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ABSTRACT 

Valafar, Fararnarz. Ph.D., Purdue University, August 1993. PARALLEL 
PROBABILISTIC SELF-ORGANIZING HIERARCHICAL NEURAL NETWORKS. 
Major Professor: Okan K. Ersoy. 

A new neural network architecture called the Parallel Probabilistic Self-organizing 

Hierarchical Neural Network (PPSHNN) is introduced. The PPSHNN is designed to 

solve complex classification problems, by dividing the input vector space into regions, 

and by performing classification on those regions. It consists of several modules which 

operate in a hierarchically during learning and in parallel during testing. Each module 

has the task of classification for a region of the input information space as well as the 

task of participating in the formation of these regions through post- and pre-rejection 

schemes. The decomposition into regions is performed in a manner that makes 

classification easier on each of h e  regions. The post-~jector submodule performs a 

bitwise statistical analysis and detection of hard to classify vectors. The pre-rejector 

module accepts only those classes for which the module is trained and rejects others. 

The PNS module is developed as a variation of the PPSHNN module. If delta rule 

networks are used to build the submodules of PNS, then it uses piecewise linear 

boundaries to divide the problem space into regions. The PNS module has a high 

classification accuracy while it remains relatively inexpensive. The submodules of PNS 

are fractile in nature, meaning that each such unit may itself consist of a number of PNS 



modules. The PNS module is discussed as the building block for the synthesis of 

PPSHNN. . 

The SIMD version of PPSHNN is implemented on MASPAR with 16k processors. On 

all the experiments performed, this network has outperformed the previously used 

networks in terms of accuracy of classification and speed. 



CHAPTER 1 

INTRODUCTION 

This thesis involves a neural network approach to the problem of classification. 

Specifically, classification in complex environments. The task of classification is one of 

the very basic abilities of human beings or all living beings. Every living being at some 

level has to make the determination of its environment. This determination is made 

instinctively and subconsciously or intelligently at a conscious level. At any level it goes 

hand in hand with the classification of the entities of the environment. Despite the long 

and intensive research in this area, Nature's techniques of classification still elude us. 

The most basic and essential determination of the environment for human beings is the 

sense of locality or the sense of where one is at any given time. This determination is 

made based on the processing of certain sensory inputs such as images, sounds and odor. 

These pieces of information are cross- correlated and the higher reasoning region of the 

brain makes the determination of the where abouts. The processing of information 

requires classification. For instance, the images that the eyes send to the brain are noisy, 

distorted, and sometimes not observed previously. Despite such problems, brain usually 

classifies things correctly, for example, even if the person has never seen the image 

before. 



The ability to classify a certain object correctly, without having to have seen it before, is 

called generalization. For example, if a person observes a chair which he has not seen 

before, he still is able to determine that the object in question is a chair. 

This ability to classify and generalize when necessary is one of the brain's most basic 

functions. Trying to simulate or emulate this ability is a grand challenge. There has 

been many designs of classifiers which can generalize. However, none of these designs 

have yet come close to the perfection and accuracy with which the brain operates. The 

accuracy of most of man-made systems is usually problem-dependent and varies greatly 

from one case to another. Also in some cases the classifier can only operate in a very 

limited and highly controlled environment, which usually is not the case in nature. For 

example, some of the existing speech recognition systems are speaker-dependent, 

meaning that they can only recognize one person's speech. While there exists some 

technology to develop a recognizer which is speaker-independent and even recognizes 

continuous speech (with no pause between the words, or even partially overlapped 

words), the recognition of such a system with a large vocabulary is slow and not 

sufficiently accurate. 

Despite all this, the improvement in classification technology has been remarkable in the 

last decade. Alternative ideas have shed new light at the problem and offered alternative 

solution strategies. Perhaps the best example of such alternative ideas comes from the 

area of neural networks. These networks contain very simple processing units called 

neurons and connections which connect these units. Though the operation of the 

individual neurons are simple, their collective capabilities are remarkable. 



The idea of neural networks was inspired by the study of the brain, especially in the early 

60's. Since then, these networks have been used to perform a variety of tasks, many of 

which have been classification. While we are still not certain of the physical 

organization of the neurons in the brain or their learning strategy, scientists have 

developed many types of architectures and learning algorithms for these networks. 

Some of the difficulties in classification problems facing neural networks today are 

under- or unproportional-representation of classes in the training set, highly complex 

boundaries between classes in a high-dimensional problem space, and training time 

required to learn such boundaries in such spaces. 

In this thesis, a new neural network system, called the Parallel Probabilistic Self- 

organizing Hierarchical Neural Network (PPSHNN), is introduced to address these 

problems. The PPSHNN is designed especially for unusually difficult and complex 

classification problems, such as the ten-class remote sensing Colorado problem. 

The concept of the PPSHNN module has evolved as a result of analyzing the major 

causes of error in classification problems. These causes can be categorized into the 

following: 

1. Patterns of different classes which are very close to the same class boundary are 

usually difficult to distinguish. 

2. The class boundaries may be extremely nonlinear. 

3. A particular class may be undersampled such that the number of training samples 



from that class are too few, as compared to other classes. Figure 1.1 a) visualizes 

such a scenario with Class 1 being the undersampled class as compared to Class 2. 

class 1 

k 

t class 1 

Figure 1.1. (a) An Example of an Undersampled Class (Class 1). 
(b) An Example of a Geometrically Small Class (Class 3). 

4. A particular class may be geometrically small compared to other classes in the 

sample space such that the number of training samples gathered from the region of 

that class is too few. This is visualized in Figure 1.1 b) where class 3 is 

geometrically smaller than classes 1 and 2. 

The PPSHNN addresses the above problems directly. It is designed, and synthesized by a 

number of self-organizing modules to minimize classification error due to the mentioned 



difficulties. 

The PPSHNN belongs to the class of Parallel Self-organizing Hierarchical Neural 

Networks (PSHNN) [S-81. PPSHNN, similar to the PSHNN, is a modular neural network 

system whose modules run in a hierarchical fashion during training and in parallel during 

testing (recall). Each module of PPSHNN is quite different from the previous modules. 

Perhaps the three most original contributions of PPSHNN are: (1) the P-unit submodule, 

(2) the bitwise postrejector, (3) The SIMD implementation of PPSHNN algorithm. 

The P-unit (pre-rejector) submodule is a two-class classifier and is trained to reject all the 

data belonging to difficult-to-classify classes such as the under- and/or unproportionally- 

represented classes. The P-unit is an optional unit and might not exist in some modules. 

Secondly, there is a statisticalladaptive postrejection unit, which consists of a statistical 

unit called the Bit-Rejector (BR) and an adaptive unit called the Vector-Rejector (VR). 

The bit rejector performs bitwise statistical analysis on every output bit of the network. 

The vector rejector is trained to decide whether or not to reject the classification of the 

input pattern based on the output of the neural network classifier and the results of the 

bitwise statistical analysis. 

To address the problem of long training time, PPSHNN is designed such that it can easily 

be implemented in a Single Instruction Multiple Data (SIMD) environment. This version 

of PPSHNN is  called the SIMD-PPSHNN and is implemented on Purdue University's 

Electrical Engineering Parallel Processing Laboratory's MasPar MP- 1 with 16K 

Processing Elements (PEs). 



As mentioned before, the main motivation for the design of PPSHNN came from the 

analysis of various causes of classification error in neural network systems. There are 

two major types of classification error that even the more sophisticated neural network 

models cannot escape. The first type occurs when data of two or more classes lie too 

close to a complex class boundary. The second type of error is due to the 

misclassification of data which belongs to a class which has significantly less number of 

patterns in the training set (the under- and unproportionally-represented classes) 

compared to other classes. There are various designs which address the first error type, 

including some probabilistic approaches [9, 10, 22, 251 and even some statistical-neural 

network approaches [16]. Unfortunately, all the probabilistic approaches used with 

neural networks have been statistical analysis in high dimensional spaces (vector 

statistics). This approach has been limiting and often inaccurate, simply due to the fact 

that there are not enough sample points to estimate the n-dimensional density functions 

accurately. Instead of statistical analysis of the input vectors, we have designed a bitwise 

analysis scheme at the output, called the bit-rejector. A neural network unit called the 

vector-rejector is trained to reject or accept a pattern based on the bitwise analysis. We 

also call the combination of the bit-rejectors and the vector-rejector, the postrejector. 

To reduce the second type of error mentioned above, a pre-rejector unit (P-unit) was 

designed. An additional function of the postrejector is to detect the under- and 

unproportionally-represented classes and. Once such a class(es) is detected, the training 

of a P-unit to reject the class(es) and to send it to the next module is initiated. By doing 

so, the classification complexity of each module is significantly reduced and, thereby, its 



classification accuracy increased. 

The motivation for a SIMD algorithm for PPSHNN was the slow training procedure, 

which plagues most neural network algorithms in applications such as the 10-class 

Colorado problem discussed in the subsequent chapters. Considering that a simple 

backpropagation network, run on a Sun 3/60 station, requires over 24 hours for the 

training of the 10-class problem, it was essential to devise an algorithm which takes 

advantage of the SIMD nature of PPSHNN. 

This thesis is organized in six chapters. Chapter 1 is the introduction. Chapter 2 is the 

background research, describing two complex classification problems and some neural 

network architectures which have attempted to solve these problems. In Chapter 3, the 

architecture and the operation of PPSHNN is discussed in detail. Chapter 4 discusses 

special topics in variations of the PPSHNN module such as the PNS module. Chapter 5 

discusses the parallel version of PPSHNN, the SIMD-PPSHNN, and some speed-up 

issues. A comparison of time complexities is also provided between backpropagation, 

the PPSHNN, and the SIMD-PPSHNN. Chapter 6 discusses the results achieved with 

PPSHNN and two other previous networks. Chapter 7 covers conclusions and a 

discussion of future research issues. 





CHAPTER 2 

BACKGROUND RESEARCH 

The main goal of designing the neural network system described in this thesis was to 

design a systems which performs better than the existing neural network architectures, 

specifically in dealing with complex classification problems. As a background to this 

issue, two known and very complex classification problems are discussed in this chapter. 

In addition, some details of several neural network systems which have dealt with these 

problems are described. 

2.1 Complex System Classification 

In this section, two classification problems are described which are highly complex with 

multi-dimensional and highly nonlinear problem space. 

The first problem is that of text-to-speech conversion (speech synthesis) in the English 

language. The second problem is a ten-class remote sensing problem. 



2.1.1 Tex t-to-Speech Conversion: Problem Description, Complexity Analysis 

Problem description: Each sound (phoneme) in any part of a pronounced word carries 

features by which it is distinguished from other sounds. These features are called the 

articulatory features. They describe the way human vocal system produces the sounds. 

For example the articulatory features of the phoneme pronouncing "p" in the word "post" 

are: unvoiced, labial, and stop. Unvoiced means that the vocal cords are not actually 

moving while pronouncing the "p". Some sounds are voiced and some are unvoiced, 

meaning that the vocal cords do not actually move for all sounds in the English language. 

"p" is also labial, because in order to produce this sound, the use of the lips are essential. 

Some phonemes are labial and some are not. "p" is also stop, because in order to produce 

the sound, one must stop the flow of air out of the mouth for a short period of time and 

then let it out in a bursting fashion. 

In order to produce the sound of a given character in the text (i.e. to pronounce the 

correct phoneme), one must know what the contextually appropriate articulatory features 

are. Thus, considering each of articulatory feature as a class, the problem becomes a 

classification problem. The task of the classification system is to classify each character 

in the text into the correct classes (features). Because each phoneme is characterized by 

a set of articulatory features, each input pattern belongs to all its corresponding classes 

(features) and should be classified as such. 

Complexity description: In this thesis, by complexity we mean the difficulty of the 

classification task in a given problem. The first complexity factor in the speech synthesis 



problem is that, since each character in the text maps into several features and other 

characters might share one or more features, the classes are overlapped in some regions 

of the problem space. The second difficulty is due to the fact that some characters sound 

differently depending on the characters around them. In other words, such characters 

map into different sets of features (classes) depending on the characters in the 

surrounding text. This requires the classification system to be able to classify time-series 

as well. The best example is the case of FLAP sound. This is the case when "tW* or "d" 

is placed between two vowels. In this case they sound as what is called a FLAP sound. 

For example "catering". This effect is not word limited either. FLAP replaces It/ or Id/ 

even if the above is the case over two neighboring words in the text. For example "eat 

it". The same is true even if there are two "tW's or "d'"s one after the other. For example 

"cutting". This phenomenon of a single character mapping onto different phonemes in 

different context occurs with a number of letters in the English alphabet, such as "c, g, h, 

s" of consonants and almost all the vowels. For example, "c" maps onto the sound /k/ in 

the word "case", but it maps to Is/ in the word "peace". 

To  simplify the complexity of this problem, we reduced the alphabet set and created an 

English-like language in our experiment. Instead of 26 characters, we only included 8 

consonants and 5 vowels. We were particularly interested in the performance of the 

system in the FLAP cases. Another point of interest was the fact that characters "z", "p", 

"ol', and "u" were severly under-represented. It was interesting to see how the network 

* In this thesis, when we put a character in quotes such as "t", we mean the character letter "1" of the alphabet in the written text. 
However, by It/, we mean the sound @honeme) of that written character (i.e. pronounced tee) 



was going to pronounce these characters in testing. In the case of children being faced 

with a similar situation, first they do not pronounce the sound at all. After a few repetion 

(sweeps of training), they start pronouncing the new sounds, however the produced 

sounds are not exactly the desired sounds. They are rather sound which are already in 

their vocabulary of sounds and have comon features with the new sound. For example a 

child who knows tha sound /b/ but not /p/, would pronounce "p" with the sound lb/ at the 

begining. Both /pl and lbl are labial sounds, meaning that in order to produce them one 

has to use his lips. In Chapter 6, the results of these experiments using a 

backpropagation [I]  network, a PSCNN [2], and a PPSHNN are discussed. We will see 

that for example the backpropagation network, easily produced the skip phenomena. 

Where it just did not produce the new sound. However we had a hard time finding a 

point in the training after that at which, it would pronounce "p" with lbl. The PPSHNN 

and the PSCNN exhibited this feature more easily. 

2.1.2 Remote Sensing: Problem Description, Complexity Analysis 

Problem description: The Colorado data set [3] consists of 7 data channels obtained from 

the following 4 data sources: 

1. Landsat MSS data (4 data channels) 

2. Elevation data (in 10m contour intervals, ldata channel) 

3. Slope data (0-90 degrees in degree increments, 1 data channel) 



4. Aspect data (1-180 degrees in 1 degree increments, 1 data channel) 

The area used for classification is a mountainous area in Colorado. It has 10 ground 

cover classes which are listed in Table 2.1. Each channel 

Table 2.1. The Listing of the Ten Classes of the Colorado Problem. 

Class Field 

t 

1 Water 

2 Colorado blue spruce 

3 MountainISubalpine meadow 

4 Aspen 

5 Ponderosa pine 

6 Ponderosa pinelDouglas fir 

7 Engelman spruce 

8 Douglas firmhite fir 

9 Douglas fir1Ponderosa pine1Aspen 

10 Douglas firmhite fir1Aspen 

comprises an image of 135 rows and 131 columns, all of which are co-registered. 

Ground reference data were compiled for the area by comparing a cartographic map to a 



color composite of the Landsat data and also to a line printer output of each Landsat 

channel [3]. By this method, 2019 ground reference points (11.4% of the area) were 

selected. Ground reference consists of two or more homogeneous fields in the imagery 

for each class. For each class, the largest field was selected as a training field. The other 

fields were used for testing. Overall, 1188 pixels were used for training and 831 pixels 

for testing the classifiers. The number of the samples from each class are shown in Table 

2.2. 

Based on the information received, we want to decide which class the received data 

vector belongs to. 

Complexity description: One problem with the data set discussed above is that some of 

the classes are extremely under-represented. For example, class 9 has only 25 samples in 

the training set. This is 2.1% of the training set. In a training sweep, the number of 

samples in classes 1, 5, 6, and 7 constitute more than 72% of the set. This uneven 

representation of classes in training causes the network to ignore the under-represented 

classes and only learn the well-represented ones. An additional problem is the highly 

nonlinear separation of the classes. The mentioned problems and other discovered and 

undiscovered difficulties combine to manufacture an extremely difficult classification 

problem. The 10 class Colorado classification problem is by far more difficult than the 

speech synthesis problem. The best previous results offered by neural networks for this 

problem was around 53%. See chapter 6 for PPSHNN results. 



Table 2.2 Number of Samples of each Class for the Colorado Data Set. 

Class Training(l188) Testing(831) 

1 408 1 95 

2 88 24 

3 45 42 

4 75 65 

5 105 1 39 

6 126 1 88 

7 224 70 

8 32 44 

9 25 25 

10 60 39 

2.2 Backpropagation 

The most often used neural networks for classification are backpropagation networks [2]. 

There are many different variations of the backpropagation (generalized delta rule) 

algorithm depending on the type of neurons and the descent algorithm used. Here we 

will describe the most commonly used version which uses the gradient descent algorithm 

[4] and is what we  used in our experiments. 



Figure 2.1 Multilayered, Feed Forward Network. 

The network is multi-layered [4] and feed-forward [4] (Figure 2.1). Its neurons are 

standard neurons with a sigmoid function as their activation function [I]. The activation 

function for the jth neuron is 

Where ej is the threshold for jth unit and 

xi is the ith input to the neuron and o j i  is the weight of the connection between the ith 

input and the jth neuron. 

During training, an input vector is presented to the network and an output vector is 



computed and compared to the desired output vector we would like to see at the output. 

Once this is done, an error value is computed for every output bit of the network. The 

error values are backpropagated through the network, and based on the value of error 

passing through each connection, the weight of that connection is updated. 

Let dpj be the desired output value for output bit j for the pth vector in the training set. 

In the same manner, let Opj be the actual output value of output bit j for the pth pattern in 

the training set. Then the squared error for the pth vector of the training set is 

The total error for a training sweep is 

Using delta rule [I], we reduce the value of E by implementing gradient descent [4]. By 

taking the partial derivative and using the chain rule with respect to spj, the summation 

value of neuron j for pattern p of training set, we get 

Using (2), we get 

Now, let us define 



Then, equation (5) becomes 

This says that to implement gradient descent in E, we should make our weight changes 

according to 

Apmji = q6pjxPi (9) 

just as in the standard delta rule [I]. The trick is to find out what & should be for each 

unit in the network. It can be shown [I] that for neurons in the output layer 

spj = (dpj - OPj)fj(spj), 

and for the neurons in the hidden layer(s) 

where 6,* is the error propagating backwards in the network from neuron k. 

A two stage (one hidden layer) backpropagation network was used for the classification 

problems mentioned. One major issue in backpropagation networks is to find the correct 

number of hidden neurons in the hidden layer(s). See Chapter 6 for more detail. 



2.3 PSCNN and PSHNN 

Both Parallel Self-organizing Consensual Neural Network (PSCNN) [2] and the Parallel 

Self-organizing Hierarchical Neural Network (PSHNN) [5-81 are modular networks 

(Figure 2.2). Each module may consist of a single 

I , 1 STAGE I 

1 - I STAGE I 

Figure 2.2. PSCNN, PSHNN Network. 

stage fully connected feed-forward delta rule network (Figure 2.2 (a)). All except 

module one also have a Nonlinear Transformation (NLT) unit. Input data to each 

module is nonlinearly transformed and then fed into the stage network. In training, the 

system uses the stage network algorithm such as the delta rule to learn the input pattern. 



In testing, it produces a classification output. 

