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Abstract 

In this paper, we propose the volume between two surfaces normalized by the surface 
area as an invariant quantitative measure for comparing surface reconstruction results. 
The invariant property of the volume quantity provides the same measure with respect 
to  an arbitrary coordinate system. By normalizing the volume by the surface area, the 
values of the measure can be compared for different size of images. We also present a 
computationally simple and efficient way of computing the volume between two surfaces 
and the surface area using a least-square-error fit plane approximation of a surface 
patch defined over a rectangular grid. Experiments indicate that the method using a 
least-square-error fit plane approximation gives equivalent performance as other more 
complicated and computationally expensive methods. The advantage of this method 
is that computation is extremely simple and efficient. Similarly, we propose the area 
between two curves normalized by the arc length as an invariant measure for comparing 
plane curve reconstruction results. 
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Introduction 

In computer vision, reconstruction of a curve or surface is necessary to derive a complete 

representation of a curve or surface from sparse noisy sets of geometric information, such as 

depth and orientation or other sources of information. A reconstructed curve or surface is 

an intermediate representation to bridge the gap between the sensor data and the symbolic 

descriptions. 

Considerable research has been devoted to the problem of the reconstruction of visible surfaces 

[I-101 [13-151 [17-241. Reconstruction results from different reconstruction methods have been 

compared in order to decide which method performs better than the others by showing their 

visual differences using three dimensional displays or displays of a slice of reconstructed sur- 

faces. However, use of only visual displays makes it difficult to see small differences between 

reconstruction results when they are visually similar. It is also difficult to determine how much 

better one method performs than others. A quantitative measure is necessary for a precise and 

more informative comparison of reconstruction results from different reconstruction methods 

in order to decide how much better one method performs than others. A quantitative measure 

alone can be used as a concise, precise, and informative comparison method of reconstruction 

results. 

A good quantitative measure for comparing reconstruction results should have several prop- 

erties. The measure must be invariant with respect to an arbitrary coordinate system. If a 

measure is not invariant with respect to a coordinate system, then it is possible to obtain 

inconsistent performance measures. For example, two reconstruction methods A and B are 

to be compared. Suppose that a surface is reconstructed by methods A and B in two dif- 

ferent coordinate systems. A noninvariant performance measure may lead to a conclusion 

that method A is better than method B in one coordinate system but is worse in the other 

coordinate system. It is also desirable to use a measure that produces consistent results for 

different sizes of images. Finally, the value of the measure should be able 1,o be computed 

simply and efficiently with reasonable accuracy. In this work, we propose the volume between 

two surfaces normalized by the surface area as an invariant measure for comparing reconstruc- 

tion results. We also present a computationally simple and efficient method of computing the 

volume between two surfaces and the surface area. The time complexity of our method to 

compute the volume and the area is O(number of pixels). 

The metrics induced by the L1, L2 or L" norms have been popularly used in order to give 



a quantitative measure for comparison of reconstruction results. The use of these metrics 

has often naturally resulted because some reconstruction methods employ minimization tech- 

niques of L1, L2 or Lw error between the true or target data set and the measurement data set 

(constraints) to compute the reconstruction results. In Chu and Bovik's work [6], the recon- 

struction results were computed by minimizing the Lw error (maximum absolute error) and 

the normalized L1 (average absolute error) and Lw error were used as performance measures. 

On the other hand, the L2 metric has mostly been used as a reasonable performance measure 

irrespective of reconstruction methods [19] [14] [17]. L2 and Lw measures were computed 

in [19]. Sinha and Schunck [17] employed a RMS error measure which is the normalized L2 

metric for comparison of two different reconstructions. The following is the discrete form of 

L1 and L2 metrics normalized by the number of the sampled points and L"' metric for two 

functions, f and g in the two dimensional case. 

LTmetric = sup . . 1 f ( i ,  j) - g(i, j)l 
* ,l 

where f (i, j) and g(i, j ) ,  i = 1,2, ..., n, j = 1,2, ..., m are sampled points of two functions, 

f (x ,  y) and g(x, y) respectively. The L1, L2 and Lw metrics, however, are not invariant with 

respect to a coordinate system, resulting in different measures in different coordinate systems. 

If the L2 metric is used as a difference measure, where the slope is high, the difference value 

is emphasized more than in flat regions. 

