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ABSTRACT

Valafar, Faramarz. Ph.D., Purdue University, August 1993. PARALLEL
PROBABILISTIC SELF-ORGANIZING HIERARCHICAL NEURAL NETWORKS.
Major Professor: Okan K. Ersoy.

A new neural network architecture caled the Parallel Probabilistic Self-organizing
Hierarchical Neural Network (PPSHNN) is introduced. The PPSHNN is designed to
solve complex classification problems, by dividing the input vector space into regions,
and by performing classification on those regions. It consists of several modules which
operate in a hierarchically during learning and in parallel during testing. Each module
has the task of classification for a region of the input information space as well as the
task of participating in the formation of these regions through post- and pre-rejection
schemes. The decomposition into regions is performed in a manner that makes
classification easier on each of the regions. The post-rejector submodule performs a
bitwise statistical analysis and detection of hard to classify vectors. The pre-rejector

module accepts only those classes for which the module istrained and rejects others.

The PNS module is developed as a variation of the PPSHNN module. If delta rule
networks are used to build the submodules of PNS, then it uses piecewise linear
boundaries to divide the problem space into regions. The PNS module has a high
classification accuracy while it remains relatively inexpensive. The submodules of PNS

are fractile in nature, meaning that each such unit may itself consist of a number of PNS



modules. The PNS module is discussed as the building block for the synthesis of

PPSHNN.

The SIMD version of PPSHNN is implemented on MASPAR with 16k processors. On
dl the experiments performed, this network has outperformed the previously used

networks in termsof accuracy of classification and speed.




CHAPTER 1

INTRODUCTION

This thesis involves a neural network approach to the problem of classification.
Specifically, classification in complex environments. The task of classification is one of
the very basic abilities of human beingsor all living beings. Every living being at some
level has to make the determination of its environment. This determination is made
instinctively and subconsciously or intelligently at aconscious level. At any level it goes
hand in hand with the classification of the entities of the environment. Despite the long

and intensive research in thisarea, Nature's techniques of classification still elude us.

The most basic and essential determination of the environment for human beings is the
sense of locality or the sense of where one is at any given time. This determination is
made based on the processing of certain sensory inputs such as images, sounds and odor.
These pieces of information are cross- correlated and the higher reasoning region of the
brain makes the determination of the where abouts. The processing of information
requires classification. For instance, the images that the eyes send to the brain are noisy,
distorted, and sometimes not observed previously. Despite such problems, brain usually
classifies things correctly, for example, even if the person has never seen the image

before.



The ability to classify a certain object correctly, without having to have seen it before, is
called generalization. For example, if a person observes a chair which he has not seen

before, he still isable to determine that the object in question isa chair.

This ability to classify and generalize when necessary is one of the brain's most basic
functions. Trying to simulate or emulate this ability is a grand challenge. There has
been many designs of classifiers which can generalize. However, none of these designs
have yet come close to the perfection and accuracy with which the brain operates. The
accuracy of most of man-made systemsis usually problem-dependent and varies greatly
from one case to another. Also in some cases the classifier can only operate in a very
limited and highly controlled environment, which usualy is not the case in nature. For
example, some of the existing speech recognition systems are speaker-dependent,
meaning that they can only recognize one person's speech. While there exists some
technology to develop a recognizer which is speaker-independent and even recognizes
continuous speech (with no pause between the words, or even partialy overlapped
words), the recognition of such a system with a large vocabulary is slow and not

sufficiently accurate.

Despite all this, the improvement in classification technology has been remarkable in the
last decade. Alternative ideas have shed new light at the problem and offered alternative
solution strategies. Perhaps the best example of such alternative ideas comes from the
area of neural networks. These networks contain very simple processing units called
neurons and connections which connect these units. Though the operation of the

individual neurons are simple, their collective capabilities are remarkable.




Theideaof neural networks wasinspired by the study of the brain, especially in the early
60’s. Since then, these networks have been used to perform a variety of tasks, many of
which have been classification. While we are still not certain of the physical
organization of the neurons in the brain or their learning strategy, scientists have

developed many types of architectures and learning algorithms for these networks.

Some of the difficulties in classification problems facing neural networks today are
under- or unproportional-representation of classes in the training set, highly complex
boundaries between classes in a high-dimensional problem space, and training time

required to learn such boundaries in such spaces.

In this thesis, a new neural network system, called the Parallel Probabilistic Sdf-
organizing Hierarchical Neural Network (PPSHNN), is introduced to address these
problems. The PPSHNN is designed especially for unusualy difficult and complex

classification problems, such as the ten-class remote sensing Colorado problem.

The concept of the PPSHNN module has evolved as a result of analyzing the major
causes of error in classification problems. These causes can be categorized into the

following:

1. Patterns of different classes which are very close to the same class boundary are

usually difficult to distinguish.

2. Theclass boundaries may be extremely nonlinear.

3. A particular class may be undersampled such that the number of training samples



from that class are too few, as compared to other classes. Figure 1.1 @) visualizes

such ascenario with Class 1 being the undersampled class ascompared to Class 2.

class 1

class 1

1) class 3

class 2 : class 2

.
Lt

(a) (b)

Figurel.1. (a) An Example of an Undersampled Class (Class 1).
(b) An Example of aGeometrically Small Class (Class 3).

4. A paticular class may be geometrically small compared to other classes in the
sample space such that the number of training samples gathered from the region of
that class is too few. This is visualized in Figure 1.1 b) where class 3 is

geometrically smaller than classes1 and 2.

The PPSHNN addresses the above problems directly. It is designed, and synthesized by a

number of self-organizing modules to minimize classification error due to the mentioned



difficulties.

The PPSHNN belongs to the class of Parallel Self-organizing Hierarchical Neura
Networks (PSHNN) [5-8]. PPSHNN, similar to the PSHNN, isa modular neural network
system whose modules run in a hierarchical fashion during training and in parallel during
testing (recall). Each module of PPSHNN is quite different from the previous modules.
Perhaps the three most original contributions of PPSHNN are: (1) the P-unit submodule,

(2) the bitwise postrejector, (3) The SIMD implementation of PPSHNN algorithm.

The P-unit (pre-rejector) submodule isa two-classclassifier and istrained to reject all the
data belonging to difficult-to-classify classes such as the under- and/or unproportionally-
represented classes. The P-unitisan optional unit and might not exist in some modules.
Secondly, there is a statistical/adaptive postrejection unit, which consists of a statistical
unit called the Bit-Rejector (BR) and an adaptive unit called the Vector-Rejector (VR).
The bit rejector performs bitwise statistical analysis on every output bit of the network.
The vector rejector is trained to decide whether or not to reject the classification of the
input pattern based on the output of the neural network classifier and the results of the

bitwise statistical analysis.

To address the problem of long training time, PPSHNN isdesigned such that it can easily
be implemented in a Single Instruction Multiple Data (SIMD) environment. Thisversion
of PPSHNN iscalled the SIMD-PPSHNN and is implemented on Purdue University's
Electrical Engineering Parallel Processing Laboratory's MasPar MP-1 with 16K

Processing Elements (PEs).




As mentioned before, the main motivation for the design of PPSHNN came from the
analysis of various causes of classification error in neural network systems. There are
two major types of classification error that even the more sophisticated neural network
models cannot escape. The first type occurs when data of two or more classes lie too
close to a complex class boundary. The second type of error is due to the
misclassification of data which belongs to a class which has significantly less number of
patterns in the training set (the under- and unproportionally-represented classes)
compared to other classes. There are various designs which address the first error type,
including some probabilistic approaches [9, 10, 22, 25] and even some statistical-neural
network approaches [16]. Unfortunately, all the probabilistic approaches used with
neural networks have been statistical analysis in high dimensional spaces (vector
statistics). This approach has been limiting and often inaccurate, simply due to the fact
that there are not enough sample points to estimate the n-dimensional density functions
accurately. Instead of statistical analysisof the input vectors, we have designed a bitwise
analysis scheme at the output, called the bit-rejector. A neural network unit called the
vector-rejector is trained to reject or accept a pattern based on the bitwise analysis. We

also call the combination of the bit-rejectors and the vector-rejector, the postrejector.

To reduce the second type of error mentioned above, a pre-rejector unit (P-unit) was
designed. An additional function of the postrejector is to detect the under- and
unproportionally-represented classes and. Once such a class(es) is detected, the training
of a P-unit to reject the class(es) and to send it to the next module isinitiated. By doing

S0, the classification complexity of each module is significantly reduced and, thereby, its



classification accuracy increased.

The motivation for a SIMD algorithm for PPSHNN was the slow training procedure,
which plagues most neural network algorithms in applications such as the 10-class
Colorado problem discussed in the subsequent chapters. Considering that a simple
backpropagation network, run on a Sun 3/60 station, requires over 24 hours for the
training of the 10-class problem, it was essential to devise an algorithm which takes

advantage of the SIMD nature of PPSHNN.

This thesisis organized in six chapters. Chapter 1 is the introduction. Chapter 2 is the
background research, describing two complex classification problems and some neural
network architectures which have attempted to solve these problems. In Chapter 3, the
architecture and the operation of PPSHNN is discussed in detail. Chapter 4 discusses
special topicsin variations of the PPSHNN module such as the PNS module. Chapter 5
discusses the parallel version of PPSHNN, the SIMD-PPSHNN, and some speed-up
issues. A comparison of time complexities is also provided between backpropagation,
the PPSHNN, and the SIMD-PPSHNN. Chapter 6 discusses the results achieved with
PPSHNN and two other previous networks. Chapter 7 covers conclusions and a

discussion of future research issues.






CHAPTER 2

BACKGROUND RESEARCH

The main goa of designing the neural network system described in this thesis was to
design a systems which performs better than the existing neural network architectures,
specifically in dealing with complex classification problems. As a background to this
issue, two known and very complex classification problems are discussed in this chapter.
In addition, some details of several neural network systems which have dealt with these

problems are described.

2.1 Complex System Classification

In this section, two classification problems are described which are highly complex with

multi-dimensional and highly nonlinear problem space.

The first problem is that of text-to-speech conversion (speech synthesis) in the English

language. The second problem isa ten-class remote sensing problem.
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2.1.1 Text-to-Speech Conversion: Problem Description, Complexity Analysis

Problem description: Each sound (phoneme) in any part of a pronounced word carries
features by which it is distinguished from other sounds. These features are caled the
articulatory features. They describe the way human vocal system produces the sounds.
For example the articulatory features of the phoneme pronouncing "p" in the word " post”
are: unvoiced, labial, and stop. Unvoiced means that the voca cords are not actually
moving while pronouncing the "p". Some sounds are voiced and some are unvoiced,
meaning that the vocal cords do not actually movefor all sounds in the English language.
"p" isalso labial, because in order to produce this sound, the use of the lips are essential.
Some phonemes are labial and some are not. "p" isalso stop, because in order to produce
the sound, one must stop the flow of air out of the mouth for a short period of time and

then let it out in a bursting fashion.

In order to produce the sound of a given character in the text (i.e. to pronounce the
correct phoneme), one must know what the contextually appropriate articulatory features
are. Thus, considering each of articulatory feature as a class, the problem becomes a
classification problem. The task of the classification system isto classify each character
in the text into the correct classes (features). Because each phoneme is characterized by
a set of articulatory features, each input pattern belongs to all its corresponding classes

(features) and should be classified as such.

Complexity description: In this thesis, by complexity we mean the difficulty of the

classification task in a given problem. Thefirst complexity factor in the speech synthesis
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problem is that, since each character in the text maps into several features and other
characters might share one or more features, the classes are overlapped in some regions
of the problem space. The second difficulty isdueto the fact that some characters sound
differently depending on the characters around them. In other words, such characters
map into different sets of features (classes) depending on the characters in the
surrounding text. Thisrequires the classification system to be able to classify time-series
as well. The best exampleis the case of FLAP sound. Thisisthe case when "t"* or "d"
is placed between two vowels. In this case they sound as what is called a FLAP sound.
For example "catering". This effect is not word limited either. FLAP replaces /t/ or /d/
even if the above is the case over two neighboring words in the text. For example "eat
it". Thesameistrueeven if there are two "t"’s or "d"’s one after the other. For example
"cutting". This phenomenon of a single character mapping onto different phonemes in
different context occurs with a number of letters in the English alphabet, such as"c, g, h,
S' of consonants and almost all the vowels. For example, "c" maps onto the sound /k/ in

the word "case", but it mapsto /s/ in the word "peace”.

To simplify the complexity of this problem, we reduced the alphabet set and created an
English-like language in our experiment. Instead of 26 characters, we only included 8
consonants and 5 vowels. We were particularly interested in the performance of the
system in the FLAP cases. Another point of interest wasthe fact that characters "z", "p",

"o", and "u" were severly under-represented. It was interesting to see how the network

* In this thesis, when we put a character in quotes such as"t", we mean the character letter “t" of the alphabet in the written text.

However, by //, we mean the sound (phoneme) of that written character (i.e. pronounced tee)
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was going to pronounce these characters in testing. In the case of children being faced
with a similar situation, first they do not pronounce the sound at all. After afew repetion
(sweeps of training), they start pronouncing the new sounds, however the produced
sounds are not exactly the desired sounds. They are rather sound which are already in
their vocabulary of sounds and have comon features with the new sound. For example a
child who knows tha sound /b/ but not /p/, would pronounce "p" with the sound /b/ at the
begining. Both /p/ and /b/ are labial sounds, meaning that in order to produce them one
has to use his lips. In Chapter 6, the results of these experiments using a
backpropagation [1] network, a PSCNN [2], and a PPSHNN are discussed. We will see
that for example the backpropagation network, easily produced the skip phenomena.
Where it just did not produce the new sound. However we had a hard time finding a
point in the training after that at which, it would pronounce "p" with /b/. The PPSHNN

and the PSCNN exhibited thisfeature more easily.

2.1.2 Remote Sensing: Problem Description, Complexity Analysis
Problem description: The Colorado data set [3] consistsof 7 data channels obtained from
thefollowing 4 data sources:
1. Landsat MSS data (4 datachannels)
2. Elevation data (in 10m contour intervals, |datachannel)

3. Slopedata (0-90 degreesin degree increments, 1 datachannel)




4. Aspect data (1-180 degreesin 1 degree increments, 1 data channel)

The area used for classification is a mountainous area in Colorado. It has 10 ground

cover classeswhich arelisted in Table 2.1. Each channel

Table2.1. TheListing of the Ten Classesof the Colorado Problem.

Class Field
>
1 Water
2 Colorado blue spruce
3 Mountain/Subalpine meadow
4 Aspen
5 Ponderosa pine
6 Ponderosa pine/Douglas fir
7 Engelman spruce
8 Douglas fir/White fir
9 Douglas fir/Ponderosa pine/Aspen
10 Douglas fir/White fir/Aspen

comprises an image of 135 rowsand 131 columns, al of which are co-registered.

Ground reference data were compiled for the area by comparing a cartographic map to a
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color composite of the Landsat data and also to a line printer output of each Landsat
channel [3]. By this method, 2019 ground reference points (11.4% of the area) were
selected. Ground reference consists of two or more homogeneous fields in the imagery
for each class. For each class, thelargest field was selected asa training field. The other
fields were used for testing. Overall, 1188 pixels were used for training and 831 pixels
for testing the classifiers. The number of the samplesfrom each class are shown in Table

2.2.

Based on the information received, we want to decide which class the received data

vector belongsto.

Complexity description: One problem with the data set discussed above is that some of
the classes are extremely under-represented. For example, class 9 hasonly 25 samplesin
the training set. Thisis 2.1% of the training set. In a training sweep, the number of
samples in classes 1, 5, 6, and 7 constitute more than 72% of the set. This uneven
representation of classes in training causes the network to ignore the under-represented
classes and only learn the well-represented ones. An additional problem is the highly
nonlinear separation of the classes. The mentioned problems and other discovered and
undiscovered difficulties combine to manufacture an extremely difficult classification
problem. The 10 class Colorado classification problem is by far more difficult than the
speech synthesis problem. The best previous results offered by neural networks for this

problem was around 53%. Seechapter 6 for PPSHNN results.



Table 2.2 Number of Samplesof each Classfor the Colorado Data Set.

Class Training(1188) Testing(831)
1 408 195
2 88 24
3 45 42
4 75 65
5 105 139
6 126 188
7 224 70
8 32 44
9 25 25

10 60 39

2.2 Backpropagation

The most often used neural networks for classification are backpropagation networks [2].
There are many different variations of the backpropagation (generalized delta rule)
algorithm depending on the type of neurons and the descent algorithm used. Here we
will describe the most commonly used version which uses the gradient descent algorithm

[4]and iswhat we used in our experiments.
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Figure 2.1 Multilayered, Feed Forward Network.

The network is multi-layered [4] and feed-forward [4] (Figure 2.1). Its neurons are
standard neurons with a sigmoid function as their activation function [1]. The activation

function for the jth neuronis

1

fG)=—— 5+ )
T l4e
Where 8; isthe threshold for jth unit and
sj=2x,- ®ji . )

i

x; isthe ith input to the neuron and wj; is the weight of the connection between the ith

input and the jth neuron.

During training, an input vector is presented to the network and an output vector is



17

computed and compared to the desired output vector we would like to see at the outpui.
Once this is done, an error value is computed for every output bit of the network. The
error values are backpropagated through the network, and based on the value of error

passing through each connection, the weight of that connection is updated.

Let d,; be the desired output value for output bit j for the pth vector in the training set.
In the same manner, let O,; be the actual output value of output bit j for the pth patternin

thetraining set. Then the squared error for the pth vector of the training setis

E, =3 (dpj — 0p))". ®
J
The total error for atraining sweep is
E=YE, @
P

Using delta rule [1], we reduce the value of E by implementing gradient descent [4]. By
taking the partial derivative and using the chain rule with respect to sp;, the summation

value of neuron j for pattern p of training set, we get

OE, _3E, s, "
a(’)j,' aspj a(!)ﬂ '

Using (2), we get

= =0 2 Xpk Qjic =Xpi - ©

Now, let usdefine
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8,, j = —ai . (7)
aspj
Then, equation (5) becomes
oE
_# = 8pjxpi - ®

ji
This says that to implement gradient descent in E, we should make our weight changes

according to

Ap(l)j,- = nﬁpjxp,- , )]

just asin the standard delta rule {1]. Thetrick is to find out what 8,; should be for each

unit in the network. It can be shown [1] that for neuronsin the output layer

Bpj = (dpj = Opj)f j(5p)), (10
and for the neurons in the hidden layer(s)
8pj = j(5p;) 2 Bpk - an
k
where &, istheerror propagating backwards in the network from neuron k.

A two stage (one hidden layer) backpropagation network was used for the classification
problems mentioned. One major issue in backpropagation networksis to find the correct

number of hidden neurons in the hidden layer(s). See Chapter 6 for more detail.
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2.3 PSCNN and PSHNN

Both Parallel Self-organizing Consensual Neural Network (PSCNN) [2] and the Parallel
Self-organizing Hierarchical Neural Network (PSHNN) [5-8] are modular networks

(Figure 2.2). Each module may consist of asingle
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NETWORK
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STAGE
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NETWORK

STAGE
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(@) ®)

Figure22. PSCNN, PSHNN Network.

stage fully connected feed-forward delta rule network (Figure 2.2 (a)). All except
module one also have a Nonlinear Transformation (NLT) unit. Input data to each
module is nonlinearly transformed and then fed into the stage network. In training, the

system uses the stage network algorithm such as the delta rule to learn the input pattern.
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In testing, it produces aclassification output.

There is a regjection mechanism at the output of each output bit of each module. There
are rejection boundaries (and certainty boundaries in PSCNN) which are learned similar
to the weights during training. Learning rule for both PSCNN and PSHNN modules can
be chosen to be any desired learning algorithm. Previoudly it has mostly been chosen to
be the delta rule, which is similar to generalized delta rule described in the previous

section.

In PSHNN, there is a hierarchy in training. In other words, module i isonly trained with
the data rejected by module i—1. In PSCNN on the other hand, modules are trained with
all available data for training. This alows modules of PSCNN to be trained in parallel.
During testing, each module of PSCNN votes for classification of input data. Then a
consensus is taken based on the classification votes of al modules and the certainty of
their votes. On the other hand, in PSHNN, the vote of module i -1 has precedence to that
of modulei. Thusif modulei -1 classifies the incoming data (in other words, not rejects

it), the classification of modulesi and higher are ignored.