There is a rejection mechanism at the output of each output bit of each module. There 

are rejection boundaries (and certainty boundaries in PSCNN) which are learned similar 

to the weights during training. Learning rule for both PSCNN and PSHNN modules can 

be chosen to be any desired learning algorithm. Previously it has mostly been chosen to 

be the delta rule, which is similar to generalized delta rule described in the previous 

section. 

In PSHNN, there is a hierarchy in training. In other words, module i is only trained with 

the data rejected by module i - 1 .  In PSCNN on the other hand, modules are trained with 

all available data for training. This allows modules of PSCNN to be trained in parallel. 

During testing, each module of PSCNN votes for classification of input data. Then a 

consensus is taken based on the classification votes of all modules and the certainty of 

their votes. On the other hand, in PSHNN, the vote of module i - 1  has precedence to that 

of module i .  Thus if module i  -1 classifies the incoming data (in other words, not rejects 

it), the classification of modules i and higher are ignored. 

See chapter 6 for the classification results of PSCNN. 



CHAPTER 3 

PARALLEL, PROBABILISTIC, SELF-ORG ANIZING, HIERARCHICAL 

NEURAL NETWORKS 

In the previous chapter we discussed two complex classification problems in multi- 

dimensional spaces. In problems such as these, the high dimensionality of problem 

space, in addition to other factors, usually makes classification difficult. Due to the high 

dimensionality of this space, we need an extremely large data set for training, which in 

most cases is not available. We have also seen that in addition to the limited training 

data set in problems such as the remote sensing problem, some classes might be severely 

under-represented. 

In Chapter 2, we have also seen some of the solutions to these problems which have been 

offered by neural networks (BP-networks, PSHNN, and PSCNN). 

In this chapter we discuss a new type of neural networks, the Parallel Probabilistic Self- 

organizing Hierarchical Neural Network (PPSHNN), to reduce classification errors. The 

PPSHNN is designed especially for complex and high dimensional problems. Its major 

contributions are implementing a pre-rejection unit (P-unit) (see section 3.5) to reduce 

the complexity and possibly dimensionality of the classification space for the neural 



network unit (N-unit)* (Section 3.2), the bitwise Post-Rejection scheme (Section 3.3) 

which implements bit level statistical analysis to detect the errors made by the N-unit, 

and its parallel implementation in a SIMD fashion on MasPar MP-1 (Chapter 5). 

Because the P-unit and the postrejector units are adaptive, PPSHNN is very flexible as far 

as allowing the user to choose any type of network for P- and N-units. In our 

experiments, we have mainly used single stage delta rule networks for the P- and N- 

units. In some experiments we also used two stage backpropagation networks. 

In the following sections, we shall see how PPSHNN is better equipped to address 

problems such as under-representation in training set, limited training data for very high 

dimensional problem spaces, highly non-linear and complex classification spaces, and so 

on. The PPSHNN also addresses the time complexity issues which back propagation 

networks have had. It can be shown that the time required for training a backpropagation 

network grows in the order of O(nh no) (see Section 5.3), where nh is the size of the 

largest hidden layer. It is known that size of the hidden layer grows with the complexity 

of the application. For complex problems such as the 10-class remote sensing problem, 

backpropagation networks are painfully slow and sometimes require many days of 

training on an average work station. 

On the other hand, due to the parallel nature of PPSHNN, we will show (Section 5.3) that 

the training time complexity of PPSHNN grows in the order of 0 (ni no). Note that both 

* In the basic PPSHNN module there are two neural network units, the pre-rejecta and the neural network classification unit. By 
N-unit we mean the later. This unit is also not to be mistaken with the nearest neighbor classifier which is referred to just as the 
classifier. 



ni and n,, are predetermined and not complexity dependent. Hence, the time complexity 

of PPSHNN grows only at a constant rate (i.e. O(1)) with respect to the complexity of 

the problem. Furthermore, by running the parallel version of PPSHNN, the SIMD- 

PPSHNN, on a SIMD machine such as MasPar MP-1, we can cut the training time by 

several orders of magnitude. In Section 5.3, we will make a time complexity analysis of 

the BP, PPSHNN, and SIMD-PPSHNN networks. 

In chapter 4 we discuss the PNS module and the implementation of PPSHNN using these 

modules as its building blocks. 

3.1 PPSHNN System Description 

Figure 3.1 shows three modules of a PPSHNN network. Module 1 consists of four 

submodules and a communication link, and all the following modules consist of five 

submodules. 

In the following, we describe briefly the function of each submodule and then the overall 

function of PPSHNN. In Sections 3.3 through 3.6 we will describe the details of each 

module. 

The general idea behind the PPSHNN is to divide the problem space into polygons, and 

then perform the task of classification in each one of the polygons independently, rather 

than trying to do this in the entire problem space. The goal is to divide the problem 

space in such a manner that classification is easier in at least one of the resulting 
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Figure 3.1. PPSHNN with 3 Modules. 

polygons. The task of dividing the problem space into polygons is performed primarily 

by the pre-rejector (P-unit) (Section 3.5). 

Once this is done, the neural network unit (N-unit) performs classification on data which 

fall into the easier regions. The rest of the data rejected by the P-unit is sent to the next 

(lower) module in the hierarchy. Since in complex problem spaces there are some data 

points which "pass" the pre-rejection test but still are difficult to classify, and are 



misclassified by the N-unit, a mechanism is required at the output of the N-unit to detect 

these data, reject them, and send them to the next module. This is done by a probabilistic 

mechanism at the output of the N-unit called the Post-Rejection (Section 3.3). This 

mechanism consists of two modules. The first performs a bit level probabilistic analysis 

of the individual output bits of the N-unit and is referred to as the Statistical unit or the 

S-unit. The second combines the results of the bit analyses and decides whether or not to 

reject the input pattern. This unit is refemd to as the Vector Rejector or the VR. 

There is a communication link between the P-unit and the postrejector. In many cases, 

one or more classes of data are too complex for the N-unit to classify. This results in an 

unusually low classification accuracy for these classes and most of the patterns belonging 

to these classes must be rejected. In such cases, instead of training the postrejector to 

reject each one of the individual patterns, the classes are communicated to the P-unit 

through the communication link. The P-unit is then retrained to reject these classes along 

with the ones it has already been trained to reject. If no P-unit exists for the module, one 

is created and is then trained to reject these classes. 

During testing, if an input pattern is rejected by the postrejector, it joins the rejected data 

vectors from the P-unit and is sent to the next module. If accepted, the output data of the 

N-unit is sent to the distance classijer for a nearest neighbor match to a set of pre-set 

decoding patterns in order to convert the output vector of the N-unit to the required 

output format. 

T o  determine the final P-unit, N-units and the postrejector, a number of retrainings of 



these units may be necessary. Initially, there is no P-unit. The class(es) rejected by the 

postrejector signal the creation of the P-unit. The P-unit is then created by training a 

neural network as a two-class classifier with the accepted and the rejected set of input 

vectors as determined by the postrejector. This leads to a reduced data set to be fed to 

the N-unit, which is  then retrained. The postrejector is also retrained to determine 

whether or not more vectors or classes are to be rejected. If so, the classes are notified to 

the P-unit and the individual vectors are rejected by the postrejector itself. This process 

is repeated for a number of sweeps until all three units stabilize in terms of accepted and 

rejected vectors. 

The process described above may be considered excessive in terms of learning time, due 

to the many sweeps which may be needed. In order to reduce this problem, two 

strategies are possible. The first is to limit the number of sweeps to a predetermined 

value. This could result in a higher number of rejected patterns and a higher number of 

modules required for proper classification. The second strategy is to decide to create a 

P-unit only if all or a predetermined high percentage of the input vectors from a class are 

rejected by the postrejector. In the latter strategy, the P-unit has the task of detecting 

classes which are difficult to classify as a whole since they may be underrepresented and 

so on. This strategy has been used in our computer simulations. The predetermined 

percentage was set to be 100%. With this strategy, only a single sweep is generated. The 

postrejector still rejects a number of input vectors which are accepted by the P-unit, but 

does not further notify the P-unit so that no more sweeps are generated. 

The rejected data is sent to the next module to repeat the process. First, this data goes 



through the Pre-Processor. The function of this optional unit is comparable to that of the 

non-linear transformation performed in PSCNN or in PSHNN. This module non-linearly 

changes the way the sub-problem space is presented to the network. The non-linear 

transformation could be a neural network unit and thus learn the non-linear 

transformation during training. This transformation is problem-dependent, and not a 

preset transformation which may or may not work well on a given problem. For many 

problems this unit may be skipped, and only the P-unit is used. 

For better understanding of the operation of the PPSHNN, we consider the 2-dimensional 

problem space shown in Figure 3.2.a. It contains three classes: A, B, and C. Figure 

3.2.b shows how the P-unit of module 1 has divided the space into two polygons. The 

shaded area is the reject region, and data falling in this area is rejected. The remaining 

region of the space is the accept area, and data falling in this region are sent to the N-unit 

for classification. Figure 3.2.c shows the space which is passed to the N-unit of module 

one. We see that, since class C is not present in the data sent to the N-unit, the N-unit is 

only a two-class classifier. After this stage, the output of the N-unit is sent to the 

postrejector to reject the uncertain classifications. Data falling in the shaded area of 

Figure 3.2.d is rejected to the next module by the postrejector. Notice that the function 

of both the pre-rejector and the postrejector is to reject data which fall in the area of 

problem space where classification is difficult.(ie. near the border between two or more 

classes, etc. ). 

Figure 3.2.e shows the problem space that is introduced to the second module. This 

space consists of all the data rejected by the pre- and postrejectors of the previous 



Figure 3.2 Sample Problem Space Initial Stage. 

module. Notice that the new problem space is less complex than the original problem 

space. Also notice that, data belonging to any class which might have been under- 

represented for the first module, is not so for the second module. This is due to the fact 
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Figure 3.3 Sample Problem Space Final Stage. 

tha,t most of the data belonging to large classes are classified by the fiirst module and do 

not exist in the problem space of the second module. 

The second module repeats this procedure in its own problem space. ]Figure 3.2.f shows 

the reject area of the postrejector of second module. Note that since there are no under- 

represented classes present in the polygon of the second module, a P-unit is not needed 

for this module. Figure 3.3 shows the problem space introduced to the third module 

(again no P-unit is created for this module). Notice that, for the lower modules in the 

hierarchy, some of the classes present in the original problem space may vanish. This 

mikes classification easier and opens possible avenues to reduce the dimensionality of 

the problem space. For example, in Figure 3.3, since the border separating class A from 

c1;tss B is horizontal (could also be vertical), one could perform classification simply by 

having a threshold on the Y-axis (or X-axis), thus, making it a one dimensional 

cliissification. A mechanism is needed to perform the reduction of dimensionality on the 



incoming data points in such cases. This task of dimensionality reduction could be 

performed by the pre-processor. 

Training procedure: Figure 3.4 shows a flow chart of the training procedure of 

PPSHNN. In creating and training PPSHNN for a classification problem, first we start 

wii:h no P-unit. This unit is created only after the postrejector has requested it through 

the: communication link. 

First the N-unit for module 1, named N ( l ) ,  is created. Then this network is trained, until 

there is little change in the classification accuracy. After which a bit level statistical 

analysis of the output is performed using output data from last sweep of training of N(1). 

After this point, there is a decision to be made as to whether or not a P-unit is needed for 

this module. 

This decision is made based on the pi calculated by each bit rejector, where pi is the 

percentage of data correctly classified as class k (see section 3.4.1). There is a preset 

minimum percentage threshold. If pi is less than this preset value for any k, a P-unit for 

that module is required. 

If there is any rejected class, then it is signaled through the communication link to initiate 

the procedure of creating a P-unit. This procedure reduces the size of the output layer of 

the N-unit by eliminating the output bits corresponding to the class(es) which are to be 

rejected. Then, the P-unit is created. This unit is a two-class neural network classifier. It 

is trained with the training data set which the N-unit was trained wi,th. It is trained to 

re-ject the classes determined by the postrejector. Other input data are classified as accept 
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Figure 3.4 Training Procedure of PPSHNN. 



anti are sent to the N-unit for classification. In other words, the P-unit eliminates the 

input vectors which are difficult to classify and, as a result, the N-unit is introduced only 

to a subregion of the original problem space. After the data set is divided into a rejected 

set and an accepted set, the retraining of the N-unit with the accepted data begins. If the 

nuimber of classes is reduced, the size of the N-unit will be smaller. After retraining the 

N-unit, the process moves on to training the vector rejector with the output data of the 

N-unit and the S-unit. This unit is trained to decide based on the bi~:wise information, 

whlether or not, to reject the input pattern to the next stage. After this point, all the data 

rejected by the postrejector and the P-unit (if present) are gathered together to build a 

training set for the next module. This process is repeated with succeetling modules until 

no, or few, data patterns are rejected. 

A ~ I  important feature of the PPSHNN modules is that modules become simpler as more 

of them are created. The P-unit is not created in most cases after the second module and 

the: N-unit becomes smaller. 

Testing procedure: In testing the hierarchical processing involved in creating modules 

is replaced by parallel processing. All modules are run in parallel, and each one 

classifies the incoming data into a class or rejects it. Due to the hierarchical nature of the 

training procedure, in testing, once module i has classified the incoming pattern into one 

of the possible classes (in other words it has not rejected the pattern), the classification 

results of modules i+l and lower are ignored. 



3.2 The Neural Network Classifier (N-unit) 

This network is a neural network construct. We experime:nted with both 

backpropagation networks and single stage delta rule networks for this unit. In Section 

2.2!, backpropagation algorithm was described in some detail. The: backpropagation 

network used complies with all the specifications given in that section and in [I]. The 

network has only one hidden layer and the layers are fully connected to each other 

without jumps over the hidden layer. The delta rule networks used are single stage 

backpropagation networks (no hidden layer). Therefore, Equation (1 :I) does not apply, 

and all weights are updated according equations (9) and (10). 

The design of PPSHNN is quite flexible, even allowing different types of networks to be 

us:d for the N-units of different modules. Due to the adaptive nature of the P-unit and 

the: postrejector submodules, the system is able to adapt and function properly. 

3.3. Post Rejection 

This unit is a combination of a set of probabilistic classifiers (bitwise postrejectors) and a 

single stage Neural Network classifier (vector rejector). See Figure 3.5. 

There is a bit classifier for every output bit. This classifier is a three-class Bayesian 

classifier which classifies the output bit into one, zero, or reject classes. 

The vector classifier is a neural network construct which looks at class~ifications made by 

the: bit classifiers and decides whether or not to reject that input pattern. If the vector is 
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Figure 3.5 Post-Rejector. 

nolt rejected, it is classified into one of the possible classes. If the data is rejected, it is 

sent to the next module for classification. 

3.3.1 Bitwise Rejection (S-unit) 

Bitwise rejection is performed by the bitwise classifiers. Each bitwise classifier is a 

three-class Maximum A Posteriori (MAP) Detector [9]. It is well-known from statistical 

decision theory that a Bayes receiver [lo] minimizes the average cost of making a 

decision and is implemented by means of the likelihood ratio test. In the following we 

shall derive these ratio tests for a three class case. The idea is to look at neural network 

(N-unit) from a different point of view. Namely, we look at the network as part of a 
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transmission channel (see Figure 3.6) and we look at the output vector as the received 

signal from this channel. The transmission channel consists of the measurement 

procedure, coding the measurements into a pre-decided format and finally putting the 

signal through the network. All three stages of this channel can add noise to the signal. 

The measurement noise, the wrong coding scheme, an undertrained network, a wrong 

sized andlor structured network are all examples of potential noise-adding elements in 

the channel. 

Fo:r the output bit k with the output value z of the N-unit, three hypotheses are possible: 

H a  = Bit k should be classijed as zero . 
H 1 = Bit k should be classijed as one . 
H ,  = Bit k should be rejected . 

Notice that we consider the rejected data as a class by itself. This way we acknowledge 

the fact that some data points are not classifiable in their present representation. In 
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Figure 3.7 a simple example of this in 2-D space is shown. 

We establish the following notation: 

&(z IHi) = probability density function of the output value of bit E; given that Hi is 

true. 

zk = output value of the krh output bit of the N-unit 



ck. CI = cost of deciding hypothesis Hi is true when H, was actually true for bit k. 

P: = p k ( H i )  = a priori probability for bit k that hypothesis Hi is true (i.e. 

p: = 1 - p t  - p 5 ) .  

p k ( H i  1 z )  = probability of hypothesis Hi being true for bit k, given the output value z 

from the N-unit. 

The a posteriory probability pk(Hi  1 z )  can be computed from fZ(z ( H i : )  using Bayes rule 

[lo]: 

Suppose that we observe a particular z on output bit k and that we decide it belongs to 

hylpothesis H i .  If the true classification is Hi, the expected loss associated with chosing 

Hi is merely 

Thus, the expected loss for choosing H o  given output value z at bit k is 

k k  R k ( H o  I z )  = c k p k ( H o  I z )  + c $ l p k ( H 1  I z )  + CorP (Hr I z ) .  (14) 

The expected loss for choosing H 1  given output value z at bit k is 

k k  R ~ ( H ~  I Z )  = c : ~ P ~ ( H ~  I Z )  + c : ~ P ~ ( H ~  I Z )  + c l r p  (H,  I Z )  , (15) 

and the expected loss for choosing H,. given output value z at bit k is 



In decision theoretic-terminology, an expected loss is called a risk, and R ~ ( H ~  l z )  is 

known as the conditional risk. Whenever we encounter a particular output z, we can 

minimize our expected loss by selecting the hypothesis that minimizles the conditional 

risk. 

Nclw we can show that this is the same as the optimal Bayes decision procedure: 

Le,r us define a decision function c k ( z )  which chooses a hypothesis for output value z at 

ou,rput bit k. The overall risk R is the expected loss associated with a given decision rule. 

Since R ' (H i  1 z )  is the conditional risk associated with chosing Hi, and since the decision 

rule specifies the hypothesis chosen, the overall risk is given by 

Where dz is the notation for a d-space volume element, and where the integral extendr 

over the entire feature space. Clearly, if c k ( z )  is chosen so that R ( c k ( . z )  1 z )  is as small 

as possible for every z, then the overall risk will be minimized. This justifies the 

foll!owing statement of the Bayes decision rule: To minimize the overali' risk, compute the 

conditional risk 

and select the Hi for which Rk(Hi 1 z )  is minimum. 

