pertaining l:o those objects 
of interest. This kind of problem can arise when defining all tlhe classes and 
gathering corresponding statistical information is impossible, or very expensive 
in terms of time and manpower. Examples of applying significance testing 

techniques include target detection, object detection out of various backgrounds 
(Quatieri 83), texture detection, cloud detection, fault or anomi3ly detection in 

diagnostic monitoring (Bello 92). 

Significance testing can be used for partially supervised classification when 
there is only one class of interest and the class definition and it class statistics 
are available a priori only for that class. Note that significance testing is based 
on the absolute classification scheme in Fig. 2.1 .(a). 
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One of the important elements in significance testing is the acceptance 
probability (or, significance level) which must be provided by the data analyst 
usually in such a way that the type I (i-e., omission) error rate is kept within a 

pre-specified level (Drake 67). Obviously, omission error is not necessarily the 

only relevant criterion to consider in determining a suitable acceptance 
probability, and there are many other possible optimality conditions. For 

instance, the acceptance probability could be selected on the basis of the 
Bayes minimum error criterion. The criteria used in the minimax test, or 
Neyman-Pearson test (Van Trees 68) might also be used in selecting *the 
desired acceptance probability. 

Unfortunately, lack of prior statistical information other than that of the particular 

class of interest may prevent directly applying conventional procedures used in 
hypothesis testing. The commission error, or type II error can not be easily 
evaluated unless the relative distribution of all classes in the given data set is 
available. Note that a mixture density estimates of the feature vectors can give 

an estimate of the probability density of the "others" class if the prior probability 
of the class of interest is known. For significance testing, requiring only some 
appropriate measure of the distances of samples from the mean of the class of 
interest, it suffices to estimate a one dimensional mixture probability density of 

the distances, not the multidimensional features vectors. 

In the followirrg is presented an algorithm which can automatically estiniate the 

optimal acceptance probability from the given data set under the selected 
optimality conditions, such as Bayes total classification error, minimum class- 
averaged classification error, or the generalized total classification error criteria. 
With this estimated optimal acceptance probability, classification can be 

performed to identify the class of interest. 

This automatic estimation of the proper acceptance probability will be 
doubtlessly desirable, at least to the user with little prior knowledge about the 
data set. The algorithm to be proposed in this chapter can also be applied to the 
case where the specific class of interest consists of several sub-classes. When 
there are a large number of constituent sub-classes of the given class of interest 
and the sample distributions of the sub-classes are quite different from each 
other, this automatic estimation capability should be very handy, since one 
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doesn't need to undertake the manual selecting process of an acceptance 

probability for each sub-class. 

2.3 Optimal Significance Testing 

Suppose there is a data set, X = {x,, ---, xN) with N samples. Each data point, xi, 

is a q-dimensional feature vector ( q  2 1). It is assumed that one is only 
interested in identifying a single class which is denoted by Cint, i.e., 
discriminating between it and the "others" class, denoted by Cothers. The "others" 

class might consist of several classes none of which is one's interest. Prior 
statistical knowledge is assumed to be available only for the c:lass of interest. 
Let fx(x I Cint) and fx(x I Cothers) be the probability density functions of classes Cint 
and Cothers, respectively. The prior probabilities of Cint and Cothers are indicated 

by nint and nothers. It is assumed either to know the density function fx(x I Cint), or, 
to have a set of representative training samples of Cint from which a reasonably 

accurate estimate of fx(x I Cint) can be made. In general, fx(x 1 Cothers), nint and 
K~,~,,, are not known other than the fact that xint + xOthers = 1. The mixture 

probability density, denoted as fx(x), is written as, 

Even though the following derivations do not require any specific family of 
probability density functions for Cint, multivariate normality will be assumed for 

Cint for simplicity's sake. Generalization to other probability density functions is 
straightforward. Furthermore, without loss of generality, Cint can be assl-~med to 

have a zero mean, denoted by Oq, and an identity covariance matrix, denoted 
by Iqxq. This standard multivariate normal distribution will be denoted by 

MVNIOq, Iqxql. 

In significance testing, a single hypothesis HI : x E Cintl is tested against all 
other alternatives. The degree of support for the hypothesis H, is measured with 

test statistic, T(x) which is a function of feature vector x, x E X. With fx(x I Cint) 
being MVNIOq, IqXq] a natural choice for the test statistic would be T(x) = xTx by 
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which the significance test rejects sample x if T(x) > h. Once the test statistic is 

selected, the threshold h specifies the rejection region in the feature space. 

ha 
Figure 2.2 Threshold A, Corresponding to a Significance Level (1 - a).; 

T T(x) = x x and f,(x 1 C,,) is MVNIOq, IqXq]. 

Choosing an appropriate rejection region (or equivalently, the threshold h) is an 

important problem which deserves further attention. The availability of the 
necessary statistical characterization of Cint enables control of the omission 
error, denoted by E , ,  using, 

The value, (1 - a) defines the maximum allowable omission error and is often 
called the significance level or rejection probability. The parameter a will be 

called the acceptance probability. The threshold associated with a, denoted by 
ha, can be obtained by solving, 

where fy(y 1 Cint) is the conditional distribution of y = T(x) = xTx, under the 
hypothesis HI. (The notation of HI and Cint will be used interchangeably). When 
fx(x ( Cint) is MVNIOq, Iqxq], fy(y I Cint) is known to be the chi-squared distribution 

with q degrees of freedom. 
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Figure 2.3 Decision Regions of the Class of Interest with Significance 
Testing.; An improper significance level may result in either an 
excessive omission or commission error.; I,,, - the decision 
region of a relative classifier, such as a maximum likelihood 
classifier.; I(a,), [(a,) - the decision regions of significance 
testing with levels (1-a,), (1-a,), respectively. 

While the omission error e ,  can be controlled within a certain va.lue specified by 
(1-a) through eq. (2.2.a1b), the commission error, denoted by e,, is generally 

very difficult to control, as discussed before, since its evaluation requires 
frequently unavailable statistical knowledge about all alternatives. By 
increasing the acceptance probability a, the omission error can be reduced, but, 

at the same time, the coniniission will be increased. 

The omission error plotted versus the acceptance probability has a slope of -1, 
but the slope of commission error is dependent on the closeness of the 
distribution of the "others" class to the "class of interest." To a~void potentially 
excessive omission or commission errors, ,the acceptance proba.bility a must be 

carefully determined by checking the relative distribution of data samples with 

respect to the class of interest. An automatic estimation capability of optimum 
acceptance probability is thus very desirable. 

Since the estimation problem of optimum acceptance probability will be 
addressed in a sirr~ilar fashion to the hypothesis testing, a brief review of a 

simple binary hypothesis testing procedure (Van Trees 68) is worthwhile. 
Assume a simple hypothesis test with two hypothesis HI and H2 from which one 

is to be selected. The Bayesian framework requires two sets of parameters, i.e., 
one set including prior probabilities associated with the hypothesis and the 
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other set with associated costs. Each cost is associated with the corresponding 
course of action as in Fig. 2.4. 

Figure 2.4 Prior Probabilities (x,,, ,  no,,,,,) and Costs Aiies in a Binary 
Hypothesis Test.; Aij refers to the cost given to accepting 
hypothesis Hi when Hj is true. 

Aij is the cost given to the action of acceptirlg hypothesis Hi when H, is true. It is 
quite logical to set All = A22 = 0, that is, no cost is assigned to a correct decision. 
Without loss of generality, the other costs can be set as A21 = A AI2 with 
proper A, A > 0, where AI2 doesn't affect the design of the optimal test and thus, 

can be dropped out in the average cost function. The optimal test can be 
designed by minimizing the a posteriori expected cost given as, 

and E~ are the omission and commission error probability, respectively and 
computed using fx(x ( Hi), the probability density function of x under Hi, i =  1, 2, 

where, Zi  is the decision region for Hi, i = 1, 2 

Note that if  (A, nint, nothers) are known, then, an optimal Bayes minimum 

expected cost test can be designed. It is well known that this test is the 
likelihood ratio test (LRT) whose design requires selection of an appropriate 
threshold, based upon parameters (A, nint, nothers), which, in turn, requires 
knowledge of ~1 and ~2 as functions of the threshold. In significance testing 

which can be viewed as a problem of single hypothesis testing, the optimal 
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acceptance probability can be obtained in a similar way to the simple binary 
hypothesis counterpart. That is, instead of ~1 and E~ as functions of the 

threshold, they can be obtained as functions of the acceptance probability. 
Unfortunately, the expression for commission error ~2 in significance testing, is 

ordinarily not readily available a priori, since the probability density function 
under hypothesis H2 is not known. Nevertheless, estimating the commission 

error function for a given data set is possible, as will be discussed in following 
section. With the estimated ~ 2 ,  the same idea of simple binary hypothesis testing 

mentioned above can be applied also to significance testing im estimating the 

optimal acceptance probability. 

2.4 Estimation of Optimal Acceptance Probability 

In this section, an algorithm which can automatically estimate the optimal 
acceptance probability by checking the actual relative data distributions is 

presented. There can be many different optimality criteria for the acceptance 

probability. For example, the acceptance probability can be selected solely on 

the basis of the omission error or commission error, or, it can be selected based 

on a criterion which is basically a weighted sum of omission and commission 

errors. In this section, three different optimality conditions are considered in 
selecting a proper acceptance probability. 

2.4.1 Omission and Commission Errors as Functions of Acceptance Probability 
a 

Suppose there are N1 samples belonging to Ci,, in the data set X. N1 is 
unknown, in general. Then, in the data set X, there will be N,! = N - N1, data 

points from the class Cothers. Assume the prior probabilities are, 

The expected number of data points in X accepted with the acceptance 
probability a is denoted as N(a) and written as a function of a, 0 5 a 5 1, as, 
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where fy(y) is the mixture probability density function of y, y = xTx, y 2 0, and b, 

is the threshold corresponding to the acceptance probability a in eq. (2.2.b). fy(y 
I Cint) is similarly defined as a probability density function of y = x'x, x E Cint. 
N(a) is a monotonically increasing function of a in the interval 0 I a I 1, since, 

and, 

Although the mixture density fy (y), is not available a priori, it can be easily 
estimated using the y values where y = xTx, x E X. In a similar way, N1(a) and 
N2(a), the expected numbers of data points accepted with acceptance 

probability a, 0 2 a I 1, and coming from Cint and Cothers, respectively, are 

written as, 

fy(y(Cothers) is the density function of y's corresponding to Cothers. Nl (a) and 
N2(a) are also monotonically increasing in 0 I a < 1. From the relations in eq. 
(2.1) and eq. (2.2.b), Nl(a) and N2(a) are simplified as, 

Using eq. (2.5.b) and eq. (2.7.b), an upper bound of prior probability Rint can be 

obtained as, 
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min 
K~~~ I 0 I a I 1 

Now, compute the omission and commission errors at acceptarm probability a. 

The omission error rate, denoted by ~ ~ ( a ) ,  is obtained by dividing the number of 

Cint samples rejected at acceptance probability a with N1. 

Similarly, the commission error rate, denoted by e2(a), is obtained by dividing 
the number of accepted Cothers samples by N2, with given acceptance 
probability a. 

Note that, with respect to a, ~ ~ ( a )  is a strictly decreasing function with slope -1 

and e2(a) is a monotonically increasing function, but the actual rate of increase 
of &,(a) is dependent on the behavior of N(a). 'The evaluation of &,(a) generally 

requires knowledge of N1, or equivalently, the prior probability nint. 

The optimal acceptance probability a is dependent on the criterion which 

assesses the optimality. In many situations, a simple average (of omission and 

commission errors, 

serves as a good candidate for assessing optimality. Under the Bayesian total 
probability error criterion, the optimal acceptance probability minimizes, 

the sum of omission and commission errors weighted with the prior 
probabilities. This weighting can be generalized by allowing di.fferent cost (or, 
risk) between omission and commission errors as, 
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Constant A, where A > 0, is the risk or cost on making omission errors relative to 
the risk of making commission error being 1. The criteria in eq. (2.11 .a,b) can be 
considered to be special cases of E3(a). That is, E3(a) with A = 1, is the same as 
E2(a). Setting A = I C ~ ~ ~ ~ ~ ~ / X ~ ~ ~  makes &(a) equivalent to El (a). The criterion in 

eq. (2.1 1 .c) will be called the "generalized" total classification error criterion. 

Note that identifying a specific single class, or detecting specific objects from the 
background in a given scene can be considered as a two class classification 
problem and a confusion matrix can be drawn as in Table 2.1. (Nll is a number 

of Cint samples correctly classified as Cint and N22 is a number of Cothers 
samples correctly classified as Cot hers). 

