
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

6-1-1994

PARALLEL, PROBABILISTIC, SELF-
ORGANIZING, HIERARCHICAL NEURAL
NETWORKS
Faramarz Valafar
Purdue University School of Electrical Engineering

Okan K. Ersoy
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Valafar, Faramarz and Ersoy, Okan K., "PARALLEL, PROBABILISTIC, SELF-ORGANIZING, HIERARCHICAL NEURAL
NETWORKS " (1994). ECE Technical Reports. Paper 192.
http://docs.lib.purdue.edu/ecetr/192

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-EE 94-23
JUNE 1994

PARALLEL, PROBABILISTIC,
SELF-ORGANIZING, HIERARCHICAL

NEURAL NETWORKS*

Faramarz Valafar
Box 482

School of Electrical Engineering
Purdue University

W. Lafayette, IN 47907
faramarz @ transform.ecn.purdue.edu

Okan K. Ersoy
School of Electrical Engineering

Purdue University
W. Lafayette, IN 47907

ersoy @amalthea.ecn.purdue.edu

The Purdue University MASPAR MP- 1 research is supported in part by NSF Parallel Infrasrmdure Grant #CDA-90156%.

CONTENTS

i . LIST OFFIGURES . ii

ii . LISTOFTABLES . iv

iii . ABSTACT . v

1 . INTRODUCTION . 1

2 . BACKGROUND RESEARCH 9
2.1 Complex System Classification 9
2.2 Backpropagation . 15
2.3 PSCNN and PSHNN . 19

3 . PARALLEL. PROBABILISTIC. SELF-ORGANIZING. HIERARCHICAL NEURAL
NETWORKS . 21
3.1 PPSHNN System Description 23
3.2 The Neural Network Classifier (N-unit) 33
3.3 PostRejection . 33
3.4 The Classifier (Minimum Euclidian Distance Classification Unit . 74
3.5 The Pre-Rejector (P-unit) 74
3.6 The Pre-Processor . 76

4 . SPECIAL TOPICS IN PPSHNN 79
4.1 The PNS Module . 79
4.2 The PNS Algorithm . 80
4.3 System Features And Proof of Piecewise Linearity 87

5 . A PARALLEL ALGORITHM FOR MASPAR; THE SIMD-PPSHNN . 105
5.1 Introduction to MasPar MP- 1 106
5.2 Algorithm Description and Machine Adaptation 117
5.3 Time Complexity Analysis 137
5.4 Speed-Up Analysis . 144
5.5 Parallel Testing . 152

6 . EXPERIMENTS AND RESULTS 155
6.1 The Speech Synthesis Problem 156
6.2 The 10Class Remote Sensing Problem 161

7 . FUTURE RESEARCH AND CONCLUSIONS 171
7.1 Future Research . 171
7.2 Conclusions . 174

8 . REFERENCES . 177

9 . VITA . 183

LIST OF FIGURES

1.1 (a) An Example of an Undersampled Class (Class 1) . (b) An Example of a Geometrically
Small Class (Class 3) .

2.1 Multilayered. Feed Forward Network
2.2 PSCNN. PSHNN Network .
3.1 PPSHNN with 3 Modules .
3.2 Sample Problem Space Initial Stage
3.3 Sample Problem Space Final Stage
3.4 Training Procedure of PPSHNN .

. 3.5 Post-Rejector
3.6 Transmission Channel Model .
3.7 Sample Nonlinear Problem Space
3.8 Panen Density Estimation .
3.9 Sample Rejection Boundaries .
3.10 Expected Conditional Density Functions
3.1 1 Density Functions for Test 1 .
3.12 Density Functions for Test 2 .
3.13 Density Functions for Test 3 .

. 3.14 Specht's Network
3.15 Pattern Units of Specht's Network
3.16 Output Neuron of Specht's Network
3.17 A Delta Rule Network as the Vector Rejector
3.18 Pre-Rejector of Module 1 of PPSHNN
4.1 The Block Diagram of a PNS Module
4.2 Flow Chart for Learning of a PNS Module
4.3 (a) The Recursive Procedure to Create a P-unit . (b) The Recursive Procedure to Create a NS-

unit .
4.4 The PNS Modules in the PSHNN Designed for the 10-Class Colorado Problem
4.5 The S-unit boundaries created for the 10-Class Colorado Problem
4.6 A PNS Module for the XOR Problem and its Problem Space
4.7 The Division of XOR Problem Space after Introduction of S.units
4.8 An example of overlapped .
4.9 Minimum Mean Squared Error Decision in 2-D Space
4.10 a) A Second Order Polynomial Network for the XOR Problem. b) and c) Possible Accept and

Reject Regions .
5.1 Block Diagram of MasPar MP-1
5.2 Physical Organization of the Array Processor of MP- 1 . 1024 PEs on each Board, Organized

in Clusters of 16 PEs .
5.3 APEClusterofMasPar .
5.4 Internal Architecture of a PE .
5.5 Flow Charts of (a) Serial BP or Delta Rule Algorithm . (b) SIMD-BP or SIMD-

A.
5.6 The Descent Paths toward the Minimum of a Paraboloid Function for the Weight Batching

. Technique (Solid Line). and the Stochastic Technique (Dotted Line)
5.7 PE Array of MP-1 Partitioned for the Colorado Data Set for the 7-100-10 BP network . Each

Network Learns only up to 8 Patterns of the Training Set
5.8 PE Array of MP-1 Partitioned for the Colorado Data Set for the 7-10 Delta Rule network .

Each Network Learns Only One Pattern of the Training Set
5.9 m e 3-D Virtual PE Amy for the 10-Class Colorado Data Set
5.10 The PE Arrangement for a 2-Stage Backpropagation Network with the largest layer of size 20

. for a Problem with 500 Training

5.1 1 An Example of the Operation of the fp-matsumtovey Routine 136
5.12 SIMD-BP Run Times for Networks with 7 Input Neurons and 10 Output Neurons for the

Colorado Data Set with 1188 Training Patterns 146
5.13 The PNS Block Diagram for the 10-Class Problem 153
5.14 The Division of The PE A m y for the Testing of the lOClass Colorado Problem . 154
6.1 Results of BP for Speech Synthesis 158
6.2 Results of PSCNN for Speech Synthesis 159
6.3 Results of PPSHNNl for Speech Synthesis 160
6.4 Results of BP for 10-Class Problem 163
6.5 Results of PSCNN for 10-Class Problem 164
6.6 Results of SIMD-PPSHNNI for 10-Class Problem 165
6.7 Error Curves of SIMD.BP . 166
6.8 The Class Divisions Generated during Training of SIMD-PPSHNN2 for the 10-Class

Colorado Problem . 168

LIST OF TABLES

2.1 The Listing of the Ten Classes of the Colorado Problem. 13
2.2 Number of Samples of each Class for the Colorado Data Set. 15
5.1 Actual Time Indexes for Various Parts of the SIMD-BP Algorithm. 147
5.2 Actual Time Indexes for Various Parts of the SIMD -A Algorithm. 150
6.1 The Results of the SIMD-PPSHNN2 using PNS Modules for the lOClass Colorado

Problem. 167

ABSTRACT

Valafar, Fararnarz. Ph.D., Purdue University, August 1993. PARALLEL
PROBABILISTIC SELF-ORGANIZING HIERARCHICAL NEURAL NETWORKS.
Major Professor: Okan K. Ersoy.

A new neural network architecture called the Parallel Probabilistic Self-organizing

Hierarchical Neural Network (PPSHNN) is introduced. The PPSHNN is designed to

solve complex classification problems, by dividing the input vector space into regions,

and by performing classification on those regions. It consists of several modules which

operate in a hierarchically during learning and in parallel during testing. Each module

has the task of classification for a region of the input information space as well as the

task of participating in the formation of these regions through post- and pre-rejection

schemes. The decomposition into regions is performed in a manner that makes

classification easier on each of h e regions. The post-~jector submodule performs a

bitwise statistical analysis and detection of hard to classify vectors. The pre-rejector

module accepts only those classes for which the module is trained and rejects others.

The PNS module is developed as a variation of the PPSHNN module. If delta rule

networks are used to build the submodules of PNS, then it uses piecewise linear

boundaries to divide the problem space into regions. The PNS module has a high

classification accuracy while it remains relatively inexpensive. The submodules of PNS

are fractile in nature, meaning that each such unit may itself consist of a number of PNS

modules. The PNS module is discussed as the building block for the synthesis of

PPSHNN. .

The SIMD version of PPSHNN is implemented on MASPAR with 16k processors. On

all the experiments performed, this network has outperformed the previously used

networks in terms of accuracy of classification and speed.

CHAPTER 1

INTRODUCTION

This thesis involves a neural network approach to the problem of classification.

Specifically, classification in complex environments. The task of classification is one of

the very basic abilities of human beings or all living beings. Every living being at some

level has to make the determination of its environment. This determination is made

instinctively and subconsciously or intelligently at a conscious level. At any level it goes

hand in hand with the classification of the entities of the environment. Despite the long

and intensive research in this area, Nature's techniques of classification still elude us.

The most basic and essential determination of the environment for human beings is the

sense of locality or the sense of where one is at any given time. This determination is

made based on the processing of certain sensory inputs such as images, sounds and odor.

These pieces of information are cross- correlated and the higher reasoning region of the

brain makes the determination of the where abouts. The processing of information

requires classification. For instance, the images that the eyes send to the brain are noisy,

distorted, and sometimes not observed previously. Despite such problems, brain usually

classifies things correctly, for example, even if the person has never seen the image

before.

The ability to classify a certain object correctly, without having to have seen it before, is

called generalization. For example, if a person observes a chair which he has not seen

before, he still is able to determine that the object in question is a chair.

This ability to classify and generalize when necessary is one of the brain's most basic

functions. Trying to simulate or emulate this ability is a grand challenge. There has

been many designs of classifiers which can generalize. However, none of these designs

have yet come close to the perfection and accuracy with which the brain operates. The

accuracy of most of man-made systems is usually problem-dependent and varies greatly

from one case to another. Also in some cases the classifier can only operate in a very

limited and highly controlled environment, which usually is not the case in nature. For

example, some of the existing speech recognition systems are speaker-dependent,

meaning that they can only recognize one person's speech. While there exists some

technology to develop a recognizer which is speaker-independent and even recognizes

continuous speech (with no pause between the words, or even partially overlapped

words), the recognition of such a system with a large vocabulary is slow and not

sufficiently accurate.

Despite all this, the improvement in classification technology has been remarkable in the

last decade. Alternative ideas have shed new light at the problem and offered alternative

solution strategies. Perhaps the best example of such alternative ideas comes from the

area of neural networks. These networks contain very simple processing units called

neurons and connections which connect these units. Though the operation of the

individual neurons are simple, their collective capabilities are remarkable.

The idea of neural networks was inspired by the study of the brain, especially in the early

60's. Since then, these networks have been used to perform a variety of tasks, many of

which have been classification. While we are still not certain of the physical

organization of the neurons in the brain or their learning strategy, scientists have

developed many types of architectures and learning algorithms for these networks.

Some of the difficulties in classification problems facing neural networks today are

under- or unproportional-representation of classes in the training set, highly complex

boundaries between classes in a high-dimensional problem space, and training time

required to learn such boundaries in such spaces.

In this thesis, a new neural network system, called the Parallel Probabilistic Self-

organizing Hierarchical Neural Network (PPSHNN), is introduced to address these

problems. The PPSHNN is designed especially for unusually difficult and complex

classification problems, such as the ten-class remote sensing Colorado problem.

The concept of the PPSHNN module has evolved as a result of analyzing the major

causes of error in classification problems. These causes can be categorized into the

following:

1. Patterns of different classes which are very close to the same class boundary are

usually difficult to distinguish.

2. The class boundaries may be extremely nonlinear.

3. A particular class may be undersampled such that the number of training samples

from that class are too few, as compared to other classes. Figure 1.1 a) visualizes

such a scenario with Class 1 being the undersampled class as compared to Class 2.

class 1

k

t class 1

Figure 1.1. (a) An Example of an Undersampled Class (Class 1).
(b) An Example of a Geometrically Small Class (Class 3).

4. A particular class may be geometrically small compared to other classes in the

sample space such that the number of training samples gathered from the region of

that class is too few. This is visualized in Figure 1.1 b) where class 3 is

geometrically smaller than classes 1 and 2.

The PPSHNN addresses the above problems directly. It is designed, and synthesized by a

number of self-organizing modules to minimize classification error due to the mentioned

difficulties.

The PPSHNN belongs to the class of Parallel Self-organizing Hierarchical Neural

Networks (PSHNN) [S-81. PPSHNN, similar to the PSHNN, is a modular neural network

system whose modules run in a hierarchical fashion during training and in parallel during

testing (recall). Each module of PPSHNN is quite different from the previous modules.

Perhaps the three most original contributions of PPSHNN are: (1) the P-unit submodule,

(2) the bitwise postrejector, (3) The SIMD implementation of PPSHNN algorithm.

The P-unit (pre-rejector) submodule is a two-class classifier and is trained to reject all the

data belonging to difficult-to-classify classes such as the under- and/or unproportionally-

represented classes. The P-unit is an optional unit and might not exist in some modules.

Secondly, there is a statisticalladaptive postrejection unit, which consists of a statistical

unit called the Bit-Rejector (BR) and an adaptive unit called the Vector-Rejector (VR).

The bit rejector performs bitwise statistical analysis on every output bit of the network.

The vector rejector is trained to decide whether or not to reject the classification of the

input pattern based on the output of the neural network classifier and the results of the

bitwise statistical analysis.

To address the problem of long training time, PPSHNN is designed such that it can easily

be implemented in a Single Instruction Multiple Data (SIMD) environment. This version

of PPSHNN is called the SIMD-PPSHNN and is implemented on Purdue University's

Electrical Engineering Parallel Processing Laboratory's MasPar MP- 1 with 16K

Processing Elements (PEs).

As mentioned before, the main motivation for the design of PPSHNN came from the

analysis of various causes of classification error in neural network systems. There are

two major types of classification error that even the more sophisticated neural network

models cannot escape. The first type occurs when data of two or more classes lie too

close to a complex class boundary. The second type of error is due to the

misclassification of data which belongs to a class which has significantly less number of

patterns in the training set (the under- and unproportionally-represented classes)

compared to other classes. There are various designs which address the first error type,

including some probabilistic approaches [9, 10, 22, 251 and even some statistical-neural

network approaches [16]. Unfortunately, all the probabilistic approaches used with

neural networks have been statistical analysis in high dimensional spaces (vector

statistics). This approach has been limiting and often inaccurate, simply due to the fact

that there are not enough sample points to estimate the n-dimensional density functions

accurately. Instead of statistical analysis of the input vectors, we have designed a bitwise

analysis scheme at the output, called the bit-rejector. A neural network unit called the

vector-rejector is trained to reject or accept a pattern based on the bitwise analysis. We

also call the combination of the bit-rejectors and the vector-rejector, the postrejector.

To reduce the second type of error mentioned above, a pre-rejector unit (P-unit) was

designed. An additional function of the postrejector is to detect the under- and

unproportionally-represented classes and. Once such a class(es) is detected, the training

of a P-unit to reject the class(es) and to send it to the next module is initiated. By doing

so, the classification complexity of each module is significantly reduced and, thereby, its

classification accuracy increased.

The motivation for a SIMD algorithm for PPSHNN was the slow training procedure,

which plagues most neural network algorithms in applications such as the 10-class

Colorado problem discussed in the subsequent chapters. Considering that a simple

backpropagation network, run on a Sun 3/60 station, requires over 24 hours for the

training of the 10-class problem, it was essential to devise an algorithm which takes

advantage of the SIMD nature of PPSHNN.

This thesis is organized in six chapters. Chapter 1 is the introduction. Chapter 2 is the

background research, describing two complex classification problems and some neural

network architectures which have attempted to solve these problems. In Chapter 3, the

architecture and the operation of PPSHNN is discussed in detail. Chapter 4 discusses

special topics in variations of the PPSHNN module such as the PNS module. Chapter 5

discusses the parallel version of PPSHNN, the SIMD-PPSHNN, and some speed-up

issues. A comparison of time complexities is also provided between backpropagation,

the PPSHNN, and the SIMD-PPSHNN. Chapter 6 discusses the results achieved with

PPSHNN and two other previous networks. Chapter 7 covers conclusions and a

discussion of future research issues.

CHAPTER 2

BACKGROUND RESEARCH

The main goal of designing the neural network system described in this thesis was to

design a systems which performs better than the existing neural network architectures,

specifically in dealing with complex classification problems. As a background to this

issue, two known and very complex classification problems are discussed in this chapter.

In addition, some details of several neural network systems which have dealt with these

problems are described.

2.1 Complex System Classification

In this section, two classification problems are described which are highly complex with

multi-dimensional and highly nonlinear problem space.

The first problem is that of text-to-speech conversion (speech synthesis) in the English

language. The second problem is a ten-class remote sensing problem.

2.1.1 Tex t-to-Speech Conversion: Problem Description, Complexity Analysis

Problem description: Each sound (phoneme) in any part of a pronounced word carries

features by which it is distinguished from other sounds. These features are called the

articulatory features. They describe the way human vocal system produces the sounds.

For example the articulatory features of the phoneme pronouncing "p" in the word "post"

are: unvoiced, labial, and stop. Unvoiced means that the vocal cords are not actually

moving while pronouncing the "p". Some sounds are voiced and some are unvoiced,

meaning that the vocal cords do not actually move for all sounds in the English language.

"p" is also labial, because in order to produce this sound, the use of the lips are essential.

Some phonemes are labial and some are not. "p" is also stop, because in order to produce

the sound, one must stop the flow of air out of the mouth for a short period of time and

then let it out in a bursting fashion.

In order to produce the sound of a given character in the text (i.e. to pronounce the

correct phoneme), one must know what the contextually appropriate articulatory features

are. Thus, considering each of articulatory feature as a class, the problem becomes a

classification problem. The task of the classification system is to classify each character

in the text into the correct classes (features). Because each phoneme is characterized by

a set of articulatory features, each input pattern belongs to all its corresponding classes

(features) and should be classified as such.

Complexity description: In this thesis, by complexity we mean the difficulty of the

classification task in a given problem. The first complexity factor in the speech synthesis

problem is that, since each character in the text maps into several features and other

characters might share one or more features, the classes are overlapped in some regions

of the problem space. The second difficulty is due to the fact that some characters sound

differently depending on the characters around them. In other words, such characters

map into different sets of features (classes) depending on the characters in the

surrounding text. This requires the classification system to be able to classify time-series

as well. The best example is the case of FLAP sound. This is the case when "tW* or "d"

is placed between two vowels. In this case they sound as what is called a FLAP sound.

For example "catering". This effect is not word limited either. FLAP replaces It/ or Id/

even if the above is the case over two neighboring words in the text. For example "eat

it". The same is true even if there are two "tW's or "d'"s one after the other. For example

"cutting". This phenomenon of a single character mapping onto different phonemes in

different context occurs with a number of letters in the English alphabet, such as "c, g, h,

s" of consonants and almost all the vowels. For example, "c" maps onto the sound /k/ in

the word "case", but it maps to Is/ in the word "peace".

To simplify the complexity of this problem, we reduced the alphabet set and created an

English-like language in our experiment. Instead of 26 characters, we only included 8

consonants and 5 vowels. We were particularly interested in the performance of the

system in the FLAP cases. Another point of interest was the fact that characters "z", "p",

"ol', and "u" were severly under-represented. It was interesting to see how the network

* In this thesis, when we put a character in quotes such as "t", we mean the character letter "1" of the alphabet in the written text.
However, by It/, we mean the sound @honeme) of that written character (i.e. pronounced tee)

was going to pronounce these characters in testing. In the case of children being faced

with a similar situation, first they do not pronounce the sound at all. After a few repetion

(sweeps of training), they start pronouncing the new sounds, however the produced

sounds are not exactly the desired sounds. They are rather sound which are already in

their vocabulary of sounds and have comon features with the new sound. For example a

child who knows tha sound /b/ but not /p/, would pronounce "p" with the sound lb/ at the

begining. Both /pl and lbl are labial sounds, meaning that in order to produce them one

has to use his lips. In Chapter 6, the results of these experiments using a

backpropagation [I] network, a PSCNN [2], and a PPSHNN are discussed. We will see

that for example the backpropagation network, easily produced the skip phenomena.

Where it just did not produce the new sound. However we had a hard time finding a

point in the training after that at which, it would pronounce "p" with lbl. The PPSHNN

and the PSCNN exhibited this feature more easily.

2.1.2 Remote Sensing: Problem Description, Complexity Analysis

Problem description: The Colorado data set [3] consists of 7 data channels obtained from

the following 4 data sources:

1. Landsat MSS data (4 data channels)

2. Elevation data (in 10m contour intervals, ldata channel)

3. Slope data (0-90 degrees in degree increments, 1 data channel)

4. Aspect data (1-180 degrees in 1 degree increments, 1 data channel)

The area used for classification is a mountainous area in Colorado. It has 10 ground

cover classes which are listed in Table 2.1. Each channel

Table 2.1. The Listing of the Ten Classes of the Colorado Problem.

Class Field

t

1 Water

2 Colorado blue spruce

3 MountainISubalpine meadow

4 Aspen

5 Ponderosa pine

6 Ponderosa pinelDouglas fir

7 Engelman spruce

8 Douglas firmhite fir

9 Douglas fir1Ponderosa pine1Aspen

10 Douglas firmhite fir1Aspen

comprises an image of 135 rows and 131 columns, all of which are co-registered.