Thus, for every output value z at every bit k there are three tests to perform. Using 



results of these tests we define the following decision rule which has minimum risk: 

if Rk(Ho l z )  < R k ( H l  I Z )  & Rk(Ho l Z )  < Rk(Hr l Z )  chose H o  

if R k ( H 1  I z )  < R ~ ( H ~  I z )  & R ~ ( H ~  I z )  < R ~ ( H ,  l z )  chose H l  (18) 

otherwise chose H,  

The first test is between H o  and H 1  : 

Now let c&-, = cIfl = c:, = 0. This means that there is no cost for guessing the correct 

hylpothesis, which is the case in most classification problems. Then the inequality 

recluces to 

~ s s u m i n ~  z ( z )  # 0, we can multiply both sides by f i ( z ) .  Thus we get 



Using Bayes rule (12) and assuming P: # 0, Eq. (22) becomes 

Ch.oosing C l o  = Col  and C1, = Cor and Cro = Cr 1 leads to the followiing: 

The second test is between H o  and H, 

Using (14) and (16) and choosing Coo = C ,  = 0, yields 



Us.ing Bayes rule (12) and applying the same conditions as in Test 1, wle obtain 

TEST 3: 

The third test is  between Hr and H 1  : 

With the same assumptions a s  in the previous two tests and the same operations, a final 

inequality for test 3 can be reached: 



Hr 
> 

c!,f((z IH,)P;  - ~ ; l P ( z  1 ~ 1 ) ~ :  < ( ~ ; o  - ~ ! o ) f ( ( z  I H O ) P B .  (33) 

H I  

Tfle final three inequalities resulting from the above three test are as follows: 

Moving all the terms to left side of the inequalities, we get 



For simplicity, let us define the following three functions: 

r : ( z >  = p :  f i ( z  IH1) -Pko f i ( z  IHo) 

r! j ( z )  =ckorfi(z I H ~ ) P ;  -c;o&(z 1~0)pko +(GI - ~ ; 1  ) f i ( ~  1 ~ 1 ) ~ :  

rf  ( z )  = c i r f i ( z  I H ~ ) P ;  - ~ ; l f i ( z  I H I ) P !  + (GO - c;o)&(z IHO>P% 

The inequalities (34),  (35) and (36) can be written simply as 

Hence the decision rule of ( 18) becomes 

i f r : ( z ) &  r ! j ( z ) < O  chooseHo 

if r : ( z )  > 0 & r $ ( ~ )  < 0 choose H~ (43) 

otherwise choose Hr 

From (43),  if we had the three I'; , ~1 and I'; functions we could compute regions on the 

z alxis for every output bit and for every hypothesis such that the expected loss would be 



minimal. To do so we need to have all the conditional probability density functions (ie. 

f i (:z  I Hi) ) as well as all the a priori probabilities pf  required in (37),  (38) and in (39). 

These probabilities are different for every output bit, and need to be computed for every 

bit separately. 

Estimation of the Conditional Density Functions ( A ( z  1 Hi) ): 

There are two general approaches to density estimation, parametric and nonparametric 

[10]. If we can assume we have a density function that can be characterized by a set of 

parameters, we can design a classifier using estimates of the parameters. Unfortunately, 

we: often can not assume a parametric form for the density function, and in order to 

peirform the test in (43) we have to estimate the conditional probability density functions 

using a different and not so structured approach called nonparametric ,estimation. Since, 

in nonparametric approach, the density function is estimated locally by a small number 

of neighboring samples, the estimation is less reliable with larger bias and variance than 

the parametric counterpart. 

The two main nonparametric estimation techniques are: the Parzer~ density estimate 

[10] and the k-nearest neighbor density estimate(kNN) [lo]. They ;are fundamentally 

very similar, but exhibit some different statistical properties. The kNE4 approach can be 

interpreted as the Parzen approach with a uniform kernel function whose size is adjusted 

au~tomatically, depending on the location. We have decided to use the Parzen approach 

since a Gaussian distribution function instead of the uniform kernel can be used, which in 

prilctice gives a smoother estimate. 



It is extremely difficult to obtain an accurate density estimate nonparametrically, 

particularly in high-dimensional spaces. But since we are performing bitwise analysis, 

all our density functions are in a one dimensional space stretching only from 0 to 1 (since 

output of all neurons are between 0 and 1). Because the number of training patterns are 

limited, this method has higher accuracy of estimation compared to the multidimensional 

density estimation. 

Nc~w let us consider a random variable Z and its probability density function p(z). In 

order to estimate the value of the density function at a point z, we may set up a small 

1oc:al region around z, L(z). Then, the probability coverage (or probability mass) of L(z) 

may be approximated by p (z)v, where v is the length if L(z). This probability may be 

estimated by drawing a large number of samples, N, from p (z), containing the number of 

sa~nples, m, falling in L(z), and computing m/N. Equating these two probabilities, we 

may obtain an estimate of the density function as 

Note that, with a fixed v, m is a random variable and is dependent on z. A fixed v does 

not imply the same v throughout the entire space, and v could still vary with z. However, 

v is a preset value and is not a random variable. 

Kernel expression: The estimate of (44) has another interpretation. Suppose that three 

sa~nples, z3, z4,  and zs, are found in L(z) as shown in Figure 3.8. With v and N given, 

3 p^(.r) becomes -. On the other hand, if we setup a uniform kernel function, K(.), with 
Nv 



Figure 3.8 Parzen Density Estimation. 

1 length v and magnitude of - around all existing samples, the average of the values of 
v  

3 these kernel functions at z is also -. That is 
Nv 

As seen in Figure 3.8, only the kernel functions around the three samples, z3,  zq ,  and z s ,  

contribute to the summation of (45). 

Once (45) is adopted, the shape of the kernel function could be selected more freely, 



under the condition i ~ ( z )  dz = 1. For one-dimensional cases such as ours, we may seek 

optimally and select a complex shape. However to keep computations simple and yet to 

be accurate enough, we have chosen a normal kernel with the mean of zero (p, = 0) for 

all the experiments: 

Cclnvolution expression: Equation (45) can be rewritten in convolution form as 

where is is an impulse density function with impulses at the locatilons of existing N 

samples. 

That is, the estimated density i ( z )  is obtained by feeding &(z) through a linear 

(noncausal) filter whose impulse response is given by ~ ( z ) .  The:refore, p^(z) is a 

smoothed version of 6, (z). 

Moments of p^(z): The first and second order moments of (47) can be easily computed. 

First, let us compute the expected values of &(z) as 



Th.at is, &(z) is an unbiased estimate of p(z). Then, the expected value of b(z)  of (47) 

may be computed as 

Therefore, the variance of b(z)  is 

A 

Even though we only need to estimate fk(z I Hi), for i E ( 0 ,  1 , r }, we have also 

colnputed m,t = E z I Hi and o:r = var z I Hi as well for future analysis of output -Ik I { k  I 
A 

For every bit k, we use the following procedure to estimate fk (z I H,): 

Consider the training set R = , X2 , . . . , XN with N data samples. 1 
1. Find the set Rfj of data samples in R which have a desired output value of zero for 



, X2 , . . . , X M ~  with M o  samples. 

2 .  Find the subset SZL of SZE for which the actual output value at bjt k is less than 0.5 

(zk < 0.5): SZg = blz:<0.5}= t1 , x2 , . . . , xro with r,, samples. I 
7;. For the set SZL, we build a corresponding output set EL which contains all the 

output values for bit k for input samples of SZk: 

4,. Form a normal kernel around each z i ~  EL: 

Where U(z) and U(z-1) are unit step functions. They are used to limit the 

probability density function to the interval from 0 to 1. ai is a constant calculated 

by 

It compensates for the fact that the pdf is only valid over the interval [0 , 11 instead 



5 .  Use (47) to form an estimate 

A A 

The above procedure is the same for estimating fk(z  I H 1) and f k( z  I H;) except for steps 

A 

1 and 2. To estimate f k( z  I H steps 1 and 2 change to: 

:I. Find the set i2: of data samples in R which have a desired output value of one for 

bit k i26 = [xi . xi . . . . . XM, \ with Ml samples. 

2. Find the subset i2il of i2: for which the actual output value at bit k is greater than 

A 

For f ( z  1 H,). step 1 is not performed and step 2 is as follows: 

2. Find the subset of i2; for which the actual output value at bit k is greater than 0.5 and 

find the subset of i2: for which the actual output value at bit k is less than 0.5. Take the 

union of the two subsets to get i2;: 

where for every bit k. ro, r 1. rr satisfy 



r o + r l  + r r = N .  (58) 

Estimation of the a priori probabilities &: The estimation of the a priori probabilities 

is much simpler and can be computed by the following simple equations: 

Cost of error (c:): Though it is possible to have different cost criterions for different 

biis, we decided to have one criterion for all bits. Then, c:, simplifies to Cij.  There are 

several conditions in our criterion which were mentioned before: 

1. Cii = 0 Normally the cost of guessing the correct hypothesis is :zero. 

2. Cro = Crl  The costs of rejecting an output when it should have been classified 0 

or 1, are the same. 

5 .  Cor = C l r  The costs of chosing Ho or H I  when Hr should have been chosen, are 

equal. 

4. CO1 = C I 0  The cost of chosing Ho when H I  was true, and the cost of chosing H I  

when Ho was true are equal. 

There are two more relational conditions which should be mentioned here: 

5 .  Cro = Cr < Cor = C l r  The consequences of classifying Ho clr H 1  as Hr is less 

severe than classifying Hr as Ho or H I .  (Rejected information still has a chance 

of being classified correctly in the next module.) 



6. Col = C l o  w Cor = C > Cro = Cr 1 The consequences of classifying Ho as H 1  

or reverse is much higher than that of any other error. 

In our research we experimented primarily with 

C r o = C r l  = I ,  C o r = C l r = 2 ,  Col  = C l o = 5  sometimes with 

Cro = Cr 1 = 1  , Cor = C 1 ,  = 2 , Col = C l o  = 10 The results were similar, except 

tht: fact that the second criterion makes reject region to slightly grow and zero and one 

regions to slightly shrink. 

Now using the above a posteriory and a priori estimates in (37), (38),  and (39) we can 

estimate T: ( z ) ,  T$ ( z ) ,  and T$(z ) .  Using these estimates in (43),  we can decide on one of 

the three hypotheses Ho, H or Hr . 

This procedure is performed for every output bit. The decision for every bit is then sent 

to the vector rejector which in turn decides whether to reject the input pattern and send it 

to the next stage or accept it and send it to the nearest neighbor classifier for 

classification. 

The decision rule of (43) is carried out by performing the following: 

For test I ,  set T f ( z )  = 0 ,  and use (37) to find 

Thus dividing the interval r = LO - - . 1 1 ,  into two subintervals, r f O  = L 0 - - - z i l  1 the 



interval for Ho for test 1 of bit k, and I!' = [zbl - - . 11 the interval for HI for test 1 of 

In the same manner we compute zb, and z f l ,  from test 2 and 3, using (38) and (39). 

Although in theory it is possible for each test to divide the interval I into several 

subintervals, in practice, in all our experiments, I is divided only into1 two sub-intervals 

by each test (ie. Tt(z), T:(z), and Tt(z) have only one root each). Figure 3.9 shows a 

typical outcOme of the three tests. Namely 

The decision strategy governed by (43) corresponds to a voting strategy among the three 

tests. For output value z, when two of the three tests are in agreemeint, that decision is 

accepted. If no tests agree, the decision is reject, and that bit is rejected. For example, 

as,suming the order shown in Figure 3.9, if the output value of bit k falls in the interval 

13 , Zor (tests 1 and 3 agree on Ho), the bit is classified as zero, if the output value falls [ * I  
in [zF1 , I ]  (tests 1 and 2 agree on H I ) ,  the bit is classified as one, arid finally, if it falls 

in [,fir , zF1] (tests 2 and 3 agree on H,), that bit is rejected. 

It is also possible that the order in (61) not hold. A current working hypothesis is that, 

any network that defies the order of (61), is either severely under-trai.ned or is not large 

enough to handle the complexity of the problem. If this is proven to be a correct 

hypothesis, then one can have an idea as to how the size of the network matches up with 

the complexity of the problem, early in training procedure. This can avoid further 



training of a network that can not handle the complexity of the problem for purely 

tol?ological reasons. 

TEST 1 

TEST 2 

TEST 3 

COMBINED 
RESULT 

Figure 3.9 Sample Rejection Boundaries. 

In the above discussion and in (61), it is assumed that the equations 

r : ( ~ )  = o r;(~) = o r ; ( ~ )  = o (62) 

have only one root. The expected behavior of f,(z I Ho), fz(z I H and fz(z I H,) are 

s h ~ ~ w n  in Figure 3.10. In order for equations in (62), have one root, the following 

conditions must be satisfied (These conditions assume probability beh~avior as shown in 



Figure 3.1 0 Expected Conditional Density Functions. 

Fi,gure 3.10) : 

From Test 1 we get two conditions (see Figures 3.11 b and 3.11 a), 

From Test 2 we get (see Figures 3.12 b and 3.12 a) 
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Figure 3.11 Density Functions for Test I .  

Fr.om Test 3 we get (see Figures 3.13 a and 13 b), 
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Figure 3.12 Density Functions for Test 2. 

Figures 3.11 through 3.13 are the actual probabilities from one of oui: experiments with 

the following cost values: 



C l o = C o l = 5 ,  C l r = C o r = 2 ?  C o r = C r I = l .  

Th~e conditions of (63-68) were satisfied in all experiments. 

Figure 3.13 Density Functions for Test 3. 
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Side property: The same procedure can be used to estimate the threshold of each output 

neuron in parallel (in which case we would only have Ho and H 1): 

I I I 

- t (z  IH) 

~ 1 8 ~  {(z IH> + ( ~ 1 ~  CA P: {(z IHd - 
$1 qk 

ci-- 

Let y k  be the sum of weighted input activation levels for output neuron, k, 

0 0.1 0.2 0.3 07 0.4 (b) 0.5 0.6 0.7 0,.8 0.9 Zk 1 



where Wki is the weight connecting the ith hidden neuron to the kth output neuron, z), is 

the output (activation level) of i th neuron of the previous level. Therefore the activation 

of the kth output neuron is, 

By estimating fF(y 1 Ho),  and fF(y l H l )  using the density estimations similar to the 

procedure above, we can estimate the threshold (861) using: 

Remarks: 

o The procedure described above is parallel in nature and can be performed for all the 

output bits at the same time. Since the steps performed in parallel are the same, the 

above procedure is ideal for an SIMD (Single Instruction Multiple Data) [ll-121 

machine such as MasPar MP- 1 (see Chapter 5). 

a There are some fundamental and philosophical differences between the system 

described here and other probabilistic networks. The procedure above looks at the 

problem of classification using neural networks from a differenl: point of view as 



follows: 

1. A fundamental difference between this method and other probabilistic neural 

networks is that others estimate P (Hi IX), where X is the input vector to the 

network and i E , , . . , n o  where no is the number of output bits. This i I 
means estimating the probability of hypothesis i being truie given the input 

vector of X. 

Our procedure discussed above is estimating x ( z  I Hi), where z is the output 

value of bit k. Use of Bayes rule (12) then allows ,the estimation of 

In other probabilistic networks, using Bayes rule (12) yields 

The estimation is not a single bit estimation, but rather a hypothesis estimation 

using vector estimation. It is well known that high dimensionality is the main 

source of inaccuracy in classification problems. As an example, consider the 

one dimensional case in which 1000 training patterns are available between 0 

and 1. 1000 samples distributed in the interval [0 , 11 gi.ves a an accurate 

estimation of the probability density function. Now consid~x a 7 dimensional 

space with the same number of training patterns available in the unit hypercube 

at the origin. The data points will be so sparse that an accurate estimation of the 



7-dimensional probability density function will be almost impossible. 

This is the case with the 10-class Colorado problem. There are 1188 training 

patterns available in a 7-dimensional space belonging to 10 classes. It is clear 

that the accuracy of the single dimensional estimation will be: much higher than 

that of the 7-dimensional one. This is of course assuming that all 1188 data 

patterns are made available to all single dimension estimators. This is the case 

in our procedure. 

2. A second important difference is that other probabilistic networks force a 

classification even for data which in their current format are impossible or very 

difficult to classify. We, on the other hand recognize the fact that this kind of 

data can form a class which is to be rejected. The network i:s organized so that 

it recognizes data belonging to this class, classifies it as such and sends it to the 

next stage for preprocessing (possibly including change of format, using a 

different non-linear coding scheme, etc.) and another attempt at classification 

(see Figure 3.2 and 3.3). 

This rejection classification is first performed at the bit level by bit classifiers, 

and then the information is combined in the vector rejector (optional) for vector 

rejection (see section 3.3.2). 

In other words, other networks try to divide the classification space shown in 

Figure 3.7 into two regions, one for each class. However, the system 

described here will divide the space into three regions, an additional region for 



the class of data which are difficult to classify. Data falling in this region are 

sent to the next module. In that module, this region is nonlinearly transformed 

(optional) and the process is repeated. This divide and conquer procedure 

continues until we reach a desired accuracy. 

Comparative analysis: 

In order to better point out the fundamental differences between PI'SHNN and other 

probabilistic networks, we would like to briefly describe and and conduct a comparative 

study of Donald Specht's recently published [5] Probabilistic Neural ??etworks (PNN). 

Figure 3.14 shows Specht's neural network organization for classification of input 

patterns X into two possible categories, A, and B. 

In Figure 3.14, the input units are merely distribution units that suppl!r the same voltage 

values to all of the pattern units. The pattern units (shown in Figure 3.15) each form a 

dot product of the input pattern vector X with a weight vector Wi, Yi = X . Wi, and then 

perform a nonlinear operation on Yi before outputting their activiation level to the 

summation unit. Instead of the Sigmoid activation function coinmonly used for 

backpropagation, the nonlinear operation used here is 

Assuming that both X and Wi are normalized to unit length, this is equivalent to using 
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Figure 3.14 Specht's Network. 

The summation units simply sum the inputs from the pattern units that correspond to the 

category from which the training pattern was selected. 

The output, or decision, units are two-input neurons, as shown in Figun? 3.16. These units 

produce binary outputs and have only a single variable weight Ck where 



Figure 3.15 Pattern Units of Specht's Network. 

hAk is the a priori probability of occurrence of patterns from category A for output neuron 

k, hgk is the a priori probability of occurrence of patterns from category B for output 

neuron k, ZAk is the loss associated with the decision "X belongs to class A for output 

neuron k", lBk is the loss associated with the decision "X belongs to class B for output 

neuron k", n ~ k  is the number of training patterns from category A for output neuron k, 

and n ~ k  is the number of training patterns from category B for output neuron k. 

Note that Ck is the ratio of a priori probabilities, divided by the rati.0 of samples, and 



BINARY OUTPUT 

Figure 3.16 Output Neuron of Specht's Network. 

m~~ltiplied by the ratio of losses. In any problem in which the nu.mbers of training 

samples from categories A and B are obtained in proportion to their a priori probabilities, 

l ~ k  
Cx, = - -. This final ratio cannot be determined from the statistics of the training 

1 ~ k  

samples, but only from the significance of the decision. If there is no particular reason 

for biasing the decision, Ck may simplify to -1 (an inverter). 

The network is trained by setting the Wi weight vector in one of the pattern units equal to 

each X pattern in the training set, and then connecting the outputs of ithe pattern units to 

the appropriate summation unit. A separate neuron (pattern unit) is required for every 

training pattern. As indicated in Figure 3.14, the same pattern units can be grouped by 



different summation units to provide additional pairs of categories and. additional bits of 

information in the output vector. 

In other words, the pattern units in Specht's network form a normal dlistribution around 

their respective Wi. This means that the pattern layer builds a normal distribution 

function around each pattern of training set (xi). Then the summation units, by adding 

up these distribution functions for each class, form a global distributior~ function for each 

class. Therefore, every incoming pattern X is compared to these global distribution 

functions and, according to Bayes minimum risk criterion, a class for X is chosen. This 

final step is performed in the output unit. 

Comparison: There are several issues that have to be addressed in order to point out the 

important differences between the PPSHNN and Specht's or any other probabilistic 

neural networks: 

1. Estimation Accuracy: Specht uses Parzen density estimation to estimate P (Hi IX), 

where X is the input pattern and Hi is the hypothesis that X belor~gs to class i. 

It is well known that non-parametric methods become exceedingly difficult and 

inaccurate as the dimensionality of problem space increases. In most real world 

problems such as the speech synthesis problem (X is a vector in 70 dimensional 

space, see section 2.1. l), or the remote sensing problem (X belongs to a 7 

dimensional space, see section 2.1.2), Specht's network tencls to estimate the 

distribution functions inaccurately, and as a result, decreases chances of correct 



classification. 

On the other hand, in PPSHNN, distribution estimates are always performed at the 

bit level, in other words, always in a one dimensional space, resulting in improved 

estimation and classification accuracy. 