Table 2.1 Confusion Matrix. 

Then the classification error probab'ilities of Cint and Cothers are equivalent to the 

omission and commission errors, respectively. 

N11 error probabilities of Cint = 1 - - 
"'1 

Actual 

Class 

"'22 error probabilities of Cothers = 1 - - 
"'2 

Assigned class 

Cint 

Cathers 

Two criteria have been conventionally used in assessing classification 

performance. One is the "overall classification error" which is computed as the 
ratio of the total number of errors to the total number of samples in the given 
data set. The other is the "class-averaged classification error," and it ns a simple 
average of the classwise classification errors. Notice that the overall 
classification error is no more than a weighted sum of the classwise 

classification errors according to the prior probabilities. Thus, it is equivalent to 

Cint 

NII 

"'2- "'22 

Cot hers 

NI - NII 

"'22 
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the total probability of error in eq. (2.1 l.b). By the way, the "class-averaged 

classification errorn is equivalent to eq. (2.1 1 .a). The class-averaged 

classification error criterion is a very useful indicator of classification 
performance especially when there are large differences between prior 
probabilities since the overall classification accuracy will be dominated by the 

performance of the class having the dominant prior probability. In applying 
significance testing, there will be many cases when the number of data points 

belonging to one class is dominantly large than the others. In these cases, the 
class-averaged classification error in eq. (2.1 1 .a) will be desirable in assessing 
optimality. 

2.4.2 Estimating Optimum Acceptance Probability 

In following discussion, only the criterion in eq. (2.1 1 .c) will be used since the 

others can be derived as special cases of this criterion by setting an appropriate 
value of A. The optimal acceptance probability a can be obtained by minimizing 

E3(a) with respect to a over the interval, 0 I a I 1. That is, by equating the first 
order derivative of E3(a) to 0, 

and checking the sign of the second order derivative in eq. (2.112.b) below, the 
optimal value of a which gives the mirlimum value of E3(a) can be found. Note 

that solving eq. (2.12.a) requires, in general, knowledge of N1, or, equivalently, 
,the prior probability xint. 

Since the second derivative of €,(a) is zero, eq. (2.12.b) is only affected by the 

commission error, ~ ~ ( a ) .  Subslituting the first order derivative of N(a) given in 

eq. (2.5.b) into eq. (2.1 2.a) results in, 
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The first order derivative of E3(a) being always positive in 0 5 a l 1 indicates 
that Nfy(ha) on the left side of eq. (2.13) is always larger than the right side, 
(1 +A)N,fy(ha(Ci,,) for all a in the interval [0,1]. Since (1 +A) > 1, this means that 
the data points expected to be in the infinitesimal region (ha, ha+ dh,) are 

always more than the expected number of Cin,samples in the region and thus, 

considerable commission error will result no matter how restrictive the 
acceptance probability is. Therefore, the optimum value of a is expected to be 0. 
On the other hands, the first order derivative of E3(a), being always negative in 
the interval, 0 5 a I 1, indicates, in the same token, that the data points 
expected to be in the infinitesimal region (ha, ha+ dh,) are always less than the 

expected number of Cin, samples in the region (which is weighted by (1+A)), 

therefore, the possibility of commission error is very low. This will allow 
acceptance probability a to increase up to 1. 

Since increasing a would not only decrease the omission error but also 

increase simultaneously the commission error, other than these two extreme 
cases, minimum points of E3(a) will be located where the degree of increase in 

the weighted commission error starts to surpass the decrease of the weighted 
omission error. The prior probabilities and relative cost A determine the actual 
balancing between omission and commission errors. Due to the closed interval 
of a, [0,1], the minimum of E3(a) always exists and so does the optimum a, even 

if there may be no solution satisfying eq. (2.12.b) and the positivity of eq. 

(2.1 2.c). Suppose solutions satisfying these two conditions do exist, a.nd denote 

a set of those solutions as S. 

S = { a  I dE3(a) 
= 0 and d2E3(a) > 0, o l a < l }  

da  da2 

Then, each element in Swill correspond to a (local) niinimum of E3(a). The 
global minimum can be selected by comparing the actual values of E3(a) at 
different a's in S in the following way. Suppose ai and a, are elements in S, 
then, the difference, E3(ai) - E3(ai) can be written as, 
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A ii 
E3(cli) - E3(aj) - N (2.14) 

where, Aij I [ ~ ( a ~ )  - N(a,) - (a i  - a j )  (1 +A) NI] 

By checking the signs of the Aij's, the acceptance probability which attains a 
global minimum of E3(a) can be selected from the set S. Notice that evaluating 
eq. (2.14) requires the prior probability, xi,,, but, in the case of the class- 

averaged classification error criterion, it can be evaluated even without knowing 
xi,, since substituting A = xOthers/xint = N2/N1 results in a quantity independent of 

This property of the class-averaged classification error criterion will be very 
useful in actual application of this algorithm since the prior probabilities are 
unknown in most problems. 

2.4.3 Optimum Acceptance Probabilities for the Sub-classes of the Class of 
Interest 

Frequently, one has a class of interest which consists of seve~ral sub-classes. 

These sub-classes are components of the original class which is often referred 
to as an "information class" (Swain 78). The term "information class" implies a 
physically meaningful entity. One cannot always model the statistical 
distribution of the given information class with a known simple distribution 

function. In this case, the information class can be decomposed into severa.1 
sub-classes, each of which is described with a simple known probability density 

function, such as the Gaussian distribution function. This decomposition of the 
information class into a set of sub-classes can be accomplished using 

clustering in the feature space (Swain 78). These sub-classes generally might 
not correspond to any physically meaningful entity, since they are selected to 

describe the data distributions of the information class in the feature space. 
When there are several sub-classes belonging to one information class, 

significance testing can be performed in following manner. 
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Figure 2.5 Division of Data Set X into Two Subsets, XI and X2.; n1 and m l  are the 
numbers of class-of-interest samples respectively in the subsets XI and 
X2. Similarly, n2 and m2 are the numbers of samples from the class 
"others," found respectively in the subsets XI and X2. 

Suppose there are two sub-classes. Since the statistical characteristics of the 
two sub-classes are assumed available, the given data set X can be divided 

into two subsets, one for "sub-class 1" and the other for "sub-class 2" as i r~  Fig. 
2.4 by applying any classifier, for example, a maximum likelihood classifier. 

Significance testing is applied to each subset to obtain samples which should 
be accepted, and the union of samples accepted from each subset is the result 
of significance testing applied to the given information class. In this approach, 
the optimal acceptance probability is selected separately for each sub-class 
according to the relative distributions of samples in the corresponding subset. 
The estimating capability of the optimal acceptance probabilities for each sub- 
class will certainly be useful when there are a large number of sub-classes and 
the relative distributions of samples in each sub-class are quite different from 
each other, since one doesn't need to undertake the manual selection process 

of proper acceptance probability for each sub-class. 

The optimality of the estimated acceptance probabilities can be assessed either 

at the sub-class level, or at the information class level. If the acceptance 
probabilities are selected to achieve the given optimality independently in each 
sub-class, then they are said to be optimal at the "sub-class level." On the other 
hand, the acceptance probabilities are called optimal at the "information class 
level" if they attain the given optimality for the union of accepted samples from 
the sub-classes. The acceptance probabilities optimal at the sub-class level do 
not necessarily retain the same optimality at the information class level. 

Suppose a1 and a2, the optimal acceptance probabilities respectively for sub- 

class 1 and 2, are to be estimated employing the generalized total probability of 
error criterion of eq. (2.1 1 .c), written as E3(al,a2), at the information class level. 
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where q(a l  ,a2) is the omission error of the given information class with al and 

a2 for sub-classes 1 and 2. Similarly, e2(al ,a2) is the corresponding 
commission error. Omission error E, (al ,a2) has two components. One is &:(al), 

the omission error occurring in sub-class 1 and the other, €:(az), the same 
omission error occurring in sub-class 2. Likewise, the commission error 
q(a l  ,a2) can be computed with two components, &a1) and &;(a2), commission 

errors occurring respectively in sub-class 1 and 2. 

After a few a1gebra.i~ operations, E3(al,a2) in eq. (2.15) can be written in terms 

of the criterion in eq. (2.1 1 .c) evaluated at each sub-class as, 

where, Eg(a1) = A nl &:(al) + n i  &:(al) (2.17.b) 

1 1 - "l and n 2 = 1 -  nl 
nl - n1+ n2 

Note that minimization of eq. (2.17.a) can be achieved by minimizing E3(al) 

and E3(a2) given in eq. (2.17.b,c) independently. Therefore, in the case of the 

(generalized) total classification error criteria in eq. (2.1 1 .b,c), estimating the 
optimal acceptance probability independently for each sub-class at the sub- 

class level always leads to the same optimality also at the information class 

level. Hence, there is no inconsistency in the optimality for those cases. The 
result in eq. (2.1 7.a) is also applicable to the class-averaged classification error 
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criterion if the relative weight A is substituted by nothers/nint. AS seen in E3(al) 
and E3(a2) in eq. (2.1 7.b1c), this substitution of the A value doesn't lead to the 

same class-averaged classification error criterion in sub-class 1 , 2, unless the 
following two equations are satisfied. 

~ - n k = n i  and A * ~ = x $  (2.18.a) 

These two equations above can be satisfied if the following relation holds. 

Therefore, unless eq. (2.1 8.b) is satisfied, optimality in the sense of the class- 
averaged classification error criterion at the information class level cannot be 
achieved by applying the same criterion to each sub-class. However, optimality 
based on the class-averaged classi~fication error criterion can be accomplished 
at the level of the information class if the generalized total classification error 
criterion with A satisfying eq. (2.1 8.a) is used in each sub-class. 

2.4.4 Probability Density Function Estimation 

In computing an optimum acceptance probability a, density estimation is 
required to compute N(a) in eq. (2.4). Since N(a) is the expected number of 
samples accepted with acceptance probability a, it can be obtained, in the most 

simplistic way, by counting the number of samples whose test statistic is less 
than the threshold ha while varying the acceptance probability a. The first order 

derivative of N(a) is then obtained by numerical differentiation of N(a). Even 

though this method is quite simple and fast enough, it has some drawbacks. For 
example, the counting nature in estimation causes discontinuities in N(a) and 

consequently, brings difficulties in calculating the derivative. Furthermore, 
different ways of discretizing the interval [0,1] of a in counting samples can 
produce different estimates of N(a). This is similar to the problem of histogram- 

based density estimation where the estimated density can vary depending on 
bin definition (Silverman 86). Due to these considerations, the proposed 
algorithm uses a kernel-based Parzen density estimate which has been not 
only rigorously studied but also has been widely applied in many fields of 
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application. If the kernel function is denoted as K(a), then, the p~robability density 
estimate fy(s), s 2 0 can be written as, 

fy (s) = &c K[?] 
Y 

where, K(s)ds = 1 

The summation in eq. (2.19) is carried out for all y's, y = xTx, x E X and N is the 

total number of data points in X. The variable h in eq. (2.1!3), is called the 
window size (or, smoothing parameter) of the kernel function. This determines 
how much smoothing is allowed in estimating the density. Selecting an 
appropriate window size h can be cumbersome sometimes since an improper 
window size h can result in either under-smoothing, or over-smoothing which 
might cause some degree of uncertainty in locating the opti~nal acceptance 

probability. It is possible to compute an optimal window size which is dependent 
on the kernel function, dimensionality and the number of sarr~ples N (p.86 in 
(Silverman 86)). 

Since the values of y are all non-negative, the domain of the density estimation 
is [O,+-). In this case, the use of a symmetric kernel function such as the 

Gaussian kernel function will result in underestimation near zero since there are 
no samples in the negative region. This underestimation can be avoided by 

using positive reflection techniques (Boneva et a/. 71) in which a new density 

estimate is obtained with an augmented set of y's. Suppose fy(s) is the density 
estimate acquired with the augniented data set. Then, the desired density 
estimate, fy(s), in the region of s 2 0, is obtained by doubling the density 

estimate acquired with the augmented data set as, 

fY(s)=2&(s) i fs>O 

fy (s) = 0 otherwise 

The augmented data set is obtained by including the reflected values of y's 
against the origin 0 additionally in the original set of y values. 
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2.5 Experiments and Discussion 

To test the performance of the proposed estimating algorithm for optimal 
acceptance probability in significance testing, experiments were carried out with 
both simulated and real data. In the case of simulated data, several bivariate 
Gaussian data sets were generated to simulate data sets with a wide range of 
separability. In the case of real data, Landsat Thematic Mapper (TM) data were 
used. For the optimality assessment, the class-averaged classification error and 
the total classification error criterion were used. 