See chapter 6 for the classification results of PSCNN.
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CHAPTER 3

PARALLEL, PROBABILISTIC, SELF-ORGANIZING, HIERARCHICAL

NEURAL NETWORKS

In the previous chapter we discussed two complex classification problems in multi-
dimensional spaces. In problems such as these, the high dimensionality of problem
space, in addition to other factors, usually makes classification difficult. Due to the high
dimensionality of this space, we need an extremely large data set for training, which in
most cases is not available. We have also seen that in addition to the limited training
data set in problemssuch as the remote sensing problem, some classes might be severely

under-represented.

In Chapter 2, we have also seen some of the solutions to these problems which have been

offered by neural networks (BP-networks, PSHNN, and PSCNN).

In this chapter we discuss a new type of neural networks, the Parallel Probabilistic Sdlf-
organizing Hierarchical Neural Network (PPSHNN), to reduce classification errors. The
PPSHNN is designed especially for complex and high dimensional problems. Its major
contributions are implementing a pre-rejection unit (P-unit) (see section 3.5) to reduce

the complexity and possibly dimensionality of the classification space for the neural
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network unit (N-unit)* (Section 3.2), the bitwise Post-Rejection scheme (Section 3.3)
which implements bit level statistical analysis to detect the errors made by the N-unit,
and its parallel implementation in a SIMD fashion on MasPar MP-1 (Chapter 5).
Because the P-unit and the postrejector units are adaptive, PPSHNN isvery flexible asfar
as alowing the user to choose any type of network for P- and N-units. In our
experiments, we have mainly used single stage delta rule networks for the P- and N-

units. In some experiments we also used two stage backpropagation networks.

In the following sections, we shall see how PPSHNN is better equipped to address
problems such as under-representation in training set, limited training data for very high
dimensional problem spaces, highly non-linear and complex classification spaces, and so
on. The PPSHNN also addresses the time complexity issues which back propagation
networks have had. It can be shown that the time required for training a backpropagation
network grows in the order of O (n, n,) (see Section 5.3), where n;, is the size of the
largest hidden layer. Itisknown that size of the hidden layer grows with the complexity
of the application. For complex problems such as the 10-class remote sensing problem,
backpropagation networks are painfully slow and sometimes require many days of

training on an average work station.

On the other hand, due to the parallel nature of PPSHNN, we will show (Section 5.3) that

the training time complexity of PPSHNN growsin the order of O (n; n,). Note that both

* In the basic PPSHNN module there are two neural network units, the pre-rejector and the neural network classification unit. By
N-unit we mean thelater. Thisunit is also not to be mistaken with the nearest neighbor classifier which isreferred to just asthe
classifier.
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n; and ny, are predetermined and not complexity dependent. Hence, the time complexity
of PPSHNN growsonly at a constant rate (i.e. O (1)) with respect to the complexity of
the problem. Furthermore, by running the paralel version of PPSHNN, the SIMD-
PPSHNN, on a SIMD machine such as MasPar MP-1, we can cut the training time by
several ordersof magnitude. In Section 5.3, we will make a time complexity analysis of

the BP, PPSHNN, and SIMD_PPSHNN networks.

In chapter 4 we discuss the PNS module and the implementation of PPSHNN using these

modules asits building blocks.

3.1 PPSHNN System Description

Figure 3.1 shows three modules of a PPSHNN network. Module 1 consists of four
submodules and a communication link, and al the following modules consist of five

submodul es.

In the following, we describe briefly the function of each submodule and then the overall
function of PPSHNN. In Sections 3.3 through 3.6 we will describe the details of each

module.

The general idea behind the PPSHNN is to divide the problem space into polygons, and
then perform the task of classification in each one of the polygons independently, rather
than trying to do this in the entire problem space. The goal is to divide the problem

space in such a manner that classification is easier in at least one of the resulting
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polygons. The task of dividing the problem space into polygons is performed primarily

by the pre-rejector (P-unit) (Section 3.5).

Once this is done, the neural network unit(Nuni t) performs classification on data which

fall into the easier regions. The rest of the data rejected by the P-unit is sent to the next

(lower) module in the hierarchy. Sincein complex problem spaces there are some data

points which "pass" the pre-rejection test but still are difficult to classify, and are
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misclassified by the N-unit, a mechanism is required at the output of the N-unit to detect
these data, reject them, and send them to the next module. Thisisdone by a probabilistic
mechanism at the output of the N-unit called the Post-Rejection (Section 3.3). This
mechanism consists of two modules. The first performs a bit level probabilistic analysis
of the individual output bits of the N-unit and is referred to as the Statistical unit or the
S-unit. The second combines the results of the bit analyses and decides whether or not to

reject the input pattern. Thisunitis referred to asthe Vector Rejector or the VR

There is a communication link between the P-unit and the postrejector. In many cases,
one or more classes of data are too complex for the N-unit to classify. Thisresultsin an
unusually low classification accuracy for these classes and most of the patterns belonging
to these classes must be rejected. In such cases, instead of training the postrejector to
reject each one of the individual patterns, the classes are communicated to the P-unit
through the communication link. The P-unit isthen retrained to reject these classes along
with the onesit hasalready been trained to reject. If no P-unit exists for the module, one

iscreated and isthen trained to reject these classes.

During testing, if an input pattern isrejected by the postrejector, it joins the rejected data
vectors from the P-unit and is sent to the next module. If accepted, the output data of the
N-unit is sent to the distance classifier for a nearest neighbor match to a set of pre-set
decoding patterns in order to convert the output vector of the N-unit to the required

output format.

To determine the final P-unit, N-units and the postrejector, a number of retrainings of
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these units may be necessary. Initially, there is no P-unit. The class(es) rejected by the
postrejector signal the creation of the P-unit. The P-unit is then created by training a
neural network as a two-class classifier with the accepted and the rejected set of input
vectors as determined by the postrejector. This leads to a reduced data set to be fed to
the N-unit, which is then retrained. The postrejector is also retrained to determine
whether or not more vectors or classes are to be rejected. If so, the classes are notified to
the P-unit and the individual vectors are rejected by the postrejector itself. This process
isrepeated for a number of sweeps until all three units stabilize in terms of accepted and

rejected vectors.

The process described above may be considered excessive in terms of learning time, due
to the many sweeps which may be needed. In order to reduce this problem, two
strategies are possible. The first is to limit the number of sweeps to a predetermined
value. Thiscould result in a higher number of rejected patterns and a higher number of
modules required for proper classification. The second strategy is to decide to create a
P-unit only if all or a predetermined high percentage of the input vectorsfrom aclass are
rejected by the postrejector. In the latter strategy, the P-unit has the task of detecting
classes which are difficult to classify asa whole since they may be underrepresented and
so on. This strategy has been used in our computer simulations. The predetermined
percentage wasset to be 100%. With thisstrategy, only asingle sweepisgenerated. The
postrejector still rejects a number of input vectors which are accepted by the P-unit, but

does not further notify the P-unit so that no more sweeps are generated.

The rejected data is sent to the next module to repeat the process. First, this data goes




27

through the Pre-Processor. The function of thisoptional unit iscomparable to that of the
non-linear transformation performed in PSCNN or in PSHNN. This module non-linearly
changes the way the sub-problem space is presented to the network. The non-linear
transformation could be a neural network unit and thus learn the non-linear
transformation during training. This transformation is problem-dependent, and not a
preset transformation which may or may not work well on a given problem. For many

problemsthis unit may be skipped, and only the P-unit is used.

For better understanding of the operation of the PPSHNN, we consider the 2-dimensional
problem space shown in Figure 3.2a It contains three classes. A, B, and C. Figure
3.2.b shows how the P-unit of module 1 has divided the space into two polygons. The
shaded area is the reject region, and data falling in this area is rejected. The remaining
region of the spaceis the accept area, and data falling in this region are sent to the N-unit
for classification. Figure 3.2.c shows the space which is passed to the N-unit of module
one. We see that, since class C is not present in the data sent to the N-unit, the N-unitis
only a two-class classifier. After this stage, the output of the N-unit is sent to the
postrejector to reject the uncertain classifications. Data falling in the shaded area of
Figure 3.2.d is rejected to the next module by the postrejector. Notice that the function
of both the pre-rejector and the postrejector is to reject data which fall in the area of
problem space where classification is difficult.(ie. near the border between two or more

classes, etc. ).

Figure 3.2.e shows the problem space that is introduced to the second module. This

space consists of all the data rejected by the pre- and postrejectors of the previous
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Figure 3.2 Sample Problem Space Initial Stage.

module. Notice that the new problem space is less complex than the original problem
space. Also notice that, data belonging to any class which might have been under-

represented for the first module, is not so for the second module. This is due to the fact
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that most of the data belonging to large classes are classified by the first module and do

not exist in the problem space of the second module.

The second module repeats this procedure in its own problem space. Figure 3.2f shows
the: reject area of the postrejector of second module. Note that since there are no under-
represented classes present in the polygon of the second module, a P-unit is not needed
for this module. Figure 3.3 shows the problem space introduced to the third module
(again no P-unit is created for this module). Notice that, for the lower modules in the
hierarchy, some of the classes present in the original problem space may vanish. This
makes classification easier and opens possible avenues to reduce the dimensionality of
the problem space. For example, in Figure 3.3, since the border separating class A from
class B is horizontal (could also be vertical), one could perform classification simply by
having a threshold on the Y-axis (or X-axis), thus, making it a one dimensional

classification. A mechanism is needed to perform the reduction of dimensionality on the
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incoming data points in such cases. This task of dimensionality reduction could be

performed by the pre-processor.

Training procedure: Figure 3.4 shows a flow chart of the training procedure of
PPSHNN. In creating and training PPSHNN for a classification problem, first we start
with no P-unit. This unit is created only after the postrejector has requested it through

the.communication link.

First the N-unit for module 1, named N(1), is created. Then this network is trained, until
there is little change in the classification accuracy. After which a bit level statistical
analysis of the output is performed using output data from last sweep of training of N(1).
After this point, thereis a decision to be made as to whether or not a P-unit is needed for

this module.

This decision is made based on the p¥ calculated by each bit rejector, where p¥ is the
percentage of data correctly classified as class k (see section 3.4.1). There is a preset
minimum percentage threshold. If p¥ isless than this preset value for any k, a P-unit for

that module is required.

If thereisany rejected class, then it issignaled through the communication link to initiate
the procedure of creating a P-unit. This procedure reduces the size of the output layer of
the N-unit by eliminating the output bits corresponding to the class(es) which are to be
rejected. Then, the P-unit iscreated. Thisunitisatwo-class neural network classifier. It
Is trained with the training data set which the N-unit was trained with. It is trained to

reject the classes determined by the postrejector. Other input data are classified as accept
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anti are sent to the N-unit for classification. In other words, the P-unit eliminates the
input vectors which are difficult to classify and, asa result, the N-unit isintroduced only
to asubregion of the original problem space. After the data set is divided into a rejected
set and an accepted set, the retraining of the N-unit with the accepted data begins. If the
number Of classes is reduced, the size of the N-unit will be smaller. After retraining the
N-unit, the process moves on to training the vector rejector with the output data of the
N-unit and the S-unit. This unit is trained to decide based on the bitwise information,
whether or not, to reject the input pattern to the next stage. After this point, al the data
rejected by the postregjector and the P-unit (if present) are gathered together to build a
training set for the next module. This processis repeated with succeeding modules until

no, or few, data patterns are rejected.

Arn important feature of the PPSHNN modulesis that modules become simpler as more
of them are created. The P-unit is not created in most cases after the second module and

the N-unit becomessmaller.

Testing procedure: In testing the hierarchical processing involved in creating modules
is replaced by paralel processing. All modules are run in parallel, and each one
classifies the incoming datainto aclass or rejectsit. Dueto the hierarchical nature of the
training procedure, in testing, once module i has classified the incoming pattern into one
of the possible classes (in other words it has not rejected the pattern), the classification

results of modulesi+I and lower are ignored.
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3.2 The Neural Network Classifier (N-unit)

This network is a neura network construct. We experimented with both
backpropagation networks and single stage delta rule networks for this unit. In Section
2.2, backpropagation algorithm was described in some detail. The: backpropagation
nerwork used complies with all the specifications given in that section and in [1]. The
network has only one hidden layer and the layers are fully connected to each other
without jumps over the hidden layer. The delta rule networks used are single stage
backpropagation networks (no hidden layer). Therefore, Equation (11) does not apply,

and all weights are updated according equations (9) and (10).

The design of PPSHNN is quite flexible, even alowing different types of networks to be
used for the N-units of different modules. Due to the adaptive nature of the P-unit and

the: postrejector submodules, the system isable to adapt and function properly.

3.3 Post Rejection

This unit isacombination of aset of probabilistic classifiers (bitwise postrejectors) and a

single stage Neural Network classifier (vector rejector). SeeFigure 3.5.

There is a bit classifier for every output bit. This classifier is a three-class Bayesian

classifier which classifies the output bit into one, zero, or reject classes.

The vector classifier isa neural network construct which looks at classifications made by

the: bit classifiers and decides whether or not to reject that input pattern. If the vector is



34

O—3 4

ACCEPTED
BITWISE DATA
d VECTOR
: posT .
REJECTOR

REJECTOR

O- )

O \

OUTPUTLAYER REJECTED
OFTHE TWO DATA
STAGE NETWORK

Figure 3.5 Post-Rejector.

not rejected, it is classified into one of the possible classes. If the data is rejected, it is

sent to the next module for classification.

3.3.1 Bitwise Rejection (S-unit)

Bitwise rejection is performed by the bitwise classifiers. Each bitwise classifier is a
three-class Maximum A Posteriori (MAP) Detector [9]. It is well-known from statistical
decision theory that a Bayes receiver [10] minimizes the average cost of making a
decision and is implemented by means of the likelihood ratio test. In the following we
shall derive these ratio tests for a three class case. Theidea isto look at neural network

(N-unit) from a different point of view. Namely, we look at the network as part of a
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transmission channel (see Figure 3.6) and we look at the output vector as the received
signal from this channel. The transmission channel consists of the measurement
procedure, coding the measurements into a pre-decided format and finaly putting the
signal through the network. All three stages of this channel can add noise to the signal.
The measurement noise, the wrong coding scheme, an undertrained network, a wrong
sized and/or structured network are all examples of potential noise-adding elements in

the channel.
For the output bit k with the output value z of the N-unit, three hypotheses are possible:

= Bit k should be classijed as zero.
H, = Bit k should be classijed as one.
H, = Bit k should be rejected .

Notice that we consider the rejected data as a class by itself. Thisway we acknowledge

the fact that some data points are not classifiable in their present representation. In
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Figure 3.7 asimple example of thisin 2-D spaceis shown.
We establish the following notation:

fi(z|H;) = probability density function of the output value of bit k given that H; is

true.

z¥ = output value of the k™ output bit of the N-unit.
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ck = cost of deciding hypothesis H; is true when H; wasactually true for bit k.

p¥ = p*(H;) = a priori probability for bit k that hypothesis H; is true (ie.
pi =1-pb -ph.

P¥(H;|z) = probability of hypothesis H; being true for bit k, given the output value z

from the N-unit.

The a posteriory probability P*(H;|z) can be computed from f¥(z | H;) using Bayes rule
[10]:

PR 1) = £z | Hy) p*(H) .

£

Suppose that we observe a particular z on output bit k and that we decide it belongs to
hypothesis H;. If the true classification is Hj, the expected loss associated with chosing

H; ismerely
R¥H;|12)=3CH P*H;l) i je(0,1,r) (13)
j
Thus, the expected lossfor choosing Hg given output value z at bitk is

RY(Hg|z) = ChoP*(Ho | 2) + Ch PX(H | |2) + C§,P¥(H, | 2) . (14)

The expected lossfor choosing H given output value z at bitk is

R¥(H |z) = CkoP*(Ho2) + CY PX(H | |2) + C§,PX(H, |2) , (15)

and the expected lossfor choosing H, given output value z at bitk is
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R¥(H,|z) = CkoP¥(Ho |2) + CK P¥(H | |2) + C5.PX(H, | 2). (16)

In decision theoretic-terminology, an expected loss is called a risk, and R*(H;|z) is
known as the conditional risk. Whenever we encounter a particular output z, we can
minimize our expected loss by selecting the hypothesis that minimizes the conditional

risk.
Now we can show that thisis the same as the optimal Bayes decision procedure:

Let us define a decision function £*(z) which chooses a hypothesis for output value Z at
output bit k. The overall risk Risthe expected loss associated with a given decision rule.
Since R*(H;|2) isthe conditional risk associated with chosing H;, and since the decision

rule specifies the hypothesis chosen, the overall risk is given by

R=[R(C @) | 2) fi(2) dz an
Where dz is the notation for a d-space volume element, and where the integral extends
over the entire feature space. Clearly, if {*(z) is chosen so that R({*(z) | z)is as small
as possible for every z, then the overall risk will be minimized. This justifies the
following statement of the Bayes decision rule: To minimize the overali risk, compute the
conditional risk

RYH;12) = XC5 PEH; | 2) i, je{0,1,r])
J

and select the H; for which R¥(H;12)is minimum.

Thus, for every output value z at every bit k there are three tests to perform. Using



results of these tests we define the following decision rule which has minimum risk:

if R¥(Holz) < R*(H,12) & R¥Holz) <R*(H,12) chose H,
(z)=<if R¥(H,|z) <R*(H¢o|z) & R*(H,|z) <R*(H,|z) choseH, (18)

otherwise chose H,
TEST 1:
Thefirst test isbetween Hy and H:
H,
k > ok
R*(Holz) _ R*(H,l2) (19)
H,

Now let Chy = €%, = C% =0. This means that there is no cost for guessing the correct

hypothesis, which is the case in most classification problems. Then the inequality

recluces to
Hl
> .
CEP*(H  |2) + CE,P*(H, 12) _ CloP*Holz)+ CY,P*(H,2), (20)
H,
H,
>
C& 1P (H  |z)- CioP*(Holz) _ (C},—Chp) P*(H,12). @
Hy

Assuming f¥(z) # 0, we can multiply both sides by f£(z). Thuswe get



H,

Ch PA(H |25 (@)-ChoP*(Ho | )f5@) . (Ch~CE)P*(H, 1A ).

H,

Using Bayesrule (12) and assuming P¥ # 0, Eq. (22) becomes

H,

22)

Chi A2 1HDPHH D-Choff 2 |H)PEHo) . (Ch—=Ch)ff @ IHOPRH,).  (23)

H,

Choosing C g =Cq and Cy, = Cyp, and C,q = C, leadsto the following:

H,
fGIH) > CioP¥Hp)
@z |Hy) = Co PXHY) '

o

or
H,
>
ph Az |Hy) _ p§ fiz|Hy).
Hy
TEST 2:
The second test is between Hy and H,
H,

R¥Holz) . R*H
olz) . R"(H,|2).
Hy

Using (14) and (16) and choosing C oy = C, =0, yields

(24)

(25)

(26)
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H,

>
C&iP*H 12) + C§P H, |2)

Hy

CkoP¥Ho2) + CE PE(H | |2) (27)

Using Bayesrule (12) and applying the same conditions asin Test 1, we obtain

H,

Ch PH(H | )/ @+CE PEH, 1 D @) .. ChoP*Ho | QHCEPEH 1 R), (28)

Hy
H,

Chf* (2 | H)P*(H,)-Chof* (2 |Ho)P*(Ho) . (Chi~Ch)ff G IHDPYH,),  (29)

H,
H,
> )
Chrf*(z | Hp)pk — Chof*z |Ho)p§ . (Chy = CEf = IH P . (30)
Hg
TEST 3.
Thethird test isbetween H, and H,:
H,
k > pk
R*(Hy|z) _ R*(H,|2). (31)
Hl

With the same assumptions asin the previous two tests and the same operations, a final

inequality for test 3 can bereached:

H,

>
Choff(z |Ho)pk + Chof* (2 |HpY  Chiff(z|H)pY + Chof*(z IHOPE  (32)
H,




H,

>
Chf*z |Hps - Chif G IHDPY . (Cho — Clo)f* IHo)PS . (33)
H,
The final three inequalitiesresulting from the above three test are asfollows:

H,

p1 AGIHY)  pofizIHo),
Hq

H,

> .
Chfo(z |H)pt — Chofi@ |Holph . (CEy = ChfAz 1H)ph .
H,

H,

> r
Chfiz | Hy)pt - CEifsz IH)DPY 7 (Cfo = Clo)fs(z |Ho)PS .
H,

Moving all thetermsto left side of theinequalities, we get

H,
>
p1fi@|Hy)—po fiz|Ho) _ O, (34)
H,
Hr
>
Ch.fi(z | Hp)pk — Chofi(z |Ho)pb + (Ch - CE sz 1HPY 0, (35)
H,
H,
>
Chofiz |Hp - CE 1 fi(z |H P + (Cho - Cho)fez IHo)PE 0. (36)

H,




For simplicity, let usdefine the following three functions:

T¥2)=pt A IH) -pb FFIHy)
T4(z2) = Cb, fi(z | H)p¥ — Chofi(z | Ho)pk + (Chy — Cr )z |H )Pk

T4(2) = CX, (2 | H)p% — Ch (2 |H )P + (Cho - Cro)fi(z | Ho)P

Theinequalities (34), (35)and (36)can be written simply as

T4(2) g 0.
<
H,

Hence the decision rule of (18) becomes

if T{(z) & T4() < 0 choose H,
@) =<if T¥(x)>0 & T%(z) <0 choose H,
otherwise choose H,

(37)

(38)

(39)

(40)

(41)

(42)

(43)

From (43), if we had the three T4 , T and T'* functions we could compute regions on the

z axis for every output bit and for every hypothesis such that the expected loss would be



minimal. To do so we need to have all the conditional probability density functions (ie.