! Training data: Let us assume we have n pieces of data for the one dimensional 

case. In order to have a comparable estimation accuracy in the p-dimensional 

space, Parzen's or any non-parametric method requires on the order of nP sample 

points. Normally this many pieces of sample data does not exist; therefore a 

reasonable multi-dimensional estimate in problems which have limited number of 

sample data is quite difficult. 

3. Training and Testing time: A big advantage of Specht's PNN is the short period of 

time required for training, as compared to backpropagation networks. But with 

SIMD-PPSHNN (see chapter 5) running on MasPar, this time has been cut in 

several orders of magnitude (see section 5.4), making the speed advantage of other 

networks negligible. 

The testing time, which is more crucial, is increased substantially by Specht's 

PNN. For every input vector X, PNN has to perform the inner product < X , xi > 

for all x i ' s  in training set. Because X and xi belong to a high dimensional space 

as in the speech synthesis problem, and since, a large training set is needed to 



satisfy the requirements for high accuracy estimation in higher dimensional spaces, 

testing takes much longer than PPSHNN or a backpropagation network. If testing 

is not performed on a high performance machine, it cannot meet the real time 

requirement of most problems. On the other hand, PPSHNN or backpropagation 

networks are able to meet this requirement on almost any machine. An example 

such as  the speech synthesis problem can clarify this further. B~elow, we compare 

the testing time complexity of the PNN and a backpropagation network in this 

problem. 

Since most of the time a network requires is used to perfclrm floating point 

additions and multiplications, counting the number of floating point addition and 

multiplication operations gives us an idea of the total time required by each 

network relative to each other: 

k=l600 number of training patterns. 

p =70 number of input neurons. 

nh=40 number of hidden neurons in the backpropagation network. 

n,=14 number of possible classes . 

Specht's PNN: 

Pattern units perform 



pk multiplications and (p -1)k additions. 

Summation units perform at least 

0 multiplications and (k -no) additions. 

And finally the output units require 

no-1 . no(%-1) no- 1 no(%-1) 
C 1 =  

2 
multiplications and C i = 

2 
additions. 

i=l i= l  

Thus Specht's PNN requires 

no (no-1) 
~ k +  = 1 1209 1 multiplications and 

no (no- 1 )  
(p -l)k+(k -no)+ = 1 12077 additions. 

2 

Backpropagation network: 

Hidden neurons perform 

pnh multiplications and nh (p - 1 )  additions. 

Output neurons perform 

nhn, multiplications and no (nh-1) additions. 

Thus backpropagation only requires 

nh(p +no) = 3360 multiplications and 



nh ( p  +no)-(nh+no) = 3306 additions. 

If we assume that multiplication takes twice as much time as addition, we see that 

backpropagation is more than 33 times faster than Specht's PNN during testing: 

In addition, the inaccuracy in the estimation of distribution functions in a 70 

dimensional space with only 1600 sample patterns should be a concern with the 

PNN network. 

Therefore, one can train a PPSHNN or backpropagation network on a high 

performance machine, but use it on any machine in near real time for testing. 

Whereas, for Specht's PNN, one needs a high performance machine to use it for 

testing. 

3.3.2 Vector Rejection 

Vector rejection can be performed by a neural network. Such a network is trained to 

perform two-class classification (See Figure 3.17). 

Tlds network has 2n0 input neurons and 1 output neuron. The Vector Rejector (VR), 

receives two values from each Bit Rejector (BR). The first value is simply the output 

value of the corresponding output bit of the N-unit (zk). The second value is the 

hypothesis (H;) ,  to which zk  has bin classified by the k-th BR. Note that H: is 1, if zk is 
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Figure 3.1 7 A Delta Rule Network as the Vector Rejector. 

classified to HI.  It is 0 if zk is classified to Ho ,  and it is 0.5 if zk is classified to H,. The 

ou~put of VR is trained to go high for vectors that should be accepted. It is trained to go 

low for vectors which should be rejected and sent to the next stage for c:lassification. 

This network is trained with the output data which is gathered from the last training 

sweep of the N-unit and the bit-rejectors. Its desired output data is cre,ated by generating 

a 1 for all the input patterns for which the classification of the PPSIHNN module was 

correct and their classification should be accepted, and a 0 for all tlhe patterns whose 

classification by the PPSHNN module was incorrect or uncertain and should be rejected. 

The vector rejector can be a single stage delta rule network. In some cases, the task of 

cliissifying vectors into accepted and rejected classes might be too complex for a single 



stage network to handle. In that case, the VR can be chosen as a two-stage network or a 

PNS network (see Chapter 4). As in all other modules, the VR can also be chosen as any 

special network such as a competitive learning network. 

Thl~ bitwise classifiers, together with the vector rejector, address several problems and 

offer solutions for them as follows: 

Most classifiers look at the entire vector and make the classification decision (eg. is a 

minimum distance classifier). By doing so, the classifier could overlook detailed 

information encoded in the individual bits which might be crucial for classification. The 

folliowing example from the 10 class remote sensing problem using backpropagation is 

one such case: 

Output vector =[0.53 0.62 0.40 0.32 0.67 0.37 0.32 0.45 0.4:7 0.351 

A typical classifier such as a Bayesian vector classifier or any neural ne:twork classifier at 

the output would most probably classify this vector as class 5 or if the reject option is 

present as reject. 

The output of the bitwise classifier is as follows: 

[ I R R O R R O R R R ] .  

The thresholds for the bit one classifier are as follows: 

1.00000 <--> 0.41987 CZ~SSI 

0.41 987 <--> 0.30100 Rejected 



In other words, bit one is classified as 1. Similarly, bits four and seven are classified as 

zero according to their thresholds. The rest of the bits are rejected a,gain according to 

their thresholds. The problem with this data set is that some classes are very 

underrepresented during training, therefore making it difficult and unlikely for the 

network to learn them. In the 10-class Colorado problem, we have 

# of total data pieces in the training set : 11 88 

# of data pieces for class 9 in the training set : 25 

bit 9: 

HI = 0 HO= 1163 Hr= 2.5 

pl= 0.0000+00 pO= 9.7895-01 pr= 2.1043-02 

Wt: see that class 9 is very underrepresented (%2.1 of the training set) imd its data are all 

rejected. Thus, any class 9 data in testing is going to be rejected. The problem is that 

this will also cause the 9th bit of some data from other classes to be rejected as well. If 

there are several such underrepresented classes, they will cause rejection of a vector 

belonging to another class, due to the uncertainty of the undertrained bits. 

A bitwise classifier combined with a neural network vector rejector can detect these cases 

and allow exceptions. In the above mentioned case the vector rejector can learn to 

overlook the underrepresented bits when there is a definite c1assificai;ion for other bits, 

and correctly classify the above vector as class 1. 



3.4 The Classifier (Minimum Euclidian Distance Classification unit) 

Th:is unit is a simple nearest neighbor classifier. It simply compares the incoming vector 

to desired vectors and finds the desired vector which is the closest to the: incoming vector. 

The incoming vectors to this unit are the output vectors of the N-unit of the module 

which have not been rejected. 

. V Z ,  ... , vn] be theincoming vector a n d D i =  1 dizl ... . d i n ]  be 

the: ith desired vector for i = 1, ... ,m. The classification is according to 

(76) 

This unit is the final step in the classification process. The output (sf this unit is the 

number of a class to which the incoming pattern has been classified. 

3.5 The Pre-Rejector (P-unit) 

This unit as described in Section 3.1 is a two class classifier. It classifies the data 

belonging to the under- and unproportionally represented classes as "reject" and classifies 

the rest as "accept". In other words, it divides the problem space into two subregions and 

allows the N-unit to learn only the simpler region of the two. 

This unit can be any type of neural network network. For example, it can be a single 

stage delta rule network. If this unit is a two stage network, because of it being only a 

twro class classifier, it is normally much smaller than the N-unit of the corresponding 



module. For example, for the 10-class Colorado data, the pre-rejector of the first module 

(if chosen to be a two-stage backpropagation network) has only four hidden neurons (see 

Figure 3.18). 

Figure 3.18 Pre-Rejector of Module 1 of PPSHNN. 

The pre-rejector is perhaps the most important unit in the PPSHNN rr~odule. Care must 

be taken in choosing the classes that it should reject or accept. Hence, the design and 

operation of the S-unit is of great importance. With an accurate pre-rejector and the 

optimal selection of reject and accept classes, a complex problem space can be divided 

in~to two simpler and perhaps even linearly separable regions. This could not only 



decrease the training time by simplifying the problem space and hence reducing the size 

of the N-unit, but also increase the classification accuracy by allowing the N-units to 

learn a simplified problem space rather than a large and complex one. 

Unlike any other neural network units in the system, the pre-rejector has to always have a 

vely high classification accuracy. In most cases, the accuracy of the plre-rejector should 

nolt be lower than 90%. The accuracy of the unit shown in Figure 3.18 i~s around 95.5%. 

Milch of the success and failure of PPSHNN in achieving higher classilication accuracies 

them other networks is due to this unit. Most of the classification error occurring in 

PPSHNN is due to a pre-rejector accepting a pattern which should have been rejected. 

This type of error leads, almost always, to misclassification. We call this type of error 

"fatal". The second type is called "nonfatal" due to the fact that over %50 of this type of 

error is corrected in the following stages of the network. For simplic:ity, sometimes we 

als,o call the pre-rejector the P-unit. The operation of this unit a.nd its theoretical 

ini.erpretation is further discussed in the next Chapter. 

3.6 The Pre-Processor 

The pre-processor is the least researched unit in the system and future research should be 

heavily concentrated on this unit. The sole purpose of this unit is to simplify the way 

problem space is presented to the respective module. In some experiments, we used 

simplistic pre-processors, whose task was only spreading out the data in the problem 

space so that the boundaries between classes could be more flexible an'd easily found. T o  



do this, the pre-processor finds the statistical mean of all the data it is, presented during 

tra:ining and memorizes that mean. Then every datum point in testing (or training) is 

noillinearly pushed away from the mean, thus spreading the problem space further out. 

By enlarging the distance between the data points, one hopes to allow the boundaries to 

become so flexible that a piece of a highly nonlinear boundary can be simulated by a 

linear one. 





CHAPTER 4 

SPECIAL TOPICS IN PPSHNN 

In this chapter, we discuss a special variation of the PPSHNN modules called the PNS 

module. We discuss its behavior and its features. In the first section, we discuss the 

architecture of the PNS module. In the second section, we discuss the training algorithm 

for this module and, finally, in Section 3, we analyze the features of this new module. 

4.1 The PNS Module 

In this Section, we discuss the PNS module as the basic building bloclk for the synthesis 

of PPSHNN. The PNS consists of a prerejector (P-unit), a neural network classifier (N- 

unit), and a statistical analysis unit (S-unit). In some cases, we will refer to the 

combination of N-and S-units as NS-unit. The optional pre-processor and vector rejector 

units are not included, but they can be included in future developments of the module. 

While the P- and the N-units can be any type of neural network, we ha,ve chosen them to 

be a single stage delta rule network. The P- and NS-units are fractile in nature, meaning 

that each such unit may itself consist of a number of PNS modules. As before, through a 

mechanism of statistical acceptance or rejection of input vectors for classification, the 



sarnple space is divided into a number of subregions (polygons if the single-stage delta 

rule network is chosen). The input vectors belonging to each polygon are classified by a 

dedicated set of PNS modules. Since the delta rule network is used 1.0 generate the N- 

unit, each polygon approximates a linearly separable region*. In this sense, the total 

system becomes similar to a piecewise linear model. 

4.2 The PNS Algorithm 

The block diagram for a PNS module is shown in Figure 4.1. 

The Prerejector T 

Figure 4.1. The Block Diagram of a PNS Module. 

The N-unit can be any type of neural network, but it is chosen as a delta rule network 
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+ By linearly separable region we mean part of the original problem space which is separated from the rest of the space by a 
combination of linear boundaries. 
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with output nonlinearity in this thesis. 

The procedure for the creation of the PNS modules is shown in the flow charts of Figures 

4.2: and 4.3. Initially, the total network consists of a single N-unit. It has as many input 

neurons as the length of an input pattern, and as many output neurons as the number of 

classes. The number of input and output neurons may also be chosen differently 

de.lpending on how the input patterns and the classes are represented. The N-unit is 

trained by using the present training set ( each N-unit will be presented a different 

training set depending on where in the hierarchy its module lies). After the N-unit 

co:nverges, the S-unit is created. The S-unit of the PNS module is identical to that of the 

PF'SHNN module. It is a parallel statistical classifier which performs bit-level three-class 

Ba.yesian analysis on the output bits of the N-unit. It was discussed ill detail in Section 

3.3.1. One result of this analysis is the generation of the probabilities p:, k=1,2, - - - M, 

M being the number of classes. p: signifies the probability of classifying an input pattern 

belonging to class k correctly. Like before, if this probability is equal tlo or smaller than a 

srrlall threshold 6 for one or more classes, a P-unit is created to ]-eject the patterns 

belonging to these classes. In other words, if pf I S ,  the corresponding class is either 

geometrically small or undersampled, or has highly nonlinear boundaries such that the 

present network cannot learn it. 

A!; before, the rejection of such classes before they are fed to the N-unit is achieved by 

the creation of the P-unit. The P-unit is a two-class classifier trained to reject the input 

patterns belonging to the classes initially determined by the S-unit. I:n this way, the P- 

unlit divides the sample space into two regions, allowing the N-unit to be trained with 
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Figure 4.3. ( a )  The Recursive Procedure to Create a P-.unit. 
(b) The Recursive Procedure to Create a NS-unit. 

patterns belonging to the classes which are easier to classify. 

If a P-unit is created, the N-unit is retrained only with the patterns that are accepted by 

the P-unit. The process discussed above is repeated as  necessary. The S-unit is 

regenerated; it may again reject some classes. Then, another P-unit has to be created to 

re-ject these classes. This results in a recursive procedure. 

If there are no more classes rejected by the S-unit, the PNS module :is completed. The 



input patterns rejected by it are fed to the next PNS module. 

The complicating factor in the discussion above is that there may be more than one P- 

unit generated. Each P-unit is a two-class classifier. Depending on the difficulty of the 

two-class classification problem, the P-unit may itself consist of a. number of PNS 

modules. The same is true with the NS-unit. The flow diagrams of the: procedure for the 

generation of the P-unit and the NS-unit are shown in Figure 4.3. A particular example is 

shown in Figure 4.4, which shows the PNS modules generated for the 10-class Colorado 

problem discussed in detail in Section 2.1.2. In the first stage, the P-unit required 3 PNS 

modules and 1 NS module to reach desired performance. Similarly, the NS-unit has 

actually developed into one PNS and one NS module. In this sense, the P- and the NS- 

units are like fractals. 

Like the PPSHNN module, the S-unit also generates certain other thresholds for the 

ac'ceptance or the rejection of an input pattern, as discussed in Section 3.3.1. Thus, the 

input pattern may be rejected by the P-unit or the S-unit. The rejected vectors become 

input to the next stage of PNS modules. This process of creating stages continues until 

all. (or a desired percentage of) the training vectors are correctly classil[ied. For example, 

for the Colorado problem discussed in Section 2.1.1, two stages were required, as seen in 

Figure 4.4. 

The recursive nature of the algorithm becomes evident when a P-unit or a NS-unit is to 

be created. Either unit starts as a single NS structure and builds up further, if necessary, 

into several parallel PNS modules. In order to create a new P- or NS-unit, it is necessary 
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Figure 4.4. The PNS Modules in the PSHNN Designed for the 10-Class 
Colorado Problem. 

to generate the particular training data for its learning, as shown in Figure 4.3. 

Figure 4.3 shows the procedures which create the P- and the NS-units. Before the 

creation of the P-unit, the appropriate input-output training set has tlo be created. The 

inlput training set is simply the set presented to the PNS module which is being created. 

The corresponding desired output set is created by entering the vector 1 0 for all the [ I 
patterns which should be accepted by the P-unit and the vector 0 1 for all the patterns [ I 



which should be rejected by the unit. Before the creation of the NS-unit , a new input- 

output training set for this unit must also be created. The input set cont.ains patterns from 

the original training set which are not rejected by the P-unit, and the desired output set is 

the collection of the corresponding desired output vectors from the original desired set. 

If ]no more P-unit is needed, the main program branches up to train the next stage of PNS 

modules, as shown in Figure 4.2. To  do so, the program gathers all. the rejected data 

from the first stage. If there are no more rejected data, or if their nunnber is less than a 

pn:set threshold, the algorithm terminates. 

In brief, the total network begins as a single PNS module and grows during training in a 

way similar to fractal growth. The P- and the NS-units may themselves create PNS 

modules. The delta rule network is used to generate the N-units. We will show that the 

net result is the separation of nonlinear classes into regions which are linearly separable. 

This separation continues until the resulting PNS network can approximate the nonlinear 

class boundaries using a piecewise linear model accurately. This procedure is similar to 

modeling of a nonlinear system by a collection of piecewise linear systems. 

Remarks: 

It can be shown [5] that the output values of a network based on Least-squares error 

m:inimization, such as the delta rule neural network, can be interpreted as the estimation 

of the conditional pdf f (Hi 1 X), where X i s  the input pattern. Thereforlz, one can perform 

density estimation by such a network, which can be chosen as a PNS network. Then, the 



total network consists only of PNS modules. 

4.3 System Features And Proof of Piecewise Linearity 

As mentioned in the previous Section, the learning procedure divides .the problem space 

into linearly separable spaces, based on the learnability of the classes by the present N- 

unit. Referring to Figure 3.9, this will be proven below. 

Proof of Linearity: 

For now let us assume that the N-unit has only one output neuron. In Section 3.3.1, we 

showed how to compute two rejection boundaries for every bit. In Figure 3.9, these 

rejection boundaries are marked as z t ,  and zfl. Since the N-unit is a single stage delta 

rule network with sigmoidal output nonlinearity, as described in Secfon 2.2, the output 

value of the k th neuron is computed by 

y k  = 1 
"1 

->i% 

l + e  '* 

Where, ni is the number of input neurons, xi is the value at the i th input neuron, and Q 

is the weight connecting the i th input neuron to the kth output neuro:n. Using (77), the 

equation describing the boundary imposed by the S-unit at bit k between the zero and the 

reject regions is 



The above equation can be written as 

which leads to 

The right hand side is a constant, making the above a linear equation. It describes a 

hyperplane in the ni-dimensional space. Hence, the boundary between the "zero" and the 

"reject" region is linear. The same argument can be used to show that the boundary 

between the "reject" and the "one" region is also linear and can be described by 

Notice that, since the equations of the two boundaries differ only in the value of the 

constant on the right hand side, the boundaries are parallel to each other. 

In the same way, every output neuron in combination with its S-unit bit-rejector, creates 

two linear (hyper-plane) boundaries in the ni-dimensional space. Da.ta falling between 



these boundaries are rejected by the bit-rejector. Data whose output firlls outside of this 

region is accepted by the bit-rejector and classified, for example, based on a minimum 

mean square criterion [9-101. If the certainty of classification for a class grows, the two 

boundaries move closer to each other, making the reject region smaller. If the certainty 

is one, the two boundaries lie on top of each other and there is no reject region. This is 

the case for bit one in the 10-class problem (see Figure 4.5). 