2.5.1 Experiment with Simulated Data 

For a test with simulated data, 1000 samples were generated for the class of 
interest to be bivariate Gaussian (i.e., the dimensionality 9 = 2) with zero mean 
and an identity covariance matrix. For the class "others," 2000 samples were 
generated to be bivariate Gaussian with a mean [d,OIT , d > 0, and an identity 

covariance matrix. 

N, 1 samples N2 samples 

Figure 2.6 Simulated 2 Class, 2 Dimensional Gaussian Data Sets.; Ci,, : 1000 
T samples in MVNIOq, IqXq], Cothers : 2000 samples in MVN[[d,O] , IqXq], 

(N1 = 1000, N2 = 2000, q=2). 

With this set-up, the exact amount of overlap between the two distributions can 
be calculated. The term "overlap" is defined here as the volume which is shared 
by the two probability density functions. That is, when ,the distance between two 
classes is d, the overlap between the two classes is given as, 
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By varying d, ,the distance between the two class means, data sets with different 
degrees of overlap can be simulated. d was increased from 0.1 to 5 in steps of 
0.1. If d = 0.1, there is 96.02% of overlap between the two distributions, and in 
the case of d=5, there is only 1.24% of overlap. To avoid any random error due 
to the data generation process and its effect on evaluating the experimental 
result, data sets were generated 50 times with different seed numbers, and the 

averaged res~~ l t  was used in comparison. 

0.0  0 . 1  0.2 0 .3  0.4 0.5 0 .6  0.7 0.8 0.9 1.0 

Acceptance Probability 

Figure 2.7 Omission and Commission Errors with Respect to Acceptance 
Probability.; d is the distance between two class means. 

At first, various different acceptance probability a's were examined in 
significance testing by increasing a from 0.01 to 0.99 in steps of 0.01 to see its 

dependence on a as shown in Fig. 2.7. As expected, the omission error 
decreased linearly with respect to tha acceptance probability with slope = -1. In 

the case of commission error, the slope of increase depended on the degree of 
overlap between the two distributions. When d = 0.5 which resulted in 80.26% 

of overlap between the two distributions, the commission error in~creased almost 
linearly with respect to a. This is due to the substantial closerless of the two 

distributions. When there was effectively no overlap such as in the case d = 4.5 
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(2.44% of overlap), the commission error stayed very low, virtually insensitive to 
a. The resulting class-averaged error in eq. (2.1 1 .a) and the total probability 

error in eq. (2.1 1 .b) are shown in Fig. 2.8 and 2.9. 

0.0 0 . 1  0.2 0.3 0.4 0.5 0 .6  0.7 0 .8  0 .9  1.0 
5 

Acceptance Probability 

Figure 2.8 Class-Averaged Error versus Acceptance Probability a. ; d is the 
distance between the two class means. 

0.0  0 . 1  0 .2  0.3 0 .4  0.5 0.6 0 .7  0.8 0.9 1.0 

Acceptance Probability 

Figure 2.9 Total Classification Error versus Acceptance Probability a.; (1 is the 
distance between the two class means. 
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In the cases of d=0.5 and d=1.0, the total probability error and the class- 
averaged error had very gentle slopes. 

To make a comparison with the estimated values, optimal acceptance 
probabilities were manually selected by changing a from 0.01 to1 0.99 in steps of 

0.01 and choosing the best one based on the selected optimality criterion. 
These manually selected were denoted by "scanned" values and compared 

with the estimates obtained by the proposed algorithm. 

The estimated acceptance probabilities with both the class-averaged and the 
total classification error criteria are shown in Fig. 2.10. When applying ,the total 
classification error criterion, the true value of prior probabilities were used. 

/ With to& classification 
error criterion I 

d, Distance Between Class Means 

Figure 2.10 Estimated Optimal Acceptance Probability versus d, the Distance 
Between Two Class Means.; Solid lines show the manually selected 
acceptance probabilities. Dotted lines show the estimated optimal 
acceptance probabilities using the proposed method. h is window size. 

The density estimate required for N(a) was obtained employing a Gaussian 

Kernel-based parzen density estimate with the data set augmented by positive 

reflection (Boneva et a/. 71). Even though an appropriate kernel window size h 
was computed as 0.2 based on (Silverman 86), several different values were 
also tested to see its effect on the estimated acceptance prob'abilities. In Fig. 
2.10, the estimated values followed very closely those mariually selected 
especially when the distance d was large. The optimal acceptance probability 
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based on the total classification error criterion was near 0 when d was not large 
enough, since the total classification error was an increasing function of 
acceptance probability for those small d values as seen in Fig. 2.9. For 

example, when d < 1.0, the number of commission errors increases a.lmost at 
,the same rate as that by which omissions decreased due to the significant 

amount of overlap between the two class distributions as seen in Fig. 2.7. 
Because the prior probability of Cint is less than that of Cothers, the omission 

error is weighted less than the commission error under the total classification 
error criterion. This explains why the acceptance probabilities when d < 1.0, 

were very small under the total classification error criterion. When d <: 1.0 with 
the class-averaged classification error criterion, some degree of difference was 
observed between the estimated and the manually selected value. Since the 
curve of class-averaged classification error was nearly flat when d < 1.0 as seen 
in Fig. 2.8, an exact location of the minimum of the class-averaged classification 
error was hard to pinpoint and thus, there was a relatively large standard 
deviation not only in the estimated but also in the manually selected optimum a 

values as shown in Fig. 2.1 1. 

d, Distance Between Class Means 

Figure 2.1 1 Standard Deviation of Optimal Acceptance Probabilities versus the 
Distance Between the Two Class Means.; Window size h=0.2. 

In spite of those discrepancies in estimated a values when d < 1.0, there was 

not much difference in the resulting class-averaged classification errors. Note 
that the slope of the total classification error curve in Fig. 2.9 was nearly zero in 
the lower acceptance probability region. For the same reason, in Fig. 2.1 1, there 
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was observed also relatively large deviations under the total classification error 

criterion in the region 1 .O < d < 2.0. 

Since less than 1% of difference in classification errors were observed under 
both optimality error criteria by varying the window size, clas,sification results 
are shown only for h=0.2 in following Fig. 2.1 2 and 2.13. 

d, Distance Between Class Means 

Figure 2.12 

Figure 2.13 

Class-Averaged Classification Error versus the Distance Between the 
Two Class Means.; Acceptance probabilities were estirr~ated with the 
class-averaged classification error criterion. "REL-ML" is a result with the 
relative maximum likelihood classifier. Window size h = 0.2. 

CP 
u 0.0 0.5 1.0 1 .5  2.0 2.5 3.0 3 .5  4.0 4.5 5.0 

d, Distance Between Class Means 

Total Classification Error versus the Distance Between the Two Class 
Means.; Acceptance probabilities are estimated with the total 
classification error criterion. "REL-MAP" is a result with the relative 
maximum a posteriori classifier. W~ndow size h = 0.2. 

The significance test deals with only the values of the selected test statistic, 
therefore there is a dimensionality reduction of feature vectors to one- 
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dimensional space of the selected test statistic, and this causes loss of valuable 
information in classification. To see the effect of dimensionality reduction, a 
(relative) maximum likelihood classifier (denoted as "REL-ML") and a maximum 

a posteriori classifier (denoted as "REL-MAP") were designed in the original q- 
dimensional space with known class statistics of Cint and Cothers. Their 

classification results were also included in Fig. 2.12 and 2.13 to see the effect of 
dimension reduction. Under both optimality conditions, the estimated optimal 
acceptance probabilities resulted in almost the same performances with 

manually selected values. There was a maximum of about 12% error increase 
due to the dimensionality reduction. 

To see the effect of the data reflection on estimating optimal acceptance 
probabilities, the same experiment was performed, but without data reflection. 
Density estimation without reflected data would be expected to introduce 
underestimation of the probability density fy(y) near y = 0 due to using a 

symmetric kernel function with only positive y values. This underestimation in 
fy(y) and subsequently in N ( a )  near y = 0 would cause underestimation of 

commission errors, therefore, the optimal acceptance probability estimates 

would be expected to be larger than they should be. Since the Gaussian kernel 
function rapidly decreases as its argument becomes larger, this effect of under- 
estimation would exist only in the region near y=O. Figure 2.14 shows the 
differences in estimated acceptance probabilities, computed as, Orwithout positive 

reflection ' s i t h  positive reflection. 

C 0 .0  0 . 5  1.0 1 .5  2.0 2.5 3 .0  3.5 4.0 4 .5  5.0 

d. Distance Between Class Means 

Figure 2.14 Differences in Acceptance Probabilities with and without Data 
Reflection under the Total Classification Error Criterion.; I1 is the 
kernel window size. 
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No difference was observed with the class-averaged classification error 
criterion. However, there were differences in ,the case of the total classification 
error criterion. As seen in Fig. 2.14, the estimated optimal acceptance 
probabilities without data reflection were larger by as much as 0.2 compared to 
those with data reflection in ,the region of d c 1.5. However, there was no 
significant difference when d > 1.5. Greater differences were observed as the 
window size h became larger, since the large window size would have more 
reflected samples in the summation of the kernel function values. The reflection 
technique in estimating a probability density function is observed to be 
necessary if the acceptance probabilities are expected to be near zero. 

s 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3 .5  4.0 4.5 5.0 

d, Distance Between Class Means 

Figure 2.15 Corresponding Differences in the Total Classification Errors. 

Figure 2.1 5 shows the corresponding differences in the total cla.ssification error 
without data reflection. The discrepancies in acceptance probabilities due to 
lack of data reflection in Fig. 2.14 cause as much as 5% difference in the total 
classification error in the region d c 1.5. 

2.5.2 Experiment with Real Data 

For a test with real data, a Landsat Thematic Mapper data set which was 
acquired over an agricultural area in Tippecanoe County, Indiana in July, 1986 
was used with all seven features (i.e., the dimensionality 9 = 7). From the 
available ground truth data, 4 different information classes - c:orn, soybeans, 
wheat and alfalfaJoats - were identified. About 10% of the samples were 
randomly selected from each information class to serve as training samples. 
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The total number of training samples were 2124, and there were 21,924 test 
samples. Figure 2.16 shows the July data set and Fig. 2.17 is the associated 

ground truth map. 

- - - - - 

  and 1 (0.45 - 0.52 pm) Band 2 (0.52 - 0.60 pm) Band 3 (0.63 - 0.69 pm) 

- - - -  

Band 4 (0.76 - 0.90 pm) Band 5 (1.55 - 1.75 pm) Band 6 (2.0a1 - 2.35 pm) 

Band 7 (1 0.4 - 12.5 pm) 

Figure 2.16 July Thematic Mapper (TM) Data Set. 
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Since the information classes might consist of several sub-classes, clustering 
was performed on the training samples belonging to each information class to 
obtain a set of constituent sub-classes, each of which can be described with a 
multivariate normal distribution (Swain 78). 

0 
. Corn 

Soybeans 

B Wheat 

AlfalfdOats 

0 Unknowns 

Figure 2.1 7 Associated Ground Truth Map. 
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Table 2.2 Training and Test Samples of Landsat Thematic Mapper Data. 

Information Number of 
Classes Sub Training Test 

classes Samples Samples 

Corn 2 913 9371 
Soybeans 2 824 8455 

Wheat 4 181 1923 
Alfalfaloat 4 206 21 75 

Total 12 2124 21 924 

In a manner similar to the previous experiment with the simulated data, the 

acceptance probability was increased from 0.01 to 0.99 in steps of 0.01 to see 
how the orrtission and commission, class-averaged and total classification 
errors would change with respect to acceptance probabilities. The graphs of 

classification error versus acceptance probability are shown in Fig. 2.1 8 - 2.20. 

