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Abstract 

We show that all strictly convex n impurity measures lead to splits at boundary points, and furthermore 
show that certain rational splitting rules, notably the information gain ratio, also have this property. A 
slightly weaker result is shown to hold for impurity measures that are only convex n, such as Inaccuracy. 



1 Introduction 

The classification problem can be stated roughly as: given a set of features (or attributes), find a way of 
dividing up the feature space into cells such that  each cell reflects some specified property of the data mapped 
to  that cell. Finding such a division is non-trivial; the infinitude of ways of dividing up the space effectively 
rules out direct enumeration. The complexity of the search can be limited by using i i  divide-and-conquer 
strategy, that is, rather than dividing the feature space all a t  once into many cells, just divide it into two 
cells; each cell can then be viewed as an instance of the original problem, and similarly can be recursively 
subdivided. 

This strategy necessarily imposes a hierarchical structure on the partition, which call be viewed naturally 
as a tree (specifically, a Decision Tree (Morgan & Sonquist, 1963)). Each node in the tree represents a cell in 
a partition of feature space, and each branching represents a division of the space. The cells corresponding 
to the leaves constitute a partition of the space. 

The divide-and-conquer approach to dividing up the feature space produces a sequence of finer and finer 
partitions; as each partition corresponds t.o a tree, we obtain a sequence of trees 

To, TI,. 

TO consists of a single leaf node representing the entire feature space, and for each i, is obtained from 
Ti by replacing a leaf node of Ti with an internal (non-leaf) node branching into two ]new leaf nodes. This 
corresponds to  splitting a cell in the partition represented by T, into two new cells separated by a decision 
boundary. The process terminates when all cells are pure, that is, consist of data  from only one class. To 
reduce overfitting, a pruning phase often follows, but we will not be concerned with this here. 

So far the tree representation and the feature space representation are entirely equivalent, but it turns 
out that  abstracting the feature space into a tree has bought us something, namely the ability to handle 
non-ordinal (also called categorical) attributes. As the name implies, such attributes assume values that have 
no inherent ordering; it follows that a decision boundary in feature space cannot be used to discriminate 
different values of a non-ordinal attribute, as an ordering of values is required to  know on which side of the 
boundary a given da ta  point falls. Such attribut.es pose no problem for a tree, however, which can specify 
tests on the value on a non-ordinal attribute that. determine which branch to  send a data point down. In 
this paper we will be exclusively concerned with ordinal (also called continuous) attributes, which assume 
values that. have a natural ordering. 

To construct a decision tree, we must answer the following questions: Given a tree x, which leaf of T, 
should be split? and how? 

The answer to  the first question, which leaf to  split, is: it doesn't mat.ter. For if we assume that 

splitting continues until all leaf nodes are pure, and 

when splitting a leaf node t ,  the splitting rule doesn't look at  any other leaves, 

then the same tree is obtained regardless of the order in which leaves are split (Dietterich, Kearns, & Mansour, 
1996). 

The second question, how to split, is still unresolved, judging from the extensive and growing literature 
on the subject (Breiman, Friedman, Olshen, & Stone, 1984; Brodley, 1995; Buntine & hiblett ,  1992; Fayyad, 
1994; Fayyad & Irani, 1990, 1992a, 1993; Goodman & Smyth, 1988; L6pez de Mbnta-ras, 1991; Lubinsky, 
1995; Quinlan, 1990, 1996; Quinlan & Rivest, 1989). The accepted method is to  select from a finite set of 
candidate sp1it.s that which minimizes a splitting rule. 



The splitting rules we consider are based on an impurity function I, which measures the impurity of class 
labels in each leaf. For a leaf t with ATi training samples from class i ,  for i i  = 1 , .  . . , m, Ihe fraction of class i 
labels is 

where N = N1 + . . . + Nm. Then the impurity of leaf t is defined as 

where $is the class purity vector, defined by 

$= (PI, . . . , pm)  

We consider splitting rules of the form 

l t ~ l  ItRI Choose the split that minimizes f = -I(tL) + -I(tR) 
It I It I 

where the minimization is carried out over a set of candidate splits of leaf t into leaves tL  and t~ (It 1 denotes 
the number of training samples in t and similarly for ltLl and ItRI). 