Not much interest has been raised in the computer vision area regarding the problem of com- 

puting volume and surface area except for the problem of estimating the volu~~le  or the surface 

area of biological organs from cardiographic data or tomographic data. On the other hand, in 

the areas of CAD/CAM and robotics, the automatic computation of integral properties such 

as surface area, volume, centroid, and moments for geometrically complex solids has been 

an important problem. These integral properties of solids are defined by triple (volumetric) 

integrals over subsets of three dimensional Euclidean space. A survey of algorithms for com- 

puting volume and other integral properties of solids is given in [12]. Most known methods for 

calculating integral properties may be associated naturally with the representation methods 

which may be organized as primitive instancing, quasidisjoint decomposition, simple sweep- 

ing, boundary representation, and constructive solid geometry (CSG) [16]. However, these 

methods can not be directly applied to the problem of estimating the volume or the surface 



area in computer vision. In computer vision, most initial data to start with is sensor data. 

This sensor data is then processed to provide intermediate representations similar to those 

listed in the above. Considering that regions between sampled pixels of the original sensed 

image are ambiguous, estimating the volume or the surface area from the intermediate repre- 

sentations computed from the original data is not advantageous and may lead to accumulated 

errors. In this paper, we present a simple and efficient method of computing the volume and 

surface area given data %(xi, yj) where z(si, yj) denote a sampled point of a surface z(z, y) 

at (xi, yj). In order to compute the volume and the surface area, our approach approximates 

each surface patch (Figure 1 (b)) defined by ~ ( x ; ,  yj), Z ( X ; + ~ ,  yj), %(xi, yj+l), and ~ ( z i + ~ ,  yj+1) 

on a rectangular grid by the least-square-error fit plane (Figure 1 (c)) obtained from these four 

points. The four points %(xi, yj), yj ) ,  %(xi, ~ j + ~ ) ,  and yj+1) are not necessarily 

coplanar. In the results section, four methods of computing the volume between two surfaces 

and the surface area are compared. Let us denote these four computing methods as follows. 

LSE-PLANE (Figure 1 (c)): computes the volume in Figure 1 (b) by approximating 

the surface patch using the least-square-error fit plane obtained from four surface points 

~ ( x ; ,  yj) ,  yj), z(xi, yj+1), and z ( ~ ; + ~ ,  yj+1). Repeat for the second surface and 

sum the difference of volume over the image domain. 

TWO-TRIANGLES (Figure 1 (d)): computes the volume in Figure 1 (c) by approxi- 

mating the surface patch using two triangles. Repeat for the second surface and sum 

the difference of volume over the image domain. 

LSE-PLANE-I: same as LSE-PLANE except that, where two surface patches intersect, 

the volume between them is computed by decomposing the volume between them into 

tetrahedra. 

TWO-TRIANGLES-I: same as TWO-TRIANGLES except that, where two surface 

patches intersect, the volume between them is computed by decomposing the volume 

between them into tetrahedra. 

LSE-PLANE-I and TWO-TRIANGLES-I use the same approximations of a surface patch as 

in LSE-PLANE-I and T WO-TRIANGLES respectively. However, in the regions where two 

surface patches intersect, they compute the volume between two surface patches in the same 

way by decomposing it into tetrahedra. When the surface area is computed, only LSE-PLANE 

and TWO-TRIANGLES are compared because LSE-PLANE-I and TWO-TRIANGLES-I are 



Figure 1: (a) A reconstructed surface, h, = - x; and h, = yj+l - yj, (b) the volume 
under the surface patch marked in (a), the volume displayed in (b) can be estimated by 
approximating the surface patch in (b) using (c) the least-square-error fit plane computed 
from z(xi, yj), z(xi+l, yj), z(x;, yj+l), and z(xi+l, yj+l), or (d) two triangles- 



not different from LSE-PLANE and TWO-TRIANGLES respectively in computing the sur- 

face area. It will be shown in section 7 that LSE-PLANE gives equivalent performance as 

TWO-TRIANGLES, LSE-PLANE-I, and TWO-TRIANGLES-I even if two surfaces intersect. 

We recommend LSE-PLANE for computing the volume between two surfaces and the surface 

area because of its computational simplicity, efficiency over other methods and good accuracy. 

As expected, our experimental results also verify that the computational advantage becomes 

greater as the problem size gets large. Knowing that a reconstructed surface is an approx- 

imated surface and the surface shape is ambiguous in regions between pixels, LSE-PLANE 

gives good estimates of the volume between two reconstructed surfaces and the area of a sur- 

face. In addition, the area between two curves normalized by the arc length is proposed as 

an invariant measure for comparison of plane curve reconstruction results. The measure uses 

linear approximation of curve segments. This is described in the Appendix. 