Proof of Piecewise Linearity: 

Now let the network have no output neurons. Each output neuron and. its corresponding 

bit-rejector create two linear boundaries and three regions: zero, one, and the reject 

regions. This results in 2n0 boundaries in the ni-dimensional problem space, which 

divide the space into a number of polygons. A loose upper bound for this number can be 

expressed as: 

Pr*oof: 

We will prove this in two steps: 

1. For now let us assume the S-unit is not existent. In other words, for every output 

neuron, only one boundary is created. Hence we have no boundaries and 
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of polygons are created when the boundaries share at least one point. Because it is 

assumed that the activation level of every output neuron represents a different 

feature of the classification problem, it is assumed that the weiglht vectors of these 

neurons are different from each other. And because these weight vectors are 

normal vectors of their respective hyperplanes, it is therefore assumed that these 

hyperplanes are not parallel to each other. Hence, it is perceivable that they all 

share a common point. Therefore, 2" is actually the maximum number of 

polygons created and is the tightest upper bound. In such a case with every new 

boundary, we can divide every existing polygon into two sub polygons. In other 

words, 

A, = 2An0-I = 2n0 for no I ni . (84) 

The second statement of (83) can be proven as follows. Let us assume that we 

have ni boundaries and they have divided the problem space into A, = 2"' 

polygons using ni boundaries. Every additional boundary will not be able to divide 

all of the polygons because of the linearity property of the bounclaries. This means 

that the ni+l st boundary will cut at most Ani - 1 regions. This means: 

The " 1" in the equation is for the one region not touched by t.he new boundary. 

The rest of the equality is for all the regions that are divided into two subregions. 

The same argument can be made for every additional boundary, resulting in the 

general difference equation: 



Using induction, we can now show that this is the same as the second statement of 

(83). 

Induction basis: For no = ni, from (83) we get: 

Ano 
= 2'4 - 2"' - "I + 1 = 2"' 

no - ni Induction hypothesis: Ano = 1 + 2 - 1 ) = 2"" - 2 + 1 for no > n i l .  

Induction proof for A, + 1 = 2"' + - 2"" - 'l + ' + 1. Using (87) and the induction 

hypothesis, we can write: 

. Now let us add the S-unit in. This will cause two boundaries to be created for 

every output neuron. The two boundaries are parallel hyperplanes because of the 

fact that for both planes the weight vectors are the same. Hence, the normal vector 

to both hyperplanes are the same, and the planes are parallel. The only difference 

between the two vectors is on the right hand side of the equation of the hyperplane 



as seen in (80) and (81). 

Now let us consider (82). Here, the same argument used for (83) can be applied, 

except that now with every additional neuron, we are adding two parallel 

boundaries rather than one. This means that now every polygon that the new set of 

boundaries enters will be divided into three subpolygons rather than two. This is 

true for both cases in (82). Therefore, by following the same argument as before 

and by keeping in mind that every set of boundaries divides the regions into three 

subregions, the upperbounds of (82) will follow. 

Introduction of the P-unit to the problem space: The P-unit is c:hosen as a single 

stage, delta rule, two-class classifier network. It introduces at least one additional linear 

boundary to the problem space (the argument for linearity is identical to that of the N- 

unit). The additional boundary(ies) serves to divide the problem space. into further reject 

and accept regions. The difference here is that the reject region is completely dropped 

out of the problem space of the N-unit, and the N-unit does not learn it. 

A!; an example, Figure 4.6 shows the problem space of the XOR problem as it is learned 

by the PNS module. Figure 4.6 (a) shows the PNS module developed for this problem. 

Due to the simplicity of the problem, the P-unit consists of only one nleuron. The N-unit 

consists of two neurons. Figure 4.6 (b) shows the two boundaries which the N-unit 

irr~posed upon the problem space. The "one" regions of the boundaries overlap in the 
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dotted area. Notice that the boundaries are only of consequence in t.he problem space 

(th.e square shown in the figure). Hence the boundaries are finite lines (solid boundary 

lines in the figure). Figure 4.6 (c) includes the boundary imposed by ithe P-unit. Figure 

4.6 (d) demonstrates the problem space introduced to the N-unit after implementing the 

P-unit. This space is linearly separable and can be learned by a single stage delta rule 

network. 

The N-unit is retrained to separate the classes in the new space. It creaks the boundaries 

shown in Figure 4.6 (e). Notice that the two boundaries accomplish the same task and 

thitt one can be eliminated. In other words it is sufficient to have only one neuron as the 

N-unit. In general, this process of elimination can be achieved by introducing a new unit 

to the output of the N-unit. The job of this unit would be to compare the weight vectors 

of output neurons after training. It would compare these vectors two at a time, and if it 

detected a linear dependence between any two vectors, it would eliminiate one of them by 

eliminating its corresponding output neuron from the network. To  follow up the 

argument presented above, however, we keep both neurons. 

I t  is important to mention here that at this stage the boundaries of the retrained N-unit are 

no longer merely confined to the boundaries of the original problem space, but are also 

bounded by the boundaries which the P-unit imposes. In other words, all the boundaries 

arc: bounded by the current problem space at hand (dotted area in Figure 4.6 (e)), and not 

by the boundaries of the original problem space (shown in Figure 4-.6 (b) as a dotted 

square). 



Th.e final space division by the PNS network is shown in Figure 4.6 (1'). Notice that the 

region marked "Reject" also will be classified "Zero" because of the automatic 

classification of all rejected vectors as "Zero". In the above discussio~~ we have ignored 

tht: S-units. Introduction of the S-units changes the space division in the manner shown 

in Figure 4.7. As we see, every boundary of Figure 
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4.6 has been replaced by a region of uncertainty ("reject" region). Da.ta falling in these 

regions are rejected to the second module and classified automaticd.ly as "Zero". The 

final result shows that, due to this fact, in this case, introduction of the S-units only 

causes the "one" region to shrink and the "zero" region to expand. 

He:nce, as we have seen, the function of the P-unit is to divide the problem space into 

simpler polygons by introducing new boundaries to the space. This division of space can 

result in complete elimination of one or more class(es) from the problem space (polygon) 

of some modules. In the 10-class problem, the P-unit of the first moclule eliminates six 

out of ten classes from the problem space of the N-unit of the first majdule. This results 

in only four output neurons for this N-unit and thereby 2x4 = 8 boundaries, or by using 

tht: upper bounds of (82), at most 34 = 81 polygons (subregions) versus ten output 

neurons, 2x10 = 20 boundaries, and an upper bound of 31° - 33 + 1 = 59023 polygons 

(subregions). 

As the result of the above argument, the problem space introduced 1.0 the N-unit only 

contains no' < no which is the number of classes accepted by the P-unit. Therefore, the 

N!j-unit creates 2n0' linear boundaries and A,. = 0 3". polygons*. These new linear [ '1 
boundaries are confined to the boundaries of the polygon passed to the N-unit rather than 

the limits of the original problem space. 

+ From now on, we use the word "polygon" to indicate that region of the problem space that is parsed down through the hierarchy 
to a certain unit in the nehvo* for classification. In other words, by 'kolygon of the N-unit", we mt!cm that region of the space 
which the particular N-unit is responsible for. 



The above discussion is valid only under the fundamental assumption tlhat the polygon of 

the: N-unit is linearly separable (i.e. A single stage delta-rule network can accurately 

classify patterns from this region). The same assumption should be valid for the P-unit. 

The problem space of the N-unit may not be linearly separable*, even aifter simplification 

of space by the P-unit. The polygon of the P-unit may also not be linearly separable. In 

such cases, the P- or the N-unit or both is replaced by an entire PNS module. If this is 

still not sufficient, the P- andlor N-unit(s) of the new PNS module is ,dso replaced by a 

PNS module. In this way, the PNS modules are created in a way similar to fractals until 

thc: performance of the overall network is satisfactory. The fractile arcl~itecture will have 

several P-units which will serve to further divide the space. Their ]respective N-units 

impose linear boundaries upon these polygons. The polygon of each hl-unit is the accept 

subregion of its corresponding P-unit and the boundaries it creates are confined to this 

subregion. 

In summary, the problem space is divided into as many polygons as  necessary to reach 

linearly separable polygons. This division is performed by the P-units. Then the NS- 

units create linear boundaries which are only defined within the confines of their 

respective polygons. The whole process results in the separation of linearly separable 

regions of a nonlinear classification space by hierarchically organizeld piecewise linear 

subsystems which are structured within each other like fractals. 

+ By a linearly separable region, we mean that the classes of the region (polygon) can be separatedj'rom each other by a linear 
boundary. 



Since we desire for any given input pattern, only one output bit to go high, we shall 

desire the one region of each output bit to fall on top of the "zero" region of the other 

bits. It can easily be shown that this is not possible for more than one linear boundary 

unless they all lie on top of each other (identical boundaries). Hence, we will most likely 

have regions of the ni-dimensional space which are classified "one" by more than one bit. 

Since the problem space is a subspace of the ni-dimensional space, orie hopes that such 

regions fall outside of the problem space. An example of this is shown in Figure 4.8. 

Fi];ure 4.8 (a) shows an example of the overlapped "one" region in tlhe problem space. 

Figure 4.8 (b) shows the opposite, where the overlapped region is outside the problem 

space. 

Overlapped 
"One" Region 

Figure 4.8. An example of overlapped "one" regions. 



If 1;his special case occurs, the classification accuracy is extremely high. However, since 

alnnost every bit creates two boundaries, this phenomenon rarely occurs. Therefore, we 

will have overlapped regions in the problem space, and for patterns falling in these 

regions more than one output bit will go high. We need a mechanism. to serve as a "tie 

breaker." In other words, we need a mechanism which decides which one of the "high" 

bits is dominant, thereby choosing its respective class over the others. One could simply 

dcxide to let the minimum mean square error mechanism at the output perform this task. 

It can be shown that this mechanism chooses the class for which the pattern sample is 

farthest away from its boundary. In other words, the class that is chos~zn is the class that 

the sample output is deeper in its "one" region. (see Figure 4.9) 

Point Classified 

"One" 
as Class 1. t / ' ~ n e '  / 

\ Bit 2 

Figure 4.9. Minimum Mean Squared Error Decision in 2-D Space. 

This method works well in an unnoisy problem space such as the XOlR problem. But in 

noisy situations, since the output of the N-unit is shifted, this measure could prove to be 

inaccurate. Introducing a vector rejector after the bit-rejectors is one solution to this 

problem. The vector rejector is a neural network unit. This unit introduces new 



boundaries to the polygons of the problem space which have been created by the P- and 

the: NS-units. These boundaries act as tie breakers and, since they are (adaptive, they can 

take the noisy characteristics of the problem space into account. 

It tihould be mentioned here that there could also be regions in the problem space whose 

data patterns are classified as zero in every bit. In other words, in sofme regions of the 

space, the zero regions of all the bits overlap. The vector rejector could also be trained to 

work as a tie breaker in such cases as well. 

From the above discussion, the following important result follows: A network of PNS 

modules divides the problem space into linearly separable regions, as in a piecewise 

linear model. The reject regions also impose additional boundaries to separate the "hard" 

to classify patterns from the "easy" to classify patterns. These additional boundaries are 

also linear due to the fact that all networks used in the PNS experiments (in the P- and 

the N-units) were single stage delta rule networks. Each PNS module contributes to the 

task of approximating the class boundaries by building a linear piece of the overall 

model. 

It is important to mention that, by using other types of networks instead of the single 

stage delta rule network, or by using different types of neurons, the piecewise linear 

model could become a piecewise nonlinear model. For example, thLe results obtained 

with the use of quadratic neurons for the XOR problem is shown in Figure 4.10. The 

onlly difference here is that the input values are squared before inputting to the output 

neuron. The kth output neuron has the output given by 
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Figure 4.10. a )  A Second Order Polynomial Network for the XOR Problem, 
b )  and c )  Possible Accept and Reject Regions. 



The equation of the boundaries can be derived in a way similar to the linear case and is 

given by 

Th~is may result in a hyperbolic or an elliptic boundary as shown in F:igures 4.10 b) and 

c). In this case, only one stage is generated to correctly classify the >:OR problem with 

no P-unit, and the N-unit is a 2-1 unit as in Figure 4.10 a). 

The change to quadratic neurons had little effect in the overall accuriicy of the system, 

leading us to believe that the total network consisting of PNS modules based on the delta 

rule is very effective in overall classification accuracy while rernaining relatively 

inexpensive. 





CHAPTER 5 

A PARALLEL SIMD ALGORITHM FOR MASPAR; THE SIMD-PPSHNN 

In this chapter we describe the parallel implementation of the PPSHNN with two-stage 

ba'ckpropagation networks as its P- and N-units and with PNS modules with single stage 

delta rule networks. In particular we describe the SIMD versions of these networks 

implemented on MasPar MP- 1. 

Fclr simplicity, we refer to the PPSHNN network with two-stage: backpropagation 

networks as the PPSHNNl and with single-stage delta rule PNS modules as the 

PF'SHNN2. We refer to the parallel SIMD version of their respeclive algorithms as 

SIMD-PPSHNN1 and SIMD-PPSHNN2. We also refer to the process of producing an 

output vector for an input pattern by the N-unit as throughput. 

We first describe the architecture of MasPar MP-1[12-141, and then describe the SIMD 

111-121 version of PPSHNN and how it was adapted to MasPar MP-1 architecture to take 

advantage of its features. Section 5.2 is the general parallel algorithm description for 

both networks. In section 5.3, the time complexities of the serial and parallel versions of 

thle PPSHNNl and PPSHNN2 algorithms are analyzed and estimated. Section 5.4 offers 

a theoretical speed up comparison between the SIMD-PPSHNN1 and SIMD-PPSHNN2 



ant3 their respective serial algorithms. In Section 5.5 the parallel testing procedure is 

discussed. 

5.1 Introduction to MasPar MP-1 

Miissively parallel computers normally use more than 1024 processors to obtain 

computational performances unachievable by conventional computers. The MasPar 

Cc~mputer Corporation has designed and implemented a high performance, massively 

parallel computer system called the MP-1. The MasPar MP-1 systenn is scalable from 

1024 to 16384 processors and its peak performance scales linearly with the number of 

processors. A 16K processor system delivers 30,000 MIPS peak performance where a 

representative instruction is a 32-bit integer add. In terms of peak floating point 

performance, the 16K processor system delivers 1,500 MFLOPS single: precision (32-bit) 

and 650 MFLOPS double precision (64-bit), using the average of add and multiply times. 

Because massively parallel systems focus on data parallelism, all the processors can 

execute the same instruction stream. The MP-1 has a Single Instruction Multiple Data 

(SIMD) architecture that simplifies the highly replicated processors by eliminating their 

instruction logic and instruction memory, thus saving millions of gates and hundreds of 

megabytes of memory in the overall system. The processors in a SIMT) system are called 

Processing Element (PE) to indicate that they contain only the data pat11 of a processor. 

Unique characteristics of the MP-1 architecture include the combinzition of a scalable 

architecture in terms of the number of Processing Elements (PEs), sy,stem memory, and 



system communication bandwidth, "RISC-like" instruction set design that leverages 

optimizing compiler technology, adherence to industry standard floating point design, 

and an architectural design amenable to a VLSI implementation. 

Figure 5.1 shows a block diagram of the MasPar system with five major subsystems. The 

following describes each of the major components: 

Th.e Array Control Unit (ACU): The ACU is a 14 MIPS scalar proce,ssor with a RISC- 

style instruction set. It fetches and decodes MP-1 instructions, complites addresses and 

sciilar data values, issues control signals to the PE array, and monitors the status of the 

PEL array; but most of the scalar ACU instructions execute in one 70 nsec clock. The 

ACU occupies one printed circuit board. 

T f ~ e  ACU performs two primary functions: either PE array control or independent 

program execution. The ACU controls the PE array by broadcasting all1 PE instructions. 

Independent program execution is possible since it is a full control processor capable of 

independent program execution. 

The ACU is a custom designed processor with the following major architectural 

characteristics: 

-. Separate instruction and data spaces 

-. 32-bit, two address, load/store, simple instruction set 
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Figure 5.1 B b c k  Diagram of MasPar MP-1. 

-- 4 Gigabyte, virtual, instruction address space, using 4K bytes per page. 

The ACU has a microcoded implementation of its RISC-like instruction set due to the 



additional control requirements of the PE array. PE instructions typically require more 

than one clock cycle, including floating point instructions which arc: well suited to a 

microcode implementation. 

Processor Array: The MP- 1 processor array (Figure 5.2) 

Figure 5.2. Physical Organization of the Array Processor of MP-1. 
1024 PEs on each Board, Organized in Clusters of 16 PEs. 

is configurable from 1 to 16 identical processor boards. Each processor board has 1024 

PI% and associated memory arranged as 64 PE clusters (PECs) of 16 PEs per cluster. 

The processors are interconnected via the X-Net neighborhood mesh and the global 

multistage crossbar router network. A processor board dissipates less than 50 watts; a 

full 16K PE array and ACU dissipate less than 1,000 watts. 
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Figure 5.3 A PE Cluster of MasPar. 

A PE cluster (Figure 5.3) is composed of 16 PEs and 16 processor memories (PMEM). 

The PEs are logically arranged as a 4 by 4 array for the X-Net two-dimensional mesh 

in1,erconnection. Each PE has a large internal register file shown in the figure as PREG. 

Load and store instructions move data between PRES and PMEM. The ACU broadcasts 

instructions and data to all PE clusters, and the PEs all contribute to an inclusive-OR 

reduction tree received by the ACU. The 16 PEs in a cluster share an access port to the 

multistage crossbar router. 

-I+) 

The MP-1 processor chip is a full custom design that contains 32 identical PEs (2 PE 

clusters) implemented in two-level metal 1 . 6 ~  CMOS and packaged in a cost effective 

164 pin plastic quad flat pack. The die is 11.6 mm by 9.5 mm, and has 450,000 

transistors. A conservative 70 nsec clock cycle yields low power and robust timing 
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msugins. 

Processor memory, PMEM, is implemented with lMbit DRAM'S that are arranged in the 

cluster so  that each PE has 16 Kbytes of data memory. A processor bo,ard has 16 Mbytes 

of memory, and a 16 board system has 256 Mbytes of memory. The MP-1 instruction set 

sul?ports 32 bits of PE number and 32 bits of memory addressing per PE, so the memory 

system size is limited only by cost and market considerations. 

As, an MP-1 system is expanded, each increment adds PEs, memory, and communication 

resources, so the system always maintains a balance between processor performance, 

mcmory size and bandwidth, and communications and UO bandwidth. 

The MP-1 processor element (PE) design is different than that of a conventional 

processor because a PE is mostly data path logic and has no instruction fetch or decode 

logic. Like present RISC processors, each PE has a large on-chip re:gister set (PREG) 

and all computations operate on the registers. Load and store instnlctions move data 

between the external memory (PMEM) and the register set. The register architecture 

substantially improves performance by reducing the need to reference external memory. 

The compilers optimize register usage to minimize 1oadJstore traffic. 

Each PE has forty 32-bit registers available to the programmer and eight additional 32-bit 

registers that are used internally to implement the MP-1 instruction set- With 32 PEs per 

dic, the resulting 48 Kbits of register occupy about 30% of the die area, but represent 

75% of the transistor count. Placing the registers on-chip yields an aggregate PEIPREG 

ba.ndwidth of 117 gigabytes per second with 16K PEs. The registers are bit and byte 



addressable. 

Each PE provides floating point operations on 32 and 64 bit IEEE: or VAX format 

operands and integer operations on 1, 8, 16, 32, and 64 bit operands. The PE floating 

pointlinteger hardware has a 64-bit MANTISSA unit, a 16-bit EXPONENT unit, a 4-bit 

AILJ, a 1-bit LOGIC unit, and a FLAGS unit; these units perform floal.ing point, integer, 

anld boolean operations. The floating pointlinteger unit uses more than half of the PS 

silicon area, but provides substantially better performance than the bit-serial designs used 

in earlier massively parallel systems. 