The rate of decrease in omission error with respect to increasing acceptance 
probability can give some indication of how representative the training samples 
are. That is, i f  the training samples are very representative of the samples 
belonging to that class, then, the omission error will decrease almost linearly 
with respect to acceptance probability. The commission error curve also is able 

to show how separable the given class of interest is from the others class. Sub- 
class 2 of corn and sub-class 3 and 4 of wheat seemed to be much more 

separable than the others since the commission error curves were virtually not 
increasing with respect to increasing acceptance probability. Commission error 

increased rather sharply in all sub-classes of soybeans and alfalfa/oats. 
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Figure 2.18 Classification Errors versus Acceptance Probability in Significance 
Testing With Landsat Thematic Mapper Data (Class; corn and 
soybeans). (a) Subclass 1 of corn. (b) Sub-class 2 of colm. (c) Sub- 
class 1 of soybeans. (d) Sub-class 2 of soybeans. 
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Figure 2.19 Classification Errors versus Acceptance Probability in  
Significance Testing with Landsat Thematic Mapper Data (Class 
wheat). (a) Sub-class 1 of wheat. (b) Sub-class 2 of wheat. (c) 
Subclass 3 of wheat. (d) Sub-class 4 of wheat. 
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Figure 2.20 
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- Omission Error I - Commission Error - Class-Averaged Classification Error 

Classification Errors versus Acceptance Probability in Significance 
Testing with Landsat Tkinatic Mapper Data (Class alfalfa/oats). (a) Sub- 
class 1 of alfalfdoats. (b) Sub-class 2 of alfalfaloats. (c) Sub-class 3 of 
alfalfdoats. (d) Sub-class 4 of alfalfa/oats. 
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The class-averaged classification error criterion in eq. (2.1 1 .a) was applied to 
each information class to estimate the optimum acceptance probabilities at the 
sub-class level, and the results are shown in Table 2.3. The performances in 
information class level were obtained by assessing omission and commission 
errors after optimal acceptance probabilities were selected separately for each 

sub-class. A Gaussian kernel function was used in density estimation with the 
positive reflection technique. Although an optimal window size can be 
computed as in (Silverman 86), various window sizes (h=0.1 - h=0.6 in steps of 
0.1) were examined to observe virtually no differences. The suggested optimal 
window sizes (Silverman 86) were in the range of 0.14 - 0.27. The results 
reported here were obtained with h=0.5. 

In order to make a comparison with the estimated optimal acceptance 
probability, a specific value which attained the given optimality condition was 
manually determined as before. This value is referred as "optimum acceptance 
probability determined by scanning" in Table 2.3. As seen in the table, the 

estimated values of optimal acceptance probabilities using the proposed 
method agreed quite well with those manually selected. The class-averaged 
classification errors evaluated for each sub-class with estimated optimum 
acceptance probability were also very close to those obtained with the manually 
selected acceptance probabilities. The maximum difference between the 

estimated and the manually selected acceptance probabilities was only 0.03, 
except for the sub-class 4 of "alfalfa/oatsW which had a difference of 0.08. The 
corresponding difference in the class-averaged classification error in this sub- 
class was only 0.34%. 

Inspecting Fig. 2.20.(d) reveals that the class-averaged classification error was 
not changing much in the region of 0.7 c a c 0.9. The resulting class-averaged 

classification errors of the su b-classes with the estimated acceptance 

probabilities were all equal or slightly larger than those with manually selected 
optirnal acceptance probabilities. 

The proposed algorithm was also applied at the information class level as 
reported in Table 2.4, and its results were seen to be also very satisfactory since 
the acceptance probabilities deviated no more than 0.04 and the corresponding 
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maximum difference in the class-averaged classification error was less than 

1 %. 

Table 2.3 Significance Testing of Landsat Thematic Mapper Data with the Class- 
Averaged Classification Error Criterion Applied at the Sub-class Level. 

All errors are in percent units 

Corn 2 1 0.99 4.33 2.66 3.50 3.19 1 0.98 5.46 1.86 3.66 2.99 

Optimum acceptance probability 

Classes 

Corn 1 

Estimated optimum acceptance 

determined by scanning 

a* q(a') c2(a1) ~ ~ ( a * )  E2(a*) 

0.96 5.12 7.84 6.48 5.33 

Corn 

Soybeans 1 

Wheat4 0.99 6.39 2.97 4.68 3.10 0.99 6.39 2.97' 4.68 3.10 

Wheat - 10.45 5.38 7.92 5.82 - 12.27 4.65 8.46 5.31 

probability 

a* el(ab) c2(a') El(a*) E2(a') 

0.98 3.55 10.34 6.95 4.09 

Soybeans 2 

Soybeans 

Wheat 1 

a : Optimum acceptance probability 

&,(a*) : Omission error with the acceptance probability a* 

c2(a0) : Commission error with the acceptance probability a* 

E l  (a') : Class-averaged classification error with the acceptance probability a' 

E2(a') : Total classification error with the acceptance probability a' 

- 4.64 2.79 3.72 3.58 

0.94 8.73 8.87 8.80 8.77 

- 4.71 2.0;' 3.39 3.19 

0.96 7.29 10.50 8.89 8.27 

0.85 17.31 11.54 14.43 13.05 

- 12.94 11.17 12.05 11.85 

0.97 10.57 22.53 16.55 19.35 

0.87 15.72 13.25 14.49 13.90 

- 11.43 12.816 12.14 12.31 

0.95 14.16 20.0;B 17.12 18.50 
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Table 2.4 Significance Testing of Landsat Thematic Mapper Data with 
the Class-Averaged Classification Error Criterion Applied at 
the Information Class Level. 

All errors are in percent units 

Corn 2 1 0.98 5.46 1.86 3.66 2.99 1 0.97 6.38 1.54 3.96 3.06 

Classes 

Corn 1 

determined by scanning 
a' (a*) &2(af) E l  (a') E2(a*) 

0.99 2.35 13.48 7.92 3.24 

Corn 

Soybeans 1 

Wheat 2 1 0.99 11.36 11.95 11.66 11.76 1 0.99 11.36 11.95 11.66 11.76 

probability 

a' el (a') c2(a') E l  (a') E2(a0) 

0.99 2.35 13.48 7.92 3.24 

Soybeans 

Wheat 1 

Wheat4 0.99 6.39 2.97 4.68 3.10 0.96 12.43 1.62 7.03 2.05 - 
Wheat - 8.48 5.94 7.21 6.16 - 12.38 3.93 8.1,5 4.67 

- 4.24 2.15 3.19 3.04 

0.99 3.95 16.17 10.06 7.69 

a : Optimum acceptance probability 

- 4.79 1.84 3.32 3.10 

0.98 5.18 13.02 9.10 7.58 

- 13.18 8.96 11.07 10.58 

0.99 6.34 28.05 17.19 22.27 

E,  (a') : Omission error with the acceptance probability a' 

- 13.80 8.52 11.16 10.55 

0.97 10.57 22.53 16.55 19.35 

~ ~ ( a ' )  : Commission error with the acceptance probability a' 
El (a') : Class-averaged classification error with the acceptance probability a' 

E2(a*) : Total classification error with the acceptance probability a* 
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The class-averaged classification errors evaluated for each information class 

are compared in Fig. 2.21. Note that, as discussed in previous section, imposing 
the class-averaged classification error optimality criterion at the sub-class level 
didn't necessarily hold the same optimality at the information class level as 
seen in Fig. 2.21 in the corn and alfalfa/oats classes. 

-- 
G 

0 
Corn Soybeans Wheat Al fa1 fa/Oats 

Scanned RELML 

Information Classes 

Figure 2.21 Comparisons of Class-Averaged Classification Errors Evaluated for Each 
Information Class.; Optimal acceptance probabilities were selected using 
the class-averaged classification error criterion. The first two columns for 
each information class show the class-averaged classification errors 
based on the optimal acceptance probabilities at the sub-class level. The 
next two columns correspond to the case when the optimal acceptance 
probabilities are acquired at the information class level. "REL-ML" is the 
result obtained with a (relative) maximum likelihood classifier designed 
with all 12 sub-classes. 

With all 12 sub-classes and their class statistics, a relative maximum likelihood 
classifier in the original seven dimensional space was designed and its result 

(denoted by "REL-ML") is also included in Fig. 2.21 to show the effect of 
dimensionality reduction. In the corn and wheat classes, there seemed to be not 

much information loss due to dimensionality reduction. However, there was as 

much as 3 - 5% of class-averaged classi.fication error increase in soybeans and 
alfalfaloats. 

Finally, the total classification error criterion was used with the relative weight A 
= 1 and these results are presented in Table 2.5. 
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Table 2.5 Significance Testing of Landsat Thematic Mapper Data with the 
Total Classification Error Criterion. 

Optimum acceptance probability Estimated optimum acc'eptance 

Classes 

Corn 1 

Corn 2 

0.74 25.63 6.59 16.11 11.57 0.67 31.40 4.84 18.12 11.78 
P 

Soybeans - 15.21 7.49 11.35 10.45 - 19.11 5.63 12.37 10.79 

Wheat 1 0.76 29.18 10.11 19.65 15.19 0.76 29.18 10.11 19.65 15.19 

Corn 

Soybeans 1 

determined by scanning 

a' (a') &*(a') E l  (a') Ep(aa) 

0.99 2.35 13.48 7.92 3.24 

0.98 5.46 1.86 3.66 2.99 -- 

probability 

a' E~ (a') ~ ~ ( a ' )  E, (a') E2(a') 

0.99 2.35 13.48 7.92 3.24 

0.97 6.38 1.54 3.96 3.06 - 
- 4.24 2.15 3.19 3.04 

0.98 5.18 13.02 9.10 7.58 

Wheat 2 

Wheat3 

Wheat4 

- 4.79 1.84 3.32 3.10 

0.96 7.29 10.50 8.89 8.27 

Wheat 

Alfalfa/Oats 1 

AlfalfdOats 2 

AlfalfdOats3 

AlfalfdOats 4 

AlfalfdOats 

0.91 21.21 4.67 12.94 9.99 

0.80 28.97 1.14 15.06 3.43 

0.86 20.96 0.78 10.87 1.58 

0.91 21.21 4.67 12.94 9.99 

0.74 33.43 0.80 17.11 3.47 

0.69 39.08 0.35 19.71 1.88 

a : Optimum acceptance probability 

&,(a') : Omission error with the acceptance probability a' 

e2(a') : Commission error with the acceptance probability a' 
E l  (a*) : Class-averaged classification error with the acceptance probability a' 

~ ~ ( a ' )  : Total classification error with the acceptance probability a' 

- 24.54 1.67 13.11 3.67 

0.58 48.88 11.25 30.06 23.43 

0.00 100.00 0.00 50.00 5.64 

0.07 94.77 0.12 47.45 5.23 

0.89 13.57 28.09 20.83 19.80 
ppp--p---P 

- 65.20 1.26 33.23 7.56 

- 30.68 1.31 16.00 3.87 

0.48 57.34 7.61 32.47 23.71 

0.00 100.00 0.00 50.00 5.64 

0.03 97.91 0.08 48.99 5.36 

0.89 13.57 28.09 20.83 19.80 

- 67.86 1.03 34.45 7.62 
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Notice that applying this error criterion at the sub-class level always attains the 

same optimality at the information class level, too. In most of the sub-classes, as 
in previous cases, the estimated optimal acceptance probat~ilities were very 
close to those manually selected. In the case of sub-classes 2, and 3 of 
alfalfdoats, optimal acceptance probabilities were found to be very small since 
the total classification errors in these sub-classes were rapidly increasing with 
respect to acceptance probabilities. 

Corn Soybeans Wheat Alfalf,afOats 

Information Classes 

Figure 2.22 Comparison of Total Classification Errors Evaluated at tlhe Information 
Class Level.; Optimal acceptance probabilities were selected using the 
total error criterion. 

Total classification errors evaluated for each information class are presented in 
Fig. 2.22 which shows a very good matches between total classification errors 

obtained with "true" and estimated optimal acceptance probabilities. 