Az |H;) ) as well as all the a priori probabilities p¥ required in (37), (38)and in (39).

These probabilities are different for every output bit, and need to be computed for every

bit separately.
Estimation of the Conditional Density Functions( ff(z | H;) ):

There are two general approaches to density estimation, parametric and nonparametric
[10]. If we can assume we have a density function that can be characterized by a set of
parameters, we can design a classifier using estimates of the parameters. Unfortunately,
we often can not assume a parametric form for the density function, and in order to
perform the test in (43)we have to estimate the conditional probability density functions
using a different and not so structured approach called nonparametric estimation. Since,
in nonparametric approach, the density function is estimated locally by a small number
of neighboring samples, the estimation is less reliable with larger bias and variance than

the parametric counterpart.

The two main nonparametric estimation techniques are: the Parzen density estimate
[10] and the k-nearest neighbor density estimate(kNN) [10]. They are fundamentally
very similar, but exhibit some different statistical properties. The kNN approach can be
interpreted as the Parzen approach with a uniform kernel function whose sizeis adjusted
automatically, depending on the location. We have decided to use the Parzen approach
since a Gaussian distribution function instead of the uniform kernel can be used, which in

practice gives asmoother estimate.
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It is extremely difficult to obtain an accurate density estimate nonparametrically,
particularly in high-dimensional spaces. But since we are performing bitwise analysis,
all our density functionsare in a one dimensional space stretching only from 0 to 1 (since
output of all neurons are between 0 and 1). Because the number of training patterns are
limited, this method has higher accuracy of estimation compared to the multidimensional

density estimation.

Now let us consider a random variable Z and its probability density function p(z). In
order to estimate the value of the density function at a point z, we may set up a small
local region around z, L(z). Then, theprobability coverage (or probability nass) of L(z)
may be approximated by p(z)v, where V is the length if L(z). This probability may be
estimated by drawing alarge number of samples, N, from p(z), containing the number of
samples, m, falling in L(z), and computing m/N. Equating these two probabilities, we
may obtain an estimate of the density function as

(2)

- m
v=—-1
p(2) N

m(2)
Nv

or p)= (44)

Note that, with a fixed V, m is a random variable and is dependent on z. A fixed V does
not imply the same V throughout the entire space, and v could still vary with z. However,

Visapreset valueand is not a random variable.

Kernel expression: The estimate of (44) has another interpretation. Suppose that three

samples, z3, z4, and zs, arefound in L(z) as shown in Figure 38. With v and N given,

p(z) becomes —I\?_V On the other hand, if we setup a uniform kernel function, x(.), with



k (z - z6)

Figure 3.8 Parzen Density Estimation.
length v and magnitude of % around all existing samples, the average of the vaues of

these kernel functions at zisalso % Thatis

p(2) = N Y x(z —z) (45)
i=1

As seen in Figure 3.8, only the kernel functions around the three samples, z3, z4, and zs,

contribute to the summation of (45).

Orice (45) is adopted, the shape of the kernel function could be selected more freely,
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under the condition _[x(z) oz = 1. For one-dimensional cases such as ours, we may seek
optimally and select a complex shape. However to keep computations simple and yet to
be accurate enough, we have chosen a normal kernel with the mean of zero (1, =0) for

all the experiments:

2
K() = ——e 2 (46)
\2nm o,
Convolution expression: Equation (45) can be rewritten in convolution form as
P() =Ps(2) * ¥(2) = [p(Y) (z - Y) Y (47)

where p;, is an impulse density function with impulses at the locations of existing N

samples.

. 1 X
ps(Y)= N ¥ oY —z) (48)
i=1

That is, the estimated density p(z) is obtained by feeding p;(z) through a linear
(noncausal) filter whose impulse response is given by x(z). Therefore, p(z) is a

smoothed version of p;(z).

Moments of p(z): The first and second order moments of (47) can be easily computed.

First, let uscompute the expected values of p,(z) as

N
{ps(z)}— —ZIS(z ~-&p €)dE = I—i,- Z (2)=p@) (49)
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That is, ps(z) is an unbiased estimate of p(z). Then, the expected value of p(z) of (47)

may be computed as

E{p‘(z)}= JE{p‘s(Y)}x(z -V dY = [p(VxE -V dY=p()*k@) (50

Also,
52 1 Nj 2EpE)dE+ 3 3 [fuc-V-E)p Np E)MY dE
B @ =7 i):“lvc z=)p( 'E.j)ijsz x(z—E)p Vp (51)
= P * @+~ ) |[p@ * k)| (52
Therefore, the variance of p(z) is
Var4 p( =1 p@) *x*(2) - [p(z)*l»:(z)]2 (53)
P Z) N

Even though we only need to estimate fk(z |H;), forief{0,1,r ), we have also
computed m,t = E{z" |H,} and oz =var {z" |H,} as well for future analysis of output

bits.

For every bit k, we use the following procedure to estimate f*(z |Hg):

Consider the training set Q:{X1 , X2 ,... ,XN} with N data samples.

1. Find theset Q§ of datasamplesin  which have a desired output value of zero for
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bitk: QF ={X1 ,X2,. .. ,XMO} with M, samples.

Find the subset Q¥ of Q& for which the actual output value at bit k islessthan 0.5

Z* <05): Q= {Xlz’,§<0.5}= {Xl , X2 ... ,Xro} with r¢ samples.

For the set Q&, we build a corresponding output set ¢, which contains all the

output  values for bit k for input samples of = Q:

ESO:{lezeggo}:{ZI 722’ LICIR RN Zro}

Form a normal kernel around each z;e Z&:

_ (z "Zi)z

Z e " |Uv@-Ue-D] (54

i
e
‘/Eﬁi

Ki(z—z)=

Where U(z) and U(z-1) are unit step functions. They are used to limit the
probability density function to the interval from 0 to 1. ¢; is a constant calculated

by

‘[2?0';'

_ -z )

202
e % dg

o; = (55)

O ey —

It compensates for the fact that the pdf isonly valid over theinterval [0, 1] instead

of (—eo , +o0).



5. Use(47) toform an estimate

_(@-z)

e 2o} [U(z)--U(z—l)] (56)

- 1 rp 1 ro oL
fk(Z|H0)=r—E K(Z—2z)=— :
0 ;=1

70 i1 \2no;

The above procedure is the same for estimating fi(z IH;) and fﬁ( z | H,) except for steps

land 2. Toesti matefﬁ(z |H,), steps 1 and 2 change to:

1. Find theset Q¥ of datasamplesin Q which have a desired output value of one for

bit k Qk={X1 -XZ-....XMl} with M, samples.

1S 4

2. Find the subset Q¥ of Q% for which the actual output value at bit k is greater than

0.5 ¥ >05): Q= {X|z’;>o.5]»= {Xl X2, X, }

For ﬁ(z |H,), step 1 is not performed and step 2isasfollows:

2. Find the subset of Q§ for which the actual output value at bit k is greater than 0.5 and
find the subset of Q¥ for which the actual output value at bit k isless than 0.5. Take the
union of the two subsets to get Q%,:

Qk = {x | (XeQk & 2£>0.5) or (XeQ¥ & z§<0.5)}= {X 1, X2,..., X} (57)

where for every bitk rg, ry, r, satisfy
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ro+ri+r,=N. (38)
Estimation of the a priori probabilitiesp®: The estimation of the a priori probabilities

ismuch simpler and can be computed by thefollowing simple equations:

k k
Po = — =— =—. 59
LY, P N Pr N (59

Cost of error (Cf‘j): Though it is possible to have different cost criterions for different
bits, we decided to have onecriterion for all bits. Then, C{‘J simplifiesto C;;. Thereare

several conditionsin our criterion which were mentioned before:

. C;; =0 Normally the cost of guessing the correct hypothesisis zero.

Ay
[
h

C,0=C,1 Thecosts of rejecting an output when it should have been classified 0

or 1, are the same.

3. Co =C,, Thecostsof chosing Hy or Hy when H, should have been chosen, are
equal.
4. Cq =Cy9 Thecost of chosing Hy when H | wastrue, and the cost of chosing H,

when Hy was trueareequal .

There are two more relational conditions which should be mentioned here:

5. C,0=C,1 <Co =C,, Theconsequences of classifying Ho or H, as H, is less
severe than classifying H, as Hy or H. (Rejected information still has a chance

of being classified correctly in the next module.)
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6. Cg =C10WCo, =C1r> Cro=C, The consequences of classifying Hy as H,

or reverseis much higher than that of any other error.

In our research we experimented primarily with

(
J[Cro=Cr1=1,C()r'—'Clr=2,C01=C10=5 and sometimes with

{C,o =C1=1,Co,=C1,=2,C01=C10=10 } The results were similar, except

the fact that the second criterion makes regject region to slightly grow and zero and one

regions to slightly shrink.

Now using the above a posteriory and a priori estimates in (37), (38), and (39) we can
estimate T%(z), T4(z), and T%(z). Using these estimates in (43), we can decide on one of

the three hypotheses Hy, H, or H,.

This procedure is performed for every output bit. The decision for every bit is then sent
to the vector rejector which in turn decides whether to reject the input pattern and send it
to the next stage or accept it and send it to the nearest neighbor classifier for

classification.
The decision rule of (43)iscarried out by performing the following:
For test 1, set T%(z) =0, and use (37)tofind

2 =T¥ (0) (60)

Thus dividing the interval 1= [0 lJ, into two subintervals, %0 = {O---zf‘n the

|
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interval for H for test 1 of bit k, and 1¥! = [2’61 l] the interval for H, for test 1 of

bit k.

In the same manner we compute z§, and z¥,, from test 2 and 3, using (38) and (39).
Although in theory it is possible for each test to divide the interval 1 into severa
subintervals, in practice, in al our experiments, 1 isdivided only into two sub-intervals
by each test (ie. T4(z), T(z), and T'4(z) have only one root each). Figure 3.9 shows a

typical outcome of the three tests. Namely

0<zb <zf <2¥1 <1 (61)

The decision strategy governed by (43) corresponds to a voting strategy among the three
tests. For output value z, when two of the three tests are in agreement, that decision is
accepted. If no tests agree, the decision is reject, and that bit is rejected. For example,

assuming the order shown in Figure 3.9, if the output value of bit k falls in the interval

[O , z'ér} (tests 1 and 3 agree on Hy), the bit isclassified as zero, if the output valuefalls
in [z’,‘l , ljl (tests 1 and 2 agree on H 1), the bit isclassified as one, and finally, if it falls

in [zs, , z’,‘l] (tests 2 and 3 agree on H,), that bit is rejected.

It isalso possible that the order in (61) not hold. A current working hypothesis is that,
any network that defies the order of (61), is either severely under-trained or is not large
enough to handle the complexity of the problem. If this is proven to be a correct
hypothesis, then one can have an idea as to how the size of the network matches up with

the complexity of the problem, early in training procedure. This can avoid further



training of a network that can not handle the complexity of the problem for purely

topological reasons.

'?' H0 Hl

- > >
TEST 1 ; >

H{) z'l 1

; Hr I{I

€ >
TEST 2 : >

10 7, 1

. H H .

——a - ——>
TEST 3 ; -

10 Z,,, 1

L OH H, _H

COMBINED  ie——p ; >

RESULT ~ |, i - N

Figure 3.9 Sample Rejection Boundaries.

In the above discussion and in (61), it isassumed that the equations

k@) =0 T4z)=0 T%@)=0 (62)

have only one root. The expected behavior of f,(z |Hy), f;(z |H1), and f,(z |H,) are
shown in Figure 3.10. In order for equations in (62), have one root, the following

conditions must be satisfied (These conditions assume probability behavior as shown in
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Figure 3.10 Expected Conditional Density Functions.

Figure 3.10) :

From Test 1 we get two conditions (see Figures3.11 b and 3.11 a),

f“(0|Ho)> f"lel),

f‘(1|H1)> f"(llHo)

From Test 2 we get (see Figures3.12b and 3.124)

(63)

(64)
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f§(0|H0)> Orprf]z( r 01k rl plf]z( 1 , (65)
CrO Po
Cor P* FFQLIH,) = Cro pb FE(1IH )
f’zc(llHl)> OrPrfIz( r) rOPOf]z( 0 (66)

(Cr1 - Co)pf

From Test 3 we get (see Figures3.13aand 13 b),
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Figure 3.12 Density Functionsfor Test 2.
C. p* FF(O|H) - C,, p* FA(O|H
£OIH> 1r PX Fi(OIH,) rlpkl F{C]] D )
(Cro — Cr0)Po
Ci, p* A(|H,) +(C10 - Crolpk FA(1IH
AULHD> 1 DX FA(LIH,) + (C 1o — Cro)ph £5(11Hy) (68)

Crl plf

Figures 3.11 through 3.13 are the actual probabilities from one of our experimentswith

the following cost values:
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Cio=Co1=5, C1,=Cop,=2, Co,=Cy1=1.

The conditions of (63-68) were satisfied in all experiments.
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GR
C I I e "
0 0.1 0.2 0.3 6 [0TW4 0.8 019

Figure 3.13 Density Functionsfor Test 3.

Side property: The same procedure can be used to estimate the threshold of each output

neuron in parallel (in which casewewould only have Hy and H ):

Let y* be the sum of weighted input activation levels for output neuron &,
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n; X
yi =3 Wiz, (69)
i=1
where W), is the weight connecting the ith hidden neuron to the kth output neuron, zj is

the output (activation level) of it neuron of the previous level. Therefore the activation

of the kth output neuronis,

k 1

4

By estimating fy‘(ylHo), and ff(ylHl) using the density estimations similar to the

procedure above, we can estimate the threshold (8%;) using:

T}081) = P§ (85)) 206, |H,)-PE(081) (081 1Ho) =0, (71)
or
-1
ot = 1] ©. (72)

Remarks:

o The procedure described above is parallel in nature and can be performed for all the
output bits at the same time. Since the steps performed in parallel are the same, the
above procedure is ideal for an SIMD (Single Instruction Multiple Data) [11-12]

machine such as MasPar M P-1 (see Chapter 5).

o There are some fundamental and philosophical differences between the system
described here and other probabilistic networks. The procedure above looks at the

problem of classification using neural networks from a different point of view as



follows:

1. A fundamental difference between this method and other probabilistic neural

networks is that others estimate P(H;|X), where X is the input vector to the
network and i E{1,2,...,no} where n, is the number of output bits. This

means estimating the probability of hypothesis i being true given the input

vector of X.

Our procedure discussed above is estimating ff(z |H;), where z is the output

value of bit k Use of Bayes rule (12) then allows the estimation of
PEH 1 2) (ie{O,l,r}).

In other probabilistic networks, using Bayes rule (12) yields

_ L(X|Hy) P(H;)
P(H;|X) = 700 , (73)

Theestimation is not a single bit estimation, but rather a hypothesis estimation
using vector estimation. Itiswell known that high dimensionality isthe main
source of inaccuracy in classification problems. Asan example, consider the
one dimensional case in which 1000 training patterns are available between 0
and 1. 1000 samples distributed in the interval [0, 1] gives a an accurate
estimation of the probability density function. Now consider a 7 dimensional
space with the same number of training patterns availablein the unit hypercube

at the origin. The data points will be so sparse that an accurate estimation of the
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7-dimensional probability density function will be amost impossible.

This is the case with the 10-class Colorado problem. There are 1188 training
patterns available in a 7-dimensional space belonging to 10 classes. It isclear
that the accuracy of the single dimensional estimation will be much higher than
that of the 7-dimensional one. This is of course assuming that all 1188 data
patterns are made available to all single dimension estimators. Thisis the case

in our procedure.

A second important difference is that other probabilistic networks force a
classification even for data which in their current format are impossibleor very
difficult to classify. We, on the other hand recognize the fact that this kind of
data can form a class which isto be regjected. The network is organized so that
it recognizes data belonging to thisclass, classifiesit assuch and sendsit to the
next stage for preprocessing (possibly including change of format, using a
different non-linear coding scheme, etc.) and another attempt at classification

(seeFigure 3.2 and 3.3).

This rejection classification isfirst performed at the bit level by bit classifiers,
and then the informationis combined in the vector rejector (optional) for vector

rejection (see section 3.3.2).

In other words, other networks try to divide the classification space shown in
Figure 3.7 into two regions, one for each class. However, the system

described here will divide the space into three regions, an additional region for
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the class of data which are difficult to classify. Datafalling in this region are
sent to the next module. In that module, this region is nonlinearly transformed
(optional) and the process is repeated. This divide and conquer procedure

continues until we reach adesired accuracy.

Comparative analysis.

In order to better point out the fundamental differences between PPSHNN and other
probabilistic networks, we would like to briefly describe and and conduct a comparative

study of Donald Specht's recently published [5] Probabilistic Neural Networks (PNN).

Figure 3.14 shows Specht's neural network organization for classification of input

patterns X into two possible categories, A, and B.

In Figure 3.14, theinput units are merely distribution units that supply the same voltage
values to all of the pattern units. The pattern units (shown in Figure 3.15) each form a
dct product of the input pattern vector X with a weight vector W;, ¥; =X . W;, and then
perform a nonlinear operation on Y; before outputting their activation level to the
summation unit. Instead of the Sigmoid activation function commonly used for

backpropagation, the nonlinear operation used hereis

-1
fio)=e

Assuming that both X and W; are normalized to unit length, thisisequivalent to using
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Figure 3.14 Specht's Network.

_ W-XOW-X)

¢ 20 (74)

The summation units simply sum the inputs from the pattern units that correspond to the

category from which the training pattern was selected.

The output, or decision, unitsare two-input neurons, asshown in Figure 3.16. These units

produce binary outputs and have only asingle variable weight C, where




X, X
w
il
Y=X.W
1 1
-1 1

g(Y)=exp[(Y -1)/3 ]
1 1

Figure 3.15 Pattern Unitsof Specht's Network.

hgl n
Cp=— kB Ak (75)
haclak  nax

hay istheapriori probability of occurrence of patternsfrom category A for output neuron
K, hgy is the a priori probability of occurrence of patterns from category B for output
neuron K, I, is the loss associated with the decision "X belongs to class A for output
neuron K", lg is the loss associated with the decision "X belongs to class B for output
neuron K", nay is the number of training patterns from category A for output neuron Kk,

and ng, isthe number of training patterns from category B for output neuron k.

Note that C; is the ratio of a priori probabilities, divided by the ratio of samples, and
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Figure3.16 Output Neuron of Specht's Network.

multiplied by the ratio of losses. In any problem in which the numbers of training
samples from categories A and B are obtained in proportion to their a priori probabilities,

l
Cp=- lik. This final ratio cannot be determined from the statistics of the training

Ak

samples, but only from the significance of the decision. If there is no particular reason

for biasing the decision, C, may simplify to -1 (an inverter).