The paper is organized as follows. In the following section, we briefly describe some mathe- 

matical lemmas which will be used in later sections. In section 3, we present how the volume 

between two surfaces and the surface area are computed using the LSE-PLANE method. 

Section 4 describes the TWO-TRIANGLE method. In section 5, we present how the LSE- 

PLANE-I and TWO-TRIANGLES-I algorithms compute the volume between two surface 

patches in regions where two surface patches intersect. The computational c:ost for the four 

methods are analyzed in section 6. The experiment results of four computing methods are 

reported in section 7. 



2 Mat hemat ical preliminaries 

In this section, simple mathematical facts which will be used in section 3, 4, and 5 are 

described. 

Lemma 1 : Let z ( x ,  y )  = ax + by + c be the plane defined by three poiilts Pl(O, 0 ,  zi,j), 

P2 (h,, 0 ,  zi,j+1), and P3(0, h,, z ; + ~ , ~ )  in the rectangular coordinate system. See Figure 2 (a). 
Z i  ' + ]  -z,,j  Then the plane equation is z ( x ,  y )  = hz x + z'+l"-z'lj y + z;,j and the volume, V ,  of the 

h u 
h h (zi  '+zi,j+l+Zi+l,j) prism defined by PI ,  P2, P3 and (0,0,O), (h,, 0 ,  O ) ,  (0 ,  h,, 0 ) ,  is computed as " 

Proof : 

Given three points Pi(O,o, z i t j ) ,  Pz(h,,O,~,,~+i), P3(0, h,, ~ ; + ~ , j . )  and the plane equation z ( x ,  ZJ) = 

ax + by + c, we get 

Thus 
a -- " 0  - 

0 0 

And the volume V is, 

Lemma 2 : Let four points Pi (0 ,  0 ,  zi,j), P2(hx, 0,  z i j+l) ,  P3(0, hy , ~ i + l , ~ ) ,  and f t (h , ,  hy  , zi+l,j+l) 

be coplanar in the rectangular coordinate system. See Figure 2 (b ) .  Then the volume, 

V ,  defined by these four points and (0 ,0 ,0) ,  (h,,O,O), (0 ,  h , , ~ ) ,  (h,, h,,O) is computed as, 
1 V = ;ihxhy(zi,j + zi,j+l + Zi+l,j + zi+l,j+l). 

Proof : 



Let z(x, y) = ax + by + c be the equation of the plane passing through four coplanar points, 

PI, P2, P3, and P4. Then z;j = c, z;,j+l = ah, + c, z;+l,j = bh, + c, and z;+l,j+l = ah, + bh, + c. 

The volume, V is : 

= h,h, (ahx + c) + (bh, + c) + (ah, + bh, + c) + c 
4 

Volume of tetrahedron: The volume, V, of a tetrahedron defined by four points Pl(x1, yl, zl), 

P 2 ( 5 2 ,  Y2, z2), P3(x3, ~ 3 ,  z3), and P4(x4, Y 4 , 2 4 )  (Figure 3) is computed as 

The volume of a tetrahedron can be viewed as 5 .  (area of one of four faces as a base) - 
(perpendicular height of the fourth point to this base). This results in the same expression as 

the equation (3) which is just a reformulation by elementary vector analysis. A tetrahedron 

is a 3-D simplex. See [ll] for a volume computing formula and its proof for the general n- 

D simplex. Based on these simple mathematical facts, we present in the next section how 

the volume between two surfaces and the surface area can be efficiently computed using the 

least-square-error fit plane (LSE-PLANE) approximation of a surface patch. 

V = 

- 1 - ,I - X3Y2Zl + X4Y2Z1 + x2Y3zl - 5 4 Y 3 Z l  - x~Y4zl + 5 3 Y 4 Z l  + x3:1/122 
-54YlZ2  - XlY3Z2 + x4Y3Z2 + ~ 1 ~ 4 ~ 2 1  

X l  Y l  Z l  1 

Determinant 

5 4  Y4 
(3) 



(a) (b) 

Figure 2: (a) Lemma 1 (b) Lemma 2 

Figure 3: tetrahedron PI P2 P3 P4 



3 Volume by least-square-error fit plane approxima- 
tion 

In order to compute the volume and the surface area, LSE-PLANE method approximates each 

surface patch defined by z(x;, yj), ~ ( x ; + ~ , y ~ ) ,  z(x;, ~ j + l ) ,  and Z(X;+~,  on a rectangular 

grid by the least-square-fit plane (Figure 1 (c)) computed from these four points. Recall that 

the four points z(xi, ~ j ) ,  Z(X;+~,  ~ j ) ,  z(x;, yj+1), and Z(X;+~,  yj+l) are not necessarily coplanar. 