For visual comparison of performances, Fig. 2.23 - 2.26 show the locations of 

the samples identified by the sig~ificance testing and the relative maximum 
likelihood classifier (REL-ML) which is included to see the effect of 
dimensionality reduction of feature vectors. 
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Figure 2.23 Results for the Class "Corn" Samples. (a) Ground truth location of corn 
samples. (b) Significance testing with acceptance probability manually 
selected under the class-averaged error criterion at sub-class level. (c) 
Significance testing with acceptance probability manually selected under 
the class-averaged error criterion at information class level. (d) 
Significance testing with acceptance probability manually selected under 
the total error criterion. (e) Relative maximum likelihood classifier (REL- 
ML). (f) Significance testing with acceptance probability estimated under 
the class-averaged error criterion at sub-class level. (g) Significance 
testing with acceptance probability estimated under the class-averaged 
error criterion at information class level. (h) Significance testing with 
acceptance probability estimated under the total error criterion. 
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Figure 2.24 Results for the Class "Soybeans" Samples. (a) Ground ltruth location of 
soybeans samples. (b) Significance testing with acceptance probability 
manually selected under the class-averaged error criterion at sub-class 
level. (c) Significance testing with acceptance probability manually 
selected under the class-averaged error criterion at information class 
level. (d) Significance testing with acceptance probability manually 
selected under the total error criterion. (e) Relative maximum likelihood 
classifier (REL-ML). (1) Significance testing with acceptance probability 
estimated under the class-averaged error criterion at sub-class level. (g) 
Significance testing with acceptance probability estimated under the 
class-averaged error criterion at information class level. ~(h) Significance 
testing with acceptance probability estimated under the total error 
criterion. 
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Figure 2.25 Results for the Class "Wheat" Samples. (a) Ground truth location of wheat 
samples. (b) Significance testing with acceptance probability manually 
selected under the class-averaged error criterion at sub-class level. (c) 
Significance testing with acceptance probability manually selected under 
the class-averaged error criterion at information class level. (d) 
Significance testing with acceptance probability manually selected under 
the total error criterion. (e) Relative maximum likelihood classific?r (REL- 
ML). (f) Significance testing with acceptance probability estimated under 
the class-averaged error criterion at sub-class level. (g) Significance 
testing with acceptance probability estimated under the class-averaged 
error criterion at information class level. (h) Significance testing with 
acceptance probability estimated under the total error criterion. 
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Figure 2.26 Results for the Class "Alfalfa/OatsW Samples. (a) Ground truth location of 
alfalfa/oats samples. (b) Significance testing with acceptance probability 
manually selected under the class-averaged error criterion at sub-class 
level. (c) Significance testing with acceptance probability manually 
selected under the class-averaged error criterion at information class 
level. (d) Significance testing with acceptance probability manually 
selected under the total error criterion. (e) Relative maximum likelihood 
classifier (REL-ML). (f) Significance testing with acceptance probability 
estimated under the class-averaged error criterion at sub-class level. (g) 
Significance testing with acceptance probability estimated under the 
class-averaged error criterion at information class level. ~:h) Significance 
testing with acceptance probability estimated under the total error 
criterion. 
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The significance testing procedure produced reasonably good classification 
maps, except for the classes, soybeans and alfalfaloats, compared to the 
relative maximum likelihood classifier, which not only requires a complete list of 
classes to be defined and their class statistics computed, but also classifies 
samples in the original feature space without dimensionality reduction. The 

estimated optimum acceptance probabilities produced classification maps 
which were hardly differentiable with those obtained with manually selected 
optimum acceptance probabilities. 

To see the effect of data reflection on the estimation of acceptance probabilities, 

the same experiments with both class-averaged and total classification error 
criteria were performed with varying window sizes (h= 0.1 - 0.6 in steps of 0.1) 

without data reflection. There were observed no differences except of sub-class 
3 of alfalfa/oats with h=0.6 where the optimum accept probability without data 
reflection was estimated as 0 instead of 0.03 under the total classification error 
criterion. Data reflection would change the density estimate values only where 
the ( x ~ x ) ' . ~  values are less than about 3-4 times the selected window size, h, 
due to the exponential term in the Gaussian kernel function. Considering a 
( x ~ x ) ' . ~  value corresponding to an acceptance probability a= 0.5 in the seven 

dimensional space is 2.52, which is only comparable to 4 times the largest 

window size h=0.6. In most of the sub-classes except for sub-classes ,2 and 3 of 
alfalfaloats, the estimated acceptance probabilities would not be affected by 
data reflection since the estimated acceptance probabilities were mostly much 
larger than 0.5. 

2.6 Conclusions 

In this chapter, a problem of estimating the optimal acceptance probability in 
significance testing was addressed. Estimating the optimal acceptance 
probability using a given data set should be very useful in applying a 
significance testing procedure. As optimality criteria, both class-averaged 
classification error and generalized total classification error criteria were 
considered. It is shown that the generalized total classification error criterion 
applied to each sub-class also attains the same optimality at the information 
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class level. To have an optimal class-averaged classification error criterion at 

the information class level, however, the generalized total classification error 
criterion with a relative weight should be applied to each sub-class. If the class 
of interest doesnlt need to be decomposed into sub-classes, the class-averaged 
classification error criterion can be applied even without the knowledge of prior 

probabilities. A data reflection technique required in mixture density estimation 
was observed to be useful when the underestimation of a density function in the 
region near 0 in the one-dimensional space of the selected test statistic causes 
overestimation of optimal acceptance probabilities. This estimation algorithm for 

acceptance probability should be very useful when one doesn't have enough 
prior knowledge about the data set to select the proper acceptiance probability. 
This automatic estimation procedure can replace the lengthy and tedious 

process of manual selection of acceptance probability especially when the 
given class of interest consists of a large number of sub-classes. 
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CHAPTER 3 

PARTIALLY SUPERVISED CLASSIFICATION 
WITH UNSUPERVISED CLUSTERING 

3.1 Introduction 

In this chapter, partially supervised classification with only one known class is 
formulated as a relative classification problem. Advantages of both reduced 

requirements for necessary prior knowledge in an absolute scheme and the 
potentially robust and powerful discriminating capability of a relative one are 
sought by developing an automatic mechanism for extracting statistical 
information corresponding to the "others" class without recourse to prior 

knowledge supplied by 'the data-analyst. Even though the classifiers to be 

proposed in this chapter make decisions ultimately on a relative basis, the 
terminology "absolute" classifier will be interchangeably used with partially 
supervised classifier to emphasize its reduced dependence on prior knowledge. 

The class "others" are decomposed into a set of sub-classes so that the density 

function of each sub-class can be modeled with a known parametric density 
function, for example, with the Gaussian density function. This decomposition is 
achieved through a weighted unsupervised clustering procedure which 

subsequently develops the unknown class definitions and their corresponding 

class statistics through a unsupervised clustering. Once the class statistics of ,the 

constituent components of the "others" class are found, conventional relative 

classifier such as a maximum likelihood classifier can be usecl to identify the 

samples belonging to the class of interest. 
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3.2 Partially Supervised Classification with Unsupervised Clustering 

The given partially supervised classification problem with only one known class, 
which is the only class of interest, can be considered as an L class relative 
classification problem with unknown number L. The unknown sub-classes 
pertaining to the "others" and their statistical characteristics are developed using 
unsupervised clustering. Once the class statistics are developed, any relative 
classification scheme can be put to use. This problem is different from that of 
general unsupervised clustering in the following senses: (1) One is interested in 
finding samples of or~ly one particular cluster (or class) and, one has prior 

statistical information, such as the probability density function of that class, or has 
a representative set of training samples of that class from which the statistical 
properties can be estimated. (2) The clusters corresponding to the class "others" 
do not need to be mea~~ingful as useful informational classes and, the confusion 

between those clusters are not important as long as they are differentiable from 
the class of interest. Under this approach, the mixture density fx(x) is written as a 

weighted sum of L probability density functions as, 

where, nl + --- + n~ = 1 

and ~k and fx (a  I Ck) are the prior probability and probability density function of the 
k'h class, respectively, k = 1, --- , L. The notation of C1 and C,, ---, C, means that 
C1 = Cint and C2, ---, CL are the sub-classes of Cother, which will be found through 

unsupervised clustering. In the given partially supervised classification, only 
f,(xlC,) is known. 

Any unsupervised clustering procedure (Fukunaga 90) can be used to decide the 
number of classes, L and to obtain the initial specification of clusters which can 
initiate subsequent supervised clustering. Special care should be taken so that 
there is no confusion between Cint and the clusters corresponding to Cothers In 
other words, the cluster statistics of Cothers should not be biased by the samples 
belonging to C,. One conceivable approach for reducing the bias is to find the 
clusters of Cothers by performing clustering with a subset of data in which a 
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significant portion of the C1 samples are removed through significance testing. In 

addition to the difficulty in selecting the proper significance level, however, the 
approach still has the bias problem, especially when Cothers is not well separated 
from C1. Instead of removirrg the effect of C1 samples in a rathe~r absolute way, it 

is possible to assign to each sample a weight factor which is related to the 
relative likelihood of belonging to Cothers and to use it in the unsupervised 

clustering. 

Let the weight denoted by Fil in eq. (3.2.a) indicate the relative likelihood of 
sample X i  being to Cothers. 

where, Wi l  = n1 fx(xi I C1) 
fx(xi) 

Note that evaluating the weight factor, iil requires 'the additional knowledge of n, 
(or N1 since .n, = N, 1 N, where N, is the total number of samples belonging to the 

class of interest.) and the mixture density fX(xi)'s. Assume for now that the prior x1 
(or, N,) is available (the estimation of N, will be discussed later). Since the 

purpose of this unsupervised clustering is to provide an initial specification of 
clusters to initiate the clustering process, an exact evaluation of the probability 
density ratio in eq. (3.2.b) would not be necessary. A direct estimation of fX(xi) 

through non-parametric density estimation, would require complex computation, 
but an approximation can be obtained by noting that wi1 can be expressed as a 

ratio, 

Assume a data point xi is inside a hypersphere with volume AV. Then, NfX(xi)AV 

in eq. (3.3) can be approximated by, 

The right side of eq. (3.4) is the expected number of data samples found inside 
the hypersphere. Therefore, the approximate value for it can be obtained by 
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counting the number of samples in the hypersphere. In the same way, the 

numerator in eq. (3.3) can be approximated by, 

This is the expected nun-~ber of samples from the class C,, found inside the 

volume AV. This can be computed using the known probability density function 
fx(xlC1). Instead of discretizing the whole feature space by picking a certain value 

of AV and counting the data points inside the hyperspheres, a simple clustering 
routine using a Euclidean distance measure is used to find a set of hyperspheres 
which can effectivelycover the feature space, as in Fig. 3.1. 

Figure 3.1 Computation of Weights Using Clustering.; Clustering is performed to 
find a set of hyperspheres effectively covering the feature space. 

With an appropriate clustering condition, unsupervised clustering can be 
performed to divide the feature space into a set of small hyperspheres which 
cover effectively all given data samples. The critical distance for creating a new 
cluster is set up in such a way that each hypersphere corresponds to a cluster, 
and inside the hyperspheres, the probability density functions, fx(x) and fx(xlCl) 

should not change much. In each hypersphere or cluster, eq. (3.5.a) is computed 

as, 

N l  fx(xi I C1)AV = N1 fx(xolCl)AV 
where, x, E AV 
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xo is a location inside the given hypersphere. The cluster mean is used for xo 
when the probability density f,(*IC1) is evaluated. While the value in eq. (3.5.b) is 
an approximation of the expected number of C1 data points inside the given 

hypersphere, the count of data points inside the hypersphere is an approximated 

value from eq. (3.4). The weight factor is computed using these two values in eq. 
(3.2.a) and eq. (3.3) and this same weight value is assigned to a.ll the data points 

inside that hypersphere. 

With these weight factors, an unsupervised clustering is performed to find the 
initial clusters corresponding to Cothers. Since the weight Vil in eq. (3.2.a) 
indicates the relative likelihood that a data sample is from Cothers, data samples of 
C1 will have very small weights. Any cluster which has most samples with 

negligible weight factors should be deleted since the samples in it are mainly 
from C1. Therefore, the unsupervised clustering with these weights can avoid the 

potential influence of the data points belongirlg to C1 upon new clusters of Cothers. 
For each cluster k corresponding to Cothers, (that is, k = 2, ---, L), the effective 
number of elements in the cluster, Nk is computed as a sum of the weights of 

data samples in the kh cluster as, 

where lk is the index set of the kB cluster (i.e., if i E lk, then Xi E Ck). This effective 

number will indicate the possibility of being part of Cothers. Any cluster with a 

negligible effective number of members is deleted. 

Nk 
R k =  Number of samples in cluster Ck 

The ratio of the effective number to the actual sample number assigned to the 

cluster in eq. (3.6.b) is also checked, and any cluster with a srrlall value of this 
ratio is deleted since most samples In the cluster have negligible weight factors. 
When the number of class-of-interest samples, N1 is under-esti~mated, this ratio 

checking is very important since there are extraneous clusters generated in the 

region where most of the class-of-interest samples are located. This ratio 
checking should also be effective when the class-of-interest samples are 

distributed slightly differently from the known distribution function in some 
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hyperspheres so that the numbers computed with eq. (3.5.b) deviate from those 
statistically expected. Without the ratio-checking, smaller values of eq. (3.5.b) in 
some hyperspheres than they should be would allow generating clusters of 
Cothers which would take a significant portion of class-of-interest samples. 