The network is trained by setting the W; weight vector in one of the pattern unitsequal to
each X pattern in the training set, and then connecting the outputs of the pattern units to
the appropriate summation unit. A separate neuron (pattern unit) is required for every

training pattern. As indicated in Figure 3.14, the same pattern units can be grouped by




different summation units to provide additional pairs of categories and. additional bits of

information in the output vector.

In other words, the pattern units in Specht's network form a normal distribution around
their respective W;. This means that the pattern layer builds a normal distribution
function around each pattern of training set (X*). Then the summation units, by adding
up these distribution functionsfor each class, form a global distribution function for each
class. Therefore, every incoming pattern X is compared to these global distribution
functions and, according to Bayes minimum risk criterion, aclass for X ischosen. This

final step is performed in the output unit.

Comparison: There are several issues that have to be addressed in order to point out the
important differences between the PPSHNN and Specht's or any other probabilistic

neural networks:

[. Estimation Accuracy: Specht uses Parzen density estimation to estimate P (H; | X),

where X isthe input pattern and H; isthe hypothesisthat X belongs to classi.

It is well known that non-parametric methods become exceedingly difficult and
inaccurate as the dimensionality of problem space increases. In most rea world
problems such as the speech synthesis problem (X is a vector in 70 dimensional
space, see section 2.1.1), or the remote sensing problem (X belongs to a 7
dimensional space, see section 2.1.2), Specht's network tends to estimate the

distribution functions inaccurately, and as a result, decreases chances of correct




67

classification.

On the other hand, in PPSHNN, distribution estimates are always performed at the
bit level, in other words, always in a one dimensional space, resulting in improved

estimation and classification accuracy.

Training data: Let us assume we have n pieces of data for the one dimensional
case. In order to have a comparable estimation accuracy in the p-dimensional
space, Parzen’s or any non-parametric method requires on the order of nP sample
points. Normally this many pieces of sample data does not exist; therefore a
reasonable multi-dimensional estimate in problems which have limited number of

sample dataisquite difficult.

Training and Testing time: A big advantage of Specht's PNN is the short period of
time required for training, as compared to backpropagation networks. But with
SIMD_PPSHNN (see chapter 5) running on MasPar, this time has been cut in
several orders of magnitude (see section 5.4), making the speed advantage of other

networks negligible.

The testing time, which is more crucial, is increased substantially by Specht's
PNN. For every input vector X, PNN has to perform theinner product < X , X’ >
for all X*’s in training set. Because X and X* belong to a high dimensional space

as in the speech synthesis problem, and since, a large training set is needed to




satisfy the requirements for high accuracy estimation in higher dimensional spaces,
testing takes much longer than PPSHNN or a backpropagation network. If testing
is not performed on a high performance machine, it cannot meet the rea time
requirement of most problems. On the other hand, PPSHNN or backpropagation
networks are able to meet this requirement on almost any machine. An example
such as the speech synthesis problem can clarify this further. Below, we compare
the testing time complexity of the PNN and a backpropagation network in this

problem.

Since most of the time a network requires is used to perferm floating point
additions and multiplications, counting the number of floating point addition and
multiplication operations gives us an idea of the total time required by each

network relative to each other:

k=1600 number of training patterns.

p=70 number of input neurons.

np=40 number of hidden neuronsin the backpropagation network.
n,=14 number of possible classes.

Specht's PNN:

Pattern units perform
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pk multiplications and (p-1)k additions.

Summation units perform at least

0 multiplications and (k-n,) additions.

And finally the output unitsrequire

n-l  p (n,~1 n,—1 ny(ny—1)

lzT) multiplications and 2‘, i:T additions.
i=1

Thus Specht's PNN requires

ny(n,—1)
pk+————=112091 multiplications and
n,(n,—1) .
(p—l)k+(k—no)+T = 112077 additions.

Backpropagation network:

Hidden neuronsperform

pn, multiplications and n,(p—1) additions.

Output neurons perform

nyn, multiplications and n,(ny—1) additions.

Thus backpropagation only requires

ny(p+n,)=3360 multiplications and
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ny(p+n,)—(np+n,)=3306 additions.

If we assume that multiplication takes twice as much time as addition, we see that

backpropagation ismore than 33 times faster than Specht's PNN during testing:

2x112091 + 112077 _ 4, &
2x3360 +3306

In addition, the inaccuracy in the estimation of distribution functions in a 70
dimensional space with only 1600 sample patterns should be a concern with the

PNN network.

Therefore, one can train a PPSHNN or backpropagation network on a high
performance machine, but use it on any machine in near rea time for testing.
Whereas, for Specht's PNN, one needs a high performance machine to use it for

testing.

3.3.2 Vector Rejection

Vector rejection can be performed by a neural network. Such a network is trained to

perform two-class classification (See Figure 3.17).

This network has 2n, input neurons and 1 output neuron. The Vector Rejector (VR),
receives two values from each Bit Rejector (BR). The first value is simply the output
value of the corresponding output bit of the N-unit (z¥). The second value is the

hypothesis (H¥), to which z* has bin classified by the k-th BR. Note that ¥ is1, if z* is
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BIT

CLASSFIERS

Figure 3.17 A Delta Rule Network asthe Vector Rejector.

classified to H;. 1tis0if z¥ isclassified to Hg, and it is05 if z K isclassified to H,. The
output of VR istrained to go high for vectors that should be accepted. It istrained to go

low for vectors which should be rejected and sent to the next stage for classification.

This network is trained with the output data which is gathered from the last training
sweep of the N-unit and the bit-rgectors. Itsdesired output data is created by generating
a | for dl the input patterns for which the classification of the PPSHNN module was
correct and their classification should be accepted, and a O for all the patterns whose

classification by the PPSHNN module was incorrect or uncertain and should be rejected.

The vector rejector can be a single stage delta rule network. In some cases, the task of

classifying vectors into accepted and rejected classes might be too complex for a single




stage network to handle. In that case, the VR can be chosen as a two-stage network or a
PNS$ network (see Chapter 4). Asin all other modules, the VR can also be chosen as any

special network such as acompetitive learning network.

The bitwise classifiers, together with the vector regjector, address several problems and

offer solutions for them asfollows:

Most classifiers look at the entire vector and make the classification decision (eg. isa
minimum distance classifier). By doing so, the classifier could overlook detailed
information encoded in the individual bits which might be crucia for classification. The
following example from the 10 class remote sensing problem using backpropagation is

one such case:

Output vector ={0.53 0.620.400.320.67 0.37 0.320.450.47 0.351

A typical classifier such as a Bayesian vector classifier or any neural network classifier at
the output would most probably classify this vector asclass 5 or if the reject option is

present as reject.

The output of the bitwise classifier isasfollows:

[IRRORRORRR].

The thresholds for the bit one classifier are asfollows:
1.00000 <--> 0.41987 Class 1

041987 <--> 030100 Rgected
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0.30100 <--> 0.00000  Class0

In other words, bit oneisclassified as 1. Similarly, bitsfour and seven are classified as
zero according to their thresholds. The rest of the bits are rejected again according to
their thresholds. The problem with this data set is that some classes are very
underrepresented during training, therefore making it difficult and unlikely for the

network to learn them. In the 10-class Colorado problem, we have

# of total data piecesin the training set - 1188

# of data piecesfor class 9 in the training set - 25

bit 9:
HIl= 0 HO= 1163 Hr= 25

pl= 0.0000+00 p0=9.7895-01 pr= 2.1043-02

We seethat class9 is very underrepresented (%2.1 of the training set) imd its data are all
rejected. Thus, any class 9 data in testing is going to be rejected. The problem is that
this will also cause the 9th bit of some data from other classes to be rejected as well. |If
there are several such underrepresented classes, they will cause rejection of a vector

belonging to another class, due to the uncertainty of the undertrained bits.

A bitwise classifier combined with a neural network vector rejector can detect these cases
and allow exceptions. In the above mentioned case the vector rejector can learn to
overlook the underrepresented bits when there is a definite classification for other bits,

and correctly classify the above vector asclass 1.
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3.4 TheClassifier (Minimum Euclidian Distance Classification unit)

This unit is a simple nearest neighbor classifier. It simply compares the incoming vector
to desired vectors and finds the desired vector which isthe closest to the:incoming vector.
The incoming vectors to this unit are the output vectors of the N-unit of the module

which have not been rejected.

LetV= [vl y Vo, o ,v,,] be theincoming vector and D; = [d,-l ,dig , 0, d ] be

the:ith desired vector for i = 1,... ,m. Theclassification isaccording to

C=min;{||Di—V||}. (76)

This unit is the final step in the classification process. The output of this unit is the

number of a class to which the incoming pattern has been classified.

35 ThePre-Rejector (P-unit)

This unit as described in Section 3.1 is a two class classifier. It classifies the data
belonging to the under- and unproportionally represented classesas "reject” and classifies
the rest as "accept”. In other words, it divides the problem space into two subregions and

allowsthe N-unit to learn only the simpler region of the two.

This unit can be any type of neural network network. For example, it can be a single
stage delta rule network. If this unit is a two stage network, because of it being only a

two class classifier, it is normally much smaller than the N-unit of the corresponding
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module. For example, for the 10-class Colorado data, the pre-rejector of the first module
(if chosen to be a two-stage backpropagation network) has only four hidden neurons (see

Figure 3.18).

Figure 3.18 Pre-Rejector of Module 1 of PPSHNN.

The pre-rgjector is perhaps the most important unit in the PPSHNN module. Care must
be taken in choosing the classes that it should reject or accept. Hence, the design and
operation of the S-unit is of great importance. With an accurate pre-rejector and the
optimal selection of reject and accept classes, a complex problem space can be divided

into two simpler and perhaps even linearly separable regions. This could not only
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decrease the training time by simplifying the problem space and hence reducing the size
of the N-unit, but also increase the classification accuracy by allowing the N-units to

learn asimplified problem space rather than a large and complex one.

Unlike any other neural network units in the system, the pre-rejector has to always have a
very high classification accuracy. In most cases, the accuracy of the pre-rejector should

not belower than 90%. Theaccuracy of the unit shown in Figure 3.18 is around 95.5%.

Much of the success and failure of PPSHNN in achieving higher classification accuracies
than other networks is due to this unit. Most of the classification error occurring in
PPSHNN is due to a pre-rejector accepting a pattern which should have been rejected.
This type of error leads, almost always, to misclassification. We call this type of error
"fatal". The second typeiscalled "nonfatal" due to the fact that over %50 of this type of
error is corrected in the following stages of the network. For simplicity, sometimes we
also call the pre-rejector the P-unit. The operation of this unit and its theoretical

interpretation isfurther discussed in the next Chapter.

3.6 ThePre-Processor

The pre-processor isthe |east researched unit in the system and future research should be
heavily concentrated on this unit. The sole purpose of this unit is to simplify the way
problem space is presented to the respective module. In some experiments, we used
simplistic pre-processors, whose task was only spreading out the data in the problem

space so that the boundaries between classes could be moreflexible and easily found. To
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do this, the pre-processor finds the statistical mean of all the data it is presented during
training and memorizes that mean. Then every datum point in testing (or training) is
nonlinearly pushed away from the mean, thus spreading the problem space further out.
By enlarging the distance between the data points, one hopes to allow the boundaries to
become so flexible that a piece of a highly nonlinear boundary can be simulated by a

linear one.
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CHAPTER 4

SPECIAL TOPICSIN PPSHNN

In this chapter, we discuss a special variation of the PPSHNN modules called the PNS
module. We discuss its behavior and its features. In the first section, we discuss the
architecture of the PNS module. In the second section, we discuss the training algorithm

for this module and, finally, in Section 3, we analyze the features of this new module.

41 ThePNS Module

In this Section, we discuss the PNS module as the basic building block for the synthesis
of PPSHNN. The PNS consists of a prerejector (P-unit), a neural network classifier (N-
unit), and a statistical analysis unit (S-unit). In some cases, we will refer to the
combination of N-and S-unitsas NS-unit. The optional pre-processor and vector rejector
units are not included, but they can be included in future developments of the module.
While the P- and the N-units can be any type of neural network, we have chosen them to
be a single stage delta rule network. The P- and NS-units are fractile in nature, meaning
that each such unit may itself consist of a number of PNS modules. Asbefore, through a

mechanism of statistical acceptance or rejection of input vectors for classification, the
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sarnple space is divided into a number of subregions (polygons if the single-stage delta
rule network is chosen). Theinput vectors belonging to each polygon are classified by a
dedicated set of PNS modules. Since the delta rule network is used to generate the N-
unit, each polygon approximates a linearly separable region*. In this sense, the total

system becomes similar to a piecewise linear model.

4.2 The PNS Algorithm

The block diagram for a PNS moduleisshown in Figure 4.1.

The Prerejector|The classification| The Statistical

m— =t Network analysis unit
Input | (P-unit) — - Clusterd
patterns (N-unit) (S-unit) Patterns

Rejected Patterns

Figure4.1. TheBlock O agramaf a PNS Module.

The N-unit can be any type of neural network, but it is chosen as a delta rule network

+ By linearly separable region we mean part o the original problem space which is separated from the rest d the space by a
combination of linear boundaries.
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with output nonlinearity in thisthesis.

The procedure for the creation of the PNS modulesisshown in the flow charts of Figures
4.2 and 4.3. Initialy, the total network consists of a single N-unit. It has as many input
neurons as the length of an input pattern, and as many output neurons as the number of
classes. The number of input and output neurons may also be chosen differently
depending on how the input patterns and the classes are represented. The N-unit is
trained by using the present training set ( each N-unit will be presented a different
training set depending on where in the hierarchy its module lies). After the N-unit
converges, the S-unit iscreated. The S-unit of the PNS module is identical to that of the
PF'SHNN module. It is a parallel statistical classifier which performs bit-level three-class
Bayesian analysis on the output bits of the N-unit. It was discussed in detail in Section
3.3.1. One result of this analysisis the generation of the probabilities p%, k=1,2, - - - M,
M being the number of classes. p¥ signifies the probability of classifying an input pattern
belonging to class k correctly. Like before, if this probability isequal to or smaller than a
small threshold & for one or more classes, a P-unit is created to reject the patterns
belonging to these classes. In other words, if p¥ <8, the corresponding class is either
geometrically small or undersampled, or has highly nonlinear boundaries such that the

present network cannot learn it.

As before, the rgjection of such classes before they are fed to the N-unit is achieved by
the creation of the P-unit. The P-unit is a two-class classifier trained to reject the input
patterns belonging to the classes initially determined by the S-unit. In this way, the P-

unit divides the sample space into two regions, allowing the N-unit to be trained with




/create the first N—unit/
{ train the N-unit /

v
/c;eate the S—unit/
Y

[ <

/analyze the output values/

no

< PNS
END

create new training and
desired sets from this data

create and train
P-unit

create and train

a new NS-unit

Y

/ analyze the output values/

collect data rejected by the
S- and the P-unit(s), if any,

Figure4.2.A ow Chart for Learning of a PNS Module.
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create and train create and train
P-unit NS-unit

/:reate the training input- / create the training input-output
4/ output set for the P-unit set for the new N-unit
using the accepted data by
the P-unit

PNS PNS
begin begin

¢ &

(a) ' (b)

Fi gure 4.3. (a)The Recursive Procedure to Createa P-unit.
(b)The Recursive Procedure to Create a NS-unit.

patterns belonging to the classes which areeasier to classify.
If a P-unit is created, the N-unit is retrained only with the patterns that are accepted by
the P-unit. The process discussed above is repeated as necessary. The S-unit is

regenerated; it may again reject some classes. Then, another P-unit has to be created to

reject these classes. Thisresultsin arecursive procedure.

If there are no more classes rgected by the S-unit, the PNS module :iscompleted. The
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input patterns rejected by it arefed to the next PNS module.

The complicating factor in the discussion above is that there may be more than one P-
unit generated. Each P-unit is a two-class classifier. Depending on the difficulty of the
two-class classification problem, the P-unit may itsef consist of a number of PNS
modules. The sameistrue with the NS-unit. The flow diagramsof the procedure for the
generationaf the P-unit and the NS-unit areshown in Figure4.3. A particular exampleis
shown in Figure 4.4, which shows the PNS modules generated for the 10-class Colorado
problem discussed in detail in Section 2.1.2. In the first stage, the P-unit required 3 PNS
modules and 1 NS module to reach desired performance. Similarly, the NS-unit has
actually developed into one PNS and one NS module. In this sense, the P- and the NS-

unitsarelike fractals.

Like the PPSHNN module, the S-unit aso generates certain other thresholds for the
acceptance or the rgection of an input pattern, as discussed in Section 3.3.1. Thus, the
input pattern may be rejected by the P-unit or the S-unit. The rejected vectors become
input to the next stage of PNS modules. This process of creating stages continues until
all. (or adesired percentage of) the training vectors are correctly classified. For example,
for the Colorado problem discussed in Section 2.1.1, two stages were required, as seen in

Figure 4.4.

The recursive nature of the algorithm becomes evident when a P-unit or a NS-unit is to
be created. Either unit starts as a single NS structure and builds up further, if necessary,

into several parallel PNS modules. In order to create a new P- or NS-unit, it is necessary
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Fi gure 4.4. The PNS Modulesin the PSHNN Designed for the 10-Class
Colorado Problem.

to generate the particular training data for itslearning, as shown in Figure 4.3.

Figure 4.3 shows the procedures which create the P- and the NS-units. Before the
creation of the P-unit, the appropriate input-output training set has to be created. The

input training set issimply the set presented to the PNS module which is being created.

The corresponding desired output set iscreated by entering the vector [10| for al the

patterns which should be accepted by the P-unit and the vector [0 ].‘ for al the patterns
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which should be rejected by the unit. Before the creation of the NS-unit , a new input-
output training set for this unit must also becreated. Theinput set contains patternsfrom
the original training set which are not rejected by the P-unit, and the desired output set is

the: collection of the corresponding desired output vectors from the original desired set.

If no more P-unit is needed, the main program branches up to train the next stage of PNS
modules, as shown in Figure 4.2. To do so, the program gathers all. the rejected data
from the first stage. If there are no more rejected data, or if their number is less than a

preset threshold, the algorithm terminates.

In brief, the total network begins as a single PNS module and grows during training in a
way similar to fractal growth. The P- and the NS-units may themselves create PNS
modules. The delta rule network is used to generate the N-units. We will show that the
net result is the separation of nonlinear classes into regions which are linearly separable.
This separation continues until the resulting PNS network can approximate the nonlinear
class boundaries using a piecewise linear model accurately. This procedure issimilar to

modeling of a nonlinear system by a collection of piecewise linear systems.

Remarks:

It can be shown [5] that the output values of a network based on Least-squares error
minimization, such as the delta rule neural network, can be interpreted as the estimation
of the conditional pdf f (H;]X), where Xistheinput pattern. Therefore, one can perform

density estimation by such a network, which can be chosen asa PNS network. Then, the
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total network consists only of PNS modules.

4.3 System Features And Proof of Piecewise Linearity

As mentioned in the previous Section, the learning procedure divides the problem space
into linearly separable spaces, based on the learnability of the classes by the present N-

unit. Referring to Figure 3.9, this will be proven below.

Proof of Linearity:

For now let us assume that the N-unit has only one output neuron. In Section 3.3.1, we
showed how to compute two rejection boundaries for every bit. In Figure 3.9, these
rejection boundaries are marked as z5, and z%,. Since the N-unit isa si ngle stage delta
rule network with sigmoidal output nonlinearity, as described in Section 2.2, the output

value of thek'™™ neuron iscomputed by

yk= -1t (77)

n;
—inmu
|+

Where, n; isthe number of input neurons, x; isthe value at the jth input neuron, and oy;
is the weight connecting the it input neuron to the k' output neuron. Using (77), the
equation describing the boundary imposed by the S-unit at bit k between the zero and the

reject regionsis
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1
— =zf,. (78)
=X %0y
l+e ™
The above equation can be written as
~Txoy 1
(4 =0 = T - l, (79)
Z0r
which leads to
" Z’(C)r
Y x;0; =1n — |- (80)
i= 1 - 25,

The right hand side is a constant, making the above a linear equation. It describes a
hyperplane in the n;-dimensional space. Hence, the boundary between the "zero" and the
"reject” region is linear. The same argument can be used to show that the boundary

between the "reject” and the "one" region isaso linear and can be described by

i 5
Zx,'(l)k,' =In X (81)
i=0 11—z

Notice that, since the equations of the two boundaries differ only in the value of the

constant on the right hand side, the boundaries are parallel to each other.