Ground reference data were compiled for the area by comparing a cartographic map to a

color composite of the Landsat data and also to a line printer output of each Landsat

channel [3]. By this method, 2019 ground reference points (11.4% of the area) were

selected. Ground reference consists of two or more homogeneous fields in the imagery

for each class. For each class, the largest field was selected as a training field. The other

fields were used for testing. Overall, 1188 pixels were used for training and 831 pixels

for testing the classifiers. The number of the samples from each class are shown in Table

2.2.

Based on the information received, we want to decide which class the received data

vector belongs to.

Complexity description: One problem with the data set discussed above is that some of

the classes are extremely under-represented. For example, class 9 has only 25 samples in

the training set. This is 2.1% of the training set. In a training sweep, the number of

samples in classes 1, 5, 6, and 7 constitute more than 72% of the set. This uneven

representation of classes in training causes the network to ignore the under-represented

classes and only learn the well-represented ones. An additional problem is the highly

nonlinear separation of the classes. The mentioned problems and other discovered and

undiscovered difficulties combine to manufacture an extremely difficult classification

problem. The 10 class Colorado classification problem is by far more difficult than the

speech synthesis problem. The best previous results offered by neural networks for this

problem was around 53%. See chapter 6 for PPSHNN results.

Table 2.2 Number of Samples of each Class for the Colorado Data Set.

Class Training(l188) Testing(831)

1 408 1 95

2 88 24

3 45 42

4 75 65

5 105 1 39

6 126 1 88

7 224 70

8 32 44

9 25 25

10 60 39

2.2 Backpropagation

The most often used neural networks for classification are backpropagation networks [2].

There are many different variations of the backpropagation (generalized delta rule)

algorithm depending on the type of neurons and the descent algorithm used. Here we

will describe the most commonly used version which uses the gradient descent algorithm

[4] and is what we used in our experiments.

Figure 2.1 Multilayered, Feed Forward Network.

The network is multi-layered [4] and feed-forward [4] (Figure 2.1). Its neurons are

standard neurons with a sigmoid function as their activation function [I]. The activation

function for the jth neuron is

Where ej is the threshold for jth unit and

xi is the ith input to the neuron and o j i is the weight of the connection between the ith

input and the jth neuron.

During training, an input vector is presented to the network and an output vector is

computed and compared to the desired output vector we would like to see at the output.

Once this is done, an error value is computed for every output bit of the network. The

error values are backpropagated through the network, and based on the value of error

passing through each connection, the weight of that connection is updated.

Let dpj be the desired output value for output bit j for the pth vector in the training set.

In the same manner, let Opj be the actual output value of output bit j for the pth pattern in

the training set. Then the squared error for the pth vector of the training set is

The total error for a training sweep is

Using delta rule [I], we reduce the value of E by implementing gradient descent [4]. By

taking the partial derivative and using the chain rule with respect to spj, the summation

value of neuron j for pattern p of training set, we get

Using (2), we get

Now, let us define

Then, equation (5) becomes

This says that to implement gradient descent in E, we should make our weight changes

according to

Apmji = q6pjxPi (9)

just as in the standard delta rule [I]. The trick is to find out what & should be for each

unit in the network. It can be shown [I] that for neurons in the output layer

spj = (dpj - OPj)fj(spj),

and for the neurons in the hidden layer(s)

where 6,* is the error propagating backwards in the network from neuron k.

A two stage (one hidden layer) backpropagation network was used for the classification

problems mentioned. One major issue in backpropagation networks is to find the correct

number of hidden neurons in the hidden layer(s). See Chapter 6 for more detail.

2.3 PSCNN and PSHNN

Both Parallel Self-organizing Consensual Neural Network (PSCNN) [2] and the Parallel

Self-organizing Hierarchical Neural Network (PSHNN) [5-81 are modular networks

(Figure 2.2). Each module may consist of a single

I , 1 STAGE I

1 - I STAGE I

Figure 2.2. PSCNN, PSHNN Network.

stage fully connected feed-forward delta rule network (Figure 2.2 (a)). All except

module one also have a Nonlinear Transformation (NLT) unit. Input data to each

module is nonlinearly transformed and then fed into the stage network. In training, the

system uses the stage network algorithm such as the delta rule to learn the input pattern.

In testing, it produces a classification output.

There is a rejection mechanism at the output of each output bit of each module. There

are rejection boundaries (and certainty boundaries in PSCNN) which are learned similar

to the weights during training. Learning rule for both PSCNN and PSHNN modules can

be chosen to be any desired learning algorithm. Previously it has mostly been chosen to

be the delta rule, which is similar to generalized delta rule described in the previous

section.

In PSHNN, there is a hierarchy in training. In other words, module i is only trained with

the data rejected by module i - 1 . In PSCNN on the other hand, modules are trained with

all available data for training. This allows modules of PSCNN to be trained in parallel.

During testing, each module of PSCNN votes for classification of input data. Then a

consensus is taken based on the classification votes of all modules and the certainty of

their votes. On the other hand, in PSHNN, the vote of module i - 1 has precedence to that

of module i . Thus if module i -1 classifies the incoming data (in other words, not rejects

it), the classification of modules i and higher are ignored.

See chapter 6 for the classification results of PSCNN.

CHAPTER 3

PARALLEL, PROBABILISTIC, SELF-ORG ANIZING, HIERARCHICAL

NEURAL NETWORKS

In the previous chapter we discussed two complex classification problems in multi-

dimensional spaces. In problems such as these, the high dimensionality of problem

space, in addition to other factors, usually makes classification difficult. Due to the high

dimensionality of this space, we need an extremely large data set for training, which in

most cases is not available. We have also seen that in addition to the limited training

data set in problems such as the remote sensing problem, some classes might be severely

under-represented.

In Chapter 2, we have also seen some of the solutions to these problems which have been

offered by neural networks (BP-networks, PSHNN, and PSCNN).

In this chapter we discuss a new type of neural networks, the Parallel Probabilistic Self-

organizing Hierarchical Neural Network (PPSHNN), to reduce classification errors. The

PPSHNN is designed especially for complex and high dimensional problems. Its major

contributions are implementing a pre-rejection unit (P-unit) (see section 3.5) to reduce

the complexity and possibly dimensionality of the classification space for the neural

network unit (N-unit)* (Section 3.2), the bitwise Post-Rejection scheme (Section 3.3)

which implements bit level statistical analysis to detect the errors made by the N-unit,

and its parallel implementation in a SIMD fashion on MasPar MP-1 (Chapter 5).

Because the P-unit and the postrejector units are adaptive, PPSHNN is very flexible as far

as allowing the user to choose any type of network for P- and N-units. In our

experiments, we have mainly used single stage delta rule networks for the P- and N-

units. In some experiments we also used two stage backpropagation networks.

In the following sections, we shall see how PPSHNN is better equipped to address

problems such as under-representation in training set, limited training data for very high

dimensional problem spaces, highly non-linear and complex classification spaces, and so

on. The PPSHNN also addresses the time complexity issues which back propagation

networks have had. It can be shown that the time required for training a backpropagation

network grows in the order of O(nh no) (see Section 5.3), where nh is the size of the

largest hidden layer. It is known that size of the hidden layer grows with the complexity

of the application. For complex problems such as the 10-class remote sensing problem,

backpropagation networks are painfully slow and sometimes require many days of

training on an average work station.

On the other hand, due to the parallel nature of PPSHNN, we will show (Section 5.3) that

the training time complexity of PPSHNN grows in the order of 0 (ni no). Note that both

* In the basic PPSHNN module there are two neural network units, the pre-rejecta and the neural network classification unit. By
N-unit we mean the later. This unit is also not to be mistaken with the nearest neighbor classifier which is referred to just as the
classifier.

ni and n,, are predetermined and not complexity dependent. Hence, the time complexity

of PPSHNN grows only at a constant rate (i.e. O(1)) with respect to the complexity of

the problem. Furthermore, by running the parallel version of PPSHNN, the SIMD-

PPSHNN, on a SIMD machine such as MasPar MP-1, we can cut the training time by

several orders of magnitude. In Section 5.3, we will make a time complexity analysis of

the BP, PPSHNN, and SIMD-PPSHNN networks.

In chapter 4 we discuss the PNS module and the implementation of PPSHNN using these

modules as its building blocks.

3.1 PPSHNN System Description

Figure 3.1 shows three modules of a PPSHNN network. Module 1 consists of four

submodules and a communication link, and all the following modules consist of five

submodules.

In the following, we describe briefly the function of each submodule and then the overall

function of PPSHNN. In Sections 3.3 through 3.6 we will describe the details of each

module.

The general idea behind the PPSHNN is to divide the problem space into polygons, and

then perform the task of classification in each one of the polygons independently, rather

than trying to do this in the entire problem space. The goal is to divide the problem

space in such a manner that classification is easier in at least one of the resulting

Communication Link

Input Data Classified

Classifier

MODULE 1

Communication Link

Vec
tor

Bit wise Output Data
Classifier II)

Post Rej I)
Rejedion e d

ion

MODULE 2

I < c , ~ ~ : I <:<I I Y+I:%

I
Bit wise

Classifier
ocessa Rejection

ion

I MODULE 3

R<;.i?,c:~.'t.l I'.k+rz

Figure 3.1. PPSHNN with 3 Modules.

polygons. The task of dividing the problem space into polygons is performed primarily

by the pre-rejector (P-unit) (Section 3.5).

Once this is done, the neural network unit (N-unit) performs classification on data which

fall into the easier regions. The rest of the data rejected by the P-unit is sent to the next

(lower) module in the hierarchy. Since in complex problem spaces there are some data

points which "pass" the pre-rejection test but still are difficult to classify, and are

misclassified by the N-unit, a mechanism is required at the output of the N-unit to detect

these data, reject them, and send them to the next module. This is done by a probabilistic

mechanism at the output of the N-unit called the Post-Rejection (Section 3.3). This

mechanism consists of two modules. The first performs a bit level probabilistic analysis

of the individual output bits of the N-unit and is referred to as the Statistical unit or the

S-unit. The second combines the results of the bit analyses and decides whether or not to

reject the input pattern. This unit is refemd to as the Vector Rejector or the VR.

There is a communication link between the P-unit and the postrejector. In many cases,

one or more classes of data are too complex for the N-unit to classify. This results in an

unusually low classification accuracy for these classes and most of the patterns belonging

to these classes must be rejected. In such cases, instead of training the postrejector to

reject each one of the individual patterns, the classes are communicated to the P-unit

through the communication link. The P-unit is then retrained to reject these classes along

with the ones it has already been trained to reject. If no P-unit exists for the module, one

is created and is then trained to reject these classes.

During testing, if an input pattern is rejected by the postrejector, it joins the rejected data

vectors from the P-unit and is sent to the next module. If accepted, the output data of the

N-unit is sent to the distance classijer for a nearest neighbor match to a set of pre-set

decoding patterns in order to convert the output vector of the N-unit to the required

output format.

T o determine the final P-unit, N-units and the postrejector, a number of retrainings of

these units may be necessary. Initially, there is no P-unit. The class(es) rejected by the

postrejector signal the creation of the P-unit. The P-unit is then created by training a

neural network as a two-class classifier with the accepted and the rejected set of input

vectors as determined by the postrejector. This leads to a reduced data set to be fed to

the N-unit, which is then retrained. The postrejector is also retrained to determine

whether or not more vectors or classes are to be rejected. If so, the classes are notified to

the P-unit and the individual vectors are rejected by the postrejector itself. This process

is repeated for a number of sweeps until all three units stabilize in terms of accepted and

rejected vectors.

The process described above may be considered excessive in terms of learning time, due

to the many sweeps which may be needed. In order to reduce this problem, two

strategies are possible. The first is to limit the number of sweeps to a predetermined

value. This could result in a higher number of rejected patterns and a higher number of

modules required for proper classification. The second strategy is to decide to create a

P-unit only if all or a predetermined high percentage of the input vectors from a class are

rejected by the postrejector. In the latter strategy, the P-unit has the task of detecting

classes which are difficult to classify as a whole since they may be underrepresented and

so on. This strategy has been used in our computer simulations. The predetermined

percentage was set to be 100%. With this strategy, only a single sweep is generated. The

postrejector still rejects a number of input vectors which are accepted by the P-unit, but

does not further notify the P-unit so that no more sweeps are generated.

The rejected data is sent to the next module to repeat the process. First, this data goes

through the Pre-Processor. The function of this optional unit is comparable to that of the

non-linear transformation performed in PSCNN or in PSHNN. This module non-linearly

changes the way the sub-problem space is presented to the network. The non-linear

transformation could be a neural network unit and thus learn the non-linear

transformation during training. This transformation is problem-dependent, and not a

preset transformation which may or may not work well on a given problem. For many

problems this unit may be skipped, and only the P-unit is used.

For better understanding of the operation of the PPSHNN, we consider the 2-dimensional

problem space shown in Figure 3.2.a. It contains three classes: A, B, and C. Figure

3.2.b shows how the P-unit of module 1 has divided the space into two polygons. The

shaded area is the reject region, and data falling in this area is rejected. The remaining

region of the space is the accept area, and data falling in this region are sent to the N-unit

for classification. Figure 3.2.c shows the space which is passed to the N-unit of module

one. We see that, since class C is not present in the data sent to the N-unit, the N-unit is

only a two-class classifier. After this stage, the output of the N-unit is sent to the

postrejector to reject the uncertain classifications. Data falling in the shaded area of

Figure 3.2.d is rejected to the next module by the postrejector. Notice that the function

of both the pre-rejector and the postrejector is to reject data which fall in the area of

problem space where classification is difficult.(ie. near the border between two or more

classes, etc.).

Figure 3.2.e shows the problem space that is introduced to the second module. This

space consists of all the data rejected by the pre- and postrejectors of the previous

Figure 3.2 Sample Problem Space Initial Stage.

module. Notice that the new problem space is less complex than the original problem

space. Also notice that, data belonging to any class which might have been under-

represented for the first module, is not so for the second module. This is due to the fact

I 11- A x ample data pant

7 1 clesa B

m a 11- c

Figure 3.3 Sample Problem Space Final Stage.

tha,t most of the data belonging to large classes are classified by the fiirst module and do

not exist in the problem space of the second module.

The second module repeats this procedure in its own problem space.]Figure 3.2.f shows

the reject area of the postrejector of second module. Note that since there are no under-

represented classes present in the polygon of the second module, a P-unit is not needed

for this module. Figure 3.3 shows the problem space introduced to the third module

(again no P-unit is created for this module). Notice that, for the lower modules in the

hierarchy, some of the classes present in the original problem space may vanish. This

mikes classification easier and opens possible avenues to reduce the dimensionality of

the problem space. For example, in Figure 3.3, since the border separating class A from

c1;tss B is horizontal (could also be vertical), one could perform classification simply by

having a threshold on the Y-axis (or X-axis), thus, making it a one dimensional

cliissification. A mechanism is needed to perform the reduction of dimensionality on the

incoming data points in such cases. This task of dimensionality reduction could be

performed by the pre-processor.

Training procedure: Figure 3.4 shows a flow chart of the training procedure of

PPSHNN. In creating and training PPSHNN for a classification problem, first we start

wii:h no P-unit. This unit is created only after the postrejector has requested it through

the: communication link.

First the N-unit for module 1, named N (l) , is created. Then this network is trained, until

there is little change in the classification accuracy. After which a bit level statistical

analysis of the output is performed using output data from last sweep of training of N(1).

After this point, there is a decision to be made as to whether or not a P-unit is needed for

this module.

This decision is made based on the pi calculated by each bit rejector, where pi is the

percentage of data correctly classified as class k (see section 3.4.1). There is a preset

minimum percentage threshold. If pi is less than this preset value for any k, a P-unit for

that module is required.

If there is any rejected class, then it is signaled through the communication link to initiate

the procedure of creating a P-unit. This procedure reduces the size of the output layer of

the N-unit by eliminating the output bits corresponding to the class(es) which are to be

rejected. Then, the P-unit is created. This unit is a two-class neural network classifier. It

is trained with the training data set which the N-unit was trained wi,th. It is trained to

re-ject the classes determined by the postrejector. Other input data are classified as accept

I
YES mba tk N(i) by dinhalina

) u.tib,fLT=jectcd&ufmn

& wtpn of tk N(i)

Figure 3.4 Training Procedure of PPSHNN.

anti are sent to the N-unit for classification. In other words, the P-unit eliminates the

input vectors which are difficult to classify and, as a result, the N-unit is introduced only

to a subregion of the original problem space. After the data set is divided into a rejected

set and an accepted set, the retraining of the N-unit with the accepted data begins. If the

nuimber of classes is reduced, the size of the N-unit will be smaller. After retraining the

N-unit, the process moves on to training the vector rejector with the output data of the

N-unit and the S-unit. This unit is trained to decide based on the bi~:wise information,

whlether or not, to reject the input pattern to the next stage. After this point, all the data

rejected by the postrejector and the P-unit (if present) are gathered together to build a

training set for the next module. This process is repeated with succeetling modules until

no, or few, data patterns are rejected.

A ~ I important feature of the PPSHNN modules is that modules become simpler as more

of them are created. The P-unit is not created in most cases after the second module and

the: N-unit becomes smaller.

Testing procedure: In testing the hierarchical processing involved in creating modules

is replaced by parallel processing. All modules are run in parallel, and each one

classifies the incoming data into a class or rejects it. Due to the hierarchical nature of the

training procedure, in testing, once module i has classified the incoming pattern into one

of the possible classes (in other words it has not rejected the pattern), the classification

results of modules i+l and lower are ignored.

3.2 The Neural Network Classifier (N-unit)

This network is a neural network construct. We experime:nted with both

backpropagation networks and single stage delta rule networks for this unit. In Section

2.2!, backpropagation algorithm was described in some detail. The: backpropagation

network used complies with all the specifications given in that section and in [I]. The

network has only one hidden layer and the layers are fully connected to each other

without jumps over the hidden layer. The delta rule networks used are single stage

backpropagation networks (no hidden layer). Therefore, Equation (1 :I) does not apply,

and all weights are updated according equations (9) and (10).

The design of PPSHNN is quite flexible, even allowing different types of networks to be

us:d for the N-units of different modules. Due to the adaptive nature of the P-unit and

the: postrejector submodules, the system is able to adapt and function properly.

3.3. Post Rejection

This unit is a combination of a set of probabilistic classifiers (bitwise postrejectors) and a

single stage Neural Network classifier (vector rejector). See Figure 3.5.

There is a bit classifier for every output bit. This classifier is a three-class Bayesian

classifier which classifies the output bit into one, zero, or reject classes.

The vector classifier is a neural network construct which looks at class~ifications made by

the: bit classifiers and decides whether or not to reject that input pattern. If the vector is

ACCEPTED 1 DATA

I REJECTOR I I
POST

OUTPUT LAYER
OF THE TWO

STAGE NETWORK

VECTOR

RETECTOR

REJECTED
DATA

Figure 3.5 Post-Rejector.

nolt rejected, it is classified into one of the possible classes. If the data is rejected, it is

sent to the next module for classification.

3.3.1 Bitwise Rejection (S-unit)

Bitwise rejection is performed by the bitwise classifiers. Each bitwise classifier is a

three-class Maximum A Posteriori (MAP) Detector [9]. It is well-known from statistical

decision theory that a Bayes receiver [lo] minimizes the average cost of making a

decision and is implemented by means of the likelihood ratio test. In the following we

shall derive these ratio tests for a three class case. The idea is to look at neural network

(N-unit) from a different point of view. Namely, we look at the network as part of a

TRANSMlSSlON CHANNEL

INPUT

CODING

NEURAL

NETWORKS .
Figure 3.6 Transmission Channel Model.

transmission channel (see Figure 3.6) and we look at the output vector as the received

signal from this channel. The transmission channel consists of the measurement

procedure, coding the measurements into a pre-decided format and finally putting the

signal through the network. All three stages of this channel can add noise to the signal.

The measurement noise, the wrong coding scheme, an undertrained network, a wrong

sized andlor structured network are all examples of potential noise-adding elements in

the channel.

Fo:r the output bit k with the output value z of the N-unit, three hypotheses are possible:

H a = Bit k should be classijed as zero .
H 1 = Bit k should be classijed as one .
H , = Bit k should be rejected .

Notice that we consider the rejected data as a class by itself. This way we acknowledge

the fact that some data points are not classifiable in their present representation. In

POINTS BELONGING - TOCLASS ONE

lNTS BELONGING
TO a s s nvo

'IHE DOUBLE SHADED
AREA IS 'IHE ARE FOR
A THRD CLASS, THE
CLASS OF DATA THAT
SHOULD BE REJECTED

Figure 3.7 Sample Nonlinear Problem Space.

Figure 3.7 a simple example of this in 2-D space is shown.

We establish the following notation:

&(z IHi) = probability density function of the output value of bit E; given that Hi is

true.

zk = output value of the krh output bit of the N-unit

ck. CI = cost of deciding hypothesis Hi is true when H, was actually true for bit k.

P: = p k (H i) = a priori probability for bit k that hypothesis Hi is true (i.e.

p: = 1 - p t - p 5) .

p k (H i 1 z) = probability of hypothesis Hi being true for bit k, given the output value z

from the N-unit.