The effective cluster mean Mk is computed as, 

Note that the influence of data point Xi on the cluster means of Cothers is 

accordingly weighted by Fil. If second order statistics are necessary for 

clustering, then, the effective cluster covariance can also be computed with 
weights in a similar fashion. A few iterations of this unsupervised clustering with 
weights will suffice to provide a list of clusters corresponding to Cothers and their 

initial specifications for the subsequent supervised clustering process. 

Once the number of clusters and the specifications of the clusters are obtained 
through uns~~pervised clustering with weights, then a supervised clustering 
procedure can be started to develop the unknown class statistics. The class 
statistics developed are used in the relative classification scheme chosen. In 
certain cases, especially in analyzing high dimensional feature vectors, second 
order statistics, which are usually characterized by interband correlation 

structures, provide very crucial information to use in classification or clustering. In 
this case, a conventional clustering procedure such as the ISODATA (Hall and 

Ball 65) algorithm is not likely to perform well in developing class statistics since 
the algorithm does not account for interband correlation in the data set. Thus, a 
clustering based on the EM algorithm (Titterington et a/. 85, Redner alnd Walker 
84, Dempster el a/. 77) can be used. That is, in the m'h iteration of clustering, 

weight factors, W ~ ~ [ C ( ~ ) ] ,  for i = 1 ,---, N and k = 1, ---, L ,  are computed as, 

(Expectation - step), 
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A (m) where fx (xi I C1) =fx(xi I C1) for all m, and yt is the set of parameters of the 

unknown probability density functions. For example, if the unknown probability 
density functions are Gaussian, ,then yt = [ x ~ ,  ---, TCL, M2, ---, ML, C2, ---, EL]. With 

the weight in eq. (3.7), a new maximum likelihood estimate of yr, (i.e., G'm+") is 

obtained (A&ximization - step). These two steps are iteratively performed until 

convergence. Each iteration of these two steps is known to increase the joint 

likelihood of data samples (Titterington et a/. 85, Redner and Walker 84, 
Dempster et a/. 77). After convergence, the estimates of yt specify the probability 

density functions of the clusters which can be used in the sub.sequent relative 

classification. 

In summary, a flowchart of the proposed classifier based on clustering is shown 

in Fig. 3.2. 

I Estimate N, I 
Con~pute weight for 

Find initial clusters using 
unsupervised clustering 

Develop class statistics 
and perform relative 

classi.fication 
I 

END 

Figure 3.2 Flowchart of a Partially Supervised Classification with 
Unsupervised Clustering. 

3.3 Estimating the Number of Class-of-Interest Samples 

In order to have the initial cluster definition in the previous sectioln, it is required 
to know N1, the number of samples belonging to the class of interest. Due to the 
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limited prior knowledge and approximation involved in the estimation process, 
typically, an accurate estimation of this is another difficult task. Therefore, it will 

be very desirable to design a partially supervised classification algorithm which is 
not critically dependent on the estimate of this unknown. The objective of this 
section is to obtain a simple and reasonable estimate of N1 which can produce a 

meaningful initial cluster definition, rather than developing a very rigorous 

estimation algorithm. 

The unknown number N1 will be estimated by "matchingn two functions. Note that 
the probability density function fx(xJCl) can be estimated in two different ways. It 

is typically estimated from the training samples supplied by user. But it can be 
also computed using the mixture density estimate fx(x) if the probability density 
function of Cothers, fx(xICothers) and xl are available. Note that the rr~ixture density 
fx(x) in eq. (3.1) can be written as, 

In a specific region where the second term in eq. (3.8.a) is negligible compared to 
the first term, the estimate of fx(x(Cl) can be evaluated from the estimate fx(x) if a 
specific value is assumed for x,. It will be a function of xl. These two estimates 
can be matched together to find the best nl. The function to be matched needs 
not be necessarily fx(xJC1) even though it is a natural choice in the given partially 

s l~per~ ised classification problem where prior information, other than the class 
statistics of C1, is non-existent. Any function derivable from it can be matched. 

To be general, denote the function to be matched as h(x). This function is 
selected in such a way that it can be both evaluated from the probability density 
function of C1 and estimated using the given data set if the prior probability of C1 

is available. Therefore, the estimate of h(x) should be computable using the 
unlabeled samples when a certain value is assumed for the unknown prior 
probability. The estimate, based on a specific value of xl, is denoted as h(x(xl). It 
is compared with the function h(x) evaluated using fx(xlC1), which is estimated 

from the training samples, to find the unknown prior probability which causes 
h(x(nl) to be nearest to h(x). This matching doesn't necessarily need to take 
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place in the original feature space. It can be accomplished in arly space derived 
from the original space. The measure of closeness of h(x) and h(xlxl) should be 
defined according to the specific functioli h(x) chosen. In this paper, fx(xlC1) is 

selected as h(x). Over the sub-space in which the ur~knovvn quantity, (1- 
rcl)fx(x)C,,h,,,) in eq. (3.8.a), is negligible compared to rclfx(xlC:l), the estimate 

h(xlxl) is approximated as, 

As for the measure of closeness, the expected squared error may be used, with a 
weight function w(x) included to account for the possibility of different weights for 

different x's. 

The expectation of the weighted squared error is taken over the entire feature 

space, or over the selected subspace as required. With the approximation of eq. 
(3.8.b), the expectation is computed only over the region where eq. (3.8.b) 
remains valid. Equation (3.8.c) can be equivalently written as a function of N1 

explicitly as follows. 

This is a matching process of weighted probability density functions, NfX(x) and 

NlfX(xlC1). In the case of the multivariate Gaussian distribution of fx(xJCl), it is 

possible to know the region where most of the samples are located. Note that this 
matching process can be also performed in the one dimensional y space where y 
= xTx. If the dimensionality is not high, it is possible to select an appropriate yo 
and corresponding region specified by xTx r yo where most of C1 samples are 

found. Therefore, with a suitable va!ue of yo, the matching of ecl. (3.8.d) can be 

processed. 
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Figure 3.3 Matching of Two Weighted Probability Density Functions.; Nfy(y) is 
matched with Nlfy(yJCl) over the region 0 5 y 5 yo, y = xTx to find the 
best N,. f,(y) is the probability density function of y's. fy(yJC,) is the 
density function in y space corresponding to C, samples. yo is a user- 
specified threshold. 

An illustration in the y space is shown in Fig. 3.3 where the density function 
fx(xlC1) is assumed to be the standard multivariate Gaussian. 

The matching is performed in the region 0 I y 5 yo where yo is a user-specified 

value indicating the region where the approximation of eq. (3.8.b) holds. 

The unknown number N1 is determined to minimize the expected error between 

h(x) and h(x(nl) as, 

The integration is performed over the selected region. In computing eq. (3.9), the 
expectation is replaced by the ensemble average over the x's in the given region. 
Note that due to taking expectation, the squared error between NfX(x) and 
N,fx(xJC1) in eq. (3.8.d) is in fact weighted according to the density function of 
fx(x). If the least square error is desired, this weight can be canceled OIJ~ by using 
the weight function w(x) = l/fx(x). This matching process can also be applied at 

the level of the cumulative distribution function and this can be achieved with the 
error function in eq. (3.8.d) by employing the following weight func:tion which 
further cancels out the effect of fx(x(C1). 
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Then, the estimated value N1 is computed as, 

The rlumerator in eq. (3.10.a) is the expected number of samples found in the 
selected region. Since the samples of C1 are assumed to dominate in their 

numbers over the samples from the "others" class in the given region, the 
numerator in eq. (3.10.a) will be the approximated number of samples from C1. 

Suppose the integrated value of the denominator is a, 

which is the probability of class C1 for the given region. By performing the 
significance testing with the acceptance probability a, the estimate of N1 in eq. 

(3.1 O.a) can be easily obtained by counting the number of samples accepted and 
dividing by 'the selected acceptance probability a. The estimate in eq. (3.1 O.a) will 

be in most cases an over-estimated value, since there should be samples not 
belonging to class C1 in the count of the numerator in eq. (3.110.a). This over- 

estimation will be significant, especially when there is insufficient separability 
between the class of interest and the class of "others." In developirlg the initial 

clusters specification, experimental results show that this over-estimation is not 

critical to the performance, but an under-estimated value could be problematic 

since it results in non-trivial iil values and causes clusters glenerated in the 
region where most of the class-of-interest samples are located. These 
extraneous clusters would take a significant portions of class C1 samples away. 

In the experiment, eq. (3.10.a) is used in the one dimensional y space where y = 

xTx due to its simplicity. Note that this matching can be s computation ally 
burdensome ur~less the matching is processed in a lower dimensional space, 

such as the one-dimensional y space. 
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For those cases when the region for the matching process cannot be easily 
selected, a slightly different algorithm is developed. Note that, using the weight 
wil's in eq. (3.2.b), the probability density function f,(xJC1) can be estimated from 

the unlabeled samples with weights. For example, under the Gaussian 
assumption of f,(x(C1), the mean and covariance matrix of it (denoted as M(nl) 
and Z(xl), respectively) can be estimated as, 

where Wl is the sum of weights wiles and is computed as, 

and the function h(x 1 xl) is the Gaussian density function with mean and 

covariance matrix, M(xl) and X(7t1). h(x ( nl) will be compared with the function 
h(x) while varying xl. This is a recursive process since the best value of the prior 
nl is found by checking the value xl with which the estimated h(x 1 nl) is most 

similar to h(x). Note that this is based on the assumption that the nearer to the 
true value the unknown R, is, the more h(x 1 nl) match well with h(x). 

For comparison of the two functions, any statistical separability measure, such as 
the divergence, the Jeffries-Matusita (JM) distance, or the transformed 

divergence (Swain 78) can be used to quantify the similarity. This procedure 
doesn't require specifying the region over which the matching should take place. 
Note that, at least in principle, this procedure is not limited to the parametric 
case, although the computation required in estimating recursively h(x 1 xl) and 

evaluating the similarity measure in a non-parametric case may be formidable. In 
computing the weights wilts, the simple procedure in eq. (3.3) in previclus section 

can be used. 
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3.4 Experiments and Discussion 

To test the performance of the partially supervised classification algorithm 
proposed in this chapter, experiments were carried out with bath simulated and 

real data. The partially supervised classification algorithm should be effective 
even when the class of interest is not well separated from the others. To test the 

proposed algorithm over a wide range of separability, several bivariate Gaussian 
data sets were generated with different degrees of separability as in the previous 

chapter. In the case of real data, the July LANDSAT Thematic Mapper (TM) data 
introduced in previous Chapter were used. For comparison, the (relative) 
maximum likelihood classifier (denoted as "REL-ML") was designed with the 
known class statistics, and the classification error was used for evaluation. 

3.4.1 Experiments and Discussion 

For a test with simulated data, as in previous chapter, bivariate (q = 2) Gaussian 
data were generated. 1000 samples were generated for the class of interest, Cint 
with zero mean and an identity covariance matrix. The class "others," Cothers, was 

assumed to be Gaussian with mean [d,OIT , d > 0, and an identity covariance 
matrix. 2000 samples were generated for Cothers. 

To avoid any randoni error due to the data generation process and its effect on 

evaluating experimental results, data sets were generated 50 times with different 
seed numbers and the averaged result used in comparison. 

Equation (3.10.a) was used to obtain the N, estimate with varling acceptance 
probability, a, in eq. (3.10.b) as in Fig. 3.4. The estimated values were not much 
different for different a's. As expected, unless the separability between the two 

classes is sufficient, there was significant over-estimation. 
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P 
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z' d, Distance Between Class Means 

Figure 3.4 Estimated Number of Class-of-Interest Samples with Different Values 
of Acceptance Probability a's Using eq. (3.10.a, b). 

Using the N, estimate, the weights i7i11s were computed and used in 

unsupervised clustering to develop clusters corresponding to the "others" class. 
Any cluster which had a negligible effective number from eq. (3.6.a), or a 

negligible ratio from eq. (3.6.b) was deleted. Without the ratio checking, due to 
non-trivial weights iGil's in the regions where the weights should be negligible, an 
under-estimated value of N, would result in extraneous clusters and cause large 

omission error. For those clusters, tlie effective numbers of samples in eq. (3.6.a) 

would be much smaller than the actual sample numbers grouped to those 

clusters since significant portions of the samples in those clusters are from the 

class of interest. Those extraneous clusters can also be observed even though 
N1 is not much under-estimated in such cases when the actual distribution of the 

class-of-interest samples is slightly different from that predicted by the probability 
density function f,(xJC1). 