Let us denote a rectangular domain defined by (x;, yj), (x;+l, yj), (xi, yj+l), and (x;+I, yj+l) 

by i j  th grid domain. We use the following lemma with the lemma 1 and 2 i11 section 2. 

Lemma 3 : Let z(x, y) = ax + by + c be the least-square-error fit plane computed from four 

points1 PI((), 01 zi,j), P2(hx,O, zi,j+l), P3(0, h y ,  zi+l,j), and P4(hx, h y l  zi+lj+l). See Figure 4- 

The volume, V, under the plane z(x, y) on the rectangular domain [h,, O]x[O, h,] is computed 

as V = :hxh,(zij + zi,j+l + ~ ; + ~ , j  + ~ ~ + ~ , j + ~ ) .  This is the volume of a rectangular box with the 

height f (z,,j + z;,j+l + z;+l,j + ~ ; + ~ , j + ~ )  in the same domain. 

Proof : 

Given four points, PI, P2, P3, and P4 and a plane equation, z(x, y ) = ax + by + c, we get a 

system equation, 

where 
0 0 1  Z i j  

0 h, 1 
hx h, 1 

Then the least-square-error solution is 

Then volume of V is computed by Lemma 2, 



Figure 4: (a) a surface patch in which four vertices PI, P2, P3, and P4 are not necessarily 
coplanar, (b) its least-square-error fit plane computed from the four points in (a), (c) shows 
an equivalent volume of (b). 



1 
= Zh,hy(ahx + bh, + 2c) 

The volume between two surfaces on the ij th domain, AV,$, is simply computed as the 

absolute difference of volumes under two surfaces on the same domain. 

where gj, k = 1,2 represents two surfaces. Therefore the volume, V, between two surfaces is 

obtained by summing AKPj over the image domain. Assuming a (n, m) rectangular grid, 

Note that this equation does not explicitly take into account regions where two surface patches 

intersect while LSE-PLANE-I does. The surface area, A is calculated as 

where AA;,j denotes the surface area on the rectangular domain [h,, 0]x[O, h,] and ziVj(x, y ) = 

a;jx + b;jy + c;,j is the least-square-error fit plane computed from the four points zij, z;+l,j, 

z;,j+l, and z;+l,j+l. d i j  represents slant angle of ziVj(x, y )  and EiTj, Fij, and G;,j are the 

first fundamental forms of zij(x, y). Hence, the volume between a known surface and its 

reconstructed surface normalized by the known surface area becomes VIA. 

The following section discusses how the T WO-TRIANGLES met hod computes volume and 

surface area. 



4 Volume by two- triangle approximat ion 

TWO-TRIANGLES method approximates each surface patch by two triangles (Figure 1 (d)) 

instead of the least-square-error fit plane described in the previous section. Each surface patch 

is approximated by two triangles in a consistent direction over an entire image. We triangulate 

each surface patch so that one triangle is defined by three points z;$, ~ ; + ~ , j ,  ~ , , j + ~  (we will 

call this left triangle) and the other triangle by three points z;+l,j, ~ ; , j + ~ ,  ~ i + ~ , , j + ~  (we will call 

this right triangle) as shown Figure 5. However, two triangles can be defined in the other 

consistent direction over the entire image, i.e, one triangle by z;j, z;+l,j, z;+l,j+l and the other 

by zi j ,  zi,j+lr zi+l,j+l. Without loss of generality, we describe only for the triangulation shown 

in Figure 5. The volume of a prism defined on a triangle domain is obtained using Lemma 

1. The TWO-TRIANGLES method computes the volume between two surfaces on the left 

triangle domain of the ij th gird as follows. 

where ztj,  k = 1 ,2  represents two surfaces. This equation does not explicitly take into account 

regions where two surface patches intersect while the TWO-TRIANGLES-I algorithm does. 

The volume bewteen two surfaces, V, is obtained as follows assuming a (n:, m) retangular 

grid. 

v = E:=;'X;"=;' ( ~ v , $ + ~ y g )  
= thxhy E:2 E,"=;' ((z:, + z:+,,j + z:,+, - (z t j  + z:+,,~ + z?,+,)( 

1 
(9) 

+ Izi+l.j + ':,j+1 + z:+l,j+l - (':+l,j + z?j+l + z:+l,j+l)l) 

where AV,: an AV,? denote the volume between two surfaces on the left and right triangle 

domain, respectively. The surface area, A is calculated as sum of areas of all left and right 

triangles over the entire surface. If we let the plane equations of the left and right triangles on 

the ij the grid be gj(s, y) = a l jx  + bfTjy + c:,~ and zfj(x, y) = at jx  + b:,jy + c:,~ respectively, 



where E;',j, F,fj, Gffj and Ezj, F:j, G:,j are the first fundamental forms of zt j(x,  y) and zEj(x, y )  

respectively. 