QED

In the same way, every output neuron in combination with its S-unit bit-rejector, creates

two linear (hyper-plane) boundaries in the n;-dimensional space. Data falling between
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these boundaries are rejected by the bit-rgector. Data whose output falls outside of this
region is accepted by the bit-rejector and classified, for example, based on a minimum
mean sguare criterion [9-10]. If the certainty of classification for a class grows, the two
boundaries move closer to each other, making the rgect region smaller. If the certainty
is one, the two boundarieslie on top of each other and thereis no reject region. Thisis

the: case for bit one in the 10-class problem (seeFigure4.5).

Proof of Piecewise Linearity:

Now let the network have n,, output neurons. Each output neuron and. its corresponding
bit-rgjector create two linear boundaries and three regions. zero, one, and the regject
regions. This results in 2n, boundaries in the n;-dimensional problem space, which
divide the space into a number of polygons. A loose upper bound for this number can be

expressed as.

A, = _ . (82)

Proof:
We will prove thisin two steps:

. For now let usassume the S-unit is not existent. In other words, for every output

neuron, only one boundary iscreated. Hence we haven,, boundaries and
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The firg caseisrelatively straight forward. If n, < n;, then the maximum number
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of polygons are created when the boundaries share at least one point. Becauseitis
assumed that the activation level of every output neuron represents a different
feature of the classification problem, it is assumed that the weight vectors of these
neurons are different from each other. And because these weight vectors are
normal vectors of their respective hyperplanes, it is therefore assumed that these
hyperplanes are not parallel to each other. Hence, it is perceivable that they all
share a common point. Therefore, 2™ is actually the maximum number of
polygons created and is the tightest upper bound. In such a case with every new
boundary, we can divide every existing polygon into two sub polygons. In other

words,

Ap, =24, _;=2" forn, <n; . (84)

The second statement of (83) can be proven as follows. Let us assume that we
have n; boundaries and they have divided the problem space into A, =2"
polygons using »; boundaries. Every additional boundary will not be ableto divide
all of the polygons because of the linearity property of the bounclaries. This means

that the n;+1 st boundary will cut at most A,, — 1 regions. This means:

Ap, =1+2(A, - 1). (85)

The "1" in the equation is for the one region not touched by the new boundary.
The rest of the equality isfor all the regions that are divided into two subregions.
The same argument can be made for every additional boundary, resulting in the

general difference equation:
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A, =2"
Ap =1+2(An _1—1) ny >n; - (86)
Using induction, we can now show that this is the same as the second statement of
(83).
Induction basis: For n, = n;, from (83) we get:
A, =2" 2N = (87)

Induction hypothesis: A, =1+2 (A, -1)=2%-2%""+1 forn,>n".

Induction proof for A, +,=2"*"-2%""*'+1 Using (87) and the induction

hypothesis, we can write:

Ap s1=142(A, —1)=1+42(2%=2"""+1-1), (88)

or

+1 -nm+1
Ano+1= e — 2%

+1. (89)

QED

Now let us add the S-unit in. This will cause two boundaries to be created for
every output neuron. The two boundaries are parallel hyperplanes because of the
fact that for both planes the weight vectors are the same. Hence, the normal vector
to both hyperplanes are the same, and the planes are paralel. The only difference

between the two vectorsison the right hand side of the equation of the hyperplane
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as seenin (80) and (81).

Now let us consider (82). Here, the same argument used for (83) can be applied,
except that now with every additional neuron, we are adding two parallel
boundaries rather than one. This meansthat now every polygon that the new set of
boundaries enters will be divided into three subpolygons rather than two. Thisis
true for both casesin (82). Therefore, by following the same argument as before
and by keeping in mind that every set of boundaries divides the regions into three

subregions, the upperbounds of (82) will follow.

QED

Introduction of the P-unit to the problem space: The P-unit is chosen as a single
stage, delta rule, two-class classifier network. It introduces at least one additional linear
boundary to the problem space (the argument for linearity is identical to that of the N-
unit). The additional boundary(ies) serves to divide the problem space. into further reject
and accept regions. The difference here is that the reject region is completely dropped

out of the problem space of the N-unit, and the N-unit does not learn it.

As an example, Figure 4.6 shows the problem space of the XOR problem asit islearned
by the PNS module. Figure 4.6 (a) shows the PNS module developed for this problem.
Due to the simplicity of the problem, the P-unit consists of only one neuron. The N-unit
consists of two neurons. Figure 4.6 (b) shows the two boundaries which the N-unit

imposed upon the problem space. The "one" regions of the boundaries overlap in the
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dotted area. Notice that the boundaries are only of consequence in the problem space
(the square shown in the figure). Hence the boundaries are finite lines (solid boundary
linesin the figure). Figure 4.6 (c) includes the boundary imposed by the P-unit. Figure
4.6 (d) demonstrates the problem space introduced to the N-unit after implementing the
P-unit. This space islinearly separable and can be learned by a single stage delta rule

network.

The N-unit isretrained to separate the classesin the new space. It creates the boundaries
shown in Figure 4.6 (e). Notice that the two boundaries accomplish the same task and
thitt one can be eliminated. In other wordsit issufficient to have only one neuron as the
N-unit. In general, this process of elimination can be achieved by introducing a new unit
to the output of the N-unit. Thejob of this unit would be to compare the weight vectors
of output neurons after training. 1t would compare these vectors two at a time, and if it
detected alinear dependence between any two vectors, it would eliminate one of them by
eliminating its corresponding output neuron from the network. To follow up the

argument presented above, however, we keep both neurons.

It isimportant to mention here that at this stage the boundariesof the retrained N-unit are
no longer merely confined to the boundaries of the original problem space, but are also
bounded by the boundaries which the P-unit imposes. In other words, all the boundaries
are bounded by the current problem space at hand (dotted area in Figure 4.6 (€)), and not
by the boundaries of the original problem space (shown in Figure 4.6 (b) as a dotted

square).
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The fina space division by the PNS network is shown in Figure 4.6 (f). Notice that the
region marked "Reect” also will be classified "Zero" because of the automatic
classification of all rejected vectorsas"Zero". In the above discussion we have ignored
tht: S-units. Introduction of the S-units changes the space division in the manner shown

in Figure4.7. As we see, every boundary of Figure

'One'= Class | = {(1,0), (0,1)}

'Zero = Class 2 = {(0,0) , (1,1)}

(0’1) K (111)

(c) (d)

Figure4.7. The Division of XOR Problem Space after
I ntroduction of S-units.
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4.6 has been replaced by aregion of uncertainty ("reject” region). Data falling in these
regions are rejected to the second module and classified automatically as "Zero". The
final result shows that, due to this fact, in this case, introduction of the S-units only

causes the "one" region to shrink and the "zero" region to expand.

Hence, as we have seen, the function of the P-unit is to divide the problem space into
simpler polygons by introducing new boundariesto the space. This division of spacecan
result in complete elimination of one or more class(es) from the problem space (polygon)
of some modules. In the 10-class problem, the P-unit of the first moclule eliminates six
out of ten classes from the problem space of the N-unit of the first module. This results
in only four output neurons for this N-unit and thereby 2x4 =8 boundaries, or by using
tht: upper bounds of (82), at most 3* =81 polygons (subregions) versus ten output
neurons, 2x10= 20 boundaries, and an upper bound of 3! — 3* +1=59023 polygons

(subregions).

As the result of the above argument, the problem space introduced to the N-unit only

contains n,” < n, which is the number of classes accepted by the P-unit. Therefore, the
NS-unit creates 2n,” linear boundaries and A, - = O [3”0'] polygons*. These new linear

boundaries are confined to the boundaries of the polygon passed to the N-unit rather than

the limits of the original problem space.

+ Fromnow on, we use the word " polygon" to indicate that region of the problem space that is parsed dewn through the hierarchy
to a certain unit in the network for classification. In other words, by “polygen o the N-unit', we mean that region of the space
which the particular N-unitisresponsible for.
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Theabove discussion is valid only under the fundamental assumption tlhat the polygon of
the: N-unit is linearly separable (i.e. A single stage delta-rule network can accurately
classify patterns from this region). The same assumption should be valid for the P-unit.
The problem space of the N-unit may not be linearly separable*, even after smplification
of space by the P-unit. The polygon of the P-unit may also not be linearly separable. In
such cases, the P- or the N-unit or both is replaced by an entire PNS module. If thisis
still not sufficient, the P- and/or N-unit(s) of the new PNS module is also replaced by a
PNS module. In this way, the PNS modules are created in a way similar to fractals until
the performance of the overall network issatisfactory. The fractile architecture will have
several P-units which will serve to further divide the space. Their respective N-units
impose linear boundaries upon these polygons. The polygon of each N-unit is the accept
subregion of its corresponding P-unit and the boundaries it creates are confined to this

subregion.

In summary, the problem space is divided into as many polygons as necessary to reach
linearly separable polygons. This division is performed by the P-units. Then the NS-
units create linear boundaries which are only defined within the confines of their
respective polygons. The whole process results in the separation of linearly separable
regions of a nonlinear classification space by hierarchically organized piecewise linear

subsystemswhich are structured within each other likefractals.

+ By a linearly separable region, we mean that the classes of the region (polygon) can be separated jrom each other by a linear
boundary.




Since we desire for any given input pattern, only one output bit to go high, we shall
desire the one region of each output bit to fall on top of the "zero" region of the other
bits. It can easily be shown that this is not possible for more than one linear boundary
unless they all lie on top of each other (identical boundaries). Hence, we will most likely
have regions of the n;-dimensional space which are classified "one" by more than one hit.
Since the problem space is a subspace of the n;-dimensional space, one hopes that such
regions fall outside of the problem space. An example of thisis shown in Figure 4.8.
Figure 4.8 (a) shows an example of the overlapped "one" region in tihe problem space.
Figure 4.8 (b) shows the opposite, where the overlapped region is outside the problem

space.

Overlapped

"One" Region
One' Regio Bit 1

it2 .
% Problem Bit2
aero% L Space\ <7
\\ |
\ |
" " 4 *One"
One "Zer}o\
— = ——
"One"
(@) (b)

Figure 4.8. An example d overlapped "one" regions.
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If this special case occurs, the classification accuracy isextremely high. However, since
almost every bit creates two boundaries, this phenomenon rarely occurs. Therefore, we
will have overlapped regions in the problem space, and for patterns falling in these
regions more than one output bit will go high. We need a mechanism. to serve as a "tie
breaker.,” In other words, we need a mechanism which decides which one of the "high"
bits is dominant, thereby choosing its respective class over the others. One could simply
decide to let the minimum mean square error mechanism at the output perform this task.
It can be shown that this mechanism chooses the class for which the pattern sample is
farthest away from its boundary. In other words, the class that is chosen is the class that

the sample output isdeeper in its"one" region. (see Figure 4.9)

Point Classified
“One*} as Class 1.

> / "One"
Bit 1
'Zero\'\ !
"Zero"

\ Bit 2

Figure 4.9. Minimum Mean Squared Error Decision in 2-D Space.

This method workswell in an unnoisy problem space such as the XOR problem. Butin
noisy situations, since the output of the N-unit is shifted, this measure could prove to be
inaccurate. Introducing a vector rejector after the bit-rejectors is one solution to this

problem. The vector rejector is a neural network unit. This unit introduces new
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boundaries to the polygons of the problem space which have been created by the P- and
the NS-units. These boundaries act as tie breakers and, since they are (adaptive,they can

take the noisy characteristics of the problem space into account.

It should be mentioned here that there could aso be regionsin the problem space whose
data patterns are classified as zero in every bit. In other words, in some regions of the
space, the zero regions of all the bits overlap. The vector rejector could also be trained to

work as a tie breaker in such cases as well.

From the above discussion, the following important result follows. A network of PNS
modules divides the problem space into linearly separable regions, as in a piecewise
linear model. The reject regions also impose additional boundaries to separate the "hard"
to classify patterns from the "easy" to classify patterns. These additional boundaries are
also linear due to the fact that all networks used in the PNS experiments (in the P- and
the N-units) were single stage delta rule networks. Each PNS module contributes to the
task of approximating the class boundaries by building a linear piece of the overall

model.

It is important to mention that, by using other types of networks instead of the single
stage delta rule network, or by using different types of neurons, the piecewise linear
model could become a piecewise nonlinear model. For example, the results obtained
with the use of quadratic neurons for the XOR problem is shown in Figure 4.10. The
only difference here is that the input values are squared before inputting to the output

kth

neuron. Thek™ output neuron has the output given by
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Fi gure 4.10. a) A Second Order Polynomial Network for the XOR Problem,
b) and c) Possible Accept and Reject Regions.
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The equation of the boundaries can be derived in a way similar to the linear case and is

given by

. k
M 2 ZOr
Zx,- W =1n T |- (91)

i=0 1 -2zg,

This may result in a hyperbolic or an éliptic boundary as shown in Figures 4.10 b) and
c). Inthis case, only one stage is generated to correctly classify the XOR: problem with

no P-unit, and the N-unitisa 2-1 unit as in Figure 4.10 a).

The change to quadratic neurons had little effect in the overall accuriicy of the system,
leading us to believe that the total network consisting of PNS modules based on the delta
rule is very effective in overall classification accuracy while rernaining relatively

inexpensive.
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CHAPTER 5

A PARALLEL SIMD ALGORITHM FOR MASPAR; THE SIMD-PPSHNN

In this chapter we describe the parallel implementation of the PPSHNN with two-stage
backpropagation networks as its P- and N-unitsand with PNS modules with single stage
delta rule networks. In particular we describe the SIMD versions of these networks

implemented on MasPar MP-1.

Fer simplicity, we refer to the PPSHNN network with two-stage: backpropagation
networks as the PPSHNNI| and with single-stage delta rule PNS modules as the
PPSHNN2. We refer to the parallel SIMD version of their respective algorithms as
SIMD-PPSHNNI1 and SIMD-PPSHNN2. We also refer to the process of producing an

output vector for an input pattern by the N-unit as throughput.

We first describe the architecture of MasPar MP-1[12-14], and then describe the SIMD
[11-12] version of PPSHNN and how it was adapted to MasPar M P-1 architecture to take
advantage of its features. Section 5.2 is the general parallel algorithm description for
both networks. 1n section 5.3, the time complexities of the serial and parallel versions of
the PPSHNNI and PPSHNN2 algorithms are analyzed and estimated. Section 5.4 offers

a theoretical speed up comparison between the SIMD-PPSHNN1 and SIMD-PPSHNN2
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ant3 their respective serial algorithms. In Section 5.5 the parallel testing procedure is

discussed.

5.1 Introduction to MasPar MP-1

Massively parallel computers normally use more than 1024 processors to obtain
computational performances unachievable by conventional computers. The MasPar
Computer Corporation has designed and implemented a high performance, massively
parallel computer system called the MP-1. The MasPar MP-1 system is scalable from
1024 to 16384 processors and its peak performance scales linearly with the number of
processors. A 16K processor system delivers 30,000 MIPS peak performance where a
representative instruction is a 32-bit integer add. In terms of peak floating point
performance, the 16K processor system delivers 1,500 MFLOPS single: precision (32-bit)

and 650 MFL OPS double precision (64-hit), using the average of add and multiply times.

Because massively parallel systems focus on data parallelism, all the processors can
execute the same instruction stream. The MP-1 has a Single Instruction Multiple Data
(SIMD) architecture that simplifies the highly replicated processors by eliminating their
instruction logic and instruction memory, thus saving millions of gates and hundreds of
megabytes of memory in the overall system. The processorsin a SIMD system are called

Processing Element (PE) to indicate that they contain only the data path of a processor.

Unique characteristics of the MP-1 architecture include the combination of a scalable

architecture in terms of the number of Processing Elements (PEs), system memory, and
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system communication bandwidth, "RISC-like" instruction set design that leverages
optimizing compiler technology, adherence to industry standard floating point design,

and an architectural design amenable to a VLS| implementation.

Figure 5.1 shows a block diagram of the MasPar system with five mgjor subsystems. The

following describes each of the major components:

The Array Control Unit (ACU): The ACU is a 14 MIPS scalar processor with a RISC-
style instruction set. It fetches and decodes MP-1 instructions, computes addresses and
scalar data values, issues control signals to the PE array, and monitors the status of the
PE array; but most of the scalar ACU instructions execute in one 70 nsec clock. The

ACU occupies one printed circuit board.

The ACU performs two primary functions: either PE array control or independent
program execution. The ACU controls the PE array by broadcasting all PE instructions.
Independent program execution is possible since it is afull control processor capable of

independent program execution.

The ACU is a custom designed processor with the following major architectural

characteristics:

— Separateinstruction and data spaces

— 32-bit, two address, load/store, simple instruction set
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Figure5.1 Bbck Diagram o MasPar MP-1.
— 4Gigabyte, virtual, instruction addressspace, using 4K bytes per page.

The ACU has a microcoded implementation of its RISC-like ingtruction set due to the
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additional control requirements of the PE array. PE instructions typically require more
than one clock cycle, including floating point instructions which are well suited to a

microcode implementation.

Processor Array: The MP-1 processor array (Figure5.2)
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Figure5.2. Physical Organization of the Array Processor of MP-1.
1024 PEs on each Board, Organized in Clustersof 16 PEzs.

is configurable from 1 to 16 identical processor boards. Each processor board has 1024
PEs and associated memory arranged as 64 PE clusters (PECs) of 16 PEs per cluster.
The processors are interconnected via the X-Net neighborhood mesh and the global
multistage crossbar router network. A processor board dissipates less than 50 watts; a

full 16K PE array and ACU dissipate less than 1,000 watts.
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Figure 5.3 A PE Cluster of MasPar.

A PE cluster (Figure 5.3) is composed of 16 PEs and 16 processor memories (PMEM).
The PEs are logically arranged as a 4 by 4 array for the X-Net two-dimensional mesh
interconnection. Each PE has a large internal register file shown in the figure as PREG.
Load and store instructions move data between PRES and PMEM. The ACU broadcasts
instructions and data to all PE clusters, and the PEs all contribute to an inclusive-OR
reduction tree received by the ACU. The 16 PEs in acluster share an access port to the

multistage crossbar router.

The MP-1 processor chip is a full custom design that contains 32 identical PEs (2 PE
clusters) implemented in two-level metal 1.6 CMOS and packaged in a cost effective
164 pin plastic quad flat pack. The die is 11.6 mm by 9.5 mm, and has 450,000

transistors. A conservative 70 nsec clock cycle yields low power and robust timing



111

msugins.

Processor memory, PMEM, isimplemented with 1Mbit DRAM’s that are arranged in the
cluster so that each PE has 16 Kbytes of datamemory. A processor board has 16 Mbytes
of memory, and a 16 board system has 256 Mbytes of memory. The MP-1 instruction set
supports 32 bits of PE number and 32 bits of memory addressing per PE, so the memory

system Sizeislimited only by cost and market considerations.

As an MP-1 system is expanded, each increment adds PEs, memory, and communication
resources, so the system always maintains a balance between processor performance,

memory Size and bandwidth, and communicationsand /O bandwidth.

The MP-1 processor element (PE) design is different than that of a conventional
processor because a PE is mostly data path logic and has no instruction fetch or decode
logic. Like present RISC processors, each PE has a large on-chip register set (PREG)
and all computations operate on the registers. Load and store instructions move data
between the external memory (PMEM) and the register set. The register architecture
substantially improves performance by reducing the need to reference external memory.

The compilers optimize register usage to minimize load/store traffic.

Each PE hasforty 32-bit registers available to the programmer and eight additional 32-bit
registers that are used internally to implement the MP-1instruction set- With 32 PEs per
die, the resulting 48 Kbits of register occupy about 30% of the die area, but represent
75% of the transistor count. Placing the registers on-chip yields an aggregate PE/PREG

bandwidth of 117 gigabytes per second with 16K PEs. The registers are bit and byte




112

addressable.

Each PE provides floating point operations on 32 and 64 bit IEEE or VAX format
operands and integer operations on 1, 8, 16, 32, and 64 bit operands. The PE floating
point/integer hardware has a 64-bit MANTISSA unit, a 16-bit EXPONENT unit, a 4-bit
ALU, a 1-bit LOGIC unit, and a FLAGS unit; these units perform floating point, integer,
and boolean operations. The floating pointlinteger unit uses more than half of the PS
silicon area, but provides substantially better performance than the bit-serial designs used

inearlier massively paralléel systems.