Most data movement within occurs on the internal PE 4-bit NIBBLE BUS and the BIT 

BTJS (Figure 5.4). During a 32-bit or 64-bit floating point or integer instruction, the ACU 

microcode engine steps the PEs through a series of operations on succe~ssive 4-bit nibbles 

to generate the full precision result. Because the MP-1 instructicln set focuses on 

conventional operand sizes 8, 16,32, and 64 bits, MasPar can implement subsequent PEs 

with smaller or larger ALU widths without changing the programmers instruction model. 

The internal 4-bit nature of the PE is not visible to the programmer, 'but does make the 

PB flexible enough to accommodate different front-end workstation data formats. The 

PI3 hardware supports both little-endian and big-endian format integers, VAX floating 

pclint F, D, and G formats, and IEEE single and double precision floating point formats. 

U:VIX Subsystem (USS): An important aspect of the system is the use of an existing 

computer system (specifically a VAX station 3520 U L T R I X ~ ~  workstation) that follows 

ex.isting industry standards (e-g. X windows, TCPIP, etc.). The USS pirovides a complete 
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Figure 5.4 Internal Architecture of a PE. 

network and graphic based software environment in which all the MasPar tools and 

ut:ilities (e-g. compilers) execute. Part of the application executes as a conventional 

workstation application; most of the "operating system" functions are provided by the 

workstation's UNIX software. 

Communication Mechanism: The following sections describes the five major 

ca~mmunications mechanisms. 

1. USS to ACU: Three different interactions occur between the lJSS and the ACU, 



which use three different hardware supports. All are based on a standard bus 

interface (VME). The following describes each mechanism: 

I. Queues: Hardware queues are provided which allows th~e USS process to 

quickly interact with the process running on the ACU. The programming 

model is similar to UNIX pipes but with hardware assist. 

11. Shared memory: The shared memory mechanism overlaps ACU memory 

addresses with USS memory addresses. This provides, a strait forward 

mechanism for processes to share common data structures like file control 

block etc. 

111. DMA: A DMA mechanism is provided that permits fast bulk data transfers 

without using programmed I/O. 

. ACU to PE array: Two basic capabilities are required for data n~ovement between 

ACU and PE array: data distribution, DIST, and array consensus detection which 

uses a global OR, GOR. 

I. PE array: XNet XNet communications provide all PEs with direct 

connection to its eight nearest neighbors. Processors on the physical edge of 

the array have toroidal wrapped edge connections. 

Three basic instruction types are provided to use the nearest neighbor 

connections: 



a. XNET: The XNET instruction moves an operand from source to 

destination a specified distance in all active PEs. The instruction time 

is proportional to the distance times the operand size, since all 

communication is done using single wire connections. 

b. XNETP: The XNETP instruction is pipelined so that a collection of 

PEs move an operand from source to destinatiorl~ over a specified 

distance. However, the pattern of active and inactive PEs is very 

important since active PEs transmit data and inactive PEs act as 

pipeline stages. The instruction time is proportional to distance plus 

the operand size due to its pipelined nature. 

c. XNETC: The XNETC instruction is pipelined and is very similar to 

XNETP instruction, except that a copy of the operarid is left in all PEs 

acting as a pipeline stage. Again the instruction time is proportional to 

the distance plus the operand size. 

11. PE array: Global Router The global router is a circuit switched style 

network organized as a three stage hierarchy of crossbar switches. This 

mechanism provides direct point to point bidirectional conimunications. The 

1 
network diameter is - the number of PEs, which requires a minimum of 16 

16 

communication cycles to do a permutation with all PEs. The basic 

instruction primitives are: 



a. ropen: open a connection to a destination PE 

b. rsend: move data from the originator PE to the destination PE 

c. rfetch: move data from the destination PE to the originator PE 

d. rclose: terminate the communication 

111. PE array to UO subsystem: Since the global rout~er provides high 

performance random PE to PE communication, the global router is also used 

to provide a high performance communication mechanism to the UO 

subsystem. The interface is achieved by connecting the last stage of the 

global router to an UO device, the 110 RAM. The progi:amming model is 

identical to the model for using the global router. 

3. Array UO system: Referring back to Figure 5.1, the UO subsystem uses the 

following key components: the global router connection into the PE array (over 1 

GB MB 
-), a large UO RAM buffer (up to 256 MB), and a high speed (230 -) data 
sec sec 

communication channel between peripheral devices, a bus for device control (not 

for data movement). Using output as an example, the model for using the UO 

subsystem follows these steps: 

a. Device is opened by the USS (all UO devices are UNIX controlled) 

b. The ACU moves data into the UO RAM through the global router. 



c. Either the USS or an YO processor (IOP) schedules data rnlovement from the 

YO RAM to the device (e.g. Disk) (data through the MPIOC (MP YO 

Channel) and control through the VME bus). 

d. The USS is notified when the transaction is complete. 

Note that all transactions from the YO Ram to external YO systems can occur 

asynchronously from PE array actions. This is a key attribute since data can move 

GB 
into the YO RAM at speeds over 1 - then move at YO device speeds, typically 

sec 

in the tens of megabytes per second or less, without effecting tlne performance of 

the PE array. These hardware mechanisms can support either typical synchronous 

UNIX UO or newer (and faster) asynchronous software models. 

5.2 Algorithm Description and Machine Adaptation 

In this section, we discuss the parallel version of the PPSHNNl and the PPSHNN2 

algorithms in detail. Training procedure of the SIMD versions are the same as the serial 

versions shown in Figures 3.4, 4.2 and 4.3 , except that training of the N-unit, the P-unit, 

and the postrejector is done in parallel in a SIMD fashion. Since the training procedures 

of these modules are very similar, we will concentrate on the training procedure of the 

N-anit. Since the N-unit is chosen to be a two-stage backpropagation network or a single 

stage delta rule network, we concentrate on the parallelization of these learning 

procedures. 



5.2.1 The Weight Batching and the Stochastic Backpropagation ,4lgorithms 

The backpropagation algorithm, also referred to as the generalized delta rule algorithm, 

is the generalization of the delta rule algorithm to multiple stages [I]. :lFor this reason we 

first concentrate on parallelizing the backpropagation algorithm and then use this result 

to parallelize the delta rule algorithm. 

The parallel version of the backpropagation algorithm (referred to as SIMD-BP) is 

designed for MasPar MP-1 with 16K PEs. Our design included backpropagation 

networks with one and no hidden layer. Without any hidden layer, thle algorithm is the 

sarne as the delta rule with output layer nonlinearities and is further disc:ussed later. 

In standard backpropagation, an input pattern is presented to the network. Based on that 

pattern, the network computes an output pattern. The output pattern is compared to a 

desired pattern and an error vector is computed. The error is backpropagated through the 

network; based on the amount of error passing through each connection, the weights are 

changed. After that, the next pattern is presented to the network and this procedure is 

repated for the new pattern. In the SIMD version of this algorithm, the weights are not 

changed after each pattern. The weight changes are stored; after the: completion of a 

sw~eep they are added together, and only then the weights are updated (weight batching) 

baaed on the total weight change computed. Figure 5.5 shows the training procedures of 

the serial version of the backpropagation algorithm (BP) and its SIMI) version (SIMD- 

BP). 

Th'z following is the derivation of the backpropagation algorithm to clarify the difference 
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Figure 5.5 Flow Charts of (a )  Serial BP or Delta Rule Algorithm. 
(b) SIMD-BP or SIMD-A. 

between the SIMD-BP version and the serial version. Let us assume a network with N 

output neurons in a problem with P training patterns. The total squared error defined for 

one training sweep is defined as 



Where dP, is the desired output value of the nth output neuron for the training pattern, 

anti the oP, stands for the actual output of the n f i  neuron for the pth training pattern. 

Below, we first discuss the weight changes between the hidden and the output layers. 

Thlzn, we describe the weight changes between the input and the hidden layer. The 

results can be easily generalized to more than one hidden layer. When there is no hidden 

layer, the first discussion is valid. Then, the hidden layer is the same as the input layer. 

Us.ing the chain rule we can find the rate of change of E with respect to wij, the weight 

cor~necting the j th hidden neuron to the i th output neuron, as 

where 

We: assume a sigmoidal activation function in the form 

wh~zre M is the number of hidden neurons, and xf is the jth input to the output neuron, in 

other words, the output of the j th hidden neuron. We get 



84' 
lm= l  

- xf e I -- = xfof(1- of). awij 

Using Eqs. (94) and (96) in Eq. (93) gives 

aE P 
- _ - __ C xfof(1 - of)(df - of). 
awij P p=l  

Therefore, using the gradient descent (steepest descent) algorithm [4], 13e weight change 

for wij is given by 

P 
Awij = p C xfof(1- of)(d$' - of)  

p =l  

where p is a small constant called the step size. 

Fo:r the weights connecting the input layer to the hidden layer, the derivation is slightly 

more complicated. Let us assume that v,k is the weight connecting the kth input neuron 

to Ithe j th  hidden neuron. Then, we have 

where xf is the output of the j r h  hidden neuron for the JI" training pattern and is given 

by 



wh~ere K is the number of input neurons (ie. the length of the input pattern), and i$ is the 

kth bit* of the p'h training pattern. Using the chain rule again, we get 

Using 

ancl from (96), 

we get 

Tht: weight change for steepest descent is 

BI binary represenfation of t k  input pnem,  the kth bit h as a value of I or 0, whereas in continuous ntrmber represenfation, this 
ir~put is the kth component on the analog input pattem vector. 



P N 
Avjk = p C i$xf(l - xf) C wn,o$(l - o$)(d$ - 0;). 

p =l n=l  

In other words, the network has to calculate the weight changes due to all the training 

paltterns, add them up and update the weights based on the totid weight change 

accumulated over the entire sweep. In practice, however, the weight update in the serial 

implementation is performed after each training pattern (stochastic method). In other 

words, using (98) and (105), the weight changes are computed as 

anti 

It can be shown that if the step size p is sufficiently small, the weight update can be 

performed after each pattern and reach a minimum of the error function E after a series 

of very small steps. While this approach is proved to work, its speed is very slow. 

Figure 5.6 shows the descent steps taken to move to the minimum of a paraboloid by the 

exact algorithm (weight batching) [ l ]  and the approximate version (stochastic method) 

ill.. 

5.2.2 The SIMD-BP and the SIMD-A Algorithms 

The SIMD-BP and the SIMD-A use the exact method, mainly because it allows data 

parallelism. In these algorithm we create, in parallel, as many networks as the number of 
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Figure 5.6 The Descent Paths toward the Minimum (of a 
Paraboloid Function for the Weight Batching Technique (Soltd Line), and 

the Stochastic Technique (Dotted Line). 

training patterns. Each network is given a training pattern and computes a weight change 

vector for all the weights in the network, based on its pattern. After the sweep is 

connplete, these weight change vectors are added together using a very fast MP-1 library 

routine called reduceAdd. Then, the weight vectors on all the networks are updated 

based on the total weight change vector. This vector is sent to all the P:Es of MP-1 using 

the XNET structure. 

The: use of the exact algorithm results in data parallelism, and most of the speed-up 

achieved is due to this type of parallelism. Thus, the two types of para:l:lelism utilized by 



the SIMD-BP are as follows: 

rl Architectural Parallelism: This parallelism is simply due to the parallel nature of 

the architecture of layered feed-forward networks. The computations performed in 

the neurons of the same stage can be performed all at the same time. Since there are 

no connections between the neurons of the same stage, no c~mmu~nication overhead 

is necessary*. 

a Data Parallelism: As discussed above, most of the speed-up is due to data 

parallelism. Since the weight changes do not occur until after the sweep is over, 

there is no more data dependency between the operations performed for different 

patterns in the sweep. Consequently, these computations can be done in parallel. 

Therefore, we can simulate more than one network at a time and train each one to 

learn a different input pattern simultaneously. These networks all have the same 

initial random weights and, ideally, only one input pattern to lea~n. Each network 

calculates weight changes for its weights based on the input pattern and the desired 

output pattern it is assigned to. This is done for all the networks at the same time. 

After this step, the weight changes are accumulated from all the networks and the 

weights of all the networks are updated simultaneously, based on the accumulated 

weight changes from all the networks. 

* ( h e  could arsign a PE to every neuron in the network. However, this does not bring a higher degree qf parallelism than the case 
when there is only ar nmny PEs msigned to the network as the number of neurm in the largest layer. This is due to the serial 
xature of the stages and the communication overhead required for communication between two layers. 



Tcl better describe the SIMD training algorithms, we discuss the algorithm with the 

example of the 10-class remote sensing Colorado problem. This prob:lem was described 

in Section 2.1.2. It involves classifying each input pattern into one of ten possible 

classes. The data set consists of 1188 patterns of length seven for training and 831 

patterns for testing. Figure 5.7 shows the PE array of MP-1 in 

Figure 5.7 PE Array of MP-1 Partitioned for the Colorado Dczta Set for the 
7-1 00-1 0 BP network. Each Network Learns only up to 

8 Patterns of the Training Set. 



a :128x128 grid array as it was arranged for this problem, using a 7-1013-10 input-hidden- 

output neuron backpropagation network. Figure 5.8 shows the PE array of MP-1 

arranged for the same problem for the 7- 10 input-output delta rule network. 

Unused PEs 

Figure 5.8 PE Array of MP-1 Partitioned for the Colorado Data Set for the 
7-10 Delta Rule network. Each Network Learns Only One Pattern of 

the Training Set. 

Figures 5.7 and 5.8 show the architectural parallelism for the Coloratlo data set. Each 

ne~.work is simulated by 100 PEs (10 in figure 5.8), which is the size of the hidden layer 

of the backpropagation network (size of the output layer of the delta rule network). These 



100 (10) PEs first emulate the 100 (10) hidden (output) neurons of the network. In the 

ca,se of the two-stage backpropagation network, once the calculations for the first stage 

art: performed, the output values of the 100 hidden neurons are commu~nicated to the first 

10 of the 100 PEs. Then, the remaining 90 are disabled and only tlhe first 10 PE are 

acrjve to emulate the output layer. Figures 5.7 and 5.8 also show the data parallelism for 

the Colorado data set. With the layout shown, the SIMD-BP and the SIMD-A learn 156 

and 1188 patterns simultaneously, respectively. 

It is important to keep in mind that the degree of parallelism achieved depends on the 

number of processors assigned to each network and the number of training patterns in the 

training set. For example, the 10-class Colorado problem has 1188 patterns in its training 

set and the number of PEs required for each backpropagation network is 100, where for 

the. delta rule network it is 10. Therefore, the maximum number of backpropagation 

16384 
networks running simultaneously is 1 - = 163, where the maximum number of 

100 

16384 delta rule networks is I - = 1638. For the simplicity of communication patterns, 
10 

we chose to have only 156 backpropagation networks running simultaneously**. 

For the SIMD-A there were only 1188 simultaneous networks, since: there were only 

11138 patterns in the training set. Out of the 156 backpropagation networks, 94 were 

given 8 patterns and the remaining 62 were given 7 patterns (7x62 + 8x94 = 1188), 

** !f we hod chosen 163 networh running simultaneously, loading the input pattern into the PEs corirctly would become more 
c;!@cult and the communication pattern among the PEs would have become irregular, which would ]'lave caused the PE-to-PE 
communication to be achieved in several serial steps rather than me pamllel step. 



which gives a degree of virtualization of 7 (which is explained further below). The 

SIMD-A networks each received one pattern, making the degree of virtualization 0. 

Hence, at any given time, we are computing the weight changes for 156 different patterns 

in the SIMD-BP algorithm and 1188 in the SIMD-A. Figures 5.7 and 5.8 show the layout 

of the 156 backpropagation networks and the 1188 delta rule networks in the MasPar PE 

arsay. 

In any parallel machine, the degree of parallelism is limited to the physical parallel 

resources of the machine. For example, in the MP-1 with 16K PEs, the maximum degree 

of parallelism achievable is 16384, since a maximum of 16384 operations can be run 

sinlultaneously at any given time. The real degree of parallelism for a given algorithm is 

noimally much lower than the maximum degree possible. For example, in the Colorado 

prc~blem, every backpropagation network required 100 PEs, thus allowing 156 parallel 

networks. In order to have one backpropagation network per training pattern, we ideally 

would have required 100x1 188 = 118800 PEs. Since this many PEs were not available, 

we implemented a concept referred to as virtualization. 

The idea is similar to that of virtual memory, where one assumes that there is a much 

larger memory space than what the machine's physical resources offer. We assumed that 

118800 PEs were arranged in a three dimensional PE grid array. The three-dimensional 

array is made of 8 layers (slices) of 128x128 PEs (Figure 5.9). Since: there is actually 

one: physical layer of PEs available, the PE array of MP-1 has to be programmed to 

emulate the layers of the 3-D grid serially. Thus we end up running 1.56 networks at a 

time, and at any given time the PE array is emulating a different layer of the virtualized 
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by the PE in the x,y coordinate 
(1 27,O) of the PE array of MP-1 

Figure 5.9 The 3-0 Virtual PE Array for the 10- Class Colonldo Data Set. 

PE grid. Notice that the shift from one virtual array to another is done serially. In other 

words, the physical PE array has to process the first 156 networks before it can switch to 

the second batch. This serial portion of the algorithm is a "bottle neck" for the 

thrIoughput* of the algorithm. This serial loop is eliminated in the SIMD-A case for the 

* lly throughput we mean t k  part of the algorithm in which t k  output of the network fora given pattern is calculated. 



10-class Colorado problem because of the degree of virtualization of zero. 

The data distribution among the PEs has to take the virtualization factor into account. 

Each PE receives the data for all the virtual PEs which it is assigned to emulate on all the 

virtual layers. Care must be taken in loading the data into the PEs, so that each PE 

receives only the data which the virtual PEs it is assigned to would have received. Also, 

the programmer must be careful about the fact that in the last slice there might not be 

enough data to require the services of the entire PE array. In this case, those PEs which 

have run out of data must be inactive for the computations of the last slice. Loading the 

data into the correct PEs was done using the PP-read and the xnetc constructs described 

later. These two parallel constructs are very efficient, making the cost of this 

preprocessing relatively small in relation to the actual cost of learning. Table 5.1 of 

Section 5.4 shows the average time required for loading and distributirlg training data in 

the case of the backpropagation networks with the virtualization degree of 7. 

Another costly part of initiating the networks (backpropagation or delta. rule networks) is 

generating floating point random numbers for initial connection weights and distributing 

them among the PEs correctly. This procedure is so costly that storing some random 

values and loading them from a file should be considered. To generate the random 

nurnbers, we used a random vector generator routine from the MasPar mathematics 

library called k v e y r a n ,  which generates a Y-oriented random vect.or and stores its 

elements in the first column of the MP-1 PE array. To distribute the weights among all 

the networks, we again used the xnet constructs. Table 5.1 shows the average time 

required for this task for the SIMD-BP. 



Fi,gure 5.5 shows the block diagram of the serial and the SIMD version of 

backpropagation or delta rule algorithm. The SIMD-BP and the S1M:D-A programs are 

designed to arrange the PE array to achieve the minimum degree of virtualization thereby 

ac;hieving the maximum degree of parallelism. They are written in sulch a way that they 

detect and adjust to the size of any given problem automatically. Fo:r this purpose, the 

program considers two parameters: 1- The size of the largest layer of the network, 2- the 

number of training patterns. For example, for a classification problem with 500 training 

pa1:terns and a network with 10-20-5 input-hidden-output neurons, the program requires 

no virtualization (virtualization degree of zero). Figure 5.10 shows the PE array 

arrangement for this problem. The remaining part of the SIMD-BP takes the degree of 

virtualization (slice) and a parameter called offset into account. The oj^fset is the number 

of PEs in the last slice which still have data and which should be kept active for the 

calculations of that slice. The program then performs the operations of each slice 

separately. It first deactivates the PEs not required for that slice and then has the ACU 

decode the instructions and send them to the PEs, which in turn perfonrn the operation if 

their enable flag is high. The SIMD-BP and SIMD-A programs are thereby written in 

such a way that they detect and adjust to the size of any given problem automatically. 