Figure 5: (a) left triangle domain (b) right triangle domain 



5 Volume between two surfaces where intersection oc- 
curs 

As mentioned in section 1, LSE-PLANE-I and TWO-TRIANGLES-I use the same approxi- 

mations of a surface patch as in LSE-PLANE and TWO-TRIANGLES respectiively. However, 

when LSE-PLANE-I or TWO-TRIANGLES-I are used to compute the volurne between two 

surfaces, regions where two surface patches intersect are treated in a different manner than the 

non-intersecting regions. This section describes how the volume between two surface patches 

is computed by decomposing the volume into tetrahedra in these regions. 

For each grid domain, we test whether two surfaces intersect each other. We define an inter- 

section test as follows. On the i j  th grid domain, 

t hen  the two surfaces do not intersect on the current domain. 

Otherwise, the two surfaces are said to intersect on the current domain. z b ,  k = 1,2 

represents two surfaces. 

When two surfaces are known to intersect on a grid domain according to this test, special 

consideration can be given to compute the volume between two surface patches on this grid 

domain. Each surface patch is approximated by two triangles as in the previous section and 

the left and right triangle domain are considered separately. If all three vertices of one triangle 

(surface) are above or below three vertices of the other triangle (surface) on a triangle domain, 

two surfaces are said not to intersect on this triangle domain. The intersection occurs in the 

other triangle domain. In this triangle domain, the volume between two surface patches is 

decomposed into tetrahedra. We have to consider three cases on each left and right triangle 

domain when the above intersection test is true. 

case 1 : Two triangles do not intersect. 

case 2 : Two triangles intersect with one vertex shared. See Figure 6 (a) (b) (c). 

case 3 : Two triangles intersect without sharing vertices. See Figure 6 (d) (e) ( f )  



Without loss of generality, we describe only for the left triangle domain (Figure 6). In case 1, 

the volume between two prisms can be simply computed as the absolute value of the difference 

of each prism's volume as in TWO-TRIANGLES method (equation (8)). In case 2, there are 

three subcases (a), (b), and (c) depending on the location of the shared vertex. Each subcase 

is determined by the location of the shared vertex P3. The point P4 is easily computed as the 

intersection point of two straight lines. In each subcase, the volume between two prisms is 

computed as sum of two tetrahedra. Case 3 also has three subcases depending on the location 
2 of the points Q1 and Q2. Three subcases are identified by the signs of z l j  - zftj, zf,j+l - z , , ~ + ~ ,  

where I:,, k = 1,2 denotes two triangles (or surfaces). The points P3 and and zf+l,j - ';+l,j 
P4 are computed as intersection points of two straight lines. These three subcases produce 

the volume between two prisms as sum of one tetrahedron and one irregular prism which 

can be always decomposed into three tetrahedra. Figure 7 (a) shows a prism, PlP2P3P4P5P6 
resulting from the first subcase of case 3 (Figure 6 (d)). Figure 7 (b) is one example of possible 

decompositions of the prism PlP2P3P4P5P6 into three tetrahedra. The volume of the prism, 

V, shown in Figure 7 (a) is computed as: 

Thus the volume between two prisms, V, in the cases of Figure 6 (a), (b), and (c) is computed 

as 

V = tetrahedron(PlP2P3P4) + tetrahedron(P3P4P5P6) (12) 

In the cases of Figure 6 (d), (e), and ( f ) ,  



The points, P3 and P4, are computed as follows. 

a c - a c  
( e )  : P3(2:2 7 07 L, 

c 2 - c l ) h , + ( b 2 - b l ) h z h ,  ( c l - c l ) h y + ( a l - a z ) h z h y  (alc2-a2cl)hS+(bzcl-blcz)hy+(albz-azbl)h~h~ 

p4 ( ' (a l -a2)hz+(b2  -b1)hy ( a l - a ~ ) h ~ + ( b ~ - b ~ ) h ~  ( a l - a z ) h z + ( b z - b l ) h y  

z k .  -zk -2; 

where ak = '"+l 's3 
h s  bk = , 8L, and q = ztj ,  k = 1,2. 