The a posteriory probability pk(Hi 1 z) can be computed from fZ(z (H i :) using Bayes rule

[lo]:

Suppose that we observe a particular z on output bit k and that we decide it belongs to

hylpothesis H i . If the true classification is Hi, the expected loss associated with chosing

Hi is merely

Thus, the expected loss for choosing H o given output value z at bit k is

k k R k (H o I z) = c k p k (H o I z) + c $ l p k (H 1 I z) + CorP (Hr I z) . (14)

The expected loss for choosing H 1 given output value z at bit k is

k k R ~ (H ~ I Z) = c : ~ P ~ (H ~ I Z) + c : ~ P ~ (H ~ I Z) + c l r p (H, I Z) , (15)

and the expected loss for choosing H,. given output value z at bit k is

In decision theoretic-terminology, an expected loss is called a risk, and R ~ (H ~ l z) is

known as the conditional risk. Whenever we encounter a particular output z, we can

minimize our expected loss by selecting the hypothesis that minimizles the conditional

risk.

Nclw we can show that this is the same as the optimal Bayes decision procedure:

Le,r us define a decision function c k (z) which chooses a hypothesis for output value z at

ou,rput bit k. The overall risk R is the expected loss associated with a given decision rule.

Since R ' (H i 1 z) is the conditional risk associated with chosing Hi, and since the decision

rule specifies the hypothesis chosen, the overall risk is given by

Where dz is the notation for a d-space volume element, and where the integral extendr

over the entire feature space. Clearly, if c k (z) is chosen so that R (c k (. z) 1 z) is as small

as possible for every z, then the overall risk will be minimized. This justifies the

foll!owing statement of the Bayes decision rule: To minimize the overali' risk, compute the

conditional risk

and select the Hi for which Rk(Hi 1 z) is minimum.

Thus, for every output value z at every bit k there are three tests to perform. Using

results of these tests we define the following decision rule which has minimum risk:

if Rk(Ho l z) < R k (H l I Z) & Rk(Ho l Z) < Rk(Hr l Z) chose H o

if R k (H 1 I z) < R ~ (H ~ I z) & R ~ (H ~ I z) < R ~ (H , l z) chose H l (18)

otherwise chose H,

The first test is between H o and H 1 :

Now let c&-, = cIfl = c:, = 0. This means that there is no cost for guessing the correct

hylpothesis, which is the case in most classification problems. Then the inequality

recluces to

~ s s u m i n ~ z (z) # 0, we can multiply both sides by f i (z) . Thus we get

Using Bayes rule (12) and assuming P: # 0, Eq. (22) becomes

Ch.oosing C l o = Col and C1, = Cor and Cro = Cr 1 leads to the followiing:

The second test is between H o and H,

Using (14) and (16) and choosing Coo = C , = 0, yields

Us.ing Bayes rule (12) and applying the same conditions as in Test 1, wle obtain

TEST 3:

The third test is between Hr and H 1 :

With the same assumptions a s in the previous two tests and the same operations, a final

inequality for test 3 can be reached:

Hr
>

c!,f((z IH,)P; - ~ ; l P (z 1 ~ 1) ~ : < (~ ; o - ~ ! o) f ((z I H O) P B . (33)

H I

Tfle final three inequalities resulting from the above three test are as follows:

Moving all the terms to left side of the inequalities, we get

For simplicity, let us define the following three functions:

r : (z > = p : f i (z IH1) -Pko f i (z IHo)

r! j (z) =ckorfi(z I H ~) P ; -c;o&(z 1~0)pko +(GI - ~ ; 1) f i (~ 1 ~ 1) ~ :

rf (z) = c i r f i (z I H ~) P ; - ~ ; l f i (z I H I) P ! + (GO - c;o)&(z IHO>P%

The inequalities (34), (35) and (36) can be written simply as

Hence the decision rule of (18) becomes

i f r : (z) & r ! j (z) < O chooseHo

if r : (z) > 0 & r $ (~) < 0 choose H~ (43)

otherwise choose Hr

From (43), if we had the three I'; , ~1 and I'; functions we could compute regions on the

z alxis for every output bit and for every hypothesis such that the expected loss would be

minimal. To do so we need to have all the conditional probability density functions (ie.

f i (:z I Hi)) as well as all the a priori probabilities pf required in (37), (38) and in (39).

These probabilities are different for every output bit, and need to be computed for every

bit separately.

Estimation of the Conditional Density Functions (A (z 1 Hi)):

There are two general approaches to density estimation, parametric and nonparametric

[10]. If we can assume we have a density function that can be characterized by a set of

parameters, we can design a classifier using estimates of the parameters. Unfortunately,

we: often can not assume a parametric form for the density function, and in order to

peirform the test in (43) we have to estimate the conditional probability density functions

using a different and not so structured approach called nonparametric ,estimation. Since,

in nonparametric approach, the density function is estimated locally by a small number

of neighboring samples, the estimation is less reliable with larger bias and variance than

the parametric counterpart.

The two main nonparametric estimation techniques are: the Parzer~ density estimate

[10] and the k-nearest neighbor density estimate(kNN) [lo]. They ;are fundamentally

very similar, but exhibit some different statistical properties. The kNE4 approach can be

interpreted as the Parzen approach with a uniform kernel function whose size is adjusted

au~tomatically, depending on the location. We have decided to use the Parzen approach

since a Gaussian distribution function instead of the uniform kernel can be used, which in

prilctice gives a smoother estimate.

It is extremely difficult to obtain an accurate density estimate nonparametrically,

particularly in high-dimensional spaces. But since we are performing bitwise analysis,

all our density functions are in a one dimensional space stretching only from 0 to 1 (since

output of all neurons are between 0 and 1). Because the number of training patterns are

limited, this method has higher accuracy of estimation compared to the multidimensional

density estimation.

Nc~w let us consider a random variable Z and its probability density function p(z). In

order to estimate the value of the density function at a point z, we may set up a small

1oc:al region around z, L(z). Then, the probability coverage (or probability mass) of L(z)

may be approximated by p (z)v, where v is the length if L(z). This probability may be

estimated by drawing a large number of samples, N, from p (z), containing the number of

sa~nples, m, falling in L(z), and computing m/N. Equating these two probabilities, we

may obtain an estimate of the density function as

Note that, with a fixed v, m is a random variable and is dependent on z. A fixed v does

not imply the same v throughout the entire space, and v could still vary with z. However,

v is a preset value and is not a random variable.

Kernel expression: The estimate of (44) has another interpretation. Suppose that three

sa~nples, z3, z4, and zs, are found in L(z) as shown in Figure 3.8. With v and N given,

3 p^(.r) becomes -. On the other hand, if we setup a uniform kernel function, K(.), with
Nv

Figure 3.8 Parzen Density Estimation.

1 length v and magnitude of - around all existing samples, the average of the values of
v

3 these kernel functions at z is also -. That is
Nv

As seen in Figure 3.8, only the kernel functions around the three samples, z3, zq , and z s ,

contribute to the summation of (45).

Once (45) is adopted, the shape of the kernel function could be selected more freely,

under the condition i ~ (z) dz = 1. For one-dimensional cases such as ours, we may seek

optimally and select a complex shape. However to keep computations simple and yet to

be accurate enough, we have chosen a normal kernel with the mean of zero (p, = 0) for

all the experiments:

Cclnvolution expression: Equation (45) can be rewritten in convolution form as

where is is an impulse density function with impulses at the locatilons of existing N

samples.

That is, the estimated density i (z) is obtained by feeding &(z) through a linear

(noncausal) filter whose impulse response is given by ~ (z) . The:refore, p^(z) is a

smoothed version of 6, (z).

Moments of p^(z): The first and second order moments of (47) can be easily computed.

First, let us compute the expected values of &(z) as

Th.at is, &(z) is an unbiased estimate of p(z). Then, the expected value of b(z) of (47)

may be computed as

Therefore, the variance of b(z) is

A

Even though we only need to estimate fk(z I Hi), for i E (0 , 1 , r }, we have also

colnputed m,t = E z I Hi and o:r = var z I Hi as well for future analysis of output -Ik I { k I
A

For every bit k, we use the following procedure to estimate fk (z I H,):

Consider the training set R = , X2 , . . . , XN with N data samples. 1
1. Find the set Rfj of data samples in R which have a desired output value of zero for

, X2 , . . . , X M ~ with M o samples.

2 . Find the subset SZL of SZE for which the actual output value at bjt k is less than 0.5

(zk < 0.5): SZg = blz:<0.5}= t1 , x2 , . . . , xro with r,, samples. I
7;. For the set SZL, we build a corresponding output set EL which contains all the

output values for bit k for input samples of SZk:

4,. Form a normal kernel around each z i ~ EL:

Where U(z) and U(z-1) are unit step functions. They are used to limit the

probability density function to the interval from 0 to 1. ai is a constant calculated

by

It compensates for the fact that the pdf is only valid over the interval [0 , 11 instead

5 . Use (47) to form an estimate

A A

The above procedure is the same for estimating fk(z I H 1) and f k(z I H;) except for steps

A

1 and 2. To estimate f k(z I H steps 1 and 2 change to:

:I. Find the set i2: of data samples in R which have a desired output value of one for

bit k i26 = [xi . xi XM, \ with Ml samples.

2. Find the subset i2il of i2: for which the actual output value at bit k is greater than

A

For f (z 1 H,). step 1 is not performed and step 2 is as follows:

2. Find the subset of i2; for which the actual output value at bit k is greater than 0.5 and

find the subset of i2: for which the actual output value at bit k is less than 0.5. Take the

union of the two subsets to get i2;:

where for every bit k. ro, r 1. rr satisfy

r o + r l + r r = N . (58)

Estimation of the a priori probabilities &: The estimation of the a priori probabilities

is much simpler and can be computed by the following simple equations:

Cost of error (c:): Though it is possible to have different cost criterions for different

biis, we decided to have one criterion for all bits. Then, c:, simplifies to Cij. There are

several conditions in our criterion which were mentioned before:

1. Cii = 0 Normally the cost of guessing the correct hypothesis is :zero.

2. Cro = Crl The costs of rejecting an output when it should have been classified 0

or 1, are the same.

5 . Cor = C l r The costs of chosing Ho or H I when Hr should have been chosen, are

equal.

4. CO1 = C I 0 The cost of chosing Ho when H I was true, and the cost of chosing H I

when Ho was true are equal.

There are two more relational conditions which should be mentioned here:

5 . Cro = Cr < Cor = C l r The consequences of classifying Ho clr H 1 as Hr is less

severe than classifying Hr as Ho or H I . (Rejected information still has a chance

of being classified correctly in the next module.)

6. Col = C l o w Cor = C > Cro = Cr 1 The consequences of classifying Ho as H 1

or reverse is much higher than that of any other error.

In our research we experimented primarily with

C r o = C r l = I , C o r = C l r = 2 , Col = C l o = 5 sometimes with

Cro = Cr 1 = 1 , Cor = C 1 , = 2 , Col = C l o = 10 The results were similar, except

tht: fact that the second criterion makes reject region to slightly grow and zero and one

regions to slightly shrink.

Now using the above a posteriory and a priori estimates in (37), (38), and (39) we can

estimate T: (z) , T$ (z) , and T$(z) . Using these estimates in (43), we can decide on one of

the three hypotheses Ho, H or Hr .

This procedure is performed for every output bit. The decision for every bit is then sent

to the vector rejector which in turn decides whether to reject the input pattern and send it

to the next stage or accept it and send it to the nearest neighbor classifier for

classification.

The decision rule of (43) is carried out by performing the following:

For test I , set T f (z) = 0 , and use (37) to find

Thus dividing the interval r = LO - - . 1 1 , into two subintervals, r f O = L 0 - - - z i l 1 the

interval for Ho for test 1 of bit k, and I!' = [zbl - - . 11 the interval for HI for test 1 of

In the same manner we compute zb, and z f l , from test 2 and 3, using (38) and (39).

Although in theory it is possible for each test to divide the interval I into several

subintervals, in practice, in all our experiments, I is divided only into1 two sub-intervals

by each test (ie. Tt(z), T:(z), and Tt(z) have only one root each). Figure 3.9 shows a

typical outcOme of the three tests. Namely

The decision strategy governed by (43) corresponds to a voting strategy among the three

tests. For output value z, when two of the three tests are in agreemeint, that decision is

accepted. If no tests agree, the decision is reject, and that bit is rejected. For example,

as,suming the order shown in Figure 3.9, if the output value of bit k falls in the interval

13 , Zor (tests 1 and 3 agree on Ho), the bit is classified as zero, if the output value falls [* I
in [zF1 , I] (tests 1 and 2 agree on H I) , the bit is classified as one, arid finally, if it falls

in [,fir , zF1] (tests 2 and 3 agree on H,), that bit is rejected.

It is also possible that the order in (61) not hold. A current working hypothesis is that,

any network that defies the order of (61), is either severely under-trai.ned or is not large

enough to handle the complexity of the problem. If this is proven to be a correct

hypothesis, then one can have an idea as to how the size of the network matches up with

the complexity of the problem, early in training procedure. This can avoid further

training of a network that can not handle the complexity of the problem for purely

tol?ological reasons.

TEST 1

TEST 2

TEST 3

COMBINED
RESULT

Figure 3.9 Sample Rejection Boundaries.

In the above discussion and in (61), it is assumed that the equations

r : (~) = o r;(~) = o r ; (~) = o (62)

have only one root. The expected behavior of f,(z I Ho), fz(z I H and fz(z I H,) are

s h ~ ~ w n in Figure 3.10. In order for equations in (62), have one root, the following

conditions must be satisfied (These conditions assume probability beh~avior as shown in

Figure 3.1 0 Expected Conditional Density Functions.

Fi,gure 3.10) :

From Test 1 we get two conditions (see Figures 3.11 b and 3.11 a),

From Test 2 we get (see Figures 3.12 b and 3.12 a)

I I

-

-

20 - -

10- t(z IH) -
z

0 I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.11 Density Functions for Test I .

Fr.om Test 3 we get (see Figures 3.13 a and 13 b),

c0ek [(z IH>-C pk h z IHd
4 0 - ro 0 z

N

20 - (5; $1 p:

r (z IH)

0

Figure 3.12 Density Functions for Test 2.

Figures 3.11 through 3.13 are the actual probabilities from one of oui: experiments with

the following cost values:

C l o = C o l = 5 , C l r = C o r = 2 ? C o r = C r I = l .

Th~e conditions of (63-68) were satisfied in all experiments.

Figure 3.13 Density Functions for Test 3.

3

2

1

Side property: The same procedure can be used to estimate the threshold of each output

neuron in parallel (in which case we would only have Ho and H 1):

I I I

- t (z IH)

~ 1 8 ~ {(z IH> + (~ 1 ~ CA P: {(z IHd -
$1 qk

ci--

Let y k be the sum of weighted input activation levels for output neuron, k,

0 0.1 0.2 0.3 07 0.4 (b) 0.5 0.6 0.7 0,.8 0.9 Zk 1

where Wki is the weight connecting the ith hidden neuron to the kth output neuron, z), is

the output (activation level) of i th neuron of the previous level. Therefore the activation

of the kth output neuron is,

By estimating fF(y 1 Ho), and fF(y l H l) using the density estimations similar to the

procedure above, we can estimate the threshold (861) using:

Remarks:

o The procedure described above is parallel in nature and can be performed for all the

output bits at the same time. Since the steps performed in parallel are the same, the

above procedure is ideal for an SIMD (Single Instruction Multiple Data) [ll-121

machine such as MasPar MP- 1 (see Chapter 5).

a There are some fundamental and philosophical differences between the system

described here and other probabilistic networks. The procedure above looks at the

problem of classification using neural networks from a differenl: point of view as

follows:

1. A fundamental difference between this method and other probabilistic neural

networks is that others estimate P (Hi IX), where X is the input vector to the

network and i E , , . . , n o where no is the number of output bits. This i I
means estimating the probability of hypothesis i being truie given the input

vector of X.

Our procedure discussed above is estimating x (z I Hi), where z is the output

value of bit k. Use of Bayes rule (12) then allows ,the estimation of

In other probabilistic networks, using Bayes rule (12) yields

The estimation is not a single bit estimation, but rather a hypothesis estimation

using vector estimation. It is well known that high dimensionality is the main

source of inaccuracy in classification problems. As an example, consider the

one dimensional case in which 1000 training patterns are available between 0

and 1. 1000 samples distributed in the interval [0 , 11 gi.ves a an accurate

estimation of the probability density function. Now consid~x a 7 dimensional

space with the same number of training patterns available in the unit hypercube

at the origin. The data points will be so sparse that an accurate estimation of the

7-dimensional probability density function will be almost impossible.

This is the case with the 10-class Colorado problem. There are 1188 training

patterns available in a 7-dimensional space belonging to 10 classes. It is clear

that the accuracy of the single dimensional estimation will be: much higher than

that of the 7-dimensional one. This is of course assuming that all 1188 data

patterns are made available to all single dimension estimators. This is the case

in our procedure.

2. A second important difference is that other probabilistic networks force a

classification even for data which in their current format are impossible or very

difficult to classify. We, on the other hand recognize the fact that this kind of

data can form a class which is to be rejected. The network i:s organized so that

it recognizes data belonging to this class, classifies it as such and sends it to the

next stage for preprocessing (possibly including change of format, using a

different non-linear coding scheme, etc.) and another attempt at classification

(see Figure 3.2 and 3.3).

This rejection classification is first performed at the bit level by bit classifiers,

and then the information is combined in the vector rejector (optional) for vector

rejection (see section 3.3.2).

In other words, other networks try to divide the classification space shown in

Figure 3.7 into two regions, one for each class. However, the system

described here will divide the space into three regions, an additional region for

the class of data which are difficult to classify. Data falling in this region are

sent to the next module. In that module, this region is nonlinearly transformed

(optional) and the process is repeated. This divide and conquer procedure

continues until we reach a desired accuracy.

Comparative analysis:

In order to better point out the fundamental differences between PI'SHNN and other

probabilistic networks, we would like to briefly describe and and conduct a comparative

study of Donald Specht's recently published [5] Probabilistic Neural ??etworks (PNN).

Figure 3.14 shows Specht's neural network organization for classification of input

patterns X into two possible categories, A, and B.

In Figure 3.14, the input units are merely distribution units that suppl!r the same voltage

values to all of the pattern units. The pattern units (shown in Figure 3.15) each form a

dot product of the input pattern vector X with a weight vector Wi, Yi = X . Wi, and then

perform a nonlinear operation on Yi before outputting their activiation level to the

summation unit. Instead of the Sigmoid activation function coinmonly used for

backpropagation, the nonlinear operation used here is

Assuming that both X and Wi are normalized to unit length, this is equivalent to using

INPUT
UNITS

0 . .
PATTERN
UNITS

SUMM.4TION
UNITS

Figure 3.14 Specht's Network.

The summation units simply sum the inputs from the pattern units that correspond to the

category from which the training pattern was selected.

The output, or decision, units are two-input neurons, as shown in Figun? 3.16. These units

produce binary outputs and have only a single variable weight Ck where

Figure 3.15 Pattern Units of Specht's Network.

hAk is the a priori probability of occurrence of patterns from category A for output neuron

k, hgk is the a priori probability of occurrence of patterns from category B for output

neuron k, ZAk is the loss associated with the decision "X belongs to class A for output

neuron k", lBk is the loss associated with the decision "X belongs to class B for output

neuron k", n ~ k is the number of training patterns from category A for output neuron k,

and n ~ k is the number of training patterns from category B for output neuron k.

Note that Ck is the ratio of a priori probabilities, divided by the rati.0 of samples, and

BINARY OUTPUT

Figure 3.16 Output Neuron of Specht's Network.

m~~ltiplied by the ratio of losses. In any problem in which the nu.mbers of training

samples from categories A and B are obtained in proportion to their a priori probabilities,

l ~ k
Cx, = - -. This final ratio cannot be determined from the statistics of the training

1 ~ k

samples, but only from the significance of the decision. If there is no particular reason

for biasing the decision, Ck may simplify to -1 (an inverter).

The network is trained by setting the Wi weight vector in one of the pattern units equal to

each X pattern in the training set, and then connecting the outputs of ithe pattern units to

the appropriate summation unit. A separate neuron (pattern unit) is required for every

training pattern. As indicated in Figure 3.14, the same pattern units can be grouped by

different summation units to provide additional pairs of categories and. additional bits of

information in the output vector.

In other words, the pattern units in Specht's network form a normal dlistribution around

their respective Wi. This means that the pattern layer builds a normal distribution

function around each pattern of training set (xi). Then the summation units, by adding

up these distribution functions for each class, form a global distributior~ function for each

class. Therefore, every incoming pattern X is compared to these global distribution

functions and, according to Bayes minimum risk criterion, a class for X is chosen. This

final step is performed in the output unit.

Comparison: There are several issues that have to be addressed in order to point out the

important differences between the PPSHNN and Specht's or any other probabilistic

neural networks:

1. Estimation Accuracy: Specht uses Parzen density estimation to estimate P (Hi IX),

where X is the input pattern and Hi is the hypothesis that X belor~gs to class i.

It is well known that non-parametric methods become exceedingly difficult and

inaccurate as the dimensionality of problem space increases. In most real world

problems such as the speech synthesis problem (X is a vector in 70 dimensional

space, see section 2.1. l), or the remote sensing problem (X belongs to a 7

dimensional space, see section 2.1.2), Specht's network tencls to estimate the

distribution functions inaccurately, and as a result, decreases chances of correct

classification.

On the other hand, in PPSHNN, distribution estimates are always performed at the

bit level, in other words, always in a one dimensional space, resulting in improved

estimation and classification accuracy.

! Training data: Let us assume we have n pieces of data for the one dimensional

case. In order to have a comparable estimation accuracy in the p-dimensional

space, Parzen's or any non-parametric method requires on the order of nP sample

points. Normally this many pieces of sample data does not exist; therefore a

reasonable multi-dimensional estimate in problems which have limited number of

sample data is quite difficult.