Most data movement within occurs on the internal PE 4-bit NIBBLE BUS and the BIT
BTJS (Figure 5.4). During a 32-bit or 64-bit floating point or integer instruction, the ACU
microcode engine steps the PEs through a series of operations on successive 4-bit nibbles
to generate the full precision result. Because the MP-1 instruction set focuses on
conventional operand sizes 8, 16, 32, and 64 bits, MasPar can implement subsequent PEs
with smaller or larger ALU widths without changing the programmersinstruction model.
The internal 4-bit nature of the PE is not visible to the programmer, 'but does make the
PB flexible enough to accommodate different front-end workstation data formats. The
PI3 hardware supports both little-endian and big-endian format integers, VAX floating

point F, D, and G formats, and |EEE single and double precision floating point formats.

UNIX Subsystem (USS): An important aspect of the system is the use of an existing
computer system (specifically a VAX station 3520 ULTRIX™ workstation) that follows

existing industry standards (e.g. X windows, TCPIP, etc.). The USS provides a complete
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Figure 5.4 Internal Architecture of a PE.

network and graphic based software environment in which all the MasPar tools and
utilities (e.g. compilers) execute. Part of the application executes as a conventional
workstation application; most of the "operating system" functions are provided by the

workstation’s UNIX software.

Communication Mechanism: The following sections describes the five major

communications mechanisms.

1. USS to ACU: Three different interactions occur between the USS and the ACU,
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which use three different hardware supports. All are based on a standard bus

interface (VME). The following describes each mechanism:

I. Queues: Hardware queues are provided which allows the USS process to
quickly interact with the process running on the ACU. The programming

model issimilar to UNIX pipes but with hardware assist.

II. Shared memory: The shared memory mechanism overlaps ACU memory
addresses with USS memory addresses. This provides, a strait forward
mechanism for processes to share common data structures like file control

block etc.

1. DMA: A DMA mechanism is provided that permits fast bulk data transfers

without using programmed I/O.

ACU to PE array: Two basic capabilities are required for data movement between
ACU and PE array: data distribution, DIST, and array consensus detection which

uses aglobal OR, GOR.

I. PE array: XNet XNet communications provide all PEs with direct
connection to itseight nearest neighbors. Processorson the physical edge of

the array have toroidal wrapped edge connections.

Three basic instruction types are provided to use the nearest neighbor

connections:
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a. XNET: The XNET instruction moves an operand from source to
destination a specified distance in al active PEs. The instruction time
is proportional to the distance times the operand size, since all

communication isdone using single wire connections.

b. XNETP: The XNETP instruction is pipelined so that a collection of
PEs move an operand from source to destination over a specified
distance. However, the pattern of active and inactive PEs is very
important since active PEs transmit data and inactive PEs act as
pipeline stages. The instruction time is proportional to distance plus

the operand size due to its pipelined nature.

c. XNETC: The XNETC instruction is pipelined and is very similar to
XNETP instruction, except that a copy of the operand isleft in all PEs
acting asa pipeline stage. Again theinstruction time is proportional to

the distance plus the operand size.

PE array: Global Router The globa router is a circuit switched style
network organized as a three stage hierarchy of crossbar switches. This

mechanism providesdirect point to point bidirectional conimunications. The
network diameter is % the number of PEs, which requiresa minimum of 16

communication cycles to do a permutation with al PEs. The basic

instruction primitives are:
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a ropen: open aconnection to a destination PE
b. rsend: move datafrom the originator PE to the destination PE
c. rfetch: move datafrom the destination PE to the originator PE

d. rclose: terminate the communication

OI. PE array to UO subsystem: Since the global router provides high
performance random PE to PE communication, the global router isalso used
to provide a high performance communication mechanism to the UO
subsystem. The interface is achieved by connecting the last stage of the
global router to an UO device, the YO RAM. The programming model is

identical to the model for using the global router.

Array UO system: Referring back to Figure 5.1, the UO subsystem uses the

following key components: the global router connection into the PE array (over 1
GB . MB

o ), alarge UO RAM buffer (up to 256 MB), and a high speed (230 oo ) data
€

communication channel between peripheral devices, a busfor device control (not
for data movement). Using output as an example, the model for using the UO

subsystem follows these steps:
a Deviceisopened by the USS (all UO devices are UNIX controlled)

b. The ACU moves datainto the UO RAM through the global router.
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c. Either the USSor an I/O processor (10P) schedul esdata movement from the
VO RAM to the device (e.g. Disk) (data through the MPIOC (MP /O

Channel) and control through the VME bus).

d. TheUSSis notified when the transaction iscomplete.

Note that all transactions from the I/O Ram to external I/O systems can occur

asynchronously from PE array actions. Thisis akey attribute since data can move
into the YO RAM at speedsover 1 —SG;BC— then move at YO device speeds, typically

in the tens of megabytes per second or less, without effecting the performance of
the PE array. These hardware mechanisms can support either typical synchronous

UNIX I/O or newer (and faster) asynchronoussoftware models.

5.2 Algorithm Description and Machine Adaptation

In this section, we discuss the parallel verson of the PPSHNN1 and the PPSHNN2
algorithmsin detail. Training procedureof the SIMD versionsare the same as the serial
versionsshown in Figures 3.4, 4.2 and 4.3, except that training of the N-unit, the P-unit,
and the postregjector is donein parallel in a SIMD fashion. Since the training procedures
of these modules are very similar, we will concentrate on the training procedure of the
N-unit. Sincethe N-unit ischosen to be a two-stage backpropagation network or asingle
stage delta rule network, we concentrate on the paralelization of these learning

procedures.
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5.2.1 The Weight Batching and the Stochastic Backpropagation Algorithms

The backpropagation algorithm, also referred to as the generalized delta rule algorithm,
isthe generalization of the delta rule algorithm to multiple stages[1]. For thisreason we
first concentrate on parallelizing the backpropagation agorithm and then use this result

to parallelize the delta rule algorithm.

The paralel version of the backpropagation algorithm (referred to as SIMD-BP) is
designed for MasPar MP-1 with 16K PEs. Our design included backpropagation
networks with one and no hidden layer. Without any hidden layer, the algorithm is the

sarne asthe delta rule with output layer nonlinearities and isfurther discussed later.

In standard backpropagation, an input pattern is presented to the network. Based on that
pattern, the network computes an output pattern. The output pattern is compared to a
desired pattern and an error vector iscomputed. Theerror is backpropagated through the
network; based on the amount of error passing through each connection, the weights are
changed. After that, the next pattern is presented to the network and this procedure is
repeated for the new pattern. In the SIMD version of this algorithm, the weights are not
changed after each pattern. The weight changes are stored; after the completion of a
sweep they are added together, and only then the weights are updated (weight batching)
baaed on the total weight change computed. Figure 5.5 shows the training procedures of
the serial version of the backpropagation agorithm (BP) and its SIMD version (SIMD-

BP).

The following is the derivation of the backpropagation algorithm to clarify the difference
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between the SIMD-BP version and the serial version. Let us assume a network with N
output neuronsin a problem with P training patterns. Thetotal squared error defined for

one training sweep isdefined as
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1

E=
2P

P N
Y Y (dh - k) (92)
p=1ln=1

Where 4% isthe desired output value of the n™™ output neuron for the p** training pattern,

anti the 0%, stands for the actual output of then™ neuron for the p™ training pattern.

Below, we first discuss the weight changes between the hidden and the output layers.
Then, we describe the weight changes between the input and the hidden layer. The
results can be easily generalized to more than one hidden layer. When there is no hidden

layer, thefirst discussionisvalid. Then, the hidden layer is the same as theinput layer.

Using the chain rule we can find the rate of change of E with respect to w;;, the weight

connecting the j'" hidden neuron to thei'" output neuron, as

0E P Q9E 00}
= — X

= _— (93)
IMWij  po dof - oWy
where
oE 1
Py (d* - ob). (94)
ol
We: assume a sigmoidal activation function in the form
of = Ml , (95)
- Zx,’;,w,v,,,+9,-]
l+e "

where M is the number of hidden neurons, and x% is the j™ input to the output neuron, in

other words, the output of the j™ hidden neuron. We get
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Using Egs. (94) and (96) in Eq. (93) gives
O _ 1§ 00(1 - ob)(dl - Of). (97)
aW,J Pp 1

Therefore, using the gradient descent (steepest descent) algorithm [4], the weight change

for w;; isgiven by

P
AW,‘j = p Zx50€(1 - 0?)(‘1[17 - Of) (98)
p=1

where pisasmall constant called the step size.

For the weights connecting the input layer to the hidden layer, the derivation is dlightly
more complicated. Let us assume that vy is the weight connecting the k™ input neuron

to the j* hidden neuron. Then, we have

1 2
- ﬂ (99)
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where x£ is the output of the j ** hidden neuron for the p™ training pattern and is given

by
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where K isthe number of input neurons (ie. the length of the input pattern), and i§ isthe

k™ bit* of the p™ training pattern. Using the chain ruleagain, we get

P ox?
OF _ ¥ 9E o (101)
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and from (96),

oxf
o= #5 - ) s
we get
aE _ 1 P -p_p p N D D /4 P
a_-—-__F zlixj(l "‘.Xj)zwnjon(l — oQ)(dy — 0%). (104)
Vik p=1 n=1

The weight changefor steepest descent is

® Jn binary representation o t k input pattern, the k™ bit h asavalued 1 or 0, whereasin continuousrumber representation, this
input is the k** component on the analog input pattem vector.
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P N
Avy =p Y iExB(1 - xB) ¥ wpioh(1 - 0h)(dh - oh). (105)
p=1 n=I

In other words, the network has to calculate the weight changes due to all the training
patterns, add them up and update the weights based on the total weight change
accumulated over the entire sweep. In practice, however, the weight update in the serial
implementation is performed after each training pattern (stochastic method). In other

woerds, using (98) and (105) , the weight changes are computed as

Awyy = pxRof (1 - o )(df = o) (106)

anti

N
Avjy = pikxf (1 = x§) 3, wajoh(1 — ohX(dh - o). (107)

n=1
It can be shown that if the step size p is sufficiently small, the weight update can be
performed after each pattern and reach a minimum of the error function E after a series
of very small steps. While this approach is proved to work, its speed is very slow.
Figure 5.6 shows the descent steps taken to move to the minimum of a paraboloid by the

exact algorithm (weight batching) [1] and the approximate version (stochastic method)

[1].

5.2.2 The SIMD-BP and the SIMD-A Algorithms

The SIMD-BP and the SIMD-A use the exact method, mainly because it alows data

parallelism. In these algorithm wecreate, in parallel, as many networks as the number of
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Figure 5.6 The Descent Paths toward the Minimum of a
Paraboloid Function for the Weight Batching Technique (Solid Line),and
the Stochastic Technique (Dotted Line).

training patterns. Each network is given a training pattern and computes a weight change
vector for al the weights in the network, based on its pattern. After the sweep is
complete, these weight change vectors are added together using avery fast MP-1 library
routine called reduceAdd. Then, the weight vectors on all the networks are updated
based on the total weight change vector. This vector is sent to all the PEs of MP-1 using

the XNET structure.

The use of the exact algorithm results in data parallelism, and most of the speed-up

achieved is due to this type of parallelism. Thus, the two types of parallelism utilized by
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the SIMD-BPare asfollows:

« Architectural Paralldism: This paralelism issimply due to the parallel nature of
the architecture of layered feed-forward networks. The computations performed in
the neurons of the same stage can be performed all at the same time. Since there are
no connections between the neurons of the same stage, no communication overhead

IS necessary*.

o Data Paralldism: As discussed above, most of the speed-up is due to data
parallelism. Since the weight changes do not occur until after the sweep is over,
there is no more data dependency between the operations performed for different
patterns in the sweep. Consequently, these computations can be done in parallel.
Therefore, we can simulate more than one network at a time and train each one to
learn a different input pattern simultaneously. These networks all have the same
initial random weights and, ideally, only one input pattern to learn. Each network
calculates weight changes for its weights based on the input pattern and the desired
output pattern it is assigned to. Thisis done for al the networks at the same time.
After this step, the weight changes are accumulated from all the networks and the
weights of all the networks are updated simultaneously, based on the accumulated

weight changes from all the networks.

*
One could assign a PE to every neuron in the network. However, this does not bring a higher degree of parallelismthan the case
when there is only as many PEs assigned to the network as the number of neurons in the largest layer. This isdue to the serial
rature of the stages and the communicationoverheadrequired for communication between two fayers.



To better describe the SIMD training algorithms, we discuss the algorithm with the
example of the 10-class remote sensing Colorado problem. This problem was described
in Section 2.1.2. It involves classifying each input pattern into one of ten possible
classes. The data set consists of 1188 patterns of length seven for training and 831

patternsfor testing. Figure 5.7 shows the PE array of MP-1 in
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a 128x128 grid array as it was arranged for this problem, using a 7-100-10 input-hidden-
output neuron backpropagation network. Figure 5.8 shows the PE array of MP-1

arranged for the same problem for the 7-10 input-output delta rule network.

128

Ami A

100

128

Unused PEs

36

Fi gure 5.8 PE Array of MP-1 Partitioned for the Colorado Data S& for the
7-10 Ddta Rule network. Each Network Learns Only One Pattern of
the Training Set.

Figures 5.7 and 5.8 show the architectural parallelism for the Coloratlo data set. Each
network issimulated by 100 PEs (10 in figure 5.8), which is the size of the hidden layer

of the backpropagation network (size of the output layer of the delta rule network). These
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100 (10) PEs first emulate the 100 (10) hidden (output) neurons of the network. In the
case of the two-stage backpropagation network, once the calculations for the first stage
at: performed, the output values of the 100 hidden neurons are communicated to the first
10 of the 100 PEs. Then, the remaining 90 are disabled and only the first 10 PE are
active to emulate the output layer. Figures 5.7 and 5.8 aso show the data parallelism for
the Colorado data set. With the layout shown, the SIMD-BP and the SIMD-A learn 156

and 1188 patterns simultaneously, respectively.

It is important to keep in mind that the degree of parallelism achieved depends on the
number of processors assigned to each network and the number of training patternsin the
training set. For example, the 10-class Colorado problem has 1188 patterns in itstraining
set and the number of PEs required for each backpropagation network is 100, where for

the. delta rule network it is 10. Therefore, the maximum number of backpropagation

16384

100 =163, where the maximum number of

networks running simultaneously is <

delta rule networks is < 16384

=1638. For the simplicity of communication patterns,
we chose to have only 156 backpropagation networks running simultaneously**.
For the SIMD-A there were only 1188 simultaneous networks, since: there were only

1138 patterns in the training set. Out of the 156 backpropagation networks, 94 were

given 8 patterns and the remaining 62 were given 7 patterns (7x62+ 8x94 = 1188),

** ]Jf we hod chosen 163 networks running simultaneoudly, loading the input pattems into the PEs correctly would become nore
difficult and the communication pattern among the PEs would have become irregular, which would fave caused the PE-to-PE
communication to be achievedin several serial steps rather than me parallel step.
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which gives a degree of virtualization of 7 (which is explained further below). The
SIMD-A networks each received one pattern, making the degree of virtualization 0.
Hence, at any given time, we are computing the weight changes for 156 different patterns
in the SIMD-BP agorithm and 1188 in the SIMD-A. Figures 5.7 and 5.8 show the layout
of the 156 backpropagation networks and the 1188 delta rule networks in the MasPar PE

array.

In any parallel machine, the degree of paralelism is limited to the physical parallel
resources of the machine. For example, in the MP-1 with 16K PEs, the maximum degree
of parallelism achievable is 16384, since a maximum of 16384 operations can be run
simultaneously at any given time. The real degree of parallelism for a given algorithm is
normally much lower than the maximum degree possible. For example, in the Colorado
problem, every backpropagation network required 100 PEs, thus allowing 156 parallel
networks. In order to have one backpropagation network per training pattern, we ideally
would have required 100x1188 = 118800 PEs. Since this many PEs were not available,

we implemented aconcept referred to asvirtualization.

Theideais similar to that of virtual memory, where one assumes that there is a much
larger memory space than what the machine's physical resources offer. We assumed that
118800 PEs were arranged in a three dimensional PE grid array. The three-dimensional
array is made of 8 layers (slices) of 128x128 PEs (Figure 5.9). Since: there is actually
one: physical layer of PEs available, the PE array of MP-1 has to be programmed to
emulate the layers of the 3-D grid serially. Thus we end up running 156 networks at a

time, and at any given time the PE array isemulating a different layer of the virtualized
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Virtual PEs which are emulated
bythe PEin the X,y coordinate
(127,0) of the PE array of MP-1

Figure5.9 The3-D Virtual PEArrayfor the 10-Class Colorado Data Set.

PE grid. Notice that the shift from one virtual array to another is done serialy. In other
words, the physical PE array has to process the first 156 networks before it can switch to
the second batch. This seria portion of the agorithm is a "bottle neck" for the

throughput* of the algorithm. This serial loop is eliminated in the SIMD-A case for the

* By throughputwe mean t k part of the algorithmin whicht k output of the network fora given pattem is calculated.

8 slices
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10-class Colorado problem because of the degree of virtualization of zero.

The data distribution among the PEs has to take the virtualization factor into account.
Each PE receives the datafor all the virtual PEs which it isassigned to emulate on all the
virtual layers. Care must be taken in loading the data into the PEs, so that each PE
receives only the data which the virtual PEs it isassigned to would have received. Also,
the programmer must be careful about the fact that in the last slice there might not be
enough data to require the services of the entire PE array. In this case, those PEs which
have run out of data must be inactive for the computations of the last dice. Loading the
data into the correct PEs was done using the PP-read and the xnetc constructs described
later. These two paralel constructs are very efficient, making the cost of this
preprocessing relatively small in relation to the actual cost of learning. Table 5.1 of
Section 5.4 shows the average time required for loading and distributing training data in

the case of the backpropagation networks with the virtualization degree of 7.

Another costly part of initiating the networks (backpropagation or delta. rule networks) is
generating floating point random numbers for initial connection weights and distributing
them among the PEs correctly. This procedure is so costly that storing some random
values and loading them from a file should be considered. To generate the random
numbers, we used a random vector generator routine from the MasPar mathematics
library called fp_veyran, which generates a Y-oriented random vector and stores its
elements in the first column of the MP-1 PE array. To distribute the weights among all
the networks, we again used the xner constructs. Table 5.1 shows the average time

required for thistask for the SIMD-BP.
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Figure 55 shows the block diagram of the serial and the SIMD version of
backpropagation or delta rule algorithm. The SIMD-BP and the SIMD-A programs are
designed to arrange the PE array to achieve the minimum degree of virtualization thereby
achieving the maximum degree of parallelism. They are written in such a way that they
detect and adjust to the size of any given problem automatically. For this purpose, the
program considers two parameters. 1- Thesize of the largest layer of the network, 2- the
number of training patterns. For example, for a classification problem with 500 training
paiterns and a network with 10-20-5 input-hidden-output neurons, the program requires
no virtualization (virtualization degree of zero). Figure 5.10 shows the PE array
arrangement for this problem. The remaining part of the SIMD-BP takes the degree of
virtualization (slice) and a parameter called offset into account. The offset is the number
of PEs in the last slice which still have data and which should be kept active for the
calculations of that slice. The program then performs the operations of each slice
separately. It first deactivates the PEs not required for that slice and then has the ACU
decode the instructions and send them to the PEs, which in turn perform the operation if
their enable flag is high. The SIMD-BP and SIMD-A programs are thereby written in

such a way that they detect and adjust to the size of any given problem automatically.

Figure 57 shows how the backpropagation networks are organized in the MP-1
implementation for the Colorado problem. The first 128 networks were chosen in a
vertical layout fashion and the remaining 28 in the horizontal laycut fashion. This
produces the simplest communication pattern. An inverse layout pattern (first 128

horizontal and the rest vertical), would result in additional communication overhead to
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Fi gure 5.10 The PE Arrangement for a 2-Stage Backpropagation Network
with the largest layer of size 20 for a Problemwith 500 Trainiing Patterns.

distribute the input patterns to al the PEs in each network. Further speed-up can be
achieved by assigning 10 x 10 square of PEs to each network instead of a 100x 1 array
of PEs. Thisresultsin communication paths with maximum length of 10, instead of 100.
At the cost of a more complicated communication pattern, this could result in a slight

speed-up.