(a) 0) (c )  
triangle I : PIP3 P5 triangle : P2P3P5 triangle : P2 p3 P6 
triangle :P2P3 P6 triangle : P P3 P6 triangle : P1 P3 P5 

Figure 6: (a) (b) (c) Three subcases of case 2: one vertex is shared. (d) (e) ( f )  Three subcases of 
case 3: no vertex is shared. trianglel and triangle2 are represented by z1 (a ,  y) = alx  + bly +cl 
and z2(x, y) = a2x + b2y + c2 respectively. 



6 Computational efficiency 

In this section, we analyze the computational cost of the four methods of computing the 

volume between two surfaces and the surface area. For simplicity, it is assumed that the cost 

of taking the absolute value or that of one logical ~pera t ion(~OR" operation in the intersection 

test) is equivalent to that of one addition. We also assume that the constants such as h:, hZ, 

h:hi and 4h2h: in the equations (4)) (7), (9)) and (10) are computed in advance. The cost of 

computation is for images of size (n x m). E represents the percentage of intersecting regions. 

The following is the number of operations for the four methods. 

1. LSE-PLANE method 

volume: (n - 1)(6m - 4) additions + 1 multiplication 

area: (n - 1)(9m - 12) additions +(n - l ) (m - 1) square root operations + 
{4(n - l ) (m - 1) + 1) multiplication 

2. TWO-TRIANGLES method 

volume: 10(n - l)(m - 1) additions + 1 multiplication 

area: 7(n - l ) (m - 1) additions + 2(n - l ) (m - 1) square root operations + 
{8(n - l )(m - 1) + 1) multiplications 

3. LSE-PLANE-I method: In the worst case, 

volume: (n - l ) (m - 1){(1 - e)(8 additions + 1 multiplication) + ~ ( 7 1  additions 

+ 108 multiplications + 7 divisions)) 

area: same as in the method 1. 

4. TWO-TRIANGLES-I method: In the worst case, 

volume: (n - l)(m - 1){(1 - E)  (10 additions + 1 multiplication) -t. ~ ( 7 1  additions 

+ 108 multiplications + 7 divisions) ) 

area: same as in the method 2. 

In order to speed up the computation, a simple caching scheme is used. In equation (6) of 
k the LSE-PLANE method, the partial sums ztj+, + zi+l,j+l, k = 1,2 computed in the previous 

region is cached and used in the next region without recomputing them. In equation (9) of 



the TWO-TRIANGLES method, the partial sums, ztj+, + k = 1 ,2  in the left triangle 

domain are cached for reuse in the right triangle domain. In computing the surface area, 

-z. ,,]+I . + z;+l,j+l and z;,j+l + z;+,,j+~ are cached in equation (7) of the LSE-PLANE method 

for reuse in the next region. In computing the volume using the methods LSE-PLANE-I and 

TWO-TRIANGLES-I, the intersection test cost 5 additions and the test results can be reused 

for identifying three cases described in the previous section. The worst case comes from the 

second and third subcases (Figure 6 (e) and (f) respectively) of case 3. These cases add the 

cost of identifying the points P3 and P4 to the cost of computing the volume of four tetrahedra. 

For simplicity, the cost of identifying subcases is ignored. From the above analysis, we can 

see that the method using the least-square-error plane approximation (LSE-PLANE method) 

is the most efficient in computing the volume between two surfaces normalized by the surface 

area. Experimental results in the following section verify this analysis. 



7 Experimental results 

In this section, we report on the accuracy and the computational efficiency of the four methods 

listed in the previous section. For an accuracy test, the volume between two surfaces and the 

surface area computed from the four methods are compared with exact values of known volume 

and surface area. 

The following synthetic graph surfaces of size 128 x 128 were used to test the accuracy of the 

above four methods. 

5.0sin(2.rr$r) + 10.0 if r 5 52.0 
otherwise 

-5.Osin(2s$r) + 10.0 if r < 52.0 
z~ (4 . i )  = ( 10.0 otherwise 

where r = J(i  - 63)2 + (j  - 63)2. 