3. Training and Testing time: A big advantage of Specht's PNN is the short period of

time required for training, as compared to backpropagation networks. But with

SIMD-PPSHNN (see chapter 5) running on MasPar, this time has been cut in

several orders of magnitude (see section 5.4), making the speed advantage of other

networks negligible.

The testing time, which is more crucial, is increased substantially by Specht's

PNN. For every input vector X, PNN has to perform the inner product < X , xi >

for all x i ' s in training set. Because X and xi belong to a high dimensional space

as in the speech synthesis problem, and since, a large training set is needed to

satisfy the requirements for high accuracy estimation in higher dimensional spaces,

testing takes much longer than PPSHNN or a backpropagation network. If testing

is not performed on a high performance machine, it cannot meet the real time

requirement of most problems. On the other hand, PPSHNN or backpropagation

networks are able to meet this requirement on almost any machine. An example

such as the speech synthesis problem can clarify this further. B~elow, we compare

the testing time complexity of the PNN and a backpropagation network in this

problem.

Since most of the time a network requires is used to perfclrm floating point

additions and multiplications, counting the number of floating point addition and

multiplication operations gives us an idea of the total time required by each

network relative to each other:

k=l600 number of training patterns.

p =70 number of input neurons.

nh=40 number of hidden neurons in the backpropagation network.

n,=14 number of possible classes .

Specht's PNN:

Pattern units perform

pk multiplications and (p -1)k additions.

Summation units perform at least

0 multiplications and (k -no) additions.

And finally the output units require

no-1 . no(%-1) no- 1 no(%-1)
C 1 =

2
multiplications and C i =

2
additions.

i=l i= l

Thus Specht's PNN requires

no (no-1)
~ k + = 1 1209 1 multiplications and

no (no- 1)
(p -l)k+(k -no)+ = 1 12077 additions.

2

Backpropagation network:

Hidden neurons perform

pnh multiplications and nh (p - 1) additions.

Output neurons perform

nhn, multiplications and no (nh-1) additions.

Thus backpropagation only requires

nh(p +no) = 3360 multiplications and

nh (p +no)-(nh+no) = 3306 additions.

If we assume that multiplication takes twice as much time as addition, we see that

backpropagation is more than 33 times faster than Specht's PNN during testing:

In addition, the inaccuracy in the estimation of distribution functions in a 70

dimensional space with only 1600 sample patterns should be a concern with the

PNN network.

Therefore, one can train a PPSHNN or backpropagation network on a high

performance machine, but use it on any machine in near real time for testing.

Whereas, for Specht's PNN, one needs a high performance machine to use it for

testing.

3.3.2 Vector Rejection

Vector rejection can be performed by a neural network. Such a network is trained to

perform two-class classification (See Figure 3.17).

Tlds network has 2n0 input neurons and 1 output neuron. The Vector Rejector (VR),

receives two values from each Bit Rejector (BR). The first value is simply the output

value of the corresponding output bit of the N-unit (zk). The second value is the

hypothesis (H;) , to which zk has bin classified by the k-th BR. Note that H: is 1, if zk is

BIT H& -
i

CLASSIFIERS
n -1

i o n

Figure 3.1 7 A Delta Rule Network as the Vector Rejector.

classified to HI. It is 0 if zk is classified to Ho , and it is 0.5 if zk is classified to H,. The

ou~put of VR is trained to go high for vectors that should be accepted. It is trained to go

low for vectors which should be rejected and sent to the next stage for c:lassification.

This network is trained with the output data which is gathered from the last training

sweep of the N-unit and the bit-rejectors. Its desired output data is cre,ated by generating

a 1 for all the input patterns for which the classification of the PPSIHNN module was

correct and their classification should be accepted, and a 0 for all tlhe patterns whose

classification by the PPSHNN module was incorrect or uncertain and should be rejected.

The vector rejector can be a single stage delta rule network. In some cases, the task of

cliissifying vectors into accepted and rejected classes might be too complex for a single

stage network to handle. In that case, the VR can be chosen as a two-stage network or a

PNS network (see Chapter 4). As in all other modules, the VR can also be chosen as any

special network such as a competitive learning network.

Thl~ bitwise classifiers, together with the vector rejector, address several problems and

offer solutions for them as follows:

Most classifiers look at the entire vector and make the classification decision (eg. is a

minimum distance classifier). By doing so, the classifier could overlook detailed

information encoded in the individual bits which might be crucial for classification. The

folliowing example from the 10 class remote sensing problem using backpropagation is

one such case:

Output vector =[0.53 0.62 0.40 0.32 0.67 0.37 0.32 0.45 0.4:7 0.351

A typical classifier such as a Bayesian vector classifier or any neural ne:twork classifier at

the output would most probably classify this vector as class 5 or if the reject option is

present as reject.

The output of the bitwise classifier is as follows:

[I R R O R R O R R R] .

The thresholds for the bit one classifier are as follows:

1.00000 <--> 0.41987 CZ~SSI

0.41 987 <--> 0.30100 Rejected

In other words, bit one is classified as 1. Similarly, bits four and seven are classified as

zero according to their thresholds. The rest of the bits are rejected a,gain according to

their thresholds. The problem with this data set is that some classes are very

underrepresented during training, therefore making it difficult and unlikely for the

network to learn them. In the 10-class Colorado problem, we have

of total data pieces in the training set : 11 88

of data pieces for class 9 in the training set : 25

bit 9:

HI = 0 HO= 1163 Hr= 2.5

pl= 0.0000+00 pO= 9.7895-01 pr= 2.1043-02

Wt: see that class 9 is very underrepresented (%2.1 of the training set) imd its data are all

rejected. Thus, any class 9 data in testing is going to be rejected. The problem is that

this will also cause the 9th bit of some data from other classes to be rejected as well. If

there are several such underrepresented classes, they will cause rejection of a vector

belonging to another class, due to the uncertainty of the undertrained bits.

A bitwise classifier combined with a neural network vector rejector can detect these cases

and allow exceptions. In the above mentioned case the vector rejector can learn to

overlook the underrepresented bits when there is a definite c1assificai;ion for other bits,

and correctly classify the above vector as class 1.

3.4 The Classifier (Minimum Euclidian Distance Classification unit)

Th:is unit is a simple nearest neighbor classifier. It simply compares the incoming vector

to desired vectors and finds the desired vector which is the closest to the: incoming vector.

The incoming vectors to this unit are the output vectors of the N-unit of the module

which have not been rejected.

. V Z , ... , vn] be theincoming vector a n d D i = 1 dizl d i n] be

the: ith desired vector for i = 1, ... ,m. The classification is according to

(76)

This unit is the final step in the classification process. The output (sf this unit is the

number of a class to which the incoming pattern has been classified.

3.5 The Pre-Rejector (P-unit)

This unit as described in Section 3.1 is a two class classifier. It classifies the data

belonging to the under- and unproportionally represented classes as "reject" and classifies

the rest as "accept". In other words, it divides the problem space into two subregions and

allows the N-unit to learn only the simpler region of the two.

This unit can be any type of neural network network. For example, it can be a single

stage delta rule network. If this unit is a two stage network, because of it being only a

twro class classifier, it is normally much smaller than the N-unit of the corresponding

module. For example, for the 10-class Colorado data, the pre-rejector of the first module

(if chosen to be a two-stage backpropagation network) has only four hidden neurons (see

Figure 3.18).

Figure 3.18 Pre-Rejector of Module 1 of PPSHNN.

The pre-rejector is perhaps the most important unit in the PPSHNN rr~odule. Care must

be taken in choosing the classes that it should reject or accept. Hence, the design and

operation of the S-unit is of great importance. With an accurate pre-rejector and the

optimal selection of reject and accept classes, a complex problem space can be divided

in~to two simpler and perhaps even linearly separable regions. This could not only

decrease the training time by simplifying the problem space and hence reducing the size

of the N-unit, but also increase the classification accuracy by allowing the N-units to

learn a simplified problem space rather than a large and complex one.

Unlike any other neural network units in the system, the pre-rejector has to always have a

vely high classification accuracy. In most cases, the accuracy of the plre-rejector should

nolt be lower than 90%. The accuracy of the unit shown in Figure 3.18 i~s around 95.5%.

Milch of the success and failure of PPSHNN in achieving higher classilication accuracies

them other networks is due to this unit. Most of the classification error occurring in

PPSHNN is due to a pre-rejector accepting a pattern which should have been rejected.

This type of error leads, almost always, to misclassification. We call this type of error

"fatal". The second type is called "nonfatal" due to the fact that over %50 of this type of

error is corrected in the following stages of the network. For simplic:ity, sometimes we

als,o call the pre-rejector the P-unit. The operation of this unit a.nd its theoretical

ini.erpretation is further discussed in the next Chapter.

3.6 The Pre-Processor

The pre-processor is the least researched unit in the system and future research should be

heavily concentrated on this unit. The sole purpose of this unit is to simplify the way

problem space is presented to the respective module. In some experiments, we used

simplistic pre-processors, whose task was only spreading out the data in the problem

space so that the boundaries between classes could be more flexible an'd easily found. T o

do this, the pre-processor finds the statistical mean of all the data it is, presented during

tra:ining and memorizes that mean. Then every datum point in testing (or training) is

noillinearly pushed away from the mean, thus spreading the problem space further out.

By enlarging the distance between the data points, one hopes to allow the boundaries to

become so flexible that a piece of a highly nonlinear boundary can be simulated by a

linear one.

CHAPTER 4

SPECIAL TOPICS IN PPSHNN

In this chapter, we discuss a special variation of the PPSHNN modules called the PNS

module. We discuss its behavior and its features. In the first section, we discuss the

architecture of the PNS module. In the second section, we discuss the training algorithm

for this module and, finally, in Section 3, we analyze the features of this new module.

4.1 The PNS Module

In this Section, we discuss the PNS module as the basic building bloclk for the synthesis

of PPSHNN. The PNS consists of a prerejector (P-unit), a neural network classifier (N-

unit), and a statistical analysis unit (S-unit). In some cases, we will refer to the

combination of N-and S-units as NS-unit. The optional pre-processor and vector rejector

units are not included, but they can be included in future developments of the module.

While the P- and the N-units can be any type of neural network, we ha,ve chosen them to

be a single stage delta rule network. The P- and NS-units are fractile in nature, meaning

that each such unit may itself consist of a number of PNS modules. As before, through a

mechanism of statistical acceptance or rejection of input vectors for classification, the

sarnple space is divided into a number of subregions (polygons if the single-stage delta

rule network is chosen). The input vectors belonging to each polygon are classified by a

dedicated set of PNS modules. Since the delta rule network is used 1.0 generate the N-

unit, each polygon approximates a linearly separable region*. In this sense, the total

system becomes similar to a piecewise linear model.

4.2 The PNS Algorithm

The block diagram for a PNS module is shown in Figure 4.1.

The Prerejector T

Figure 4.1. The Block Diagram of a PNS Module.

The N-unit can be any type of neural network, but it is chosen as a delta rule network

The classification

Clusterd
Patterns

Network
Input I

+ By linearly separable region we mean part of the original problem space which is separated from the rest of the space by a
combination of linear boundaries.

'The Statistical

Rejected Patterns

(S-unit)

I
patterns (N-unit)

I

with output nonlinearity in this thesis.

The procedure for the creation of the PNS modules is shown in the flow charts of Figures

4.2: and 4.3. Initially, the total network consists of a single N-unit. It has as many input

neurons as the length of an input pattern, and as many output neurons as the number of

classes. The number of input and output neurons may also be chosen differently

de.lpending on how the input patterns and the classes are represented. The N-unit is

trained by using the present training set (each N-unit will be presented a different

training set depending on where in the hierarchy its module lies). After the N-unit

co:nverges, the S-unit is created. The S-unit of the PNS module is identical to that of the

PF'SHNN module. It is a parallel statistical classifier which performs bit-level three-class

Ba.yesian analysis on the output bits of the N-unit. It was discussed ill detail in Section

3.3.1. One result of this analysis is the generation of the probabilities p:, k=1,2, - - - M,

M being the number of classes. p: signifies the probability of classifying an input pattern

belonging to class k correctly. Like before, if this probability is equal tlo or smaller than a

srrlall threshold 6 for one or more classes, a P-unit is created to]-eject the patterns

belonging to these classes. In other words, if pf I S , the corresponding class is either

geometrically small or undersampled, or has highly nonlinear boundaries such that the

present network cannot learn it.

A!; before, the rejection of such classes before they are fed to the N-unit is achieved by

the creation of the P-unit. The P-unit is a two-class classifier trained to reject the input

patterns belonging to the classes initially determined by the S-unit. I:n this way, the P-

unlit divides the sample space into two regions, allowing the N-unit to be trained with

begin m
A

Stage #
n=l

Yes

create the first N-unit

v
train the N-unit

create the S-unit f--7 / create rlew training and
desired sets from this data /

analyze the output values +
no ollect data rejected by the

analyze the output values +
Figure 4.2. Flow Chart for Learning of a PNS Module.

retum 0

set for the new N-unit
using the aa:epted data by

the P-unit -4

Figure 4.3. (a) The Recursive Procedure to Create a P-.unit.
(b) The Recursive Procedure to Create a NS-unit.

patterns belonging to the classes which are easier to classify.

If a P-unit is created, the N-unit is retrained only with the patterns that are accepted by

the P-unit. The process discussed above is repeated as necessary. The S-unit is

regenerated; it may again reject some classes. Then, another P-unit has to be created to

re-ject these classes. This results in a recursive procedure.

If there are no more classes rejected by the S-unit, the PNS module :is completed. The

input patterns rejected by it are fed to the next PNS module.

The complicating factor in the discussion above is that there may be more than one P-

unit generated. Each P-unit is a two-class classifier. Depending on the difficulty of the

two-class classification problem, the P-unit may itself consist of a. number of PNS

modules. The same is true with the NS-unit. The flow diagrams of the: procedure for the

generation of the P-unit and the NS-unit are shown in Figure 4.3. A particular example is

shown in Figure 4.4, which shows the PNS modules generated for the 10-class Colorado

problem discussed in detail in Section 2.1.2. In the first stage, the P-unit required 3 PNS

modules and 1 NS module to reach desired performance. Similarly, the NS-unit has

actually developed into one PNS and one NS module. In this sense, the P- and the NS-

units are like fractals.

Like the PPSHNN module, the S-unit also generates certain other thresholds for the

ac'ceptance or the rejection of an input pattern, as discussed in Section 3.3.1. Thus, the

input pattern may be rejected by the P-unit or the S-unit. The rejected vectors become

input to the next stage of PNS modules. This process of creating stages continues until

all. (or a desired percentage of) the training vectors are correctly classil[ied. For example,

for the Colorado problem discussed in Section 2.1.1, two stages were required, as seen in

Figure 4.4.

The recursive nature of the algorithm becomes evident when a P-unit or a NS-unit is to

be created. Either unit starts as a single NS structure and builds up further, if necessary,

into several parallel PNS modules. In order to create a new P- or NS-unit, it is necessary

STAGE 1 r'-----"----"-------------.--
I P I
I

I
I

I P N S
I

accepted data
NS I

I
I
I I
I I

I

STAGE 2

accepted data

I
I
I
I I

I
I

I
N 2; I

L---------------------- ----.--
t

I

rejected data NO FJ-UNIT REQUIRED

Figure 4.4. The PNS Modules in the PSHNN Designed for the 10-Class
Colorado Problem.

to generate the particular training data for its learning, as shown in Figure 4.3.

Figure 4.3 shows the procedures which create the P- and the NS-units. Before the

creation of the P-unit, the appropriate input-output training set has tlo be created. The

inlput training set is simply the set presented to the PNS module which is being created.

The corresponding desired output set is created by entering the vector 1 0 for all the [I
patterns which should be accepted by the P-unit and the vector 0 1 for all the patterns [I

which should be rejected by the unit. Before the creation of the NS-unit , a new input-

output training set for this unit must also be created. The input set cont.ains patterns from

the original training set which are not rejected by the P-unit, and the desired output set is

the collection of the corresponding desired output vectors from the original desired set.

If]no more P-unit is needed, the main program branches up to train the next stage of PNS

modules, as shown in Figure 4.2. To do so, the program gathers all. the rejected data

from the first stage. If there are no more rejected data, or if their nunnber is less than a

pn:set threshold, the algorithm terminates.

In brief, the total network begins as a single PNS module and grows during training in a

way similar to fractal growth. The P- and the NS-units may themselves create PNS

modules. The delta rule network is used to generate the N-units. We will show that the

net result is the separation of nonlinear classes into regions which are linearly separable.

This separation continues until the resulting PNS network can approximate the nonlinear

class boundaries using a piecewise linear model accurately. This procedure is similar to

modeling of a nonlinear system by a collection of piecewise linear systems.

Remarks:

It can be shown [5] that the output values of a network based on Least-squares error

m:inimization, such as the delta rule neural network, can be interpreted as the estimation

of the conditional pdf f (Hi 1 X), where X i s the input pattern. Thereforlz, one can perform

density estimation by such a network, which can be chosen as a PNS network. Then, the

total network consists only of PNS modules.

4.3 System Features And Proof of Piecewise Linearity

As mentioned in the previous Section, the learning procedure divides .the problem space

into linearly separable spaces, based on the learnability of the classes by the present N-

unit. Referring to Figure 3.9, this will be proven below.

Proof of Linearity:

For now let us assume that the N-unit has only one output neuron. In Section 3.3.1, we

showed how to compute two rejection boundaries for every bit. In Figure 3.9, these

rejection boundaries are marked as z t , and zfl. Since the N-unit is a single stage delta

rule network with sigmoidal output nonlinearity, as described in Secfon 2.2, the output

value of the k th neuron is computed by

y k = 1
"1

->i%

l + e '*

Where, ni is the number of input neurons, xi is the value at the i th input neuron, and Q

is the weight connecting the i th input neuron to the kth output neuro:n. Using (77), the

equation describing the boundary imposed by the S-unit at bit k between the zero and the

reject regions is

The above equation can be written as

which leads to

The right hand side is a constant, making the above a linear equation. It describes a

hyperplane in the ni-dimensional space. Hence, the boundary between the "zero" and the

"reject" region is linear. The same argument can be used to show that the boundary

between the "reject" and the "one" region is also linear and can be described by

Notice that, since the equations of the two boundaries differ only in the value of the

constant on the right hand side, the boundaries are parallel to each other.

In the same way, every output neuron in combination with its S-unit bit-rejector, creates

two linear (hyper-plane) boundaries in the ni-dimensional space. Da.ta falling between

these boundaries are rejected by the bit-rejector. Data whose output firlls outside of this

region is accepted by the bit-rejector and classified, for example, based on a minimum

mean square criterion [9-101. If the certainty of classification for a class grows, the two

boundaries move closer to each other, making the reject region smaller. If the certainty

is one, the two boundaries lie on top of each other and there is no reject region. This is

the case for bit one in the 10-class problem (see Figure 4.5).

Proof of Piecewise Linearity:

Now let the network have no output neurons. Each output neuron and. its corresponding

bit-rejector create two linear boundaries and three regions: zero, one, and the reject

regions. This results in 2n0 boundaries in the ni-dimensional problem space, which

divide the space into a number of polygons. A loose upper bound for this number can be

expressed as:

Pr*oof:

We will prove this in two steps:

1. For now let us assume the S-unit is not existent. In other words, for every output

neuron, only one boundary is created. Hence we have no boundaries and

bit 3 zero reject Z = 1.0
Z = 0.428 r1
Or

bit 2

bit 5 zero reject one
Z = 0.268 Z = 0.50
Or r l

zero reject

Z ~0.337
Or ~

bit 6 zero reject
Z= 0.50
Or

reject
Z= 0.321
Or

bit 7

reiect

zero reiect one
Z= 0.431 $7 0.539
Or

Figure 4.5. The S-unit boundaries created for the 10-CYass
Colorado Problem.

bit 10

The first case is relatively straight forward. If no I ni, then the maximum number

zero reject
Z = 0.339
or I 31=

of polygons are created when the boundaries share at least one point. Because it is

assumed that the activation level of every output neuron represents a different

feature of the classification problem, it is assumed that the weiglht vectors of these

neurons are different from each other. And because these weight vectors are

normal vectors of their respective hyperplanes, it is therefore assumed that these

hyperplanes are not parallel to each other. Hence, it is perceivable that they all

share a common point. Therefore, 2" is actually the maximum number of

polygons created and is the tightest upper bound. In such a case with every new

boundary, we can divide every existing polygon into two sub polygons. In other

words,

A, = 2An0-I = 2n0 for no I ni . (84)

The second statement of (83) can be proven as follows. Let us assume that we

have ni boundaries and they have divided the problem space into A, = 2"'

polygons using ni boundaries. Every additional boundary will not be able to divide

all of the polygons because of the linearity property of the bounclaries. This means

that the ni+l st boundary will cut at most Ani - 1 regions. This means:

The " 1" in the equation is for the one region not touched by t.he new boundary.

The rest of the equality is for all the regions that are divided into two subregions.

The same argument can be made for every additional boundary, resulting in the

general difference equation:

Using induction, we can now show that this is the same as the second statement of

(83).

Induction basis: For no = ni, from (83) we get:

Ano
= 2'4 - 2"' - "I + 1 = 2"'

no - ni Induction hypothesis: Ano = 1 + 2 - 1) = 2"" - 2 + 1 for no > n i l .