The way the networks are organized issuch that the first PE in all the networks can easily
be enabled. The input patterns are loaded into the first PEs of the networks using the

parallel read command [12]:
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cc = p_read(d, buf, nbytes)
plural int cc;

intd;

plural char *buf;

int nbytes;

Thiscommand was used in thefollowing format:

{ (iyproc==0)\|((iyproc>=hn)& &(ixproc==0)))

Fstatus=p_read(fd, &x[slice][0], invecht);
The i statement enables the first PE of each network (Figure 5.7). ixproc and iyproc are the x
and the y coordinates of each PE, respectively, in the 128x128 PE array. #n isthesze of the
hicdden layer (in this case 100). invecht is the size of the input vector in bytes, and dlice is the

degreed virtualization. Noticethat theentireinput vector is read into the first PE in one shot.

After the loading of input data, the first PEs proceed to communicate the data to the rest of the
PEs in thaeir networks. This communication uses the xnetc command [12]. The xnetc command

was used asfollows:

if (iyproc==0)
xnetcSThn-1].x[slice][i] = x[slice][i];

{( (ixproc==0) && (iyproc >=hn))
xnetcEfhn-1].x[slice][i] = x[slice][i];
Th: if statements enable the first PEs of the networks. The letters "S" and "E' specify the
dirzction in which data should be sent (South and East). hn-1 isthe step size, which means"send
100 - 1=99 PEs to the south or eat”. Notice that since xnetc is used, a copy of the

communicated dataisleft in each relaying PE memory at theright location.

The forward calculation of data also requires some communication which uses anetp and xnetc.
To calculate the totd AW (the change in the weight matrix), we used two library routines from

MP-1’s mathematicslibrary MPML [14]. Thesetwo routinesare:
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void fp_matsumtovex ( Ny, nx, B, nxB, yoffB, xoffB, VX )
int ny, nx, nxB, yoffB, xoffB;

plural float *B, *VX;

and

void fp_matsumtovey ( ny, nx, B, nxB, yoffB, xoffB, VY )

int ny, nx, nxB, yoffB, xoffB;

plural float *B, *VY;
Thefirst routine adds the columns of the matrix B starting from row yoffB8 and column xoffB for
ny rows and nx columnsand putsthe resultsin the x-oriented vector VX. The second routine adds

the rows of this submatrix and putstheresultsin the Y -oriented VY vector.

For example, one could use the fp_matsumtovey library routine to add the processor numbers
(iproc*) assigned to each processor row by row from the 4" row to the 100 row, and from the
6" PE in each row through the 120" PE in that row, and put the sum valuesin a Y-oriented

vector in the 0% column of the PE array. The stepsto perform this operation are as follows:

1 plurd floatB, VY;

2 B =(plural float) iproc;

3 fp_matsumtovey( 96,114, @B, 1,3,5, @VY);
In statement 1, the variables B and VY are declared across all processors. In statement 2, the
iproc vaue of each PE is assigned to the variable B of that PE. In Statement 3, the
fp_matsumtovey function is used to add the values of the B variablesin each row from the 4™ to

the 100” row, and each row from the 6” element to the 120" eement, and put the result of

* In the PE array of MP-I each PE can be identified in two ways. First way is to identify the row sumber ixproc and the column

number ¢yproc of the PE in the two dimensional PE grid array. Thesecond way is to identify the processor number iproc of the PE
(see Figure5.11). Where iproc=ixprocxnxproc+iyproc+1 and nxproc isthe number of PEs in arow (in 16K machine, 128).
‘Therefore the expressions proc{3]{4].B and proc{389].B are equivalent and both point to the value of the variable B of the PE in
the 4" row and the 5% column.
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ixproc = 3 row
~ iyproc =4
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Figure5.11 An Example of the Operation of the fp_matsumtovey Routine.

eachrow inthe VY variableof thefirg PE of that row** (seeFigure5.11).

The backwar d propagation of erar and updating the weights uses the sameroutines in thereverse

direction of the network.

** “The number of PEs in the Y direction ny=100—4=96
“The number o PEs in the X direction nx=120-6=114
The starting row yoffB=4—1=3; thefir¢ PE in each rowisthe 0" PE
The starting PE number in every row xoffB=6—1=5; thefirs PE in each row isthe 0* PE




137

5.3 Time Complexity Anaysis

In this section, we will analyze the time complexity of PPSHNNI, PPSHNN2, and their
respective parallel versions. Since training takes much longer than testing, we only concentrate

on the time complexity of the respectivetraining procedures.

5.3.1 The PPSHNN1 and The SIMD-PPSHNN1 Algorithms

The PPSHNN1 consistsof severa two-stage networks. A few examplesof these networks are:
the first N-unit created for the first module, the P-unit created for the first module (if necessary),
the reduced N-unit for the first module (if a P-unit was created for that module), the N-unit
network for the second module, the P-unit created for the second module (if necessary), the

reduced N-unit for the second module (if aP-unit was created for that module), etc.

Over 90% of the training time of PPSHNNI is spent on training these networks. The time
required for the statistical analysis of the S-units, and overhead operations required for self-
organization is less than 10% of thetotal training time. It is alsoimportant to keepin mind that
all these networksare equal to or smaller in size than thefirst N-unit created for the first module.
Also, the number of patterns with which they are trained is less than thd: of the first N-unit
created for thefirst module. Thereforethetime requiredfor their trainingislessthan the training

time of thefirst N-unit network created for the first module. For this reason we get

Tppsunn1 =6 [TBP] (108)

where Tppsynn1 is the time complexity of the PPSHNNI network and Tgp is the training

time complexity of the first backpropagation network created. With the same argument,
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Tsimp—-ppseNN1 =0 [TSIMD —BP] (109)

Fcr this reason, we first analyze the time complexity of the serial backpropagation BP

and the parallel version SIMD-BP agorithms for a two-stage feed-forward network.

Since the time taken to perform floating point addition, multiplication, and
exponentiation is a good indication of the time required by the training procedure, we

estimate the number of such operations performed in each type of training procedure.

The Serial BP Algorithm:

Let us denote the number of input neurons to the network with r;, the number of hidden
neurons with n, (assuming one hidden layer in the network), the number of output
neurons with n,, and the number of training patterns in the training set with P. Since, in
the first stage, a backpropagation network has to perform one multiplication for every
connection, we get n; X n;, floating point multiplications for the first stage. To add the
incoming signals to each neuron and subtract the result from a threshold [1], we need
n, X n; floating point additions for the first stage. In the same way, we can find ny X n,

floating point multiplications, and n, X n;, floating point additions for the second stage.

Therefore we get a tota of ny X [n;+no floating point multiplications, and

ny X [n,- +no] floating point additions. We also require a total of ny -+ n, floating point

exponentiation for the two stages.

Let us denote the time required for a floating point addition by a, the time needed for a
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floating point multiplication by B, and the time required for a floating point
exponentiation by y. Since theerror backpropagation through the net and weight changes
require the same order of floating point additions, multiplications, and exponentiation as
forward propagation, and since this procedure is repeated P times, once for each pattern,

the time complexity of the backpropagation network becomes

Tgp =0 |P ny [n;+no] [a+B} +P [nh +no] Y|=O |Pn, [n,-+no]}. 110)
Sincen; isO ["ol for the Colorado problem, we get
TBP=0 [P ny no]. (111)

The SIMD-BP algorithm:

To calculate the time complexity of the SIMD backpropagation algorithm, in addition to
the: time required for floating point additions and multiplication, we have to consider the
communication overhead. Let usfirst consider the additions, the multiplications and the
exponentiation. Since in SIMD-BP all the neurons of each stage operate in paralel, we
only need n; multiplications, n; additions, and 1 exponentiation for the first stage and ny
multiplications, n; additions, and 1 exponentiation for the second stage. Thus, the

computation time needed to process one pattern is on the order of
[n,- +nh]x[ at B] +2 xv. Since the communication overhead is on the order of the

length of aside of the PE array which is 128, the communication overhead ison the order

of nyprocxC, where C isthetime it takes to communicate a float value from one PE to its




immediate neighbor, and nyproc is the length of the PE array in the y direction

(nyproc=128).

Thus, we get

Tsimp-gp =0 slice |, 112)

[n,- + nh] [oz + B] + 2 ¥+ nyprocxC

Xnp

P .
where dlice = { ] is the degree of virtualiration and N is the number of PEs in the

MP-1 PE array. Because both n; and n, are O [nyproc] , wecan right

Pnh

[n,- + nh] + nyproc}

N

Tsiyp-pp =0

P ny, nyproc
h RYD } (113)
Af

and since N = nyproc? we get

Pnh
N

Therefore, by using equations (108)and (111) wecan write:

Tsiup-gp = O (114)

Tppsunn1 =6 [TBP] =0 [P nhno], (115)

and using (109)and (114) gives:
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TsiMD-PPSHNN1 = e [TSIMD—BP] =0

P ny,
. (116)

5.3.2 The PPSHNN2 and SIMD-PPSHNNZ2 algorithms

The PPSHNN2 which implements PNS modules, uses delta rule networks. This means
removing the hidden layer(s) of the backpropagation network. Then, there are just the
input and the output layers. The derivations of the Equations (92) through (98) still
apply. Theerror function is defined asin (92) and the gradient descent algorithm results

in the weight change of

P
Aw;;=p 3 xE08 (1 - of )(d¥ - of) ain
p=1

as before. Since there are no hidden layers, this weight change equation appliesto all the

weights in the network.

Similar to the argument for the PPSHNNI1, we can show that most of' the time required
for the training of a PPSHNN2 network is spent on training the neural. network modules

which are chosen to be single stage delta rule networks. Hence, we can write

Tppsunn2 =9 [TA] (118)

where Tppsynn 2 1s the training time complexity of the PPSHNN2 network, and 7', isthe

training time complexity of the first deltarule network created. With the same argument,
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Tsimp-ppsenN2 =6 [TSIMD —A] (119)

Fer this reason, we first analyze the time complexity of the serial delta rule algorithm
which we denote with A, and its parallel version SIMD-A. Like before, we take the time
needed to perform floating point addition, multiplication, exponentiation, and the
communication overhead in the parallel case as a measure of the time required for the

training procedure.

The Serial Delta Rule Algorithm:

Since there is no hidden layer in the two-layer network, the number of PEs assigned to
each network on the MP-1 PE grid depends on the number of neurons in the output layer

of the network. Thisisdetermined by the coding scheme used for output.

As before, we denote n; to be the number of input neurons, n, the number of output
neurons, and P the number of training patterns in the training set. Since there are two
layers of neurons, there is only one stage of connections between the layers. In this
stage, the delta rule performs one multiplication for every connection (hence n; X n,
floating point multiplications), n; X n, floating point additions to add the incoming
signals to the output neurons and subtract them from a threshold, and n, exponential

operations.

If, as before, we denote the time required to perform a floating point addition,
multiplication, and exponentiation by a, 3, and v, respectively, the time complexity of a

serial delta rule network can be estimated as
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Ta=0

Pn;n, [a+[3]+Pnoy}, (120)

or.,
Ts=0[Pnyni (a21)

The SIMD Delta Rule Algorithm:

Similar to the case of networks with hidden layers, in addition to the: time required for
floating point addition and multiplication, the communication overhead also has to be
taken into account in the parallel algorithm. For this purpose, as before, the value C is
introduced as the time required for a floating point value to be sent from a PE to its

immediate neighbor.

Since the operationsin the stage are performed in parallel, there are only n; floating point
multiplications, n; floating point additions, and 1 floating point exponentiation. Thus, the

toral time required for the additions and multiplications and exponentiations needed for
the computations of one pattern is n; X [a+ B ] +v. Since the PE array is

nxproc X nyproc, which is 128 X 128 in the 16K machine, the communication overhead

isat most on the order of C X nyproc. Therefore, the time complexity can be estimated

Tsiyp-a = O | slice [n,- [ a+PB ] + C nyproc + 'y] (122)




xn,

P : T o
where slice = { } is, as before, the degree of virtualization and N is the number of

PEs in the MP-1 PE array. Also, becausen; is O [nyproc ] we can write

P P
n, nyproc] =0{ ] (123)
N j}N

The PPSHNN2 and SIMD-PPSHNN2 Algorithm: Again by using equations (118), (119),

Tspup-A=0

(121), and (123), we can estimate the time complexity of the A and the SZMD-A

algorithms asfollows:

Tppsunn2 =6 [TA] =0 [P noni], (124)

and

TsiMp-pPsHNN2 = 0 [TSIMD —A] =0

P n,
. (125)
W

54 Speed-Up Analysis

In this section, we compare the order of theoretical speed up and the actual speed up
achieved in our experiments for the PPSHNN1 network with two-stage backpropagation

networks, and the PPSHNN2 network with single stage delta rule networks.

The actual speed up comparison is made between the run time of each algorithm on a

Sun 3/60 station and its respective SIMD version on MasPar MP-1 with 16K PEs.
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It is important to mention here that the actual speed-up factor achieved in experiments
embodies both parallel speed-ups and hardware differences in the floating point units of
the two systems. The floating point co-processor in the sun system is a full blown
floating point unit, whereas the floating point units of the MP-1 have 4-bit ALUs and
most of their operations are performed by table look-ups. In addition, in MP-1 the
floating point units are shared among the PEs of a PE cluster. Therefore, not every PE
has access to a floating point unit at all times. Despite all the hardware differences, our
experiments show that the overall floating point capabilities of a MP-1 PE and of the Sun

3/650, for most applications, are comparable.

T,
PPSHNNI1: The order of estimated speed-up is to be measured by PPSHNN1

TsipMp—_PPSHNN 1

Equations (111) and (112) give

T P ny n,
PPSENNL 5| Pny |=0 [no \[ﬁ] (126)
Tsimp-PPSHNN 1 \fﬁ

For example, in the 10-class Colorado remote sensing problem, we have: n; =7,
P=1188, n, =100, n, =10, slice =8. For this problem run on the MP-1 with

N = 16384 PEs, we get

n, YN =10 x V16384 = 1280.

In our experiments with backpropagation on a Sun 3/60 work station, each sweep of

training for the 10-class problem takes an average of approximately 7 minutes and 30




seconds. On MasPar, on the other hand, every 100 sweeps takes an average of
approximately 14 seconds. This resultsin a speed-up factor in this particular case equal

to

[7)(60 + 30] x100
14

=3214.

Figure 5.12 showsthe run timesfor different size hidden layersof the SIMD-BP.
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1188 Training Patterns.




147

The relatively big jump in the training time between the 80 and 90 hidden neuron
networks is due to the addition of another slice to the virtual PE array, which increases

the degree of virtualization by one.

Table 5.1 shows some time indexes for the 100 hidden neuron network, which performed

the best classification for the

Table 5.1 Actual Timelndexesfor VariousParts of the SIMD-BP Algorithm.

first stage second stage o
712 MCS 06 M | e MO
: : : 075315 sec./sweep
besttme 0013001 sec./sweep | 0062314 sec./sweep| .
throughput 28.54 MCS
worst time 1307 MCS 19.25 MCS 1753306 SEC. /sweep

00130064 sec./sweep | 00623242 sec./sweep| g(  _ sec./sweep

{1
PeSLMe | 0o0soa4 sec./sweep | 0.030401 SeC./SHERD| g ases sec./sweep
weight update
| 18672 MCUPS | 3938 MCUPS | @049 MCUPS
worst time '
0.00509008 sec. Isweep | 0.0305117 sec./sweep| 0.035611  sec. /sweep
lloading and distributing 0236411 second for 1183 paterns
raining date 502515 patterns/second
loading and distributing 0.0410522 second for 1183 paterns
desired data 2893877 patterns/ second
generating and distibuting 0.449686 Seconds for 1810 connections

random weights 402503  connections / second
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10-'class problem. For this problem, the SIMD-BP agorithm reached a peek
performance of 0.013001 seconds for calculating the throughput of the first stage (800
connections) for al the patternsin one sweep (1188 patterns). Thisisequivalent to 73.12
MCS (Million Connections per Second). The worst performance for the first stage was
observed a 73.07 MCS, or 0.0130064 seconds for a sweep. Notice that the times
mentioned for the first stage aso include the floating point exponentiation required for
the activation functions of the hidden neurons. The best performance of the second stage
(1010 connections) was 19.26 MCS, or 0.062314 seconds for a sweep. The worst
performance for this stage was observed at 0.0623242 seconds per sweep, or 19.25 MCS.
The times for the second stage include the exponentiation required for the activation
function of output neurons and the communication overhead to communicate the output
of the hidden layer to the input of the output layer. For the weight update of the first
stage we achieved a pesk peformance of 0.005084 seconds per sweep, or 186.94
MCUPS (Million Connection UPdates per Second), while the worst performance was
186.72 MCUPS, or 0.00509008 seconds per sweep. For the second stage, the peek
performance was 39.47 MCUPS, or 0.030401 seconds per sweep, while the worst speed
was 0.0305117 seconds per sweep or 39.33 MCUPS. Thetimesfor the second stage also
include the communication overhead for the backpropagation of the partid errorsto the

first stage.

PPSHNN2: Similar to the PPSHNNI1 case, the order of the theoretical speed-up of the

Tpp
paralld PPSHNN2 agorithm can be estimated by the ratio ———or 2

. Usng
SIMD -FPPSHNN 2

equations (120) and (121) thisratio becomes
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T P n, n;
PPSHNN2 _ _g| Pn, |=0 [n‘. \j’ﬁ] a27
TsiMD-PPSHNN 2 —‘fi—

For the example of the 10-class Colorado problem with n;=7, n,=10, P=1188, and

slice=1, and aMP-1 array size of N=16384, we get

n; VN =7 x V16384 =896 .

The actual speed up in our experiments between the serial and the parallel versions of the

PPSHNN2 agorithm run on Sun 3/60 and MP-1 respectively was measured asfollows:

The serial algorithm takes approximately 19 seconds to complete one training sweep.
The parallel algorithm running on MP-1 takes an average of 1.75 seconds for every 100

training sweeps. Thisresultsin a speed up factor in this case equal to

19x100
1.75

= 1086.

Table 5.2 shows some time indexes for the PPSHNN2 network running on MP-1 for the

10-class Colorado problem.

For this problem, the SIMD-A agorithm reached a peak performance of 0.001625
seconds for calculating the throughput of the network (80 connections) for all the
patterns in one sweep (1188 patterns). This is equivalent to 58.48 MCS. The worst
performance for the first stage was observed at 58.46 MCS, or 0.0001.626 seconds for a

sweep.




Table5.2 Actual Time Indexesfor Various Partsof the SMD-A

Algorithm.
network
best time 5848 MCS
0.001625 sec./sweep
throughput
worst time 5846 MCS
0.001626 sec./ sweep
. 14955  MCUPS
best time 0.0006355 Sec. / sweep
weight update
worst ime 14937  MCUPS
0.00063626 sec. / sweep

For the weight update of the network, we achieved a peak performance of 0.00063550
seconds per sweep, or 149.55 MCUPS, while the worst performance was 149.37

M(CUPS, or 0.00063626 seconds per sweep.

As we see, while the first stage of the backpropagation network: achieves higher
throughput and update rate than the delta rule network, asa whole, the backpropagation
network performs slower than the delta rule network (28.55 MCS versus 58.48 for
throughput and 60.60 MCUPS versus 149.55 MCUPS for weight update). Thisisdue to
the much slower second stage of the backpropagation network. Much of this slow-down,
compared to the first stage of the network, is due to the communication overhead

required to communicate the output of the first stage to the PEs responsible for the output
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layer.

As we see, the weight update performances for both networks are about twice their
respective throughput performances. Thisis unusual since updating the weights is much
mcre computationally intensive than throughput. For weight update, one must find the
gradient of the error function in order to find the steepest descent path. The evaluation of

the following expression,

= (128)

which is computationally more intensive than the computations involved with the
throughput is necessary for the calculation of the steepest descent path. Thisexpression,
however, can be written as

p

(04 .