Two surfaces, zl(i, j) and z2(i, j) are defined on a disc domain of which radius is 52.0 centered 

at (63, 63) in arrays of size 128 x 128. A surface plot of zl(i, j) is shown in Figure 8 when 

T = 13.0 and 26.0. As the period T increases from a small value, the percentage of intersect- 

ing regions decreases and the sampled surfaces appear smoother. A small T ,  a high frequency 

surface, represents a very rough sampling of an image. See Figure 9. These images are gen- 

eral in that surfaces are curved. The performance of LSE-PLANE and TWO-TRIANGLES 

varies as the percentage of intersecting regions changes compared to that of LSE-PLANE-I 

and TWO-TRIANGLES-I. Recall that LSE-PLANE and TWO-TRIANGLES do not consider 

intersecting regions separately. We can see in Figure 10 that the volume between two surfaces 

computed from the four methods quickly approaches the real volume between two surfaces as T 
increases. It is hard to visually distinguish between LSE-PLANE-I and TWO-TRIANGLES-I 

in this Figure because they provide almost same volume for this pair of images. Figure 11 

and 12 show the surface area computed by LSE-PLANE and TWO-TRIANGLES and their 

computing errors. Figure 12 shows that LSE-PLANE certainly gives a better approximation 

of the image surface than TWO-TRIANGLES. The computation time shown in Figure 13 

indicates that LSE-PLANE is computationally more efficient than the other three met hods. 

An experiment was carried out to verify that LSE-PLANE is computationally more advanta- 

geous as problems get larger. Images of six different (n x n) sizes are tested where n = 32, 

64, 128, 256, 512, 1024. The same form of surfaces (14) is used except that T is fixed to 10.0 

and the radius of the disc domain is defined as 0.8125: so that two surfaces can maintain an 

approximately constant rate of intersecting regions for different size n. Figun: 14 shows that 



the percentage of intersecting regions is maintained approximately constant €or various sizes 

of surfaces. The actual and theoretical computation time is illustrated in Figure 15 and 16 

respectively. The theoretical computation cost was computed from the analysis made in the 

previous section. For simplicity, the computational cost of addition, multiplication/division, 

and square root operations were assumed to be equal although in reality the square root op- 

eration is much more expensive than the other operations. Computation of only surface area 

involves the square root operations and TWO-TRIANGLES has more square root operations 

than LSE-PLANE. Therefore, this assumption does not change the order of computational 

efficiency of the four methods in Figure 16. As can be expected, computation time increases 

proportionally to n2 for all four methods. The computational cost for LSE-PLANE-I and 

TWO-TRIANGLES-I (two upper curves in both figures) becomes much more expensive than 

LSE-PLANE and TWO-TRIANGLES as the problem size gets larger. The t,heoretical com- 

putation cost for LSE-PLANE and TWO-TRIANGLES is displayed again in Figure 17 for 

a clear comparison. Shapes of plots for the actual (Figure 15) and theoretical (Figures 16 

and 17) computation time strongly resemble each other. The use of method LSE-PLANE is 

computationally more advantageous for a large image size. 



Figure 7: (a) a prism resulting from the first subcases of case 3, (b) a decornposition of (a) 
into three tetrahedron 



(b) 

Figure 8: Surface plot of tl(i, j) when (a) T = 13.0 and (b) T = 26.0 
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period ( T )  vs percentage (%) of intersecting regions 
25 

Figure 9: period ( T )  vs percentage of intersecting regions 

period ( T )  vs error (%) 
14 

LSEPLANE - - 
LSEPLANE-I - 

TWO-TRIANGLES - - 
TWO-TRIANGLES-I . . . - 

- 

- 

- 

- 

Figure 10: period ( T )  vs error in computing the volume between two surfaces 



period ( T )  vs surface area 
1 I I I I I I I I 

REAL AREA - - 
LSEPLANE - 

TWO-TRIANGLES - 
- 

- 

- 

- 

I I I I I I I I I 

Figure 11: Comparison of real area computed by the methods LSE-PLANE and TWO- 
TRIANGLES 

period ( T )  vs error (%) 
9 

Figure 12: period ( T )  vs error in computing the surface area 



period (T) vs time for VIA computation 
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I I 1 I 1 I I I I 

LSEPLANE - - 
LSEPLANEI - 

TWO-TRIANGLES - - 
TWO-TRIANGLES-I . . . - - 

- 

- 

- 
- . . . . . . . .  

- - 
I 

Figure 13: Computation time of four methods for two (128x128) surfaces 

image size vs number of intersecting regions (%) 
I I I I I I I I I I - - 

I: I 
- intersecting regions (%) - - 

- - 

- - 
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I I I I I I I I I I 0 
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size (n)  

Figure 14: The percentage of intersecting regions is almost same for various sizes of surfaces. 
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image size (nxn) vs time for VIA computation 

rel. 
comput. 

time 4O0 

0 -  
0 200 400 600 800 1000 

size ( n )  

I I I I I 

- LSEPLANE - 
LSEPLANEI - 

TWO-TRIANGLES - 
- TWO-TRIANGLES-I . . . - 

- - 

Figure 15: problem size versus relative computation times 

image size (nxn) vs theoretical time for VIA computation 
2.5e+09 1 I I I I I I I I I Y 1 

TWO-TRIANGLES - 
TWO-TRIANGLES-I . . . - 

# OPS- 

0 100 200 300 400 500 600 700 800 900 1000 1100 
size ( n )  

Figure 16: problem size versus relative computation times (theoretical), # ops. denotes 
number of operations. 