Induction proof for A, + 1 = 2"' + - 2"" - 'l + ' + 1. Using (87) and the induction

hypothesis, we can write:

. Now let us add the S-unit in. This will cause two boundaries to be created for

every output neuron. The two boundaries are parallel hyperplanes because of the

fact that for both planes the weight vectors are the same. Hence, the normal vector

to both hyperplanes are the same, and the planes are parallel. The only difference

between the two vectors is on the right hand side of the equation of the hyperplane

as seen in (80) and (81).

Now let us consider (82). Here, the same argument used for (83) can be applied,

except that now with every additional neuron, we are adding two parallel

boundaries rather than one. This means that now every polygon that the new set of

boundaries enters will be divided into three subpolygons rather than two. This is

true for both cases in (82). Therefore, by following the same argument as before

and by keeping in mind that every set of boundaries divides the regions into three

subregions, the upperbounds of (82) will follow.

Introduction of the P-unit to the problem space: The P-unit is c:hosen as a single

stage, delta rule, two-class classifier network. It introduces at least one additional linear

boundary to the problem space (the argument for linearity is identical to that of the N-

unit). The additional boundary(ies) serves to divide the problem space. into further reject

and accept regions. The difference here is that the reject region is completely dropped

out of the problem space of the N-unit, and the N-unit does not learn it.

A!; an example, Figure 4.6 shows the problem space of the XOR problem as it is learned

by the PNS module. Figure 4.6 (a) shows the PNS module developed for this problem.

Due to the simplicity of the problem, the P-unit consists of only one nleuron. The N-unit

consists of two neurons. Figure 4.6 (b) shows the two boundaries which the N-unit

irr~posed upon the problem space. The "one" regions of the boundaries overlap in the

'Zero'

(0.1)

(0.0)

NS
.
I

I N
I

P I

. X
I j

I
I

0.6

a~tage 1
reject

I

I - - - - - - - - - - - - - - - - - - - - - - - - - - -

otage 2

(a)

'Accept'

(1 .O) (0.0) ,/

'Onem= Class 1 = ((1.0) . (0.1))
'Zerom= Class 2 = ((0.0) , (1 .I)}

' bit 2

(b)

r-------~(1.1)

L, I I
\
\

I
\ I
\ I
\.--- 4

(1 .O)

(dl

Figure 4.6. A PNS Module for the XOR Problem and its Problem Space.

'Reject'

(c)

(0)

dotted area. Notice that the boundaries are only of consequence in t.he problem space

(th.e square shown in the figure). Hence the boundaries are finite lines (solid boundary

lines in the figure). Figure 4.6 (c) includes the boundary imposed by ithe P-unit. Figure

4.6 (d) demonstrates the problem space introduced to the N-unit after implementing the

P-unit. This space is linearly separable and can be learned by a single stage delta rule

network.

The N-unit is retrained to separate the classes in the new space. It creaks the boundaries

shown in Figure 4.6 (e). Notice that the two boundaries accomplish the same task and

thitt one can be eliminated. In other words it is sufficient to have only one neuron as the

N-unit. In general, this process of elimination can be achieved by introducing a new unit

to the output of the N-unit. The job of this unit would be to compare the weight vectors

of output neurons after training. It would compare these vectors two at a time, and if it

detected a linear dependence between any two vectors, it would eliminiate one of them by

eliminating its corresponding output neuron from the network. To follow up the

argument presented above, however, we keep both neurons.

I t is important to mention here that at this stage the boundaries of the retrained N-unit are

no longer merely confined to the boundaries of the original problem space, but are also

bounded by the boundaries which the P-unit imposes. In other words, all the boundaries

arc: bounded by the current problem space at hand (dotted area in Figure 4.6 (e)), and not

by the boundaries of the original problem space (shown in Figure 4-.6 (b) as a dotted

square).

Th.e final space division by the PNS network is shown in Figure 4.6 (1'). Notice that the

region marked "Reject" also will be classified "Zero" because of the automatic

classification of all rejected vectors as "Zero". In the above discussio~~ we have ignored

tht: S-units. Introduction of the S-units changes the space division in the manner shown

in Figure 4.7. As we see, every boundary of Figure

'Onem= Class 1 = ((1,O) , (0,l))

Figure 4.7. The Division of XOR Problem Space after
Introduction of 9unit.r.

'Zero
g

= Class 2 = {(0,0) , (1,l))

(a)
-

(c)

(b)

(1 -1)

'Zero'
(1 *O)

(d)

4.6 has been replaced by a region of uncertainty ("reject" region). Da.ta falling in these

regions are rejected to the second module and classified automaticd.ly as "Zero". The

final result shows that, due to this fact, in this case, introduction of the S-units only

causes the "one" region to shrink and the "zero" region to expand.

He:nce, as we have seen, the function of the P-unit is to divide the problem space into

simpler polygons by introducing new boundaries to the space. This division of space can

result in complete elimination of one or more class(es) from the problem space (polygon)

of some modules. In the 10-class problem, the P-unit of the first moclule eliminates six

out of ten classes from the problem space of the N-unit of the first majdule. This results

in only four output neurons for this N-unit and thereby 2x4 = 8 boundaries, or by using

tht: upper bounds of (82), at most 34 = 81 polygons (subregions) versus ten output

neurons, 2x10 = 20 boundaries, and an upper bound of 31° - 33 + 1 = 59023 polygons

(subregions).

As the result of the above argument, the problem space introduced 1.0 the N-unit only

contains no' < no which is the number of classes accepted by the P-unit. Therefore, the

N!j-unit creates 2n0' linear boundaries and A,. = 0 3". polygons*. These new linear ['1
boundaries are confined to the boundaries of the polygon passed to the N-unit rather than

the limits of the original problem space.

+ From now on, we use the word "polygon" to indicate that region of the problem space that is parsed down through the hierarchy
to a certain unit in the nehvo* for classification. In other words, by 'kolygon of the N-unit", we mt!cm that region of the space
which the particular N-unit is responsible for.

The above discussion is valid only under the fundamental assumption tlhat the polygon of

the: N-unit is linearly separable (i.e. A single stage delta-rule network can accurately

classify patterns from this region). The same assumption should be valid for the P-unit.

The problem space of the N-unit may not be linearly separable*, even aifter simplification

of space by the P-unit. The polygon of the P-unit may also not be linearly separable. In

such cases, the P- or the N-unit or both is replaced by an entire PNS module. If this is

still not sufficient, the P- andlor N-unit(s) of the new PNS module is ,dso replaced by a

PNS module. In this way, the PNS modules are created in a way similar to fractals until

thc: performance of the overall network is satisfactory. The fractile arcl~itecture will have

several P-units which will serve to further divide the space. Their]respective N-units

impose linear boundaries upon these polygons. The polygon of each hl-unit is the accept

subregion of its corresponding P-unit and the boundaries it creates are confined to this

subregion.

In summary, the problem space is divided into as many polygons as necessary to reach

linearly separable polygons. This division is performed by the P-units. Then the NS-

units create linear boundaries which are only defined within the confines of their

respective polygons. The whole process results in the separation of linearly separable

regions of a nonlinear classification space by hierarchically organizeld piecewise linear

subsystems which are structured within each other like fractals.

+ By a linearly separable region, we mean that the classes of the region (polygon) can be separatedj'rom each other by a linear
boundary.

Since we desire for any given input pattern, only one output bit to go high, we shall

desire the one region of each output bit to fall on top of the "zero" region of the other

bits. It can easily be shown that this is not possible for more than one linear boundary

unless they all lie on top of each other (identical boundaries). Hence, we will most likely

have regions of the ni-dimensional space which are classified "one" by more than one bit.

Since the problem space is a subspace of the ni-dimensional space, orie hopes that such

regions fall outside of the problem space. An example of this is shown in Figure 4.8.

Fi];ure 4.8 (a) shows an example of the overlapped "one" region in tlhe problem space.

Figure 4.8 (b) shows the opposite, where the overlapped region is outside the problem

space.

Overlapped
"One" Region

Figure 4.8. An example of overlapped "one" regions.

If 1;his special case occurs, the classification accuracy is extremely high. However, since

alnnost every bit creates two boundaries, this phenomenon rarely occurs. Therefore, we

will have overlapped regions in the problem space, and for patterns falling in these

regions more than one output bit will go high. We need a mechanism. to serve as a "tie

breaker." In other words, we need a mechanism which decides which one of the "high"

bits is dominant, thereby choosing its respective class over the others. One could simply

dcxide to let the minimum mean square error mechanism at the output perform this task.

It can be shown that this mechanism chooses the class for which the pattern sample is

farthest away from its boundary. In other words, the class that is chos~zn is the class that

the sample output is deeper in its "one" region. (see Figure 4.9)

Point Classified

"One"
as Class 1. t / ' ~ n e ' /

\ Bit 2

Figure 4.9. Minimum Mean Squared Error Decision in 2-D Space.

This method works well in an unnoisy problem space such as the XOlR problem. But in

noisy situations, since the output of the N-unit is shifted, this measure could prove to be

inaccurate. Introducing a vector rejector after the bit-rejectors is one solution to this

problem. The vector rejector is a neural network unit. This unit introduces new

boundaries to the polygons of the problem space which have been created by the P- and

the: NS-units. These boundaries act as tie breakers and, since they are (adaptive, they can

take the noisy characteristics of the problem space into account.

It tihould be mentioned here that there could also be regions in the problem space whose

data patterns are classified as zero in every bit. In other words, in sofme regions of the

space, the zero regions of all the bits overlap. The vector rejector could also be trained to

work as a tie breaker in such cases as well.

From the above discussion, the following important result follows: A network of PNS

modules divides the problem space into linearly separable regions, as in a piecewise

linear model. The reject regions also impose additional boundaries to separate the "hard"

to classify patterns from the "easy" to classify patterns. These additional boundaries are

also linear due to the fact that all networks used in the PNS experiments (in the P- and

the N-units) were single stage delta rule networks. Each PNS module contributes to the

task of approximating the class boundaries by building a linear piece of the overall

model.

It is important to mention that, by using other types of networks instead of the single

stage delta rule network, or by using different types of neurons, the piecewise linear

model could become a piecewise nonlinear model. For example, thLe results obtained

with the use of quadratic neurons for the XOR problem is shown in Figure 4.10. The

onlly difference here is that the input values are squared before inputting to the output

neuron. The kth output neuron has the output given by

(a)

:+ stage 1
I
I
I

Figure 4.10. a) A Second Order Polynomial Network for the XOR Problem,
b) and c) Possible Accept and Reject Regions.

The equation of the boundaries can be derived in a way similar to the linear case and is

given by

Th~is may result in a hyperbolic or an elliptic boundary as shown in F:igures 4.10 b) and

c). In this case, only one stage is generated to correctly classify the >:OR problem with

no P-unit, and the N-unit is a 2-1 unit as in Figure 4.10 a).

The change to quadratic neurons had little effect in the overall accuriicy of the system,

leading us to believe that the total network consisting of PNS modules based on the delta

rule is very effective in overall classification accuracy while rernaining relatively

inexpensive.

CHAPTER 5

A PARALLEL SIMD ALGORITHM FOR MASPAR; THE SIMD-PPSHNN

In this chapter we describe the parallel implementation of the PPSHNN with two-stage

ba'ckpropagation networks as its P- and N-units and with PNS modules with single stage

delta rule networks. In particular we describe the SIMD versions of these networks

implemented on MasPar MP- 1.

Fclr simplicity, we refer to the PPSHNN network with two-stage: backpropagation

networks as the PPSHNNl and with single-stage delta rule PNS modules as the

PF'SHNN2. We refer to the parallel SIMD version of their respeclive algorithms as

SIMD-PPSHNN1 and SIMD-PPSHNN2. We also refer to the process of producing an

output vector for an input pattern by the N-unit as throughput.

We first describe the architecture of MasPar MP-1[12-141, and then describe the SIMD

111-121 version of PPSHNN and how it was adapted to MasPar MP-1 architecture to take

advantage of its features. Section 5.2 is the general parallel algorithm description for

both networks. In section 5.3, the time complexities of the serial and parallel versions of

thle PPSHNNl and PPSHNN2 algorithms are analyzed and estimated. Section 5.4 offers

a theoretical speed up comparison between the SIMD-PPSHNN1 and SIMD-PPSHNN2

ant3 their respective serial algorithms. In Section 5.5 the parallel testing procedure is

discussed.

5.1 Introduction to MasPar MP-1

Miissively parallel computers normally use more than 1024 processors to obtain

computational performances unachievable by conventional computers. The MasPar

Cc~mputer Corporation has designed and implemented a high performance, massively

parallel computer system called the MP-1. The MasPar MP-1 systenn is scalable from

1024 to 16384 processors and its peak performance scales linearly with the number of

processors. A 16K processor system delivers 30,000 MIPS peak performance where a

representative instruction is a 32-bit integer add. In terms of peak floating point

performance, the 16K processor system delivers 1,500 MFLOPS single: precision (32-bit)

and 650 MFLOPS double precision (64-bit), using the average of add and multiply times.

Because massively parallel systems focus on data parallelism, all the processors can

execute the same instruction stream. The MP-1 has a Single Instruction Multiple Data

(SIMD) architecture that simplifies the highly replicated processors by eliminating their

instruction logic and instruction memory, thus saving millions of gates and hundreds of

megabytes of memory in the overall system. The processors in a SIMT) system are called

Processing Element (PE) to indicate that they contain only the data pat11 of a processor.

Unique characteristics of the MP-1 architecture include the combinzition of a scalable

architecture in terms of the number of Processing Elements (PEs), sy,stem memory, and

system communication bandwidth, "RISC-like" instruction set design that leverages

optimizing compiler technology, adherence to industry standard floating point design,

and an architectural design amenable to a VLSI implementation.

Figure 5.1 shows a block diagram of the MasPar system with five major subsystems. The

following describes each of the major components:

Th.e Array Control Unit (ACU): The ACU is a 14 MIPS scalar proce,ssor with a RISC-

style instruction set. It fetches and decodes MP-1 instructions, complites addresses and

sciilar data values, issues control signals to the PE array, and monitors the status of the

PEL array; but most of the scalar ACU instructions execute in one 70 nsec clock. The

ACU occupies one printed circuit board.

T f ~ e ACU performs two primary functions: either PE array control or independent

program execution. The ACU controls the PE array by broadcasting all1 PE instructions.

Independent program execution is possible since it is a full control processor capable of

independent program execution.

The ACU is a custom designed processor with the following major architectural

characteristics:

-. Separate instruction and data spaces

-. 32-bit, two address, load/store, simple instruction set

I/O CHANNEL VME BUS DISK ARRAY

Figure 5.1 B b c k Diagram of MasPar MP-1.

-- 4 Gigabyte, virtual, instruction address space, using 4K bytes per page.

The ACU has a microcoded implementation of its RISC-like instruction set due to the

additional control requirements of the PE array. PE instructions typically require more

than one clock cycle, including floating point instructions which arc: well suited to a

microcode implementation.

Processor Array: The MP- 1 processor array (Figure 5.2)

Figure 5.2. Physical Organization of the Array Processor of MP-1.
1024 PEs on each Board, Organized in Clusters of 16 PEs.

is configurable from 1 to 16 identical processor boards. Each processor board has 1024

PI% and associated memory arranged as 64 PE clusters (PECs) of 16 PEs per cluster.

The processors are interconnected via the X-Net neighborhood mesh and the global

multistage crossbar router network. A processor board dissipates less than 50 watts; a

full 16K PE array and ACU dissipate less than 1,000 watts.

- ROUTER

= XNET

ROUTER

XNET

BROADCAST

Figure 5.3 A PE Cluster of MasPar.

A PE cluster (Figure 5.3) is composed of 16 PEs and 16 processor memories (PMEM).

The PEs are logically arranged as a 4 by 4 array for the X-Net two-dimensional mesh

in1,erconnection. Each PE has a large internal register file shown in the figure as PREG.

Load and store instructions move data between PRES and PMEM. The ACU broadcasts

instructions and data to all PE clusters, and the PEs all contribute to an inclusive-OR

reduction tree received by the ACU. The 16 PEs in a cluster share an access port to the

multistage crossbar router.

-I+)

The MP-1 processor chip is a full custom design that contains 32 identical PEs (2 PE

clusters) implemented in two-level metal 1 . 6 ~ CMOS and packaged in a cost effective

164 pin plastic quad flat pack. The die is 11.6 mm by 9.5 mm, and has 450,000

transistors. A conservative 70 nsec clock cycle yields low power and robust timing

P - - 7

- -
PEO
-

PEI
- - - -

INSTRUCTION PREG PREG

msugins.

Processor memory, PMEM, is implemented with lMbit DRAM'S that are arranged in the

cluster so that each PE has 16 Kbytes of data memory. A processor bo,ard has 16 Mbytes

of memory, and a 16 board system has 256 Mbytes of memory. The MP-1 instruction set

sul?ports 32 bits of PE number and 32 bits of memory addressing per PE, so the memory

system size is limited only by cost and market considerations.

As, an MP-1 system is expanded, each increment adds PEs, memory, and communication

resources, so the system always maintains a balance between processor performance,

mcmory size and bandwidth, and communications and UO bandwidth.

The MP-1 processor element (PE) design is different than that of a conventional

processor because a PE is mostly data path logic and has no instruction fetch or decode

logic. Like present RISC processors, each PE has a large on-chip re:gister set (PREG)

and all computations operate on the registers. Load and store instnlctions move data

between the external memory (PMEM) and the register set. The register architecture

substantially improves performance by reducing the need to reference external memory.

The compilers optimize register usage to minimize 1oadJstore traffic.

Each PE has forty 32-bit registers available to the programmer and eight additional 32-bit

registers that are used internally to implement the MP-1 instruction set- With 32 PEs per

dic, the resulting 48 Kbits of register occupy about 30% of the die area, but represent

75% of the transistor count. Placing the registers on-chip yields an aggregate PEIPREG

ba.ndwidth of 117 gigabytes per second with 16K PEs. The registers are bit and byte

addressable.

Each PE provides floating point operations on 32 and 64 bit IEEE: or VAX format

operands and integer operations on 1, 8, 16, 32, and 64 bit operands. The PE floating

pointlinteger hardware has a 64-bit MANTISSA unit, a 16-bit EXPONENT unit, a 4-bit

AILJ, a 1-bit LOGIC unit, and a FLAGS unit; these units perform floal.ing point, integer,

anld boolean operations. The floating pointlinteger unit uses more than half of the PS

silicon area, but provides substantially better performance than the bit-serial designs used

in earlier massively parallel systems.

Most data movement within occurs on the internal PE 4-bit NIBBLE BUS and the BIT

BTJS (Figure 5.4). During a 32-bit or 64-bit floating point or integer instruction, the ACU

microcode engine steps the PEs through a series of operations on succe~ssive 4-bit nibbles

to generate the full precision result. Because the MP-1 instructicln set focuses on

conventional operand sizes 8, 16,32, and 64 bits, MasPar can implement subsequent PEs

with smaller or larger ALU widths without changing the programmers instruction model.

The internal 4-bit nature of the PE is not visible to the programmer, 'but does make the

PB flexible enough to accommodate different front-end workstation data formats. The

PI3 hardware supports both little-endian and big-endian format integers, VAX floating

pclint F, D, and G formats, and IEEE single and double precision floating point formats.

U:VIX Subsystem (USS): An important aspect of the system is the use of an existing

computer system (specifically a VAX station 3520 U L T R I X ~ ~ workstation) that follows

ex.isting industry standards (e-g. X windows, TCPIP, etc.). The USS pirovides a complete

REDUCnON

MTFRNAL MEMORY INSTRUCnON

Figure 5.4 Internal Architecture of a PE.

network and graphic based software environment in which all the MasPar tools and

ut:ilities (e-g. compilers) execute. Part of the application executes as a conventional

workstation application; most of the "operating system" functions are provided by the

workstation's UNIX software.

Communication Mechanism: The following sections describes the five major

ca~mmunications mechanisms.

1. USS to ACU: Three different interactions occur between the lJSS and the ACU,

which use three different hardware supports. All are based on a standard bus

interface (VME). The following describes each mechanism:

I. Queues: Hardware queues are provided which allows th~e USS process to

quickly interact with the process running on the ACU. The programming

model is similar to UNIX pipes but with hardware assist.

11. Shared memory: The shared memory mechanism overlaps ACU memory

addresses with USS memory addresses. This provides, a strait forward

mechanism for processes to share common data structures like file control

block etc.

111. DMA: A DMA mechanism is provided that permits fast bulk data transfers

without using programmed I/O.

. ACU to PE array: Two basic capabilities are required for data n~ovement between

ACU and PE array: data distribution, DIST, and array consensus detection which

uses a global OR, GOR.

I. PE array: XNet XNet communications provide all PEs with direct

connection to its eight nearest neighbors. Processors on the physical edge of

the array have toroidal wrapped edge connections.

Three basic instruction types are provided to use the nearest neighbor

connections:

a. XNET: The XNET instruction moves an operand from source to

destination a specified distance in all active PEs. The instruction time

is proportional to the distance times the operand size, since all

communication is done using single wire connections.

b. XNETP: The XNETP instruction is pipelined so that a collection of

PEs move an operand from source to destinatiorl~ over a specified

distance. However, the pattern of active and inactive PEs is very

important since active PEs transmit data and inactive PEs act as

pipeline stages. The instruction time is proportional to distance plus

the operand size due to its pipelined nature.

c. XNETC: The XNETC instruction is pipelined and is very similar to

XNETP instruction, except that a copy of the operarid is left in all PEs

acting as a pipeline stage. Again the instruction time is proportional to

the distance plus the operand size.