Wz see that al the components of this expression are either given or have been
calculated during throughput. Thus, there is no need to recalculate these partia results.
By using their values from the throughput stage, we can avoid floating point
exponentiation as well as most other floating point operations. This produces the speed-

up factor observed during weight update.
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5.5 Parallel Testing

The procedure of parallel testing of the network issimilar to that of training except that
during the throughput the hierarchy of the modules can beignored. Thus, all the P- and
NS- units are implemented in paralel. All the P- and NS-units receive the incoming
pattern, and based on their respective trainings, they perform classification. The result of
thisclassification isinterpreted differently from unit to unit. For example, the output of a
P-unit is interpreted as accept or reject, whereas the output of a NS-unit is either
classified into one of the classes which the unit was trained with, or it is classified as
reject. If a P-unit and its S-unit classify a pattern as accept, the classification of the
succeeding modules in the hierarchy are ignored. In this case only the classification of
the NS-unit(s) corresponding to that P-unit matters. If a P-unit and/or S-unit classifies
the pattern as reject, the classification of the module is disregarded, and the classification
of the succeeding moduleisconsidered. Notice that, similar to training, depending on the
size of the PE array and the number of PEs required to simulate the parallel network,
several patterns are classified at the same time. Hence, the two types of data parallelism

and architectural parallelism also exist in the testing procedure.

As an example, Figure 5.13 demonstrates the network developed for the 10-class
Colorado problem. W e have marked the P-unit of the first and second modules as Pl and
PIl. The P-units within the NS-unitsare marked p1, p2, p3, etc. The NS-units are also
numbered in this manner. Figure 5.14 shows the division of the MP-1 PE array for the
testing/recall of this network. Asshown, the networks are simulated by columns of PEs.

This arrangement results in the simplest communication pattern for distributing the
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—»| p1 |——»{pt [Ns1
NS2

vy

Pl p2 | NS3
3 | NS4
p4 [ NSS
p5 | NS6
NS7

122

Figure 5.13The PNS Block Diagram for the 10-ClassProblem.

patterns. As we see, for each module first the P-unit is mapped and then the NS-unit.
Thisway, if a P-unit accepts the current pattern, the classification of al the units after the
corresponding NS-unit(s) areignored. Aswe can also see from the figure, the network is
repeated as many times as possible in the PE array. This allows data parallelism, which

allows the classification of several patternsat a time.

For example, let us assume that the current pattern belongs to class 1. The Pl unit will
accept this pattern, rendering the disregard of the classification of al the units after NS3
and higher. Then the classification of pl is observed. If the vote is regect, the
classification of NS1is also disregarded and the classification of NS2 is regarded as the
only relevant classification. This could result in either class 4 or 5 (see Figure 6.8),
which would be a misclassification. If however, p1 accepts the pattern, NS1 is the

relevant unit and classifies the pattern as either class 1 which would be correct, or 7 (see
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Figure5.12The Division of The PE Array for the Testing
of the 10-Class Colorado Problem.

Figure 6.8) which would beincorrect.
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CHAPTER 6

EXPERIMENTS AND RESULTS

The experimental results of two classification problems are discussed in this chapter.
The first one is the speech synthesis problem and the second application is the 10-class

Cclorado data set.

The networks used are SIMD-PPSHNNI1 and SIMD-PPSHNN2. The results of these
networks are then compared to the results of the PSCNN and the backpropagation

networks.

The backpropagation network used as a comparison was a two stage feed-forward fully-
connected network. Various sizes of hidden layers were used to achieve the best
performance. In al backpropagation network, the step size was kept at 0.7. In all
SIMD-PPSHNN networks the step size was 0.01, and in PSCNN networks the step size

was 0.05.
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6.1 The Speech Synthesis Problem

There are two sets of data patterns for this application. One for training with 2319
patterns and another one for testing with 543 patterns. The characters “o", "u", "p", and
"z" were intentionally under-represented in training. The FLAP class was the most

represented class in the training set.

6.1.1 Backpropagation Results

As mentioned before, the backpropagation networks were all two-stage networks. The
size of the hidden layer was varied to achieve optimum classification accuracy. The
hidden layers tried had 20, 30, 40, and 50 hidden neurons. Figure 6.1 shows the
performance tables of these networks. The figure shows the best performance of the 20
hidden neuron network, which was after 50 sweeps. The 30 hidden neuron network had
its peak performance at 320 sweeps. The 40 hidden neuron network had its best
performance after 300 sweeps. Finaly, the network with 50 hidden neurons reaches its

best performance at 700 sweeps. We can also see from the graph that the network with

389

40 hidden neurons performs the best ( 543

=71.64%) among the 4 networks. Any

increase or decrease in the number of hidden neurons from 40 hidden neurons reduced

the accuracy of the network.
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6.1.2 PSCNN Results

Figure 6.2 shows the best results of four PSCNN networks. All four models were trained
with 200 sweeps of the training set. The first network has only one module and its best
performance is 60.59% . The second model has 3 modules and its best accuracy is at
72.74% . The third network has 5 modules and its classification accuracy is74.77%. The
last network and the best performing network has 9 modules and pel-forms at 75.14%.
Any increase in the number of modules from here on reduced classification accuracy.

Also the accuracy of the networks started to decrease after 200 sweeps.

6.1.3 SIMD-PPSHNN 1 Results

Two modules were created for this problem. Figure 6.3 shows the results of the two
module PPSHNN. The first module required a P-unit. It wastrained to reject /b/, /v/, I,
/sl 121, lel, lol, i/, and /i/ and to accept the rest. Figure 6.3 (a) shows the results of the
P-unit. It performed at 92.82% accuracy. This submodule had most problems with /p/.
This P-unit was trained to accept data belonging to this class, but it only accepted 23 of
the 43 patterns belonging to this class and rejected the other 20. Among the rejected
classes, the P-unit had the lowest accuracy with /e/. 1t was trained to reject al the /e/

patterns. It rejected 12 of 15 patterns and accepted 3 of them.

Figure 6.3 (b) shows the results of the performance of the NS-unit of module 1. The
results shown in this figure do not include the rejected data by the P-unit. We see that

module one correctly classified 84.3% of the data accepted by the P-unit, incorrectly
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after 50 sweeps

30 hidden neurons
after 320 sweeps

correct incorrect
classifications |classifications
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Isi 4 (]
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Space 115 1)
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(b)
50 hidden neurons
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[ comeect | incorrect
classifications classifications
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space 115 0
total 375=69.069 | 168=30.94%

classified 4.3% of them, and rejected 11.39%o0f them.

Module two did not build a P-unit. Figure 6.3.(c) shows the results of the second

correct incorrect
classifications |classifications
iti 32 24
Id 21 11
Ipl 0 43
bl s (]
vl 5 (4]
If1 4 0
Ist 4 (4]
1z] 1 17
flap 39 41
lal 96 o
let 15 (4]
ol 0 26
lul 0 22
il 22 0
space 115 0
total 359=66.11% | 184=33.89%
(a)
40 hidden neurons
after 300 sweeps
correct incorrect
classifications [classifications
It 39 17
dl 32 [0]
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Ifl 4 [))
Isl 4 0
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flap 52 28
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lol 0 26
hal o 22
lil 22 o]
space 115 0
total 389=71.64% | 154=28.36%
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Figure 6.1 Results of BPfor Speech Synthesis.




1-module PSCNN
after 200 sweeps

3-module PSCNN
after 200 sweeps
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Figure 6.2 Results of PSCNN for Speech Synthesis.

module's NS-unit. It correctly classified 47.87% of the patterns passed to this module.
36.7% of patterns passed to this module were misclassified, and 10.64% of them were

rejected.

e —
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Figure 6.3 Resultsof PPSHNNI1 for Speech Synthesis.

The overall performance of the two-module PPSHNNI is shown in Figure 6.3 (d). The
best classfication accuracy was 77.9%. As we can see, it outperformed the

backpropagation and the PSCNN networks not only in overall classification accuracy but
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also in classification of patterns belonging to under-represented classes such as /p/ and
fz/. Also, it is worth mentioning that 3.68% of the data was still rejected after two

modules. A third modulecould increase the accuracy by a slight margin.

6.2 The 10-class Remote Sensing Problem

This data set contains a set of 1188 vectors for training and a set of 831 vectors for
testing. The breakdown among the classes is shown in Figure 2.2. Each vector is of
length seven and any component of the vector can have a value between 0 and 250. As

seen in Figure 2.2, all 10classes are present in both the training and the testing set.

6.2.1 Backpropagation Results

As for the speech synthesis problem, different size backpropagation networks (all with
one hidden layer) were tried. Figure 6.4 shows the results of the three best performing
network. Figure 6.4.(a) shows the best result among al backpropagation networks with
55.72% accuracy. This network has 100 hidden neurons. In figures (b) and (c) the

results of two other networks are shown with 110 and 90 hidden neurons respectively.
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6.2.2 PSCNN Results

Figure 6.5 shows the results of two PSCNN networks, one with ¢ and one with 7
modules. The results are slightly better than the backpropagation networks, but still quite
poor in the under-represented classes. Best performance was achieved with the 9 module

network at about 56.68%.

Sample runs with the same data set were also done by other independent researchers [2].
In none of the cases was correct classification percentage above 60%. It isalso important

to :mention here that none of the networkslearned any of the classes2, 3, 8, 9, and 10.

6.2.3 SIMD-PPSHNN1 Results

The P-unit used for this experiment isshown in Figure 3.10 and its performance statistics
IS shown in Figure 6.6.(a). The performance of the NS-unit of module one is shown in
Figure 6.6.(b). Similar to the speech case, the results shown in the figure do not include
the rejected data by the P-unit. The performance of the NS-unit of module 2 is shown in

Figure 6.6.(c) and the overall performance of the network is shown in Figure 6.6.(d).

The P-unit was trained to regject classes 2, 3, 4, 8, 9, and 10 and to accept the remaining
classes. Its performance was about 95.5%. Overall, the PPSHNN1 performed better than

the other networks on the under-represented classes.

The result shownin Figure 6.6 are for the 100 hidden neuron network as the N-unit of the

first module. Other hidden layer sizes were tested, but the best results were revealed
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90 hidden neurons
after 700 sweeps
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Figure 6.4 Results of BPfor 10-Class Problem.

when we had 100 hidden neurons. Figure 6.7 shows the error curves of different SIMD-

BF networks run for the N-unit. The smooth exponentially decaying error function is a
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9module PSCNN

after 200 sweeps
correct incorrect
classificationsclassificationg
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(a)
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correct incorrect
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class2 2 22
class 3 (4] 42
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class7 66 4
class8 (0] 44
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(b)

Figure 6.5Resultsof PSCNN for 10-Class Problem.

characteristicof the exact algorithm. The error curves of the stochastic method are only

piecewise smooth.
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Figure 6.6 Results of SIMD-PPSHNN 1 for 10-Class Problem.

6.2.4 SIMD-PPSHNN2 Results

The performance of the SIMD-PPSHNN2 with PNS modulesis shown in Table 6.1. The
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correct Classfication performance was 73.16%. This performance improvement is
mainly due to the separation o hard to learn classes(classes 2, 3, 8, 9, 10) from the rest
of the classesin the firs stage. This separation causes the smplification of the problem
space and resultsin the improvement of the classification accuracy for both the "easy" as

wdl asthe "hard" to learn classes.

The P-unit of the first stage (Figure 6.8) allowsclasses 1, 4, 5, and 7 to be learned by the
NS-unit of the first stage, separately from the other classes. These classes are reatively

easy to learn, resulting in testing classification accuracy of 98.97%, 73.85%, 82.01%, and




Table 6.1 TheResultsof the SIMD-PPSHNN2 using PNS M odules for the
10-ClassColorado Problem.

i I g o o
correct | wrong |rejected! % % o
| correct | wrong [rejected

98.97 | 1.03 0

class 1 193 2 0

class 2 15 7+2 0 62.50 | 37.40 0
class 3 31 11 0 73.81 | 26.19 0
class 4 48 17 0 73.85 | 26.15 0
class5 | 114 25 0 82.01 | 17.99 0
class6 | 126 62 0 67.02 | 32.98 0
class 7 42 28 0 60.00 | 40.00 0
class 8 20 18+4| 2 45.45 | 50.00 | 4.55

0 24.00 | 76.00
48.72 | 51.28 0

73.16 | 24.31 | 2.53

class 9 0 6 19
class 10 19 |9+11| 0

over all 608 202 21

accuracy

60.00%, respectively.

By not including the other four classes with much larger training sample sgsin the
training set of the second stage, this stage can learn the remaining classes easier. The
NS-unit of the second stage further breaks down the problem space into simpler polygons
in terms of PNS modules. Thetesting performance of the second stage on classes 2, 3, 6,
8, 9, and 10 are 62.5%, 73.81%, 67.02%, 45.45%, 0.00%, 48.72%, and 73.16%, which

improvesthe overall performance of the network considerably.

Figure 6.8 shows the division of classes among the PNS modules of the network. The P-
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Figure 6.8. The Class Divisions Generated during Training of
SIMD-PPSHNNZ2for the 10-Class Colorado Problem.

unit of the first stage rejects classes 2, 3, 6, 8, 9, and 10, and accepts data belonging to
classes 1, 4, 5, and 7. Data belonging toclasses 1, 4, S, and 7 are sent to the N-unit of the
first stagefor classification. There are two modulesin this unit, one PNS module and one
NS module. The P-unit of the PNS module rejects classes 4 and 5. The other two
(classes 1 and 7) are sent to t he N-unit for classification. Hence, the NS module is

responsible for the classification of classes 4 and 5, and with a correct classification
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performance of 73.81% and 82.01%, respectively, it was considered satisfactory and no

P-unit was necessary.

In the second stage, the P-unit rejects data from class 9 and accepts the rest. Classes 2, 3,
6, 8, and 10 are sent to the NS-unit of this stage for classification. The NS-unit consists
of four PNS modules and one NS module. Thefirst PNSis responsible for classes 6 and
10. The P-unit of this module rejects classes 2, 3, and 8. The S-unit of the same module
also rejects some data belonging to class 10 due to the uncertainty of classification.
Therefore, the data set sent to the second module contains classes 2, 3, 8, and 10. The
second PNS is responsible for classes 2 and 8, and rejects classes 3 and 10 using its P-
unit. The S-unit of this module also rejects some data belonging to both classes 2 and 8,
thus resulting in a data set for the third PNS which contains all four classes 2, 3, 8, and
10. The third PNS is only responsible for the class 3 and rejects the rest. Because, the
N-unit of this PNS performed its task satisfactorily, its S-unit did not reject any patterns
to the next PNS. Classes 2, 8, and 10 are sent to the fourth module which in turn is
responsible for data belonging to classes 2 and 10, and rejects data belonging to class 8.

The last PNS (NS module) classifies the remaining data to class 8 or rejects them.

Overall, both PPSHNN modules outperformed the backpropagation and PSCNN
networks in all our experiments. Choosing PPSHNN2 with PNS module has the
additional advantage that it is relatively inexpensive to run. This is due to its simple

single stage units.
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CHAPTER 7

FUTURE RESEARCH AND CONCLUSIONS

7.1 Future Research

Future research will involve further development of SIMD-PPSHNN in terms of
accuracy, speed, and architecture. These studies should be carried out in relation to
complex classification problems, pattern recognition and signal processing. The outline

of the major issues of future research isasfollows:

After the experiments with the SIMD-PPSHNN1 were completed, it wasclear that
most of the effort should be directed towards the automation of the process of
finding the optimal network size for the N- and P-units. Up to that point, most of
the training time was spent to find the optimal N- and P-unit size rather than
training them. The result of this research was the PNS module which replaces the
nonlinear boundaries introduced by the backpropagation networks with piecewise
linear boundaries. At this point, a logical next step would be to experiment with

other types of networks and learning algorithms, such ascompetitive learning.
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A study should be doneto seeif there are situations in which certain networks with
certain learning rules perform better than others. If so, the network should employ
certain types of networks in certain types of classification problems. Hence,
PPSHNN would become an assembly of different types of networks and learning
algorithms organized into a hierarchy. In such acase, a unit must be added to each
module to detect a known situation and thereby use the optimal type of network.

This task could be performed by the pre-processor.

It can be shown [5] that the output of the delta rule network can be interpreted as
the probability of a class given the input vector. Using this knowledge, one can
design a neural network module to estimate the required probability density
functions, hence replacing the Parzen density estimation by a neural network
module. Future research should consider this topic and the accuracy of the neura

network unit in comparison the Parzen estimator.

Another important issue is to design an effective pre-processor. 'This research will
look into techniques introduced in information theory and error control coding to
devise a pre-processor which transforms the problem space into yet another easier
space for classification. Another option is an adaptive pre-processor. This pre-
processor learns a nonlinear transformation and performs it on the incoming data.

The nonlinear transformation itself islearned from the training data.
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Future research could also involve replacing the hierarchical nature of the
algorithm with a consensual nature similar to that of PSCNN. Thus, gaining more
paralelism in training and taking more advantage of machines such as MasPar
becomes possible. Some recent work has been done by Professor Hank Dietz and
his students at Purdue University in using MasPar in an MIMD fashion. The
consensual nature can go hand in hand nicely with the MP-1 running in a semi-

MM D fashion.

In such a case, one must develop a decision mechanism to choose between the
votes of different modules. When the hierarchy is not present, more than one P-
unit could accept the input pattern. A decision must be made as to which module's
classification result should be accepted. A voting mechanism such as the one from
PSCNN could also be used. Once the hierarchy of the PPSHNN algorithm has
been eliminated, the biggest source of serialism in the algorithm will also have
been eliminated, and hence all the modules can be trained at the same time and
with the entire training set (assuming enough hardware resources). This would

perhaps increase the classification accuracy as well.

Future work also could involve further developing the postrejector and its

statistical analysisof the output of the N-unit.

As mentioned before, we are currently implementing the simplest possible cost

criterion. Further research is required to find the optimal cost criterion for
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estimation of the reject boundaries. One suggestion is that it might be possible to
learn the cost values during training. The effect of various cost criterion in

classification accuracy can be studied.

& In Chapter 3, we talked about the rejection boundaries z§,, z&;, and zX, and the

order they held in our experiments, namely

0<z8 <2k <% <1

Itis proposed that neurons whose outputs carry little information do not follow the
above order. Future research is aimed at finding topologies in which there is a
pattern for such behavior. If so, the knowledge gained can be used in designing a
more efficient algorithm which can be used to detect the unneeded neurons early in

training and to eliminate them.

7.2 Conclusions

In this thesis, a new neural network architecture called the Parallel Probabilistic Self-
organizing Hierarchical Neural Network (PPSHNN) was introduced. The PPSHNN isa
cornbination of statistical analysis techniques and adaptive neural networks. This
cornbination is shaped into a new architecture which is designed to divide the problem
space into subregions and make classification easier in these subregions. This division of

space, performed by the P-unit, is completely data (application) dependent and is not a
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pre-set procedure.

The PPSHNN addresses problems that risein complex classification applications such as
under- or unproportionally represented classes in the training set. It also addresses the
training time issues and is to a high degree parallelizable. Training times of over 3000
times shorter than serial backpropagation implemented on Sun 3/60 have been achieved

by implementation on MasPar MP-1 with 16K PEs.

The experiments performed in comparison to a standard backpropagation network and
the PSCNN indicate superior accuracy and speed. Further detailed study, analysis, and
development of the PPSHNN is necessary to understand its potentiad in many

classification applications.

The variation of the PPSHNN module called the PNS module offers several advantages.
The PNS module is relatively inexpensive and at the same time accurate in classification.
Because the architecture isfractal in nature and all the modules are simple and similar in
architecture, the building of networks which use this module is inexpensive and strait-
forward. It divides the problem space using simple linear boundaries and therefore, it.

self-organization to adapt to the problem space iseasier to understand.

Implementing neural network algorithms in massively parallel machines is very
promising in reducing the training time from hours to minutes. Thiskind of speed-up is
impossible to achieve even with a fast neura network agorithm implemented on the

fastest serial machine.
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The backpropagation algorithm can offer architectural parallelism as well as data
pal-allelism if implemented in the way it was discussed in this thesis. While architectural
parallelism islimited by the size of the largest layer of the network, the data parallelism
is only limited by the number of PEs available and the number of training patterns, which

is often far more than the number of neuronsin alayer.

Massively parallel implementations of neural networks alow larger problems to be
investigated in a short amount of time. Since the properties of neural networks often
arise due to the collective behavior of the neurons, such implementations also have the
potential of helping in the understanding of artificial and biological mechanisms of

intelligence.
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