We now present an example where this proposed algorithm is used for the intended application: 

comparison of different surface reconstruction techniques. Table 1 shows the volume between 

two surfaces normalized by the surface area using the four methods for reconstruction results 

of a sparse image reported in [24]. This curved-inclined image has three flat, two inclined 

(slope 1 and f )  and two curved surfaces (curvature $, and &) and 50% of pixels of the image 

are randomly deleted. Figure 18 shows a section display of the original noiseless and noisy 

images. The four methods of computing V/A give almost the same performance ratio (in 

the last column of Table 1) for two reconstruction results although V/A values are slightly 

different for each method. The V/A values allow us to quantify the improved reconstruction 

as being three times better than the method it is compared to. A section display of the 

reconstructed surfaces from the two different methods is shown in Figure 19. 



image size (nxn) vs theoretical time for V/A computation 
3e+07 

Oe+00 
0 200 400 600 800 1000 

size ( n )  

I I I I I 

LSEPLANE - 
TWO-TRIANGLES - 

- - 

- - 

Figure 17: problem size versus relative computation times (theoretical) for LSE-PLANE and 
TWO-TRIANGLES. This is a close up of lower two curves of Figure 16. # ops. denotes 
number of operations. 

Table 1: VIA measure for the reconstruction results from ordinary method and Yi and Chel- 
berg's new method 

LSE-PLANE 
LSE-PLANE-I 
TWO-TRIANGLES 
TWO-TRIANGLES-I 

ordinary 
method 
0.6770 
0.7198 
0.6966 
0.7198 

Yi & Chelberg's 
new method 

0.2176 
0.2383 
0.2254 
0.2383 

3.02 
3.09 
3.02 



noiseless vs. noisy (N(0,l)) data 
60 

Figure 18: A section display of noiseless vs noisy image 



curved-inclined image (50% sparseness), X = 2.0 
60 

original data - 
ordinary method (0.6670) - 

Yi and Chelberg's method (0.2176) - 

I I I I I I 

Figure 19: Reconstruction results with V/A measure using the LSE-PLANE method for a 
sparse image of which sparseness is 50% 



8 Conclusion 

We propose the volume between two surfaces normalized by the surface area as an invariant 

measure for comparing reconstruction results. We present a computationally simple and 

efficient method of computing the volume between two surfaces and the surface area by the 

least-square-fit plane approximation of a surface patch. The new methods computing the 

volume and the surface area were successfully applied to compute the proposed invariant 

performance measure for surface reconstruction. Knowing that a reconstructed surface is 

an approximated surface and the surface shape is ambiguous in regions between pixels, the 

described method of the least-square-error fit plane approximation gives good estimates of 

the volume between two surfaces and the area of a surface. The advantage of our method is 

that computation is extremely simple and efficient. A standard quantitative measure for the 

comparison of different reconstruction techniques allows analysis of different reconstruction 

algorithms when applied to the same input data. This ability to objectively compare different 

algorithms should facilitate further research in the area of surface reconstruct;ion. 
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Figure 20: (a) Two reconstructed curves, z1 and zl. The area between two curve segments 
(b) when they do not intersect and (c) when they intersect. 

A Area between two curves 

A curve segment on each interval h is approximated by a linear segment as in Figure 20. The 
2 f+ l  -2; t;,, -2; 

equations for two line segments in Figure 20 are z1 = x + Z! and z2 = h x + 23 

where zk, k = 1,2  denotes two curves. 

In case of Figure 20 (a), 

h( t l  - 2 )  - Z ~ + ~ Z ~  +t t  t:+l 
In case of Figure 20 (b), the intersection point (XI ,  21) is 

- z ; + ~ - z ~ - z ~ t l  , 

1 
0 2;' 1 

~ ~ f n t e r s e c t i o n  - 
2 

- - determinant ( 



If (2: - zf)(zttl - zftl) < 0, use A A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  . Otherwise use AA;. 

The arc length is computed as follows assuming n points for each curve. 
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