11. PE array: Global Router The global router is a circuit switched style

network organized as a three stage hierarchy of crossbar switches. This

mechanism provides direct point to point bidirectional conimunications. The

1
network diameter is - the number of PEs, which requires a minimum of 16

16

communication cycles to do a permutation with all PEs. The basic

instruction primitives are:

a. ropen: open a connection to a destination PE

b. rsend: move data from the originator PE to the destination PE

c. rfetch: move data from the destination PE to the originator PE

d. rclose: terminate the communication

111. PE array to UO subsystem: Since the global rout~er provides high

performance random PE to PE communication, the global router is also used

to provide a high performance communication mechanism to the UO

subsystem. The interface is achieved by connecting the last stage of the

global router to an UO device, the 110 RAM. The progi:amming model is

identical to the model for using the global router.

3. Array UO system: Referring back to Figure 5.1, the UO subsystem uses the

following key components: the global router connection into the PE array (over 1

GB MB
-), a large UO RAM buffer (up to 256 MB), and a high speed (230 -) data
sec sec

communication channel between peripheral devices, a bus for device control (not

for data movement). Using output as an example, the model for using the UO

subsystem follows these steps:

a. Device is opened by the USS (all UO devices are UNIX controlled)

b. The ACU moves data into the UO RAM through the global router.

c. Either the USS or an YO processor (IOP) schedules data rnlovement from the

YO RAM to the device (e.g. Disk) (data through the MPIOC (MP YO

Channel) and control through the VME bus).

d. The USS is notified when the transaction is complete.

Note that all transactions from the YO Ram to external YO systems can occur

asynchronously from PE array actions. This is a key attribute since data can move

GB
into the YO RAM at speeds over 1 - then move at YO device speeds, typically

sec

in the tens of megabytes per second or less, without effecting tlne performance of

the PE array. These hardware mechanisms can support either typical synchronous

UNIX UO or newer (and faster) asynchronous software models.

5.2 Algorithm Description and Machine Adaptation

In this section, we discuss the parallel version of the PPSHNNl and the PPSHNN2

algorithms in detail. Training procedure of the SIMD versions are the same as the serial

versions shown in Figures 3.4, 4.2 and 4.3 , except that training of the N-unit, the P-unit,

and the postrejector is done in parallel in a SIMD fashion. Since the training procedures

of these modules are very similar, we will concentrate on the training procedure of the

N-anit. Since the N-unit is chosen to be a two-stage backpropagation network or a single

stage delta rule network, we concentrate on the parallelization of these learning

procedures.

5.2.1 The Weight Batching and the Stochastic Backpropagation ,4lgorithms

The backpropagation algorithm, also referred to as the generalized delta rule algorithm,

is the generalization of the delta rule algorithm to multiple stages [I]. :lFor this reason we

first concentrate on parallelizing the backpropagation algorithm and then use this result

to parallelize the delta rule algorithm.

The parallel version of the backpropagation algorithm (referred to as SIMD-BP) is

designed for MasPar MP-1 with 16K PEs. Our design included backpropagation

networks with one and no hidden layer. Without any hidden layer, thle algorithm is the

sarne as the delta rule with output layer nonlinearities and is further disc:ussed later.

In standard backpropagation, an input pattern is presented to the network. Based on that

pattern, the network computes an output pattern. The output pattern is compared to a

desired pattern and an error vector is computed. The error is backpropagated through the

network; based on the amount of error passing through each connection, the weights are

changed. After that, the next pattern is presented to the network and this procedure is

repated for the new pattern. In the SIMD version of this algorithm, the weights are not

changed after each pattern. The weight changes are stored; after the: completion of a

sw~eep they are added together, and only then the weights are updated (weight batching)

baaed on the total weight change computed. Figure 5.5 shows the training procedures of

the serial version of the backpropagation algorithm (BP) and its SIMI) version (SIMD-

BP).

Th'z following is the derivation of the backpropagation algorithm to clarify the difference

For he I(Wav

slia = 8

parsllel f m d

popagation

pallel enor
calculation

p W l enn
backpropgation I-

weigh1 Ehanged onr all slim

end of
parallel addition of all

weight changes aaoss all n e w o h

end of

Figure 5.5 Flow Charts of (a) Serial BP or Delta Rule Algorithm.
(b) SIMD-BP or SIMD-A.

between the SIMD-BP version and the serial version. Let us assume a network with N

output neurons in a problem with P training patterns. The total squared error defined for

one training sweep is defined as

Where dP, is the desired output value of the nth output neuron for the training pattern,

anti the oP, stands for the actual output of the n f i neuron for the pth training pattern.

Below, we first discuss the weight changes between the hidden and the output layers.

Thlzn, we describe the weight changes between the input and the hidden layer. The

results can be easily generalized to more than one hidden layer. When there is no hidden

layer, the first discussion is valid. Then, the hidden layer is the same as the input layer.

Us.ing the chain rule we can find the rate of change of E with respect to wij, the weight

cor~necting the j th hidden neuron to the i th output neuron, as

where

We: assume a sigmoidal activation function in the form

wh~zre M is the number of hidden neurons, and xf is the jth input to the output neuron, in

other words, the output of the j th hidden neuron. We get

84'
lm= l

- xf e I -- = xfof(1- of). awij

Using Eqs. (94) and (96) in Eq. (93) gives

aE P
- _ - __ C xfof(1 - of)(df - of).
awij P p=l

Therefore, using the gradient descent (steepest descent) algorithm [4], 13e weight change

for wij is given by

P
Awij = p C xfof(1- of)(d$' - of)

p =l

where p is a small constant called the step size.

Fo:r the weights connecting the input layer to the hidden layer, the derivation is slightly

more complicated. Let us assume that v,k is the weight connecting the kth input neuron

to Ithe j th hidden neuron. Then, we have

where xf is the output of the j r h hidden neuron for the JI" training pattern and is given

by

wh~ere K is the number of input neurons (ie. the length of the input pattern), and i$ is the

kth bit* of the p'h training pattern. Using the chain rule again, we get

Using

ancl from (96),

we get

Tht: weight change for steepest descent is

BI binary represenfation of t k input pnem, the kth bit h as a value of I or 0, whereas in continuous ntrmber represenfation, this
ir~put is the kth component on the analog input pattem vector.

P N
Avjk = p C i$xf(l - xf) C wn,o$(l - o$)(d$ - 0;).

p =l n=l

In other words, the network has to calculate the weight changes due to all the training

paltterns, add them up and update the weights based on the totid weight change

accumulated over the entire sweep. In practice, however, the weight update in the serial

implementation is performed after each training pattern (stochastic method). In other

words, using (98) and (105), the weight changes are computed as

anti

It can be shown that if the step size p is sufficiently small, the weight update can be

performed after each pattern and reach a minimum of the error function E after a series

of very small steps. While this approach is proved to work, its speed is very slow.

Figure 5.6 shows the descent steps taken to move to the minimum of a paraboloid by the

exact algorithm (weight batching) [l] and the approximate version (stochastic method)

ill..

5.2.2 The SIMD-BP and the SIMD-A Algorithms

The SIMD-BP and the SIMD-A use the exact method, mainly because it allows data

parallelism. In these algorithm we create, in parallel, as many networks as the number of

initial state
of the system

Figure 5.6 The Descent Paths toward the Minimum (of a
Paraboloid Function for the Weight Batching Technique (Soltd Line), and

the Stochastic Technique (Dotted Line).

training patterns. Each network is given a training pattern and computes a weight change

vector for all the weights in the network, based on its pattern. After the sweep is

connplete, these weight change vectors are added together using a very fast MP-1 library

routine called reduceAdd. Then, the weight vectors on all the networks are updated

based on the total weight change vector. This vector is sent to all the P:Es of MP-1 using

the XNET structure.

The: use of the exact algorithm results in data parallelism, and most of the speed-up

achieved is due to this type of parallelism. Thus, the two types of para:l:lelism utilized by

the SIMD-BP are as follows:

rl Architectural Parallelism: This parallelism is simply due to the parallel nature of

the architecture of layered feed-forward networks. The computations performed in

the neurons of the same stage can be performed all at the same time. Since there are

no connections between the neurons of the same stage, no c~mmu~nication overhead

is necessary*.

a Data Parallelism: As discussed above, most of the speed-up is due to data

parallelism. Since the weight changes do not occur until after the sweep is over,

there is no more data dependency between the operations performed for different

patterns in the sweep. Consequently, these computations can be done in parallel.

Therefore, we can simulate more than one network at a time and train each one to

learn a different input pattern simultaneously. These networks all have the same

initial random weights and, ideally, only one input pattern to lea~n. Each network

calculates weight changes for its weights based on the input pattern and the desired

output pattern it is assigned to. This is done for all the networks at the same time.

After this step, the weight changes are accumulated from all the networks and the

weights of all the networks are updated simultaneously, based on the accumulated

weight changes from all the networks.

* (h e could arsign a PE to every neuron in the network. However, this does not bring a higher degree qf parallelism than the case
when there is only ar nmny PEs msigned to the network as the number of neurm in the largest layer. This is due to the serial
xature of the stages and the communication overhead required for communication between two layers.

Tcl better describe the SIMD training algorithms, we discuss the algorithm with the

example of the 10-class remote sensing Colorado problem. This prob:lem was described

in Section 2.1.2. It involves classifying each input pattern into one of ten possible

classes. The data set consists of 1188 patterns of length seven for training and 831

patterns for testing. Figure 5.7 shows the PE array of MP-1 in

Figure 5.7 PE Array of MP-1 Partitioned for the Colorado Dczta Set for the
7-1 00-1 0 BP network. Each Network Learns only up to

8 Patterns of the Training Set.

a :128x128 grid array as it was arranged for this problem, using a 7-1013-10 input-hidden-

output neuron backpropagation network. Figure 5.8 shows the PE array of MP-1

arranged for the same problem for the 7- 10 input-output delta rule network.

Unused PEs

Figure 5.8 PE Array of MP-1 Partitioned for the Colorado Data Set for the
7-10 Delta Rule network. Each Network Learns Only One Pattern of

the Training Set.

Figures 5.7 and 5.8 show the architectural parallelism for the Coloratlo data set. Each

ne~.work is simulated by 100 PEs (10 in figure 5.8), which is the size of the hidden layer

of the backpropagation network (size of the output layer of the delta rule network). These

100 (10) PEs first emulate the 100 (10) hidden (output) neurons of the network. In the

ca,se of the two-stage backpropagation network, once the calculations for the first stage

art: performed, the output values of the 100 hidden neurons are commu~nicated to the first

10 of the 100 PEs. Then, the remaining 90 are disabled and only tlhe first 10 PE are

acrjve to emulate the output layer. Figures 5.7 and 5.8 also show the data parallelism for

the Colorado data set. With the layout shown, the SIMD-BP and the SIMD-A learn 156

and 1188 patterns simultaneously, respectively.

It is important to keep in mind that the degree of parallelism achieved depends on the

number of processors assigned to each network and the number of training patterns in the

training set. For example, the 10-class Colorado problem has 1188 patterns in its training

set and the number of PEs required for each backpropagation network is 100, where for

the. delta rule network it is 10. Therefore, the maximum number of backpropagation

16384
networks running simultaneously is 1 - = 163, where the maximum number of

100

16384 delta rule networks is I - = 1638. For the simplicity of communication patterns,
10

we chose to have only 156 backpropagation networks running simultaneously**.

For the SIMD-A there were only 1188 simultaneous networks, since: there were only

11138 patterns in the training set. Out of the 156 backpropagation networks, 94 were

given 8 patterns and the remaining 62 were given 7 patterns (7x62 + 8x94 = 1188),

** !f we hod chosen 163 networh running simultaneously, loading the input pattern into the PEs corirctly would become more
c;!@cult and the communication pattern among the PEs would have become irregular, which would]'lave caused the PE-to-PE
communication to be achieved in several serial steps rather than me pamllel step.

which gives a degree of virtualization of 7 (which is explained further below). The

SIMD-A networks each received one pattern, making the degree of virtualization 0.

Hence, at any given time, we are computing the weight changes for 156 different patterns

in the SIMD-BP algorithm and 1188 in the SIMD-A. Figures 5.7 and 5.8 show the layout

of the 156 backpropagation networks and the 1188 delta rule networks in the MasPar PE

arsay.

In any parallel machine, the degree of parallelism is limited to the physical parallel

resources of the machine. For example, in the MP-1 with 16K PEs, the maximum degree

of parallelism achievable is 16384, since a maximum of 16384 operations can be run

sinlultaneously at any given time. The real degree of parallelism for a given algorithm is

noimally much lower than the maximum degree possible. For example, in the Colorado

prc~blem, every backpropagation network required 100 PEs, thus allowing 156 parallel

networks. In order to have one backpropagation network per training pattern, we ideally

would have required 100x1 188 = 118800 PEs. Since this many PEs were not available,

we implemented a concept referred to as virtualization.

The idea is similar to that of virtual memory, where one assumes that there is a much

larger memory space than what the machine's physical resources offer. We assumed that

118800 PEs were arranged in a three dimensional PE grid array. The three-dimensional

array is made of 8 layers (slices) of 128x128 PEs (Figure 5.9). Since: there is actually

one: physical layer of PEs available, the PE array of MP-1 has to be programmed to

emulate the layers of the 3-D grid serially. Thus we end up running 1.56 networks at a

time, and at any given time the PE array is emulating a different layer of the virtualized

.

* .
0 . . *..

Virtual PEs which are emulated
by the PE in the x,y coordinate
(1 27,O) of the PE array of MP-1

Figure 5.9 The 3-0 Virtual PE Array for the 10- Class Colonldo Data Set.

PE grid. Notice that the shift from one virtual array to another is done serially. In other

words, the physical PE array has to process the first 156 networks before it can switch to

the second batch. This serial portion of the algorithm is a "bottle neck" for the

thrIoughput* of the algorithm. This serial loop is eliminated in the SIMD-A case for the

* lly throughput we mean t k part of the algorithm in which t k output of the network fora given pattern is calculated.

10-class Colorado problem because of the degree of virtualization of zero.

The data distribution among the PEs has to take the virtualization factor into account.

Each PE receives the data for all the virtual PEs which it is assigned to emulate on all the

virtual layers. Care must be taken in loading the data into the PEs, so that each PE

receives only the data which the virtual PEs it is assigned to would have received. Also,

the programmer must be careful about the fact that in the last slice there might not be

enough data to require the services of the entire PE array. In this case, those PEs which

have run out of data must be inactive for the computations of the last slice. Loading the

data into the correct PEs was done using the PP-read and the xnetc constructs described

later. These two parallel constructs are very efficient, making the cost of this

preprocessing relatively small in relation to the actual cost of learning. Table 5.1 of

Section 5.4 shows the average time required for loading and distributirlg training data in

the case of the backpropagation networks with the virtualization degree of 7.

Another costly part of initiating the networks (backpropagation or delta. rule networks) is

generating floating point random numbers for initial connection weights and distributing

them among the PEs correctly. This procedure is so costly that storing some random

values and loading them from a file should be considered. To generate the random

nurnbers, we used a random vector generator routine from the MasPar mathematics

library called k v e y r a n , which generates a Y-oriented random vect.or and stores its

elements in the first column of the MP-1 PE array. To distribute the weights among all

the networks, we again used the xnet constructs. Table 5.1 shows the average time

required for this task for the SIMD-BP.

Fi,gure 5.5 shows the block diagram of the serial and the SIMD version of

backpropagation or delta rule algorithm. The SIMD-BP and the S1M:D-A programs are

designed to arrange the PE array to achieve the minimum degree of virtualization thereby

ac;hieving the maximum degree of parallelism. They are written in sulch a way that they

detect and adjust to the size of any given problem automatically. Fo:r this purpose, the

program considers two parameters: 1- The size of the largest layer of the network, 2- the

number of training patterns. For example, for a classification problem with 500 training

pa1:terns and a network with 10-20-5 input-hidden-output neurons, the program requires

no virtualization (virtualization degree of zero). Figure 5.10 shows the PE array

arrangement for this problem. The remaining part of the SIMD-BP takes the degree of

virtualization (slice) and a parameter called offset into account. The oj^fset is the number

of PEs in the last slice which still have data and which should be kept active for the

calculations of that slice. The program then performs the operations of each slice

separately. It first deactivates the PEs not required for that slice and then has the ACU

decode the instructions and send them to the PEs, which in turn perfonrn the operation if

their enable flag is high. The SIMD-BP and SIMD-A programs are thereby written in

such a way that they detect and adjust to the size of any given problem automatically.

Figure 5.7 shows how the backpropagation networks are organized in the MP-1

implementation for the Colorado problem. The first 128 networks were chosen in a

vertical layout fashion and the remaining 28 in the horizontal layout fashion. This

produces the simplest communication pattern. An inverse layout pattern (first 128

horizontal and the rest vertical), would result in additional communication overhead to

128 networks

inactive PEs

Figure 5.10 The PE Arrangement for a 2-Stage Backpropagation Network
with the largest layer of size 20 for a Problem with 500 Trainiing Patterns.

distribute the input patterns to all the PEs in each network. Further speed-up can be

achieved by assigning 10 x 10 square of PEs to each network instead of a 100 x 1 array

of PEs. This results in communication paths with maximum length of :LO, instead of 100.

At the cost of a more complicated communication pattern, this could result in a slight

speed-up.

The way the networks are organized is such that the first PE in all the nt:tworks can easily

be enabled. The input patterns are loaded into the first PEs of the networks using the

parallel read command [121:

cc = p-read(d buf; nbytes)
plural int cc;
int d;
plural char *buJ
int nbytes;

This command was used in the following format:

if((iyproc==O))I ((iyproc>=hn)&&(irproc==O)))

Fst&us=p-readCfd, &x[slice][O], invecbt);

The if statement enables the first PE of each network (Figure 5.7). ixproc and iyproc are the x

and the y coordinates of each PE, respectively, in the 128x128 PE array. r'ln is the size of the

hidden layer (in this case 100). invecbt is the size of the input vector in bytes, and slice is the

degree of virhtalization. Notice that the entire input vector is read into the first PE in one shot.

After the loading of input data, the first PEs proceed to communicate the data to the rest of the

PEs in their networks. This communication uses the metc command [12]. The xnetc command

was used as follows:

if((ixproc==O) && (iyproc >= hn))

xnetcE[hn-l].x[slice][i] = x[slice][i];

Th12 if statements enable the first PEs of the networks. The letters "S 'and "E' specify the

direction in which data should be sent (South and East). hn-I is the step size, which means "send

1 0 3 - 1 = 99 PEs to the south or east". Notice that since xnetc is used, a copy of the

communicated data is left in each relaying PE memory at the right location.

The forward calculation of data also requires some communication which uses metp and xnetc.

To calculate the total AW (the change in the weight matrix), we used two library routines from

ME'-1's mathematics library MPML [14]. These two routines are:

voidfp_matsumtovex (ny, nx, B, nxB, y o m , x o m , a)

iw ny, nx, nxB, yo@, q P ;

plural float *B, *VX;

void fp-matsumtovey (ny, nx, B, nxB, y o m , xum, W)

iw ny, nx, mB, YO^???, xcm;
pluralfloat *B, *W;

The first routine adds the columns of the matrix B starting from row y o p and column x o m for

ny rows and nx columns and puts the results in the x-oriented vector VX. The second routine adds

the rows of this submatrix and puts the results in the Y-oriented W vector.

Fo:r example, one could use the fp-matsumtovey library routine to add the processor numbers

(iproc*) assigned to each processor row by row from the 4th row to the 1Wh row, and from the

6th PE in each row through the 120th PE in that row, and put the sum values in a Y-oriented

vector in the oth column of the PE array. The steps to perform this operation ;we as follows:

1 plural float B, VY;

2 B = (plural float) iproc;

3 fp-matsumtovey(96 ,114 , @B , 1 , 3 , 5 , @VY);

In statement 1, the variables B and VY are declared across all processors. In statement 2, the

iproc value of each PE is assigned to the variable B of that PE. In statement 3, the

fp_.matsumtovey function is used to add the values of the B variables in each row from the 4th to

the 10dh row, and each row from the 61h element to the 120" element, and put the result of

* ,'n the PE array of MP-I each PE c m be idenfified in two ways. First way iE to identify the row number ixproc and the column
number iyproc of the PE in the two dimensional PE grid array. The second way is to identify the processor number ipnx of the PE
(:see Figure 5.1 1). Where iproc=ixprocxnxproc+iyproc+l and nxproc is the number of PEs in a row (in 16K machine, 128).
'Iherefae the expressions proc/3][4].B and prm/389].B are equivalent and both point to the value of the variable B of the PE in
Ihe 4Ih row and the Srh column.

PE with The 4th

I3E with
iproc = 3 x 128 + 4 + 1

= 389

The 100th +-
row /

Where the results of
fp-matsumtovey will

ixproc = 3
iyproc = 4

row
4

PEs whose B values are summed up
in a row by row fashion by the function

fp-mats~mtovey(96~ 1 14, @B,1,3,5,@VY:

-

I

4 I I)

i 128 PEs 4
be stored The 6th The 120th

column column

Figure 5.11 An Example of the Operation of the fp-matsumtc~vey Routine.

each row in the VY variable of the first PE of that row** (see Figure 5.1 1).

The backward propagation of error and updating the weights uses the same routines in the reverse

direction of the network.