Figure 5.7 shows how the backpropagation networks are organized in the MP-1 

implementation for the Colorado problem. The first 128 networks were chosen in a 

vertical layout fashion and the remaining 28 in the horizontal layout fashion. This 

produces the simplest communication pattern. An inverse layout pattern (first 128 

horizontal and the rest vertical), would result in additional communication overhead to 



128 networks 

inactive PEs 

Figure 5.10 The PE Arrangement for a 2-Stage Backpropagation Network 
with the largest layer of size 20 for a Problem with 500 Trainiing Patterns. 

distribute the input patterns to all the PEs in each network. Further speed-up can be 

achieved by assigning 10 x 10 square of PEs to each network instead of a 100 x 1 array 

of PEs. This results in communication paths with maximum length of :LO, instead of 100. 

At the cost of a more complicated communication pattern, this could result in a slight 

speed-up. 

The way the networks are organized is such that the first PE in all the nt:tworks can easily 

be enabled. The input patterns are loaded into the first PEs of the networks using the 

parallel read command [ 121: 



cc = p-read(d buf; nbytes) 
plural int cc; 
int d; 
plural char *buJ 
int nbytes; 

This command was used in the following format: 

if( (iyproc==O) )I ((iyproc>=hn)&&(irproc==O)) ) 

Fst&us=p-readCfd, &x[slice][O], invecbt); 

The if statement enables the first PE of each network (Figure 5.7). ixproc and iyproc are the x 

and the y coordinates of each PE, respectively, in the 128x128 PE array. r'ln is the size of the 

hidden layer (in this case 100). invecbt is the size of the input vector in bytes, and slice is the 

degree of virhtalization. Notice that the entire input vector is read into the first PE in one shot. 

After the loading of input data, the first PEs proceed to communicate the data to the rest of the 

PEs in their networks. This communication uses the metc command [12]. The xnetc command 

was used as follows: 

if( (ixproc==O) && (iyproc >= hn) ) 

xnetcE[hn-l].x[slice][i] = x[slice][i]; 

Th12  if statements enable the first PEs of the networks. The letters "S 'and "E' specify the 

direction in which data should be sent (South and East). hn-I is the step size, which means "send 

1 0 3  - 1 = 99 PEs to the south or east". Notice that since xnetc is used, a copy of the 

communicated data is left in each relaying PE memory at the right location. 

The forward calculation of data also requires some communication which uses metp and xnetc. 

To calculate the total AW (the change in the weight matrix), we used two library routines from 

ME'-1's mathematics library MPML [14]. These two routines are: 



voidfp_matsumtovex ( ny, nx, B, nxB, y o m ,  x o m ,  a ) 

iw ny, nx, nxB, yo@, q P ;  

plural float *B, *VX; 

void fp-matsumtovey ( ny, nx, B, nxB, y o m ,  xum, W) 

iw ny, nx, mB,   YO^???, xcm; 
pluralfloat *B, *W; 

The first routine adds the columns of the matrix B starting from row y o p  and column x o m  for 

ny rows and nx columns and puts the results in the x-oriented vector VX. The second routine adds 

the rows of this submatrix and puts the results in the Y-oriented W vector. 

Fo:r example, one could use the fp-matsumtovey library routine to add the processor numbers 

(iproc*) assigned to each processor row by row from the 4th row to the 1Wh row, and from the 

6th PE in each row through the 120th PE in that row, and put the sum values in a Y-oriented 

vector in the oth column of the PE array. The steps to perform this operation ;we as follows: 

1 plural float B, VY; 

2 B = (plural float) iproc; 

3  fp-matsumtovey( 96 ,114 ,  @B , 1 , 3 , 5 ,  @VY ); 

In statement 1, the variables B and VY are declared across all processors. In statement 2, the 

iproc value of each PE is assigned to the variable B of that PE. In statement 3, the 

fp_.matsumtovey function is used to add the values of the B variables in each row from the 4th to 

the 10dh row, and each row from the 61h element to the 120" element, and put the result of 

* ,'n the PE array of MP-I each PE c m  be idenfified in two ways. First way iE to identify the row number ixproc and the column 
number iyproc of the PE in the two dimensional PE grid array. The second way is to identify the processor number ipnx of the PE 
(:see Figure 5.1 1). Where iproc=ixprocxnxproc+iyproc+l and nxproc is the number of PEs in a row (in 16K machine, 128). 
'Iherefae the expressions proc/3][4].B and prm/389].B are equivalent and both point to the value of the variable B of the PE in 
Ihe 4Ih row and the Srh column. 
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Figure 5.11 An Example of the Operation of the fp-matsumtc~vey Routine. 

each row in the VY variable of the first PE of that row** (see Figure 5.1 1). 

The backward propagation of error and updating the weights uses the same routines in the reverse 

direction of the network. 

- 
** :The number of PEs in the Y direction ny=lWM6 

'%e number of PEs in the X direction ~=120-6=114 

? l e  starting row yoD=4-1=3; the first PE in each row is the 0Ih PE 

l l e  starting PE number in every row m$Z?=6-1=5; the first PE in  each row is the ofh PE 



5.3 Time Complexity Analysis 

In this section, we will analyze the time complexity of PPSHNNl, PI'SHNN2, and their 

respective parallel versions. Since training takes much longer than testing, %we only concentrate 

on the time complexity of the respective training procedures. 

5.3.1 The PPSHNN 1 and The SIMD-PPSHNN 1 Algorithrn~s 

The PPSHNN 1 consists of several two-stage networks. A few examples of these networks are: 

the first N-unit created for the first module, the P-unit created for the first module (if necessary), 

the reduced N-unit for the first module (if a P-unit was created for that module), the N-unit 

ne1:work for the second module, the P-unit created for the second module (if necessary), the 

reduced N-unit for the second module (if a P-unit was created for that module), etc. 

Over 90% of the training time of PPSHNNl is spent on training these rletworks. The time 

required for the statistical analysis of the S-units, and overhead operationls required for self- 

orlganization is less than 10% of the total training time. It is also important 1-0 keep in mind that 

all these networks are equal to or smaller in size than the first N-unit created for the first module. 

Also, the number of patterns with which they are trained is less than thal: of the first N-unit 

created for the first module. Therefore the time required for their training is less than the training 

time of the first N-unit network created for the first module. For this reason we get 

where TPPsHNN is the time complexity of the PPSHNNl network and TBP is the training 

time complexity of the first backpropagation network created. With the same argument, 



Fclr this reason, we first analyze the time complexity of the serial backpropagation BP 

and the parallel version SIMD-BP algorithms for a two-stage feed-forward network. 

Since the time taken to perform floating point addition, multiplication, and 

exponentiation is a good indication of the time required by the training procedure, we 

est;imate the number of such operations performed in each type of training procedure. 

Th,e Serial BP Algorithm: 

Let us denote the number of input neurons to the network with ni, the number of hidden 

neurons with nh (assuming one hidden layer in the network), the number of output 

neurons with no, and the number of training patterns in the training set with P. Since, in 

the first stage, a backpropagation network has to perform one multiplication for every 

connection, we get ni x nh floating point multiplications for the first stage. To add the 

incoming signals to each neuron and subtract the result from a threshold [I], we need 

nh x ni floating point additions for the first stage. In the same way, we can find nh x no 

floating point multiplications, and no x nh floating point additions for the second stage. 

Therefore we get a total of nh x ni + n o  floating point mu.ltiplications, and [ I 
nh x [ni + n o ]  floating point additions. We also require a total of nh + n o  floating point 

exlponentiation for the two stages. 

Let us denote the time required for a floating point addition by a, the time needed for a 



floating point multiplication by P, and the time required for a floating point 

exponentiation by y. Since the error backpropagation through the net and weight changes 

require the same order of floating point additions, multiplications, and exponentiation as 

folward propagation, and since this procedure is repeated P times, once for each pattern, 

tht: time complexity of the backpropagation network becomes 

Since ni is 0 no for the Colorado problem, we get [ 1 

The SIMD-BP algorithm: 

To calculate the time complexity of the SIMD backpropagation algorithm, in addition to 

the: time required for floating point additions and multiplication, we ha.ve to consider the 

colnmunication overhead. Let us first consider the additions, the multiplications and the 

exponentiation. Since in SIMD-BP all the neurons of each stage operate in parallel, we 

only need ni multiplications, ni additions, and 1 exponentiation for the first stage and nh 

mt~ltiplications, nh additions, and 1 exponentiation for the second stage. Thus, the 

colnputation time needed to process one pattern is on the order of 

[ni + nh] x [a + p] + 2 x y. Since the communication overhead is on the order of the 

length of a side of the PE array which is 128, the communication overhead is on the order 

of nyprocxc, where C is the time it takes to communicate a float value from one PE to its 



immediate neighbor, and nyproc is the length of the PE array in the y direction 

(nyproc =128). 

Thus, we get 

wllere slice = I?]. is the degree of virtualiration and N is the number of PEs in the 

M:P-1 PE array. Because both ni and nh are 0 nyproc , we can right [ I 

and since N = nyproc we get 

Therefore, by using equations (108) and ( 1  1 1 )  we can write: 

T p p s ~ ~ ~  1 = 0 [TBP] = 0 [P nhno] , 

and using (109) and ( 1  14) gives: 



5.3.2 The PPSHNN2 and SIMD-PPSHNN2 algorithms 

The PPSHNN2 which implements PNS modules, uses delta rule networks. This means 

removing the hidden layer(s) of the backpropagation network. Then, there are just the 

input and the output layers. The derivations of the Equations (92) through (98) still 

apply. The error function is defined as in (92) and the gradient descent algorithm results 

in the weight change of 

as before. Since there are no hidden layers, this weight change equation applies to all the 

weights in the network. 

Similar to the argument for the PPSHNNI, we can show that most of' the time required 

foi: the training of a PPSHNN2 network is spent on training the neural. network modules 

which are chosen to be single stage delta rule networks. Hence, we can1 write 

where TPPSHNN2 is the training time complexity of the PPSHNN2 network, and T A  is the 

training time complexity of the first delta rule network created. With th'e same argument, 



TSIMD - P P S H N N ~  = [TSIMD -d ] (1 19) 

Fclr this reason, we first analyze the time complexity of the serial delta rule algorithm 

which we denote with A, and its parallel version SIMD-A. Like before, we take the time 

needed to perform floating point addition, multiplication, expone:ntiation, and the 

communication overhead in the parallel case as a measure of the tim~e required for the 

training procedure. 

Th,e Serial Delta Rule Algorithm: 

Since there is no hidden layer in the two-layer network, the number of PEs assigned to 

each network on the MP-1 PE grid depends on the number of neurons in the output layer 

of the network. This is determined by the coding scheme used for output. 

As before, we denote ni to be the number of input neurons, no the number of output 

neurons, and P the number of training patterns in the training set. Since there are two 

layers of neurons, there is only one stage of connections between the layers. In this 

stage, the delta rule performs one multiplication for every connection (hence ni x no 

floating point multiplications), ni x no floating point additions to add the incoming 

signals to the output neurons and subtract them from a threshold, aind no exponential 

operations. 

If, as before, we denote the time required to perform a floating point addition, 

multiplication, and exponentiation by a, P, and y, respectively, the time complexity of a 

se~ial  delta rule network can be estimated as 



or., 

The SIMD Delta Rule Algorithm: 

Similar to the case of networks with hidden layers, in addition to the: time required for 

floating point addition and multiplication, the communication overhead also has to be 

talcen into account in the parallel algorithm. For this purpose, as before, the value C is 

inlroduced as the time required for a floating point value to be sent from a PE to its 

immediate neighbor. 

Si:nce the operations in the stage are performed in parallel, there are only ni floating point 

multiplications, ni floating point additions, and 1 floating point exponeintiation. Thus, the 

to~:al time required for the additions and multiplications and exponenl:iations needed for 

the computations of one pattern is ni x a + p + y. Since the PE array is [ I 
nxproc x nyproc, which is 128 x 128 in the 16K machine, the communication overhead 

is at most on the order of C x nyproc. Therefore, the time complexity can be estimated 

= 0 1 slice I ni [a + p ] + C nyproc + y I I 



where slice = 1I-] is, as before, the degree of virtualization and N is the number of 

PE3s in the MP- 1 PE array. Also, because ni is 0 nyproc we can write [ I 
P no nyproc P no 

TSIMD-A=.[ ]= . [ - I  c 
The PPSHNN2 and SIMD-PPSHNN2 Algorithm: Again by using equations (1 la), (1 19), 

(121), and (123), we can estimate the time complexity of the A and the SZMD-A 

algorithms as follows: 

5.4 Speed-Up Analysis 

In this section, we compare the order of theoretical speed up and the actual speed up 

achieved in our experiments for the PPSHNNl network with two-stage backpropagation 

networks, and the PPSHNN2 network with single stage delta rule netwlorks. 

The actual speed up comparison is made between the run time of each algorithm on a 

Sun 3/60 station and its respective SIMD version on MasPar MP-1 with 16K PEs. 



It is important to mention here that the actual speed-up factor achieved in experiments 

embodies both parallel speed-ups and hardware differences in the floating point units of 

the two systems. The floating point co-processor in the sun system is a full blown 

floating point unit, whereas the floating point units of the MP-1 have 4-bit ALUs and 

most of their operations are performed by table look-ups. In addition, in MP-1 the 

floating point units are shared among the PEs of a PE cluster. Therefore, not every PE 

has access to a floating point unit at all times. Despite all the hardware differences, our 

experiments show that the overall floating point capabilities of a MP-1 PE and of the Sun 

31150, for most applications, are comparable. 

TPPSHNN 1 
PEbSHNN1: The order of estimated speed-up is to be measured by 

T ~ l ~ ~  -PPSHNN 1 

Ecluations (1 1 1) and (1 12) give 

For example, in the 10-class Colorado remote sensing problem, we have: ni =7, 

P = 1 188, nh = 100, no = 10, slice = 8. For this problem run on the MP-1 with 

N = 16384 PEs, we get 

no fi= 1 0 x d E =  1280. 

In our experiments with backpropagation on a Sun 3/60 work station, each sweep of 

training for the 10-class problem takes an average of approximately 7 minutes and 30 



seconds. On MasPar, on the other hand, every 100 sweeps takes an average of 

approximately 14 seconds. This results in a speed-up factor in this particular case equal 

to 

Figure 5.12 shows the run times for different size hidden layers of the SIMD-BP. 

Number of Hidden Neurons 

Figure 5.12 SIMD-BP Run Times for Networks with 7 Input 
Neurons and 10 Output Neurons for the Colorado Data Set with 

11 88 Training Patterns. 



The: relatively big jump in the training time between the 80 and 90 hidden neuron 

networks is due to the addition of another slice to the virtual PE array, which increases 

the degree of virtualization by one. 

Table 5.1 shows some time indexes for the 100 hidden neuron network, which performed 

the best classification for the 

Table 5.1 Actual Time Indexes for Various Parts of the SIMD-BP Algorithm. 

1 first stage second stage network I 

throughput 

loading and distributing 
training date 

weight update 

0.23641 1 second for 1188 paterns 

5025.15 patterns 1 second 

best time 

worst time 

loading and distributing 
desired data 

best time 

worst time 

0.0410522 second for 1188 paterns 
28938.77 patterns 1 second 

73.12 MCS 
0.013001 sec. 1 sweep 

73.07 MCS 
0.0130064 Set. 1 sweep 

I generating and distributing 

186.94  CUPS 
0.005084 set. 1 sweep 

186.72 MCUPS 
0.00509008 sec. I sweep 

0.449686 seconds for 181 0 connections 

19.26 MCS 
0.062314 sec. 1 sweep 

19.25 MCS 
0.0623242 Set. 1 sweep 

I random weights 4025.03 connections 1 second I 

0.07531 5 sec. 1 sweep 

28.54 
0,07!jj@ 2ai' set. 1 sweep 

39.47 MCUPS 
0.030401 set- Isweep 

39.33 IJCUPS 
0.03051 17 sec. 1 sweep 

60.60 MCUPS 
0.0[15485 Set. 1 Sweep 

60.40 MCUPS 
0.03Ei611 set. I sweep 



10-'class problem. For this problem, the SIMD-BP algorithm reached a peak 

performance of 0.013001 seconds for calculating the throughput of the first stage (800 

connections) for all the patterns in one sweep (1 188 patterns). This is equivalent to 73.12 

MCIS (Million Connections per Second). The worst performance for the first stage was 

observed at 73.07 MCS, or 0.0130064 seconds for a sweep. Notice that the times 

mentioned for the first stage also include the floating point exponenti;ation required for 

the activation functions of the hidden neurons. The best performance o:F the second stage 

(1C110 connections) was 19.26 MCS, or 0.062314 seconds for a sweep. The worst 

per'formance for this stage was observed at 0.0623242 seconds per sweep, or 19.25 MCS. 

The times for the second stage include the exponentiation required for the activation 

fur~ction of output neurons and the communication overhead to communicate the output 

of the hidden layer to the input of the output layer. For the weight update of the first 

stage we achieved a peak performance of 0.005084 seconds per sweep, or 186.94 

M(3UPS (Million Connection Updates per Second), while the worst performance was 

186.72 MCUPS, or 0.00509008 seconds per sweep. For the seconld stage, the peak 

pel-formance was 39.47 MCUPS, or 0.030401 seconds per sweep, while the worst speed 

was 0.03051 17 seconds per sweep or 39.33 MCUPS. The times for the second stage also 

include the communication overhead for the backpropagation of the partial errors to the 

first stage. 

PF'SHNN2: Similar to the PPSHNNl case, the order of the theoretic(a1 speed-up of the 

1 P t W N N  2 
parallel PPSHNN2 algorithm can be estimated by the ratio - . Using 

T~~~~ -PPSHNN 2 

equations (120) and (121) this ratio becomes 



For the example of the 10-class Colorado problem with ni=7, no=lO, P=1188, and 

slic-e=l, and a MP-1 array size of N=16384, we get 

Tht:, actual speed up in our experiments between the serial and the parallel versions of the 

PPSHNN2 algorithm run on Sun 3/60 and MP-1 respectively was measured as follows: 

The serial algorithm takes approximately 19 seconds to complete on.e training sweep. 

The parallel algorithm running on MP-I takes an average of 1.75 seconds for every 100 

training sweeps. This results in a speed up factor in this case equal to 

Table 5.2 shows some time indexes for the PPSHNN2 network running on MP-1 for the 

10-class Colorado problem. 

For this problem, the SIMD-A algorithm reached a peak performance of 0.001625 

seconds for calculating the throughput of the network (80 connections) for all the 

patterns in one sweep (1188 patterns). This is equivalent to 58.48 MCS. The worst 

performance for the first stage was observed at 58.46 MCS, or 0.0001.626 seconds for a 

sweep. 



Table 5.2 Actual Time Indexes for Various Parts of the SIMD-A 
Algorithm. 

For the weight update of the network, we achieved a peak performance of 0.00063550 

seconds per sweep, or 149.55 MCUPS, while the worst performance was 149.37 

MCUPS, or 0.00063626 seconds per sweep. 

throughput 

weight update 

As we see, while the first stage of the backpropagation network: achieves higher 

throughput and update rate than the delta rule network, as a whole, the backpropagation 

network performs slower than the delta rule network (28.55 MCS versus 58.48 for 

throughput and 60.60 MCUPS versus 149.55 MCUPS for weight update). This is due to 

tht: much slower second stage of the backpropagation network. Much of this slow-down, 

compared to the first stage of the network, is due to the communication overhead 

required to communicate the output of the first stage to the PEs responsible for the output 

network 

best time 

worst time 

best time 

worst time 

58.48 MCS 
0.001625 sec. / sweep 

58.46 MCS 
0.001626 sec. sweep 

149.55 MCUPS 
0.0006355 set. 1 sweep 

149.37 MCUPS 
0.00063626 sec. / sweep 



layer. 