Figure 3.5 shows the class-averaged classification error comparisons of the 

relative maximum likelihood classifier (denoted as "REL-ML"), a partially 
supervised classifier based on significance testing (denoted as "ABS--SIGw) and 
the proposed classifier based on unsupervised clustering with three different 
acceptance probability a's for the N, estimation (denoted with three different a 

values). 
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The class-averaged classification error is a simple average of the omission and 
commission errors. The result of ,the significance testing is obtained by scanning 
the significance level in the interval [0.01, 0.991 in steps of 0.01, choosing .the 
best one. Therefore, this is the best one attainable with significance testing. 
While significance testing had about 5 - 10% greater error than the relative 

maximum likelihood classifier unless the distance d between two class means 
was sufficiently large, the proposed algorithm closely followed the performance of 
the maximum likelihood classifier. Only when the overlap between two classes is 
significant (see the case d < 2, for example) and the N1 value iis severely over- 

estimated, was there as much as 5% error increase compared to the maximum 
likelihood classifier. 

CA 
m 0.0  0.5 1.0 1.5 2.0 2.5 3 .0  3.5 4 .0  4.5 5 .0  
B d, Distance Between Class Means 

Figure 3.5 Class-Averaged Classification Error Comparison.; The proposed 
classifier based on unsupervised clustering is denoted by the a value of 
eq. (3.10.b) used in estimating the number of class-of-interest samples. 
"REL-ML" is the relative maximum likelihood classifier with known class 
statistics, and "ABS-SIG" is the best result for significance testing 
attainable with significance levels in the interval [0.01, 0.991. 

To see the sensitivity of the proposed classification algorithm to the N1 estimate 
and its amount of under- or over-estimation, several different values of N1 were 

used in computing the weights iills in the clustering without estimating it. The 
classification result is shown in Fig. 3.6. 
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Figure 3.6 Sensitivity on the Estimate N, of the Proposed Classifier.; Several 
different values of N, were used in computing the weights Til 's in the 
clustering without estimating. 

'There was almost negligible difference in class-averaged classification error 
when N, was varied from 750 to 1500 (not shown). When an over-estimated N, 

was used, there was as much as 2% (N, = 2000, 100% over-estimation) or 5% 
(N, = 3000, 200% over-estimation) error increase compared to the maximum 
likelihood classifier when d c 2. An over-estimated value of N, increases the 

commission error and its effect becomes more noticeable as the overlap between 
two classes increases. Although the proposed algorithm was very toleriable of the 

degree of over-estimation, it was less so with under-estimation as shown for the 
case N, = 500 (50% under-estimation) in Fig. 3.6. When d > 2.5, the class- 

averaged classification error increased since the clusters containing a non-trivial 
portion of the class-of-interest samples survived the cluster deletion test of eq. 
(3.6.aIb) and many class-of-interest samples were deleted to increase omission 
error. Note that, as shown in Fig. 3.4, the N, estimate with eq. (3.10.a,b) is in 

general slightly over-estimated due to the commission of "others" samples in the 
numerator of eq. (3.1 O.a). Therefore the under-estimation is not so problematic 
unless the training samples of the class of interest are not representative enough 
to adequately model its distribution function. 
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3.4.2 Experiment with Thematic Mapper data 

For a test with real data, the July LANDSAT Thematic Mapper(T!A) data which 

was also used in the previous chapter was used. For a description of training and 
test samples, refer to Table 2.2. 

For comparison of classification performance, a maximum likelihood classi,fier 

was designed with all 12 sub-classes and the classification errors were 
evaluated. The performance of the classifier was assessed in terms of class- 
averaged classification error, total classification error and a simple average of 
these two. As discussed in the previous chapter, note that while the class- 
averaged classification error is a simple average of the omission and commission 

errors, the total classification error is a weighted average of those two errors 
according to the prior probabilities of the class of interest and the others. 

Classification was also performed with significance testing an~d the proposed 

algorithm based on unsupervised clustering. Since there are molre than one sub- 
class for each information class, the whole data set was first divided using a 
maximum likelihood classifier into n sub-groups where n is the number of sub- 
classes of a given information class. For each sub-group, the proposed classifier 
was applied to identify the samples belonging to the correspondir~g sub-class. 

Figure 3.7 shows the classification error comparison of signi,ficance testing and 

the proposed partially supervised classifier based on unsupervised clustering. As 

before, various values were tried to find the best significance level for each sub- 
class. When estimating N, in ,the proposed classifier, five diffe~rent values of a 

(0.1, 0.2, 0.3, 0.4 and 0.5) were used and the estimated numbers; N, were mostly 

over-estimated. Since less than 1% of the differences are observed in the 
classification error even though there were large differences in the degree of 
over-estimation (21% - 177%), only the result with a = 0.9 is shown in Fig. 3.7. 

The proposed algorithm is seen :o perform better in all classes by about 1 - 6% 

than the best significance testing case where the significance levels were 
deliberately chosen manually. 
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0 
Corn Soybean Wheat 

Information Class 

Figure 3.7 Classification Error Comparison of Significance Testing (ABS-SIG) and 
the Proposed Classifier Based on Unsupervised Clustering (ABS- 
UNSUP).; N, was estimated with a=0.9. The comparison is made with 
class-averaged classification error (denoted as "ERRI"), total 
classification error (denoted as, "ERR2") and the simple average of 
those two (denoted as "AVG"). 

Corn Soybean Wheat 

Information Class 

Figure 3.8 Classification Error Comparison of the Proposed Classifier (ABS- 
UNSUP) with the Relative Maximum Likelihood Classifier (REL-ML).; 
The comparison is made with the class-averaged classification error 
(denoted as "ERRl"), the total classification error (denoted as, "ERR2") 
and the simple average of those two (denoted as "AVG"). 
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In Fig. 3.8, ,the classification error comparison is made with the relative maximum 
likelihood classifier. Except for the class, "alfalfa/oats", there was only 1 - 2% 
difference in classification error compared to the relative ma:<imum likelihood 
classifier. As for the class "alfalfa/oats", there was about 7% increase in 
commission error compared to the maximum likelihood classifier. 

Figures 3.9 to 3.12 show the locations of the samples identified by the proposed 
partially supervised classifiers and the relative maximum likelihood classifier. 

Figure 3.9 Results For the Class "Corn" Samples. (a) Ground truth location of 
corn samples. (b) Result for the relative maximum likelihood 
classifier (REL-ML). (c) Result for the best significance! testing (ABS- 
SIG). (d) Result for the unsupervised clustering based proposed 
classification (ABS-UNSUP). 

Figure 3.1 0 Results for the Class "Soybeans" Samples. (a) Grouncl truth location 
of soybean samples. (b) Result for the relative maximum likelihood 
classifier (REL-ML). (c) Result for the best significance testing (ABS- 
SIG). (d) Result for the unsupervised clustering based proposed 
classifier (ABS-UNSUP). 
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Figure 3.11 Results for the Class "Wheat" Samples. (a) Ground truth location of 
wheat samples. (b) Result for the relative maximum likelihood classifier 
(REL-ML). (c) Result for the best significance testing (ABS-SIG). (d) 
Result for the unsupervised clustering based proposed classifier (ABS- 
UNSUP). 

Figure 3.1 2 Results for the Class "AlfaHdOats" Samples. (a) Ground truth location 
of alfalfdoat samples. (b) Result for the relative maximum likelihood 
classifier (REL-ML). (c) Result for the best significance testing (ABS- 
SIG). (d) Result for the unsupervised clustering based proposed 
classifier (ABS-UNSUP). 

Compared to the relative maximum likelihood classifier, which requires a 

complete list of classes to be defined and their class statistics computed, the 
proposed classification algorithm was very successful in its classification 
performance even though prior knowledge was provided only for the specific 
information class under consideration. The computational complexity was 
increased over the relative maximum likelihood classifier, but not prohibitively so 
in view of the time savings for the manual portion of the analysis task. In the 
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experinlent with Thematic Mapper data in identifying one information class, it 

took on average about 3 times more computational time than the maximum 
likelihood classifier. 

3.5 Summary 

In this chapter, we have proposed a partially supervised classification algorithm 

based on unsupervised clustering. Initiated with only prior knowfledge pertaining 
to a particular class to be identified, the proposed classifier develops class 

statistics of "others" class through a weighted unsupervised clustering procedure. 
The user only needs to provide the information for a particular c:lass one actually 

wants to identify. 

Experiments with both simulated and real Thematic Mapper data showed very 
satisfactory classification performance compared to the standard relative 
maximum likelihood classifier. The proposed classification algorithm is also 
computationally moderated compared to the maximum likelihocld classifier. The 
operational simplicity should make this algorithm useful in many practical 

applications. 

3.6 Conclusions of the Partially Supervised classification and Suggestions for 
Future Research 

In Chapter 2 and 3, the problem of partially supervised classification especially 

when the class definition and corresponding class statistics are available a priori 
only for a particular class of interest. This problem can be frequently encountered 

in many real application of pattern classification techniques. Two approaches, 
one being based on significance testing, which belongs to the absolute 

classification scheme, and the other being based on the unsupervised clustering, 
belonging to the relative classification scheme, were proposed. 

The experiments both with simulated and real LANDSAT Thematic Mapper data 
showed very satisfactory results compared to ,the maximum likelihood classifier 
which was designed with complete prior knowledge. 
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The optimal acceptance probabilities estimated without supervision for 
significance testing matched very well with the manually selected optimal values. 
Significance testing inherently has a limitation in its classification performance 
due to the dimensional reduction of the feature space. This effect was noticeable 

in the experiments. However, the second approach based on unsupervised 
clustering doesn't have this limitation since it performs classification in the original 
feature space without dimensionality reduction. But this requires the knowledge 
of a number of class-of-interest samples in the given data set. Thle simple 

procedure based on thresholding and counting numbers of samples accepted 
with the given thresholding was found to be satisfactory for initiating the 
unsupervised clustering to find the clusters corresponding to the unknown class 
of "others." 

However, there are needs for deciding a priori various parameter val~.les which 
control the clustering procedure. For the proposed algorithm based on clustering 
to be fully and easily usable by users with little prior knowledge about the data 
set, there must be a dependable algorithm which can suggest at least a proper 

range of parameter values for clustering. These parameter values are expected 
to be also dependent on the particular clustering algorithm selected. In fact, this 
is very closely related to the general clustering problem. 

In designing a partially supervised classifier, the quality of training samples is of 
utmost importance. To properly design the classifier, the training samples must 

be representative of the same class samples in the given data set to be 
classified. To fulfill this requirement in the previous experiments, random 

sampling was carried out to sample about 1O0/0 of data from the data set to use 
as training samples and the resultant randomly selected training sarr~ples were 
found to be satisfactorily representative. However, in a practical application of the 
classifier, the limited training samples won't be always very representative all the 
time. In a conventional totally supervised relative classification, there is 
somewhat of a wide tolerance for the representativity requirement, due to its 
relative consideration in decision making, but, in the partially supervised 
classification case, there is expected to be less tolerance. Therefore, developing 
a robust partially supervised classifier will be very important. 
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APPENDIX A 

Fast Parzen Density Estimate Using Clustering-Based Branch and Bound 

A.l Introduction 

Applying statistical pattern recognition techniques often requires the probability 
density functions of given data samples. If the distribution of the given data can 

be assumed to follow a certain known parametric form, such as a Gaussian 
distribution, then, the parameters specifying the density flunction can be 

estimated. However, it is not always possible to assume a certain parametric 
distribution function for the given data set without causing significant error. In this 

case, a non-parametric approach can be taken by employing a density estimation 
technique [A.1]. Since the process of density estimation usually takes substantial 
computation, it might not be feasible to adopt this non-parametric approach, 
especially in an on-line application. There has been research on reducing the 
computational requirement of the density estimation based on k nearest neighbor 

[A.2,3] by saving the number of evaluations of quadratic terms which are required 

to find the k nearest neighbors. As for the Parzen density estimate, there has 

also been research on selecting a representative subset of the given training data 
set [A.4]. The reduced subset of training samples are selected in such a way that 
the Parzen density estimate with the reduced set matches as closely as possible 
with that with full data set in the sense of the entropy measure of similarity 

between two estimates. If the Parzen density estimate is to be evaluated on a 

regular grids, for example, in plotting the density f~~nction or drawing a contour 

diagram, the fast Fourier transform (FFT) car1 be used by noting that the Parzen 

density estimate is the convolution of the data with the kernel f~unction [A.5]. In 
the general case of evaluating at irregular points, this algorithm is not applicable. 