-
** :The number of PEs in the Y direction ny=lWM6

'%e number of PEs in the X direction ~=120-6=114

? l e starting row yoD=4-1=3; the first PE in each row is the 0Ih PE

l l e starting PE number in every row m$Z?=6-1=5; the first PE in each row is the ofh PE

5.3 Time Complexity Analysis

In this section, we will analyze the time complexity of PPSHNNl, PI'SHNN2, and their

respective parallel versions. Since training takes much longer than testing, %we only concentrate

on the time complexity of the respective training procedures.

5.3.1 The PPSHNN 1 and The SIMD-PPSHNN 1 Algorithrn~s

The PPSHNN 1 consists of several two-stage networks. A few examples of these networks are:

the first N-unit created for the first module, the P-unit created for the first module (if necessary),

the reduced N-unit for the first module (if a P-unit was created for that module), the N-unit

ne1:work for the second module, the P-unit created for the second module (if necessary), the

reduced N-unit for the second module (if a P-unit was created for that module), etc.

Over 90% of the training time of PPSHNNl is spent on training these rletworks. The time

required for the statistical analysis of the S-units, and overhead operationls required for self-

orlganization is less than 10% of the total training time. It is also important 1-0 keep in mind that

all these networks are equal to or smaller in size than the first N-unit created for the first module.

Also, the number of patterns with which they are trained is less than thal: of the first N-unit

created for the first module. Therefore the time required for their training is less than the training

time of the first N-unit network created for the first module. For this reason we get

where TPPsHNN is the time complexity of the PPSHNNl network and TBP is the training

time complexity of the first backpropagation network created. With the same argument,

Fclr this reason, we first analyze the time complexity of the serial backpropagation BP

and the parallel version SIMD-BP algorithms for a two-stage feed-forward network.

Since the time taken to perform floating point addition, multiplication, and

exponentiation is a good indication of the time required by the training procedure, we

est;imate the number of such operations performed in each type of training procedure.

Th,e Serial BP Algorithm:

Let us denote the number of input neurons to the network with ni, the number of hidden

neurons with nh (assuming one hidden layer in the network), the number of output

neurons with no, and the number of training patterns in the training set with P. Since, in

the first stage, a backpropagation network has to perform one multiplication for every

connection, we get ni x nh floating point multiplications for the first stage. To add the

incoming signals to each neuron and subtract the result from a threshold [I], we need

nh x ni floating point additions for the first stage. In the same way, we can find nh x no

floating point multiplications, and no x nh floating point additions for the second stage.

Therefore we get a total of nh x ni + n o floating point mu.ltiplications, and [I
nh x [ni + n o] floating point additions. We also require a total of nh + n o floating point

exlponentiation for the two stages.

Let us denote the time required for a floating point addition by a, the time needed for a

floating point multiplication by P, and the time required for a floating point

exponentiation by y. Since the error backpropagation through the net and weight changes

require the same order of floating point additions, multiplications, and exponentiation as

folward propagation, and since this procedure is repeated P times, once for each pattern,

tht: time complexity of the backpropagation network becomes

Since ni is 0 no for the Colorado problem, we get [1

The SIMD-BP algorithm:

To calculate the time complexity of the SIMD backpropagation algorithm, in addition to

the: time required for floating point additions and multiplication, we ha.ve to consider the

colnmunication overhead. Let us first consider the additions, the multiplications and the

exponentiation. Since in SIMD-BP all the neurons of each stage operate in parallel, we

only need ni multiplications, ni additions, and 1 exponentiation for the first stage and nh

mt~ltiplications, nh additions, and 1 exponentiation for the second stage. Thus, the

colnputation time needed to process one pattern is on the order of

[ni + nh] x [a + p] + 2 x y. Since the communication overhead is on the order of the

length of a side of the PE array which is 128, the communication overhead is on the order

of nyprocxc, where C is the time it takes to communicate a float value from one PE to its

immediate neighbor, and nyproc is the length of the PE array in the y direction

(nyproc =128).

Thus, we get

wllere slice = I?]. is the degree of virtualiration and N is the number of PEs in the

M:P-1 PE array. Because both ni and nh are 0 nyproc , we can right [I

and since N = nyproc we get

Therefore, by using equations (108) and (1 1 1) we can write:

T p p s ~ ~ ~ 1 = 0 [TBP] = 0 [P nhno] ,

and using (109) and (1 14) gives:

5.3.2 The PPSHNN2 and SIMD-PPSHNN2 algorithms

The PPSHNN2 which implements PNS modules, uses delta rule networks. This means

removing the hidden layer(s) of the backpropagation network. Then, there are just the

input and the output layers. The derivations of the Equations (92) through (98) still

apply. The error function is defined as in (92) and the gradient descent algorithm results

in the weight change of

as before. Since there are no hidden layers, this weight change equation applies to all the

weights in the network.

Similar to the argument for the PPSHNNI, we can show that most of' the time required

foi: the training of a PPSHNN2 network is spent on training the neural. network modules

which are chosen to be single stage delta rule networks. Hence, we can1 write

where TPPSHNN2 is the training time complexity of the PPSHNN2 network, and T A is the

training time complexity of the first delta rule network created. With th'e same argument,

TSIMD - P P S H N N ~ = [TSIMD -d] (1 19)

Fclr this reason, we first analyze the time complexity of the serial delta rule algorithm

which we denote with A, and its parallel version SIMD-A. Like before, we take the time

needed to perform floating point addition, multiplication, expone:ntiation, and the

communication overhead in the parallel case as a measure of the tim~e required for the

training procedure.

Th,e Serial Delta Rule Algorithm:

Since there is no hidden layer in the two-layer network, the number of PEs assigned to

each network on the MP-1 PE grid depends on the number of neurons in the output layer

of the network. This is determined by the coding scheme used for output.

As before, we denote ni to be the number of input neurons, no the number of output

neurons, and P the number of training patterns in the training set. Since there are two

layers of neurons, there is only one stage of connections between the layers. In this

stage, the delta rule performs one multiplication for every connection (hence ni x no

floating point multiplications), ni x no floating point additions to add the incoming

signals to the output neurons and subtract them from a threshold, aind no exponential

operations.

If, as before, we denote the time required to perform a floating point addition,

multiplication, and exponentiation by a, P, and y, respectively, the time complexity of a

se~ial delta rule network can be estimated as

or.,

The SIMD Delta Rule Algorithm:

Similar to the case of networks with hidden layers, in addition to the: time required for

floating point addition and multiplication, the communication overhead also has to be

talcen into account in the parallel algorithm. For this purpose, as before, the value C is

inlroduced as the time required for a floating point value to be sent from a PE to its

immediate neighbor.

Si:nce the operations in the stage are performed in parallel, there are only ni floating point

multiplications, ni floating point additions, and 1 floating point exponeintiation. Thus, the

to~:al time required for the additions and multiplications and exponenl:iations needed for

the computations of one pattern is ni x a + p + y. Since the PE array is [I
nxproc x nyproc, which is 128 x 128 in the 16K machine, the communication overhead

is at most on the order of C x nyproc. Therefore, the time complexity can be estimated

= 0 1 slice I ni [a + p] + C nyproc + y I I

where slice = 1I-] is, as before, the degree of virtualization and N is the number of

PE3s in the MP- 1 PE array. Also, because ni is 0 nyproc we can write [I
P no nyproc P no

TSIMD-A=.[]= . [- I c
The PPSHNN2 and SIMD-PPSHNN2 Algorithm: Again by using equations (1 la), (1 19),

(121), and (123), we can estimate the time complexity of the A and the SZMD-A

algorithms as follows:

5.4 Speed-Up Analysis

In this section, we compare the order of theoretical speed up and the actual speed up

achieved in our experiments for the PPSHNNl network with two-stage backpropagation

networks, and the PPSHNN2 network with single stage delta rule netwlorks.

The actual speed up comparison is made between the run time of each algorithm on a

Sun 3/60 station and its respective SIMD version on MasPar MP-1 with 16K PEs.

It is important to mention here that the actual speed-up factor achieved in experiments

embodies both parallel speed-ups and hardware differences in the floating point units of

the two systems. The floating point co-processor in the sun system is a full blown

floating point unit, whereas the floating point units of the MP-1 have 4-bit ALUs and

most of their operations are performed by table look-ups. In addition, in MP-1 the

floating point units are shared among the PEs of a PE cluster. Therefore, not every PE

has access to a floating point unit at all times. Despite all the hardware differences, our

experiments show that the overall floating point capabilities of a MP-1 PE and of the Sun

31150, for most applications, are comparable.

TPPSHNN 1
PEbSHNN1: The order of estimated speed-up is to be measured by

T ~ l ~ ~ -PPSHNN 1

Ecluations (1 1 1) and (1 12) give

For example, in the 10-class Colorado remote sensing problem, we have: ni =7,

P = 1 188, nh = 100, no = 10, slice = 8. For this problem run on the MP-1 with

N = 16384 PEs, we get

no fi= 1 0 x d E = 1280.

In our experiments with backpropagation on a Sun 3/60 work station, each sweep of

training for the 10-class problem takes an average of approximately 7 minutes and 30

seconds. On MasPar, on the other hand, every 100 sweeps takes an average of

approximately 14 seconds. This results in a speed-up factor in this particular case equal

to

Figure 5.12 shows the run times for different size hidden layers of the SIMD-BP.

Number of Hidden Neurons

Figure 5.12 SIMD-BP Run Times for Networks with 7 Input
Neurons and 10 Output Neurons for the Colorado Data Set with

11 88 Training Patterns.

The: relatively big jump in the training time between the 80 and 90 hidden neuron

networks is due to the addition of another slice to the virtual PE array, which increases

the degree of virtualization by one.

Table 5.1 shows some time indexes for the 100 hidden neuron network, which performed

the best classification for the

Table 5.1 Actual Time Indexes for Various Parts of the SIMD-BP Algorithm.

1 first stage second stage network I

throughput

loading and distributing
training date

weight update

0.23641 1 second for 1188 paterns

5025.15 patterns 1 second

best time

worst time

loading and distributing
desired data

best time

worst time

0.0410522 second for 1188 paterns
28938.77 patterns 1 second

73.12 MCS
0.013001 sec. 1 sweep

73.07 MCS
0.0130064 Set. 1 sweep

I generating and distributing

186.94 CUPS
0.005084 set. 1 sweep

186.72 MCUPS
0.00509008 sec. I sweep

0.449686 seconds for 181 0 connections

19.26 MCS
0.062314 sec. 1 sweep

19.25 MCS
0.0623242 Set. 1 sweep

I random weights 4025.03 connections 1 second I

0.07531 5 sec. 1 sweep

28.54
0,07!jj@ 2ai' set. 1 sweep

39.47 MCUPS
0.030401 set- Isweep

39.33 IJCUPS
0.03051 17 sec. 1 sweep

60.60 MCUPS
0.0[15485 Set. 1 Sweep

60.40 MCUPS
0.03Ei611 set. I sweep

10-'class problem. For this problem, the SIMD-BP algorithm reached a peak

performance of 0.013001 seconds for calculating the throughput of the first stage (800

connections) for all the patterns in one sweep (1 188 patterns). This is equivalent to 73.12

MCIS (Million Connections per Second). The worst performance for the first stage was

observed at 73.07 MCS, or 0.0130064 seconds for a sweep. Notice that the times

mentioned for the first stage also include the floating point exponenti;ation required for

the activation functions of the hidden neurons. The best performance o:F the second stage

(1C110 connections) was 19.26 MCS, or 0.062314 seconds for a sweep. The worst

per'formance for this stage was observed at 0.0623242 seconds per sweep, or 19.25 MCS.

The times for the second stage include the exponentiation required for the activation

fur~ction of output neurons and the communication overhead to communicate the output

of the hidden layer to the input of the output layer. For the weight update of the first

stage we achieved a peak performance of 0.005084 seconds per sweep, or 186.94

M(3UPS (Million Connection Updates per Second), while the worst performance was

186.72 MCUPS, or 0.00509008 seconds per sweep. For the seconld stage, the peak

pel-formance was 39.47 MCUPS, or 0.030401 seconds per sweep, while the worst speed

was 0.03051 17 seconds per sweep or 39.33 MCUPS. The times for the second stage also

include the communication overhead for the backpropagation of the partial errors to the

first stage.

PF'SHNN2: Similar to the PPSHNNl case, the order of the theoretic(a1 speed-up of the

1 P t W N N 2
parallel PPSHNN2 algorithm can be estimated by the ratio - . Using

T~~~~ -PPSHNN 2

equations (120) and (121) this ratio becomes

For the example of the 10-class Colorado problem with ni=7, no=lO, P=1188, and

slic-e=l, and a MP-1 array size of N=16384, we get

Tht:, actual speed up in our experiments between the serial and the parallel versions of the

PPSHNN2 algorithm run on Sun 3/60 and MP-1 respectively was measured as follows:

The serial algorithm takes approximately 19 seconds to complete on.e training sweep.

The parallel algorithm running on MP-I takes an average of 1.75 seconds for every 100

training sweeps. This results in a speed up factor in this case equal to

Table 5.2 shows some time indexes for the PPSHNN2 network running on MP-1 for the

10-class Colorado problem.

For this problem, the SIMD-A algorithm reached a peak performance of 0.001625

seconds for calculating the throughput of the network (80 connections) for all the

patterns in one sweep (1188 patterns). This is equivalent to 58.48 MCS. The worst

performance for the first stage was observed at 58.46 MCS, or 0.0001.626 seconds for a

sweep.

Table 5.2 Actual Time Indexes for Various Parts of the SIMD-A
Algorithm.

For the weight update of the network, we achieved a peak performance of 0.00063550

seconds per sweep, or 149.55 MCUPS, while the worst performance was 149.37

MCUPS, or 0.00063626 seconds per sweep.

throughput

weight update

As we see, while the first stage of the backpropagation network: achieves higher

throughput and update rate than the delta rule network, as a whole, the backpropagation

network performs slower than the delta rule network (28.55 MCS versus 58.48 for

throughput and 60.60 MCUPS versus 149.55 MCUPS for weight update). This is due to

tht: much slower second stage of the backpropagation network. Much of this slow-down,

compared to the first stage of the network, is due to the communication overhead

required to communicate the output of the first stage to the PEs responsible for the output

network

best time

worst time

best time

worst time

58.48 MCS
0.001625 sec. / sweep

58.46 MCS
0.001626 sec. sweep

149.55 MCUPS
0.0006355 set. 1 sweep

149.37 MCUPS
0.00063626 sec. / sweep

layer.

As we see, the weight update performances for both networks are about twice their

respective throughput performances. This is unusual since updating the weights is much

more computationally intensive than throughput. For weight update, one must find the

gra.dient of the error function in order to find the steepest descent path. The evaluation of

the following expression,

which is computationally more intensive than the computations iinvolved with the

throughput is necessary for the calculation of the steepest descent path. This expression,

however, can be written as

aot
= xfof(1 - of'). awij

W I ~ see that all the components of this expression are either given or have been

ca'lculated during throughput. Thus, there is no need to recalculate these partial results.

By using their values from the throughput stage, we can avoid floating point

exponentiation as well as most other floating point operations. This produces the speed-

up factor observed during weight update.

5.5 Parallel Testing

The procedure of parallel testing of the network is similar to that of training except that

duiing the throughput the hierarchy of the modules can be ignored. ' I l~us, all the P- and

NEL- units are implemented in parallel. All the P- and NS-units receive the incoming

pal.tern, and based on their respective trainings, they perform classification. The result of

this classification is interpreted differently from unit to unit. For example, the output of a

P-unit is interpreted as accept or reject, whereas the output of a NS-unit is either

classified into one of the classes which the unit was trained with, or it is classified as

reject. If a P-unit and its S-unit classify a pattern as accept, the c1,assification of the

succeeding modules in the hierarchy are ignored. In this case only the classification of

the NS-unit(s) corresponding to that P-unit matters. If a P-unit andlor S-unit classifies

the pattern as reject, the classification of the module is disregarded, and the classification

of the succeeding module is considered. Notice that, similar to training, depending on the

size of the PE array and the number of PEs required to simulate the parallel network,

several patterns are classified at the same time. Hence, the two types of data parallelism

and architectural parallelism also exist in the testing procedure.

As an example, Figure 5.13 demonstrates the network developed for the 10-class

Ccjlorado problem. W e have marked the P-unit of the first and second modules as PI and

Pll . The P-units within the NS-units are marked p 1, p 2, p 3, etc. The: NS-units are also

numbered in this manner. Figure 5.14 shows the division of the MP-1 PE array for the

testingJrecal1 of this network. As shown, the networks are simulated bly columns of PEs.

This arrangement results in the simplest communication pattern for distributing the

Figure 5.13 The PNS Block Diagram for the 10-Class Problem.

patterns. As we see, for each module first the P-unit is mapped and then the NS-unit.

This way, if a P-unit accepts the current pattern, the classification of all the units after the

colrresponding NS-unit(s) are ignored. As we can also see from the figure, the network is

repeated as many times as possible in the PE array. This allows data parallelism, which

allows the classification of several patterns at a time.

For example, let us assume that the current pattern belongs to class 1 . The PI unit will

accept this pattern, rendering the disregard of the classification of all the units after NS3

and higher. Then the classification of p 1 is observed. If the vote is reject, the

classification of NS 1 is also disregarded and the classification of NS 2 is regarded as the

only relevant classification. This could result in either class 4 or 5 (see Figure 6.8),

which would be a misclassification. If however, p 1 accepts the pattern, NS 1 is the

relevant unit and classifies the pattern as either class 1 which would be correct, or 7 (see

Pattern 1 Pattern 2
4 *4 d

-
128 PEs

Figure 5.12 The Division of The PE Array for the Testing
of the 10-Class Colorado Problem.

Figure 6.8) which would be incorrect.

CHAPTER 6

EXPERIMENTS AND RESULTS

The experimental results of two classification problems are discussed in this chapter.

The first one is the speech synthesis problem and the second applicati.on is the 10-class

Ccllorado data set.

The networks used are SIMD-PPSHNN1 and SIMD-PPSHNN2. The results of these

networks are then compared to the results of the PSCNN and the backpropagation

networks.

Th.e backpropagation network used as a comparison was a two stage 6eed-forward fully-

connected network. Various sizes of hidden layers were used to achieve the best

performance. In all backpropagation network, the step size was kept at 0.7. In all

S:CMD-PPSHNN networks the step size was 0.01, and in PSCNN networks the step size

was 0.05.

6.1 The Speech Synthesis Problem

There are two sets of data patterns for this application. One for training with 2319

patterns and another one for testing with 543 patterns. The characters "ow, "u", "p", and

"z" were intentionally under-represented in training. The FLAP class was the most

represented class in the training set.

6.1.1 Backpropagation Results

As mentioned before, the backpropagation networks were all two-stage networks. The

size of the hidden layer was varied to achieve optimum classification accuracy. The

hidden layers tried had 20, 30, 40, and 50 hidden neurons. Figure 6.1 shows the

pe,rformance tables of these networks. The figure shows the best performance of the 20

hidden neuron network, which was after 50 sweeps. The 30 hidden neuron network had

its peak performance at 320 sweeps. The 40 hidden neuron network had its best

performance after 300 sweeps. Finally, the network with 50 hidden neurons reaches its

best performance at 700 sweeps. We can also see from the graph that the network with

389
40 hidden neurons performs the best (- = 71.64%) among the 4 networks. Any

543

increase or decrease in the number of hidden neurons from 40 hidden neurons reduced

the accuracy of the network.

6.1.2 PSCNN Results

Figure 6.2 shows the best results of four PSCNN networks. All four mlodels were trained

with 200 sweeps of the training set. The first network has only one mlodule and its best

performance is 60.59%. The second model has 3 modules and its best accuracy is at

72.74%. The third network has 5 modules and its classification accuracy is 74.77%. The

last network and the best performing network has 9 modules and pel-forms at 75.14%.

Arly increase in the number of modules from here on reduced classification accuracy.

Also the accuracy of the networks started to decrease after 200 sweeps.

6.1.3 SIMD-PPSHNN 1 Results

Two modules were created for this problem. Figure 6.3 shows the results of the two

module PPSHNN. The first module required a P-unit. It was trained to reject /b/, /v/, If/,

Id, Id, /el, 101, Id, and /it and to accept the rest. Figure 6.3 (a) show!; the results of the

P-nnit. It performed at 92.82% accuracy. This submodule had most]problems with /p/.

This P-unit was trained to accept data belonging to this class, but it only accepted 23 of

the 43 patterns belonging to this class and rejected the other 20. Among the rejected

cletsses, the P-unit had the lowest accuracy with /el. It was trained to reject all the /el

patterns. It rejected 12 of 15 patterns and accepted 3 of them.

Figure 6.3 (b) shows the results of the performance of the NS-unit of module 1. The

results shown in this figure do not include the rejected data by the P-unit. We see that

module one correctly classified 84.3% of the data accepted by the :P-unit, incorrectly

20 hidden neurons

after 50 sweeps

30 hidden neurons
after 320 sweeps

] I ~
classificatia~s classifications

Ifl I 4 11

Idl

I P ~
Ibl

flao 39 4 1

space

31
0

5

I total I 359=66.11% 1 18443.89% 1
(a)

1
43
0

40 hidden neurons
after 300 sweeps

50 hidden neurons
after 700 sweeps

I correct (incomct I (comct I incorrect 1
lclassifications lclassifications

I Itl I 39 I 17
classificatio~ls classifications

p++q
~ f l 4 n

Id l

I P ~
Ibl

Figure 6.1 Results of BP for Speech Synthesis.

classified 4.3% of them, and rejected 1 1.39% of them.