As we see, the weight update performances for both networks are about twice their 

respective throughput performances. This is unusual since updating the weights is much 

more computationally intensive than throughput. For weight update, one must find the 

gra.dient of the error function in order to find the steepest descent path. The evaluation of 

the following expression, 

which is computationally more intensive than the computations iinvolved with the 

throughput is necessary for the calculation of the steepest descent path. This expression, 

however, can be written as 

aot 
= xfof(1 - of'). awij 

W I ~  see that all the components of this expression are either given or have been 

ca'lculated during throughput. Thus, there is no need to recalculate these partial results. 

By using their values from the throughput stage, we can avoid floating point 

exponentiation as well as most other floating point operations. This produces the speed- 

up factor observed during weight update. 



5.5 Parallel Testing 

The procedure of parallel testing of the network is similar to that of training except that 

duiing the throughput the hierarchy of the modules can be ignored. ' I l~us,  all the P- and 

NEL- units are implemented in parallel. All the P- and NS-units receive the incoming 

pal.tern, and based on their respective trainings, they perform classification. The result of 

this classification is interpreted differently from unit to unit. For example, the output of a 

P-unit is interpreted as accept or reject, whereas the output of a NS-unit is either 

classified into one of the classes which the unit was trained with, or it is classified as 

reject. If a P-unit and its S-unit classify a pattern as accept, the c1,assification of the 

succeeding modules in the hierarchy are ignored. In this case only the classification of 

the NS-unit(s) corresponding to that P-unit matters. If a P-unit andlor S-unit classifies 

the pattern as reject, the classification of the module is disregarded, and the classification 

of the succeeding module is considered. Notice that, similar to training, depending on the 

size of the PE array and the number of PEs required to simulate the parallel network, 

several patterns are classified at the same time. Hence, the two types of data parallelism 

and architectural parallelism also exist in the testing procedure. 

As an example, Figure 5.13 demonstrates the network developed for the 10-class 

Ccjlorado problem. W e  have marked the P-unit of the first and second modules as PI and 

Pll .  The P-units within the NS-units are marked p 1, p 2, p 3, etc. The: NS-units are also 

numbered in this manner. Figure 5.14 shows the division of the MP-1 PE array for the 

testingJrecal1 of this network. As shown, the networks are simulated bly columns of PEs. 

This arrangement results in the simplest communication pattern for distributing the 



Figure 5.13 The PNS Block Diagram for the 10-Class Problem. 

patterns. As we see, for each module first the P-unit is mapped and then the NS-unit. 

This way, if a P-unit accepts the current pattern, the classification of all the units after the 

colrresponding NS-unit(s) are ignored. As we can also see from the figure, the network is 

repeated as many times as possible in the PE array. This allows data parallelism, which 

allows the classification of several patterns at a time. 

For example, let us assume that the current pattern belongs to class 1 .  The PI unit will 

accept this pattern, rendering the disregard of the classification of all the units after NS3 

and higher. Then the classification of p 1 is observed. If the vote is reject, the 

classification of NS 1 is also disregarded and the classification of NS 2 is regarded as the 

only relevant classification. This could result in either class 4 or 5 (see Figure 6.8), 

which would be a misclassification. If however, p 1 accepts the pattern, NS 1 is the 

relevant unit and classifies the pattern as either class 1 which would be correct, or 7 (see 
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Figure 6.8) which would be incorrect. 



CHAPTER 6 

EXPERIMENTS AND RESULTS 

The experimental results of two classification problems are discussed in this chapter. 

The first one is the speech synthesis problem and the second applicati.on is the 10-class 

Ccllorado data set. 

The networks used are SIMD-PPSHNN1 and SIMD-PPSHNN2. The results of these 

networks are then compared to the results of the PSCNN and the backpropagation 

networks. 

Th.e backpropagation network used as a comparison was a two stage 6eed-forward fully- 

connected network. Various sizes of hidden layers were used to achieve the best 

performance. In all backpropagation network, the step size was kept at 0.7. In all 

S:CMD-PPSHNN networks the step size was 0.01, and in PSCNN networks the step size 

was 0.05. 



6.1 The Speech Synthesis Problem 

There are two sets of data patterns for this application. One for training with 2319 

patterns and another one for testing with 543 patterns. The characters "ow, "u", "p", and 

"z" were intentionally under-represented in training. The FLAP class was the most 

represented class in the training set. 

6.1.1 Backpropagation Results 

As mentioned before, the backpropagation networks were all two-stage networks. The 

size of the hidden layer was varied to achieve optimum classification accuracy. The 

hidden layers tried had 20, 30, 40, and 50 hidden neurons. Figure 6.1 shows the 

pe,rformance tables of these networks. The figure shows the best performance of the 20 

hidden neuron network, which was after 50 sweeps. The 30 hidden neuron network had 

its peak performance at 320 sweeps. The 40 hidden neuron network had its best 

performance after 300 sweeps. Finally, the network with 50 hidden neurons reaches its 

best performance at 700 sweeps. We can also see from the graph that the network with 

389 
40 hidden neurons performs the best (- = 71.64%) among the 4 networks. Any 
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increase or decrease in the number of hidden neurons from 40 hidden neurons reduced 

the accuracy of the network. 



6.1.2 PSCNN Results 

Figure 6.2 shows the best results of four PSCNN networks. All four mlodels were trained 

with 200 sweeps of the training set. The first network has only one mlodule and its best 

performance is 60.59%. The second model has 3 modules and its best accuracy is at 

72.74%. The third network has 5 modules and its classification accuracy is 74.77%. The 

last network and the best performing network has 9 modules and pel-forms at 75.14%. 

Arly increase in the number of modules from here on reduced classification accuracy. 

Also the accuracy of the networks started to decrease after 200 sweeps. 

6.1.3 SIMD-PPSHNN 1 Results 

Two modules were created for this problem. Figure 6.3 shows the results of the two 

module PPSHNN. The first module required a P-unit. It was trained to reject /b/, /v/, If/, 

Id, Id, /el, 101, Id, and /it and to accept the rest. Figure 6.3 (a) show!; the results of the 

P-nnit. It performed at 92.82% accuracy. This submodule had most ]problems with /p/. 

This P-unit was trained to accept data belonging to this class, but it only accepted 23 of 

the 43 patterns belonging to this class and rejected the other 20. Among the rejected 

cletsses, the P-unit had the lowest accuracy with /el. It was trained to reject all the /el 

patterns. It rejected 12 of 15 patterns and accepted 3 of them. 

Figure 6.3 (b) shows the results of the performance of the NS-unit of module 1. The 

results shown in this figure do not include the rejected data by the P-unit. We see that 

module one correctly classified 84.3% of the data accepted by the :P-unit, incorrectly 
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module's NS-unit. It correctly classified 47.87% of the patterns passed to this module. 

36.7% of patterns passed to this module were misclassified, and 10.64% of them were 

rejected. 
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The overall performance of the two-module PPSHNNl is shown in Figure 6.3 (d). The 

best classification accuracy was 77.9%. As we can see, it outperformed the 

backpropagation and the PSCNN networks not only in overall classification accuracy but 
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also in classification of patterns belonging to under-represented c1ass1:s such as /pi and 

Id. Also, it is worth mentioning that 3.68% of the data was still irejected after two 

modules. A third module could increase the accuracy by a slight margin. 

6.2 The 10-class Remote Sensing Problem 

This data set contains a set of 1188 vectors for training and a set of 831 vectors for 

testing. The breakdown among the classes is shown in Figure 2.2. Each vector is of 

length seven and any component of the vector can have a value between 0 and 250. As 

set:n in Figure 2.2, all 10 classes are present in both the training and the testing set. 

6.2.1 Backpropagation Results 

A:; for the speech synthesis problem, different size backpropagation networks (all with 

one hidden layer) were tried. Figure 6.4 shows the results of the thre:e best performing 

network. Figure 6.4.(a) shows the best result among all backpropagation networks with 

55.72% accuracy. This network has 100 hidden neurons. In figures (b) and (c) the 

results of two other networks are shown with 110 and 90 hidden neurons respectively. 



6.2.2 PSCNN Results 

Figure 6.5 shows the results of two PSCNN networks, one with 9' and one with 7 

mc~dules. The results are slightly better than the backpropagation networks, but still quite 

poor in the under-represented classes. Best performance was achieved with the 9 module 

network at about 56.68%. 

Saimple runs with the same data set were also done by other independent researchers [2]. 

In none of the cases was correct classification percentage above 60%. It is also important 

to :mention here that none of the networks learned any of the classes 2,11,8,9, and 10. 

6.2.3 SIMD-PPSHNN1 Results 

The P-unit used for this experiment is shown in Figure 3.10 and its petiormance statistics 

is :shown in Figure 6.6.(a). The performance of the NS-unit of modulle one is shown in 

Figure 6.6.(b). Similar to the speech case, the results shown in the figure do not include 

the rejected data by the P-unit. The performance of the NS-unit of module 2 is shown in 

Figure 6.6.(c) and the overall performance of the network is shown in Figure 6.6.(d). 

The P-unit was trained to reject classes 2, 3, 4, 8, 9, and 10 and to accept the remaining 

classes. Its performance was about 95.5%. Overall, the PPSHNNl pertbrmed better than 

the other networks on the under-represented classes. 

The result shown in Figure 6.6 are for the 100 hidden neuron network a:s the N-unit of the 

first module. Other hidden layer sizes were tested, but the best results were revealed 
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6.2.4 SIMD-PPSHNN2 Results 

The performance of the SIMD-PPSHNN2 with PNS modules is shown in Table 6.1. The 



top to bottom 90hn 1 1 Ohn lOOhn 120hn 

Figure 6.7. Error Curves of SIMD-BP. 

co~rect classification performance was 73.16%. This performance improvement is 

mainly due to the separation of hard to learn classes (classes 2, 3, 8,9, 10) from the rest 

of the classes in the first stage. This separation causes the simplification of the problem 

spa.ce and results in the improvement of the classification accuracy for lboth the "easy" as 

well as the "hard" to learn classes. 

The P-unit of the first stage (Figure 6.8) allows classes 1,4, 5, and 7 to be learned by the 

NS-unit of the first stage, separately from the other classes. These classes are relatively 

easy to learn, resulting in testing classification accuracy of 98.97%, 73.85%, 82.01%, and 



Table 6.1 The Results of the SIMD-PPSHNN2 using PNS Modules Ifor the 
10-Class Colorado Problem. 

class 1 

class 2 

class 3 

class 4 

class 5 

class 6 

class 7 

class 8 

class 9 

class 10 
over all 
accuracy 

' % correct wrong rejected 
! correct 

60..00%, respectively. 

By not including the other four classes with much larger training sample sets in the 

training set of the second stage, this stage can learn the remaining classes easier. The 

NSt-unit of the second stage further breaks down the problem space into simpler polygons 

in terms of PNS modules. The testing performance of the second stage on classes 2 ,3 ,6 ,  

8, 9, and 10 are 62.5%, 73.81%, 67.02%, 45.45%, 0.00%, 48.72%, and 73.16%, which 

improves the overall performance of the network considerably. 

Figure 6.8 shows the division of classes among the PNS modules of the network. The P- 



Figure 6.8. The Class Divisions Generated during Training of 
SIMD-PPSHNN2 for the 10-Class Colorado Problem. 

unit of the first stage rejects classes 2, 3, 6, 8, 9, and 10, and accepts data belonging to 

classes l , 4 , 5 ,  and 7. Data belonging to classes 1 ,4 ,5 ,  and 7 are sent to the N-unit of the 

first stage for classification. There are two modules in this unit, one PN,S module and one 

NS module. The P-unit of the PNS module rejects classes 4 and 5. The other two 

(cliisses 1 and 7) are sent to t he N-unit for classification. Hence, the NS module is 

res;ponsible for the classification of classes 4 and 5, and with a correct classification 



pe.rformance of 73.81% and 82.0196, respectively, it was considered satisfactory and no 

P-onit was necessary. 

In the second stage, the P-unit rejects data from class 9 and accepts the rest. Classes 2,3, 

6, 8, and 10 are sent to the NS-unit of this stage for classification. The NS-unit consists 

of four PNS modules and one NS module. The first PNS is responsibk: for classes 6 and 

10.. The P-unit of this module rejects classes 2,3,  and 8. The S-unit of the same module 

also rejects some data belonging to class 10 due to the uncertainty of classification. 

Therefore, the data set sent to the second module contains classes 2, :3, 8, and 10. The 

sec:ond PNS is responsible for classes 2 and 8, and rejects classes 3 and 10 using its P- 

unit. The S-unit of this module also rejects some data belonging to both classes 2 and 8, 

thus resulting in a data set for the third PNS which contains all four cllasses 2, 3, 8, and 

10. The third PNS is only responsible for the class 3 and rejects the rest. Because, the 

N-unit of this PNS performed its task satisfactorily, its S-unit did not reject any patterns 

to the next PNS. Classes 2, 8, and 10 are sent to the fourth module which in turn is 

responsible for data belonging to classes 2 and 10, and rejects data belonging to class 8. 

The last PNS (NS module) classifies the remaining data to class 8 or rejects them. 

Overall, both PPSHNN modules outperformed the backpropagation and PSCNN 

networks in all our experiments. Choosing PPSHNN2 with PNS module has the 

additional advantage that it is relatively inexpensive to run. This is due to its simple 

single stage units. 





CHAPTER 7 

FUTURE RESEARCH AND CONCLUSIONS 

7.1 Future Research 

Future research will involve further development of SIMD-PPSHNN in terms of 

accuracy, speed, and architecture. These studies should be carried out in relation to 

colnplex classification problems, pattern recognition and signal proces,sing. The outline 

of the major issues of future research is as follows: 

After the experiments with the SIMD-PPSHNN1 were completed, it was clear that 

most of the effort should be directed towards the automation of the process of 

finding the optimal network size for the N- and P-units. Up to that point, most of 

the training time was spent to find the optimal N- and P-unit size rather than 

training them. The result of this research was the PNS module which replaces the 

nonlinear boundaries introduced by the backpropagation networks with piecewise 

linear boundaries. At this point, a logical next step would be to experiment with 

other types of networks and learning algorithms, such as competi~.ive learning. 



2 .  A study should be done to see if there are situations in which certain networks with 

certain learning rules perform better than others. If so, the network should employ 

certain types of networks in certain types of classification problems. Hence, 

PPSHNN would become an assembly of different types of networks and learning 

algorithms organized into a hierarchy. In such a case, a unit must be added to each 

module to detect a known situation and thereby use the optimal1 type of network. 

This task could be performed by the pre-processor. 

3,. It can be shown [5] that the output of the delta rule network can be interpreted as 

the probability of a class given the input vector. Using this knowledge, one can 

design a neural network module to estimate the required pirobability density 

functions, hence replacing the Parzen density estimation by a neural network 

module. Future research should consider this topic and the accuracy of the neural 

network unit in comparison the Parzen estimator. - 

4. Another important issue is to design an effective pre-processor. 'This research will 

look into techniques introduced in information theory and error control coding to 

devise a pre-processor which transforms the problem space into yet another easier 

space for classification. Another option is an adaptive pre-prccessor. This pre- 

processor learns a nonlinear transformation and performs it on the incoming data. 

The nonlinear transformation itself is learned from the training data. 



Future research could also involve replacing the hierarchical nature of the 

algorithm with a consensual nature similar to that of PSCNN. Thus, gaining more 

parallelism in training and taking more advantage of machines such as MasPar 

becomes possible. Some recent work has been done by Professor Hank Dietz and 

his students at Purdue University in using MasPar in an MIIVID fashion. The 

consensual nature can go hand in hand nicely with the MP-1 running in a semi- 

MIMD fashion. 

In such a case, one must develop a decision mechanism to choose between the 

votes of different modules. When the hierarchy is not present, more than one P- 

unit could accept the input pattern. A decision must be made as 1.0 which module's 

classification result should be accepted. A voting mechanism such as the one from 

PSCNN could also be used. Once the hierarchy of the PPSHIW algorithm has 

been eliminated, the biggest source of serialism in the algoritf~m will also have 

been eliminated, and hence all the modules can be trained at the same time and 

with the entire training set (assuming enough hardware resources). This would 

perhaps increase the classification accuracy as well. 

6,. Future work also could involve further developing the postrejector and its 

statistical analysis of the output of the N-unit. 

7. As mentioned before, we are currently implementing the simplest possible cost 

criterion. Further research is required to find the optimal cost criterion for 



estimation of the reject boundaries. One suggestion is that it might be possible to 

learn the cost values during training. The effect of various cost criterion in 

classification accuracy can be studied. 

8. In Chapter 3, we talked about the rejection boundaries zi,, z i l ,  and z t l  and the 

order they held in our experiments, namely 

It is proposed that neurons whose outputs carry little information do not follow the 

above order. Future research is aimed at finding topologies in which there is a 

pattern for such behavior. If so, the knowledge gained can be used in designing a 

more efficient algorithm which can be used to detect the unneeded neurons early in 

training and to eliminate them. 

7.2 Conclusions 

In this thesis, a new neural network architecture called the Parallel l>robabilistic Self- 

organizing Hierarchical Neural Network (PPSHNN) was introduced. 'fie PPSHNN is a 

cornbination of statistical analysis techniques and adaptive neural networks. This 

cornbination is shaped into a new architecture which is designed to divide the problem 

space into subregions and make classification easier in these subregions. This division of 

spa.ce, performed by the P-unit, is completely data (application) dependent and is not a 



preset procedure. 

The PPSHNN addresses problems that rise in complex classification applications such as 

under- or unproportionally represented classes in the training set. It idso addresses the 

tra:ining time issues and is to a high degree parallelizable. Training times of over 3000 

times shorter than serial backpropagation implemented on Sun 3/60 have been achieved 

by implementation on MasPar MP-1 with 16K PEs. 

Thl: experiments performed in comparison to a standard backpropaga~tion network and 

the PSCNN indicate superior accuracy and speed. Further detailed study, analysis, and 

development of the PPSHNN is necessary to understand its potential in many 

classification applications. 

The variation of the PPSHNN module called the PNS module offers se:veral advantages. 

The PNS module is relatively inexpensive and at the same time accurate in classification. 

Because the architecture is fractal in nature and all the modules are simple and similar in 

architecture, the building of networks which use this module is inexpensive and strait- 

forward. It divides the problem space using simple linear boundaries and therefore, i t .  

self-organization to adapt to the problem space is easier to understand. 

Imldementing neural network algorithms in massively parallel machines is very 

promising in reducing the training time from hours to minutes. This kind of speed-up is 

impossible to achieve even with a fast neural network algorithm implemented on the 

fastest serial machine. 



The backpropagation algorithm can offer architectural parallelism as well as data 

pal-allelism if implemented in the way it was discussed in this thesis. While architectural 

parallelism is limited by the size of the largest layer of the network, the data parallelism 

is only limited by the number of PEs available and the number of training patterns, which 

is often far more than the number of neurons in a layer. 

Miissively parallel implementations of neural networks allow larger problems to be 

investigated in a short amount of time. Since the properties of neural networks often 

arise due to the collective behavior of the neurons, such implementatiions also have the 

potential of helping in the understanding of artificial and biological mechanisms of 

intelligence. 
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