In this appendix, similarly to the efficient density estimate based on k nearest 

neighbor [A.2,3], the branch-and-bound procedure is applied in Parzen density 
estimation to reduce the number of evaluations of quadratic terms. Noting that 

,the contribution of a training (or design) sample on the evaluated density 

estimate rapidly diminishes if it is far away from the locatior~ of evaluation, 

therefore, without causing much error, some of the training samples could be left 
out in evaluating the kernel functions if the distances from the location of 
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evaluation to those samples exceed a certain critical distance. The computation 
required for checking the distances can be significantly reduced by utilizing the 
branch-and-bound procedure. Experimental results are presented to show the 
effectiveness of the proposed approach in reducing the computational load on 

the Parzen density estimation. Notice that, to further reduce the computational 

burden, this proposed algorithm also can be used in addition to the data 
reduction algorithm in [A.4]. 

A.2 Fast Parzen Density Estimation 

Suppose there is a training data set, Y with N elements from which the unknown 
density function should be estimated. The dimensionality of the data is denoted 
by q ( q  2 1). The q-dimensional feature space is indicated by Rq. The Parzen 
density estimate ?,(x) of the unknown probability density function at x, x E Rq, is 

obtained as a sum of kernel functions placed at each sample y in Y as, 

where K(*) is the selected kernel function and h is the smoothing parameter (or, 
window size). The kernel function satisfies the following condition, 

(A. 1. b) 

Since the estimated density Tx(x) will inherit all the properties of the selected 
kernel function, the kernel function is often chosen in such a way that it has 
mathematically tractable properties such as continuity or differentiability. Some 
examples include the Gaussian kernel function, Epanechnikov kernel function, or 

the rectangular kernel function [A.1]. The value of the kernel function rapidly 
decreases as the distance from the origin increases. Therefore, the contribution 
of a sample in Y to the estimated probability density at a certain x will become 
negligible if the distance between x and the sample in Y becomes large. Without 
introducing significant error, in many situations, it is possible to select a "critical 
distance", D, and to assume the contribution of a sample y in Y is negligible i f  the 
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distance to x is more than this critical distance. In estimating a density, a 

truncated and rescaled version of the original kernel function is used to satisfy 
the condition in eq. (A.1 .b). Suppose the truncation level is denoted by P, then, 
the critical distance Dc with window size h=l, is computed as, 

The critical distance with window size h is then obtained by multiplying h with the 
Dc calculated in eq. (A.2.a). The truncated kernel function with truncation level P 
is denoted by ~ ' ( x ;  P) and given as, 

(A.2. b) 

= 0 otherwise 

Depending on the specific application and the degree of permissible trade-off 
between accuracy and speed, an appropriate value of P in eq. (A.2.a) can be 

selected. Some kernel functions such as the Epanechnikov kernel function or the 

rectangular kernel function have compact support in the given feature space only 
on which the function has non zero values. In these cases, it is straightfotward to 
select the value Dc without losing any accuracy, and there is no need for 

truncation and normalization. 

Denote the distance between two samples, x and y as L(x, y). If the Euclidean 

distance measure is used, then, L(x, y) is computed as, 

If different smoothing parameters are to be allowed for different coordinate 
directions, then, a slightly modified measure of distance can be used with the 
kernel covariance matrix I;, 
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Note that the distance measure in eq. (A.3.b) is equivalent to the Euclidean 
distance measure in eq. (A.3.a) after pre-whitening [A.6] with the appropriate X. 
Pre-whitening is assumed to be already performed, if required, to the data Y and 
x's to deal with the need of different smoothing parameters, and in the 
subsequent discussion, the Euclidean distance measure will be used. 

Suppose the Parzen density estimate is evaluated at x. Notice that a sample y in 
Y which doesn't satisfy, 

can be excluded from the computation in eq. (A.l). The number of checking 
distances in eq. (A.4) can be significantly reduced by using the critical distance 
Dc and applying the branch and bound algorithm [A.3] with clustering. 

Suppose clustering is performed to group the samples in Y into clusters. To each 
cluster, for example, to the fh cluster Ci, three variables, {Ij, Mi, Dmax(j)} are 
associated. Mi is the cluster mean and li is the index set of cluster Cj defined as, 

lj = {i ( ith sample yi belongs to cluster Ci, yi E Y } 

max 
m a )  i E I {L(xi, M,)} 

D,(j) denotes the maximum distance from the cluster mean, MI to the samples 

in cluster C,. Notice that the distance from x to any sample in Cj should be larger 
than L(x, Mj) - Dmax(j). Therefore all the samples belonging to the cluster C, which 

don't satisfy the inequality in eq. (A.5) can be excluded in evaluating the density 
estimate at x as shown in Figure A.1. 

Therefore, the calculation of distances from x to each sample in Y can be 
significantly reduced by checking this inequality and deleting clusters 
appropriately. Note that this same idea can be also applied to reduce the number 
of clusters which need be checked with this inequality by creating a hierarchical 
grouping of the clusters, but we will not elaborate here. 
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L(x,M, 1 - DmaxW 

Figure A.l  Efficient Computation of Parzen Density Estirr~ate Using 
Clustering.; Samples grouped into clusters other than C2 and 
C3 in this figure need not be considered in the computation 
of Parzen density estimate. 

The computation required for the clustering may be not trivial, but it is required 
only once for each training data set. If the number of locations for which the 

probability density should be computed is large, then this one-time extra 
computation for clustering should be worthwhile. When the probability density is 
actually evaluated, there exists another extra computation required for the 
distances from given location x to each cluster center. Considering the savings 

due to skipping a subset of distant training samples, this will be quite negligible 
urrless the number of clusters is comparable to the number of total training 
samples. 

In unsupervised clustering, a new cluster is generated if the minimum distance to 

the existing clusters exceeds the pre-specified distance (let us denote this by 
Tcreate). To achieve a maximal efficiency in reducing computational load, care 
must be exercised in selecting a proper value of T,,,,,,. Too small a value of 
Tcreate will result in a large number of small clusters into which very small 

numbers of samples are grouped. In this case, the overhead of clustering and 
checking the inequality in eq. (A.5) will surpass the savings obtained by skipping 

the samples grouped in distant clusters. On the other hand, a small number of 
large clusters due to too large a value of T,,,,,, might not be able to eliminate any 
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clusters in evaluating the density estimate. The value of Tcreate should be related 

to the critical distance D,. 

A.3 Experiments and Discussion 

To verify the effectiveness of the fast Parzen density estimation algorithm 

proposed, an experiment with simulated data was performed. For a training data 
set, 1000 samples of bivariate (9 = 2) normal data were generated. The mean 

and covariance matrix were set to [0, OIT and the identity matrix, respectively. 
The density estimate was evaluated at four different groups of 1ocation.s. That is, 

four sets of bivariate Gaussian samples, each containing 100 samples, were 
generated with means at [ f l  .5, OIT and (0, f 1 .51T. The covariance matrices were 

all set to the identify matrix. 

To see the effect on the efficiency of this algorithm, the parameter for new cluster 
generation, Tcreate1 was selected as, 

and the value a was varied to see its effect on the effectiveness of the proposed 

algorithm. (In clustering, if the squared distance to the nearest cluster is more 

than 9 T & ~ ~ ~ ,  then a new cluster is generated. Therefore, the maximum distance 
Dm,(.) in eq. (AS) is 6 Tcreae). The effectiveness of this algorithm was 

measured in terms of percent of the number of distance computation~s actually 

evaluated in density estimation. 

average number of quadratic distance computation 
R =- 100 x number of training samples - (A.7) 

In the numerator in eq. (A.7), the number of distance computations to the cluster 
centers is also included even though it might be negligible in most c'ases. The 
averaging is carried out for the test samples. In the case of conventional Parzen 
density estimation, the percent ratio R in eq. (A.7) is 100. If the overhead of 
computing distances to the cluster centers surpasses the savings acquired by 
deleting some of the distant clusters, the ratio R can be greater than 100. 
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First, the Epanechnikov kernel function was used since it is straightforward to 
choose the critical distance Dc,  which is equal to the window size h. As 

suggested in (p.86 in [A.1]), the window size h was set to 0.56 in the case of this 
Epanechnikov kernel function. Under this setting, only 4.24%' of the training 

samples on the average actually contributed in the density estimation. The value 
a in eq. (A.6) was varied from 0.01 to 8 to see the effect of the nurr~bers of 

clusters on deleting some of the distant clusters. Only one iteration of clustering 
was performed since a crude grouping of the samples is sufficient. As a in eq. 

(A.6) decreases (in other words, as the number of clusters increases), the 
savings in distance computation increases up to a certain point, and after which 
the overhead of distance computation to the cluster centers overwhelms the 
savings attained by skipping some of the training samples as seen in Fig. A.2. 

Figure A.2 R, Average Number of Distance Computations in eq. (A.7) Expressed 
as a Percent.; The Epanechnikov kernel function was used with 
different cluster creation conditions as in eq. (A.6) where a was varied 
from 0.01 to 8.; window size h = 0.56, and critical distancie D, = 0.56. 

Unless a is extremely small (unless a < 0.02 in this experiment), the overhead 

was negligible. About 80% of the savings was observed in distance computation 
with the value a in 0.5 - 1 .O. 

The same experiment was performed with the Gaussian kernel function, which 

has non-zero values in the entire feature space. The truncation was performed 
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with truncation level p as in eq. (A.2. a & b). The window size was set to h=0.304 
as suggested in (p.86 in [A.1]). The truncation level P was varied from 0.8 - 
0.999. Notice that there are some training samples which do not make any 

contribution in the density estimate even without using ,the truncated kernel 

function. In other words, due to the numerica.lly finite precision, the value of the 

exponential function in Gaussian kernel function becomes (numerical) zero if its 
argument is too small. 

Truncation Level P 

Figure A.3 Percent Average Effective Number of Training Samples versus 
TtUncation Level.; This shows the percent average effective number of 
training samples which have non-zero contribution to the density 
estimate and the corresponding average percent difference between 
density estimates obtained with and without truncation.; The Truncated 
Gaussian kernel function was used with different truncation level Ps.; 
the window size was set to h = 0.304. 

Figure A.3 shows the average number of effective training samples which give 
non-zero values of the exponential function when a truncated Gaussian kernel 
function with truncation level 0 is used. The number obtained without tri~ncation is 
considered as that of P=1 .O. There must be error introduced due to the truncation 

of the kernel function and the amount of error is measured by the average 
percent difference between the two density estimates obtained with and without 
truncation as, 
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Average percent diffesnce = 100 x Ex 1 D) - Z(x) I - 
A- 

fx(x1 

where Fx(x) denotes the density estimate without truncation and zx(x; P) denotes 
the density estimate with the truncation level set to P. The expectation in eq. (A.8) 

is obtained by computing the mean over the given 40Q test samples. As se.en in 
Fig. A.3, even when P = 1.0, there were only 38.64% of the training samples 

which actually contributed to the density estimate due to the numerically finite 
precision. When P = 0.999, the effective number of training sarr~ples dropped to 

16.46%, but there was only 0.1 9% difference to the average between &(x) and 
A 

f,(x; p). If P = 0.99, the percent difference was 1.47% with 11.1 7% of the effective 

training samples. Whether or not this error due to truncation is acceptable 

depends on each particular application of the estimated density in mind. 

0 1 2 3 4 5 6 7 8 
a 

Figure A.4 Percent Average Number of Distance Cornputation H.; Truncated 
Gaussian kernel function with truncation IevBI P. The parameter a in 
the cluster creation condition of eq. (A.6) was varied from 0.01 to 8.; 
window size h = 0.304. 

As before, while the parameter a in eq. (A.6) is varied from 0.01 to 8, the average 

number of actual distance computations is shown in Fig. A.4. As the truncation 
level p becomes larger, the amount savings in distance computation increases. In 
both Fig. A.3 and A.4, very small or very large values of a were not acceptable, 

since they produce too many small clusters or just one or two large clusters. With 
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a in the range of 0.2 - 1.0, it is observed that about 40 - 80% savings in distance 

computation can be achieved. 

A.4 Conclusions 

In this appendix, a computationally efficient Parzen density estimation algorithm 
is developed by adopting the idea of the branch and bound method with 
clustering. Not only those kernel functions having finite support for non-zero 
values such as the Epanechnikov kernel function, but also the kernel functions 

having non-zero values over the entire feature space was applicable with this 
algorithm with truncation. By choosing a proper parameter setting for D, for new 

cluster generation, the savings in computation is observed to be maximized. The 
experimental results verified significant savings in computation. 
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APPENDIX B Program List for Partially Supervised Classification 

Program list for the partially classifiers discussed in this report is available upon 
request. 
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