32

0
5

lil

space

total

Module two did not build a P-unit. Figure 6.3.(c) shows the results of the second

0

43
0

22

115
389=71.64%

0
0

154=28.3696

1 -module PSCNN
after 200 sweeps

3-module PSCNN
after 200 sweeps

correct I incorrect

I Ifl I A I n I

5-module PSCNN
after 200 sweeps

I * - I

I correct I incorrect I

space

Ifl
Isl

IzI n

22
space 115

total 1 329=60.59% 1 214=39.41%

115

9-module PSCNN
after 200 nwdules

0

I correct I incorrect I

I Idl I 32 0

~ f l n

lul

1 il
mace 115

total 1 408=75.14'% 1 135=24.86%

(4

Figure 6.2 Results of PSCNN for Speech Synthesis.

module's NS-unit. It correctly classified 47.87% of the patterns passed to this module.

36.7% of patterns passed to this module were misclassified, and 10.64% of them were

rejected.

Prc-Rejmta o€
fusl module

&ex 1200 sweeps

module I

@-=

23 20
Ibl

wrrcd
lassifications

lo1 I 25 1 1
lul I 22 1 0

incarcct
dassifications

t 7 & p f +
total 505= 92.82% 39= 7.1%

module 2
performce

classifications classifications fiM

Itl

Idl

I P ~
Ibl
IvI

Ifl
Is1

Id

flap
la1

lei
lo1
lul

lil

spa-

total

lil 0

0 0

PPSHNN overall
pexformance

wmd
classifications

7
0

6

5
4

4

3

4
15
1

12

4

3

22
0

90= 47.87%

, m m
classifications classifications

total 423=77.9% 95= 17.5% 20364%

incorrect
classifications

3

0
22
0

1
0

0

10
7

1

0
16
18
0
0

69= 36.70%

Figure 6.3 Results of PPSHNNl for Speech Synthesis.

The overall performance of the two-module PPSHNNl is shown in Figure 6.3 (d). The

best classification accuracy was 77.9%. As we can see, it outperformed the

backpropagation and the PSCNN networks not only in overall classification accuracy but

=jcckd

1

0
9
0
0
0

0

3
0

0

1
5
I

0
0

2040.64%

also in classification of patterns belonging to under-represented c1ass1:s such as /pi and

Id. Also, it is worth mentioning that 3.68% of the data was still irejected after two

modules. A third module could increase the accuracy by a slight margin.

6.2 The 10-class Remote Sensing Problem

This data set contains a set of 1188 vectors for training and a set of 831 vectors for

testing. The breakdown among the classes is shown in Figure 2.2. Each vector is of

length seven and any component of the vector can have a value between 0 and 250. As

set:n in Figure 2.2, all 10 classes are present in both the training and the testing set.

6.2.1 Backpropagation Results

A:; for the speech synthesis problem, different size backpropagation networks (all with

one hidden layer) were tried. Figure 6.4 shows the results of the thre:e best performing

network. Figure 6.4.(a) shows the best result among all backpropagation networks with

55.72% accuracy. This network has 100 hidden neurons. In figures (b) and (c) the

results of two other networks are shown with 110 and 90 hidden neurons respectively.

6.2.2 PSCNN Results

Figure 6.5 shows the results of two PSCNN networks, one with 9' and one with 7

mc~dules. The results are slightly better than the backpropagation networks, but still quite

poor in the under-represented classes. Best performance was achieved with the 9 module

network at about 56.68%.

Saimple runs with the same data set were also done by other independent researchers [2].

In none of the cases was correct classification percentage above 60%. It is also important

to :mention here that none of the networks learned any of the classes 2,11,8,9, and 10.

6.2.3 SIMD-PPSHNN1 Results

The P-unit used for this experiment is shown in Figure 3.10 and its petiormance statistics

is :shown in Figure 6.6.(a). The performance of the NS-unit of modulle one is shown in

Figure 6.6.(b). Similar to the speech case, the results shown in the figure do not include

the rejected data by the P-unit. The performance of the NS-unit of module 2 is shown in

Figure 6.6.(c) and the overall performance of the network is shown in Figure 6.6.(d).

The P-unit was trained to reject classes 2, 3, 4, 8, 9, and 10 and to accept the remaining

classes. Its performance was about 95.5%. Overall, the PPSHNNl pertbrmed better than

the other networks on the under-represented classes.

The result shown in Figure 6.6 are for the 100 hidden neuron network a:s the N-unit of the

first module. Other hidden layer sizes were tested, but the best results were revealed

100 hidden neurons
after 500 sweeps

1 10 l~idden neurons
after 1000 sweeps

classificatiol~s classifications hM

class 8 44

class 6
class 7 66

class 10

90 hidden neurons
after 700 sweeps

Figure 6.4 Results of BP for 10-Class Problem.

class 1
class 2
clav 3
class 4
class 5
class6
class 7
class 8
class 9
class 10
total

when we had 100 hidden neurons. Figure 6.7 shows the error curves of different SIMD-

BF' networks run for the N-unit. The smooth exponentially decaying error function is a

correct
classifications

171

0

0
30

96

74
67

0

0

0

438=52.71%

incorrect
classifications

24

24
42
35

43

114
3

44

25
38

39247.17%

9 module PSCNN
after 200 sweeps

I correct I incorrect I

class 3
class 4
class 5 96 43

class 1
class 2

classifications
192
0

class 6 1 86

classifications
3

24

1 00
. - - I -

7 module PSCNN
after 200 sweeps

class 8 1 0
class 9
class 10
total

class 7 1 65
44

class 2

class 4

4

0

1

471 =56.68%

I class 1

25
3 8

43.32%

correct
classifications

188

class 5 1 95

I class 8 1 0 I 44 I

incorrect
classifications

7

44

class 6 1 84 104

I total 1 465=55.96% 1 366=44.04% 1
(b)

- -

class 9
class 10

Figure 6.5 Results of PSCNN for 10-Class Problem.

class 7 1 66

characteristic of the exact algorithm. The error curves of the stochastic: method are only

pieicewise smooth.

4

0

0
25
3 8

first module
after 1500 sweeps

correct I incorrect

clvs 3 37

clvs 7

I total 1 794=95.55% 1 37= 4 . 4 5 c 1

module 2

performance

PPSHNN overall
performance

I I

class 5 I 93

class 10

Figure 6.6 Results of SIMD-PPSHNN 1 for 10-Class Problem.

6.2.4 SIMD-PPSHNN2 Results

The performance of the SIMD-PPSHNN2 with PNS modules is shown in Table 6.1. The

top to bottom 90hn 1 1 Ohn lOOhn 120hn

Figure 6.7. Error Curves of SIMD-BP.

co~rect classification performance was 73.16%. This performance improvement is

mainly due to the separation of hard to learn classes (classes 2, 3, 8,9, 10) from the rest

of the classes in the first stage. This separation causes the simplification of the problem

spa.ce and results in the improvement of the classification accuracy for lboth the "easy" as

well as the "hard" to learn classes.

The P-unit of the first stage (Figure 6.8) allows classes 1,4, 5, and 7 to be learned by the

NS-unit of the first stage, separately from the other classes. These classes are relatively

easy to learn, resulting in testing classification accuracy of 98.97%, 73.85%, 82.01%, and

Table 6.1 The Results of the SIMD-PPSHNN2 using PNS Modules Ifor the
10-Class Colorado Problem.

class 1

class 2

class 3

class 4

class 5

class 6

class 7

class 8

class 9

class 10
over all
accuracy

' % correct wrong rejected
! correct

60..00%, respectively.

By not including the other four classes with much larger training sample sets in the

training set of the second stage, this stage can learn the remaining classes easier. The

NSt-unit of the second stage further breaks down the problem space into simpler polygons

in terms of PNS modules. The testing performance of the second stage on classes 2 ,3 ,6 ,

8, 9, and 10 are 62.5%, 73.81%, 67.02%, 45.45%, 0.00%, 48.72%, and 73.16%, which

improves the overall performance of the network considerably.

Figure 6.8 shows the division of classes among the PNS modules of the network. The P-

Figure 6.8. The Class Divisions Generated during Training of
SIMD-PPSHNN2 for the 10-Class Colorado Problem.

unit of the first stage rejects classes 2, 3, 6, 8, 9, and 10, and accepts data belonging to

classes l , 4 , 5 , and 7. Data belonging to classes 1 ,4 ,5 , and 7 are sent to the N-unit of the

first stage for classification. There are two modules in this unit, one PN,S module and one

NS module. The P-unit of the PNS module rejects classes 4 and 5. The other two

(cliisses 1 and 7) are sent to t he N-unit for classification. Hence, the NS module is

res;ponsible for the classification of classes 4 and 5, and with a correct classification

pe.rformance of 73.81% and 82.0196, respectively, it was considered satisfactory and no

P-onit was necessary.

In the second stage, the P-unit rejects data from class 9 and accepts the rest. Classes 2,3,

6, 8, and 10 are sent to the NS-unit of this stage for classification. The NS-unit consists

of four PNS modules and one NS module. The first PNS is responsibk: for classes 6 and

10.. The P-unit of this module rejects classes 2,3, and 8. The S-unit of the same module

also rejects some data belonging to class 10 due to the uncertainty of classification.

Therefore, the data set sent to the second module contains classes 2, :3, 8, and 10. The

sec:ond PNS is responsible for classes 2 and 8, and rejects classes 3 and 10 using its P-

unit. The S-unit of this module also rejects some data belonging to both classes 2 and 8,

thus resulting in a data set for the third PNS which contains all four cllasses 2, 3, 8, and

10. The third PNS is only responsible for the class 3 and rejects the rest. Because, the

N-unit of this PNS performed its task satisfactorily, its S-unit did not reject any patterns

to the next PNS. Classes 2, 8, and 10 are sent to the fourth module which in turn is

responsible for data belonging to classes 2 and 10, and rejects data belonging to class 8.

The last PNS (NS module) classifies the remaining data to class 8 or rejects them.

Overall, both PPSHNN modules outperformed the backpropagation and PSCNN

networks in all our experiments. Choosing PPSHNN2 with PNS module has the

additional advantage that it is relatively inexpensive to run. This is due to its simple

single stage units.

CHAPTER 7

FUTURE RESEARCH AND CONCLUSIONS

7.1 Future Research

Future research will involve further development of SIMD-PPSHNN in terms of

accuracy, speed, and architecture. These studies should be carried out in relation to

colnplex classification problems, pattern recognition and signal proces,sing. The outline

of the major issues of future research is as follows:

After the experiments with the SIMD-PPSHNN1 were completed, it was clear that

most of the effort should be directed towards the automation of the process of

finding the optimal network size for the N- and P-units. Up to that point, most of

the training time was spent to find the optimal N- and P-unit size rather than

training them. The result of this research was the PNS module which replaces the

nonlinear boundaries introduced by the backpropagation networks with piecewise

linear boundaries. At this point, a logical next step would be to experiment with

other types of networks and learning algorithms, such as competi~.ive learning.

2 . A study should be done to see if there are situations in which certain networks with

certain learning rules perform better than others. If so, the network should employ

certain types of networks in certain types of classification problems. Hence,

PPSHNN would become an assembly of different types of networks and learning

algorithms organized into a hierarchy. In such a case, a unit must be added to each

module to detect a known situation and thereby use the optimal1 type of network.

This task could be performed by the pre-processor.

3,. It can be shown [5] that the output of the delta rule network can be interpreted as

the probability of a class given the input vector. Using this knowledge, one can

design a neural network module to estimate the required pirobability density

functions, hence replacing the Parzen density estimation by a neural network

module. Future research should consider this topic and the accuracy of the neural

network unit in comparison the Parzen estimator. -

4. Another important issue is to design an effective pre-processor. 'This research will

look into techniques introduced in information theory and error control coding to

devise a pre-processor which transforms the problem space into yet another easier

space for classification. Another option is an adaptive pre-prccessor. This pre-

processor learns a nonlinear transformation and performs it on the incoming data.

The nonlinear transformation itself is learned from the training data.

Future research could also involve replacing the hierarchical nature of the

algorithm with a consensual nature similar to that of PSCNN. Thus, gaining more

parallelism in training and taking more advantage of machines such as MasPar

becomes possible. Some recent work has been done by Professor Hank Dietz and

his students at Purdue University in using MasPar in an MIIVID fashion. The

consensual nature can go hand in hand nicely with the MP-1 running in a semi-

MIMD fashion.

In such a case, one must develop a decision mechanism to choose between the

votes of different modules. When the hierarchy is not present, more than one P-

unit could accept the input pattern. A decision must be made as 1.0 which module's

classification result should be accepted. A voting mechanism such as the one from

PSCNN could also be used. Once the hierarchy of the PPSHIW algorithm has

been eliminated, the biggest source of serialism in the algoritf~m will also have

been eliminated, and hence all the modules can be trained at the same time and

with the entire training set (assuming enough hardware resources). This would

perhaps increase the classification accuracy as well.

6,. Future work also could involve further developing the postrejector and its

statistical analysis of the output of the N-unit.

7. As mentioned before, we are currently implementing the simplest possible cost

criterion. Further research is required to find the optimal cost criterion for

estimation of the reject boundaries. One suggestion is that it might be possible to

learn the cost values during training. The effect of various cost criterion in

classification accuracy can be studied.

8. In Chapter 3, we talked about the rejection boundaries zi,, z i l , and z t l and the

order they held in our experiments, namely

It is proposed that neurons whose outputs carry little information do not follow the

above order. Future research is aimed at finding topologies in which there is a

pattern for such behavior. If so, the knowledge gained can be used in designing a

more efficient algorithm which can be used to detect the unneeded neurons early in

training and to eliminate them.

7.2 Conclusions

In this thesis, a new neural network architecture called the Parallel l>robabilistic Self-

organizing Hierarchical Neural Network (PPSHNN) was introduced. 'fie PPSHNN is a

cornbination of statistical analysis techniques and adaptive neural networks. This

cornbination is shaped into a new architecture which is designed to divide the problem

space into subregions and make classification easier in these subregions. This division of

spa.ce, performed by the P-unit, is completely data (application) dependent and is not a

preset procedure.

The PPSHNN addresses problems that rise in complex classification applications such as

under- or unproportionally represented classes in the training set. It idso addresses the

tra:ining time issues and is to a high degree parallelizable. Training times of over 3000

times shorter than serial backpropagation implemented on Sun 3/60 have been achieved

by implementation on MasPar MP-1 with 16K PEs.

Thl: experiments performed in comparison to a standard backpropaga~tion network and

the PSCNN indicate superior accuracy and speed. Further detailed study, analysis, and

development of the PPSHNN is necessary to understand its potential in many

classification applications.

The variation of the PPSHNN module called the PNS module offers se:veral advantages.

The PNS module is relatively inexpensive and at the same time accurate in classification.

Because the architecture is fractal in nature and all the modules are simple and similar in

architecture, the building of networks which use this module is inexpensive and strait-

forward. It divides the problem space using simple linear boundaries and therefore, i t .

self-organization to adapt to the problem space is easier to understand.

Imldementing neural network algorithms in massively parallel machines is very

promising in reducing the training time from hours to minutes. This kind of speed-up is

impossible to achieve even with a fast neural network algorithm implemented on the

fastest serial machine.

The backpropagation algorithm can offer architectural parallelism as well as data

pal-allelism if implemented in the way it was discussed in this thesis. While architectural

parallelism is limited by the size of the largest layer of the network, the data parallelism

is only limited by the number of PEs available and the number of training patterns, which

is often far more than the number of neurons in a layer.

Miissively parallel implementations of neural networks allow larger problems to be

investigated in a short amount of time. Since the properties of neural networks often

arise due to the collective behavior of the neurons, such implementatiions also have the

potential of helping in the understanding of artificial and biological mechanisms of

intelligence.

REFERENCES

[l] D.E. Rumelhart, J.L. McClelland, Parallel Distributed Processing, The MIT press,

Cambridge Massachusetts, 1986.

[2] H. Valafar, O.K. Ersoy, "Parallel Self-Organizing, Consensual Neural Networks";

Report No. TR-EE 90-56, School of Electrical Engineering, Purdue University, October

15j90.

[3] J.A., Benediktsson, P.H. Swain and O.K. Ersoy, "Neural Network Approaches

versus Statistical Methods in Classification of Multisource Remote Se:nsing Data," IEEE

Int. Geoscience and Remote Sensing Symposium, Vancouver, Canada, July 1989, and

submitted to IEEE Tran. Geoscience and Remote Sensing.

[4.] D.G. Luenberger, Linear and Nonlinear Programming, Second Edition, Addison-

M'esley Publishing Company, Massachusatts, 1984.

[:I] O.K.Ersoy, D. Hong, "Parallel, Self-Organizing, Hierarchical Neural Networks";

IKEE Tran. on Neural Network, Vol. 1, No. 2, pp. 167- 178, June 1990.

[6] O.K.Ersoy, D. Hong, "Parallel, Self-Organizing, Hierarchical Neural Networks 11";

IE'EE Tran. on Industrial Electronics, Special Issue on Neural Networks, April 1993.

[7] O.K.Ersoy, S-W. Deng, "Parallel, Self-Organizing, Hierarchical Neural Networks

wjith Continuous Inputs and Outputs"; Proc. Hawaii Int. Con5 System Sciences, HICCS-

241, pp.486-492, Kauai, January, 1991, and to appear in IEEE Tran. Neural Networks.

[8] O.K.Ersoy, S-W. Deng, "Parallel, Self-Organizing, Hierarchical Neural Networks

w:ith Forward-Backward Training"; Circuits Systems Signal Processing, Vol. 12, No. 2,

pp. 223-246, 1993.

[9] Richard 0. Duda, Peter E. Hart, Pattern classification and scene analysis, Wiley-

interscience publication.

[lo] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press,

N'ew York, 1972.

[l l] K. Hwang, F. Briggs, Computer Architecture and Parallel Processing, McGraw-

Hill Computer Science Series, New York, 1984.

[12] G. S. Almasi, A. Gottlieb, Highly Parallel Computer, The BenjaminfCummings

Publishing Company, Inc. 1990.

[13] MasPar MP- 1 Reference Manuals, MasPar Computer Corpolration, Sunnyvale,

CA4

[14] Kenneth E. Batcher, "Design of a Massively Parallel Processor", ZEEE

Transaction on Computers, Vol. C-29, pp. 836-840, Sept. 1980.

[15] Peter Christy, "Software To Support Massively Parallel Computing on the MasPar

M:P- 1 "; Proceedings of the ZEEE Compcon Spring 1990, Feb. 1990.

[16] D.F. Specht, "Probabilistic Neural Networks and the Polynomial adaline as

Complementary Techniques for Classification"; ZEEE Trans. Neural Networks, Volume

1, Number 1, pp. 11 1-121, March 1990.

[17] T.J. Sejnowski, "NETtallc: A Parallel Network that learns to read Aloud," Report

No. TR-JHU/EECS-86/01, Electrical Engineering and Computer Science, Johns Hopkins

University, 1986.

[18] O.K. Ersoy, D. Hong, "A Hierarchical Neural Network involving Nonlinear

Spectral Processing", Proceedings of TCNN 89, Washington, D.C., Jun'e 1989.

[I91 P.J.B. Hancock, "Data representation in neural nets: an empirical study",

Proceedings of the 1988 Connectionist Models summer School, Morgan Kaufmann

Publishers Inc., pp. 11-20, 1988.

[210] J.C. Pemberton, J.J. Vidal, "When is the Generalized Delta Rule a Learning Rule?

A Physical Analogy", Proceedings of ICNN 88, San Diego, Cal., pp. 309-315, June 1988.

[21] M. Takeda, J. W. Goodman, "neural networks for computation: number

representations and programming complexity", Applied Optics, Vol.. 25, No. 18, pp.

3033-3046, Sep. 1986.

[22] H.L. Van Trees, detection, Estimation, and Modulation Theory, Part I, John

W'iley & sons, Inc. 1986.

[23] P.J. Werbos, "Backpropagation: past and future", proceeding:^ of ICNN 88, San

Diego, Cal., pp.343-353, June 1988.

[24] B. Widrow, "Adaptive sampled-data systems-A statistical theory of adaptation,"

in 1959 WESCON Conv. Rec., pt. 4, pp. 74-85, 1959.

[25] R.G. Gallager, Information Theory and Reliable Communicat,ion, John Wiley &

suns, Inc. 1968.

[2.6] R.E. Blahut, Principles and Practice of Information Theoq), Addison-Wesley

publishing company, 1987.

[27] N. Abrarnson, Information Theory and coding, McGraw-Hill Book Company, Inc.

1963.

[28] R. Ash, Information Theory, John Wiley & Sons, Inc. 1965.

[29] D. A. Pomerleau, G. L. Gusciora, D. S. Touretzky, and H. T. Kung, " Neural

Network Simulation at Warp Speed: How We Got 17 Million Connections per Second",

Piroc. IEEE International Con. on Neural Networks, Voll. 11, San Diago, CA, pp. 143-

l!iO, Jul. 1988.

[3Q] S. Borkar et al., "iWarp: An Integrated Solution to High Speed Parallel

Clomputing", Proc. Supercomputing '88, IEEE Computer Society, Orlando, FL, pp. 330-

339, 1988.

[31:1.] J. R. Millan, P. Bofill, "Learning by Back-propagation: A Systlolic Algorithm and

i ~ i Transputer Implementation", Neural Networks 3, pp. 119-137, Jul. :1989.

	Purdue University
	Purdue e-Pubs
	6-1-1994

	PARALLEL, PROBABILISTIC, SELF-ORGANIZING, HIERARCHICAL NEURAL NETWORKS
	Faramarz Valafar
	Okan K. Ersoy