The splitting rule (1) can be justified on the basis of choosing the split that minimizes the expected 
impurity of the resulting tree with respect to the distribution of training data, which for a tree T is defined 

EII IT] = x !l(t) 
t E leaves(~) 

where It1 is the number of training samples in leaf t ,  I ( t )  is the impurity of this leaf, and leaves(T) is the 
set of leaf nodes of T .  If ztl is the tree produced by splitting a leaf t into leaves t~ ;and t ~ ,  the expected 
impurity can be written 

Because Ti and the leaf t to be split are fixed, the split that yields the tree Titl of smallest average impurity 
is (1). 

A variety of impurity functions have been proposed, including 

Inaccuracy, in which all samples other than those belonging to the majority class are counted as errors: 

Gini (Breiman et al., 1984): 
2 Gini (pl , . . . , pm) = 1 - x pi 

i 



~ n t r o ~ ~ '  (Lewis, 1962; Sethi & Sarvarayudu, 1982): 

Entropy has become the impurity measure of choice, having found application in learning algorithms such as 
ID3 (Quinlan, 1983) and CN2 (Clark & Niblett, 1989). Representing the collection of training data  by a tree 
introduces uncertainty in the sense that training samples mapped to  the same leaf become indistinguishable 
from the point of view of the tree. Entropy is in some sense a measure of this uncertainty; if we use the tree 
to  estimate the class label of a sample 2 drawn from the same distribution as the training data  by outputting 
class label i with a probability equal to  the proportion of class i samples in the leaf containing 2,  then the 
entropy of the tree is the number of bits it would take, on average, to  correct the output of the tree.3 Since 
partitioning a set reduces the number of possible arrangements, or equivalently, reduces its randomness, the 
decrease in entropy following a split reflects the additional information we have concerning the class of a 
sample; hence the amount by which the entropy is reduced following a split is called the information gain4 

(Quinlan, 1983): , - 
ltRl information gain = Ent( t )  - + -Ent(tR) 
It I (2) 

Decision tree induction can be viewed as a process of driving the uncertainty in the class labels to  zero. 
A reasonable splitting rule is thus to  choose the split that  maximizes the information gain, or equivalently 
(since t is fixed), minimizes 

I t  has been observed that  the information gain favors attributes that take on a larger set of values over 
the training set (Quinlan, 1990). To counteract this tendency, Quinlan normalized the information gain 
by dividing i t  by the information gained by knowing which of tL or t~ contains a given sample, yielding a 
quantity he called the information gain ratio (Quinlan, 1990): 

information gain 
information gain ratio = 

Fayyad and Irani showed that entropy always cuts a t  boundary points5 (Fayyad & Irani, 1992b). As this 
is a consequence of the splitting rule having no local minima over uniform sequences (FL sequence of samples 
belonging t o  the same class), we refer to  this as the minima-free property. We show that this property holds 
not only for the entropy impurity measure, but for all strictly convex n impurity measures. This property 
is of interest for several reasons: 

'Using the Entropy impurity measure in (1) is equivalent to choosing the split that  maximizes the mutual information 
between the attributes and classes, which was the method used in (Lewis, 1962; Sethi & Sarvarayudu, 1982). 

3This assumes that  entropy is defined in terms of base 2 logs. We assume for the remainder of the paper that entropy is 
defined using base e logs, so that  information is measured in nats ,  not bits. This is done without loss of generality to  simplify 
differentiation. 

4This is the reduction in entropy relative to  the leaf t. The reduction in the average entropy of the tree is 

( ~ n t ( t )  - ( # ~ n t ( t L )  + # ~ n t ( t ~ ) ) )  = information gain. 
5~ rough definition of a boundary point is a point between samples belonging to different classes. 
61n this paper we shall sometimes blur the distinction between splitting rules and impurity measures, so that the phrase 

"entropy always cuts a t  boundary points" should be interpreted as "the splitting rule that uses entropy as an  impurity measure 
always cuts a t  boundary points". 



Efficiency - if it can be shown that the splitting rule being used cuts only at boundary points, then 
only boundary points need to be considered as potential cut points. This can represent a substantial 
savings in computation (Fayyad & Irani, 199213). 

Accuracy - Intuition suggests that splitting rules that cut at  interior points (i.e. non-boundary points) 
result in a finer partition of the space, and thus a larger tree, than splitting rules that disallow such 
cuts; such overfitting may lead to a reduction in predictive accuracy. This intuition is sometimes wrong; 
as Figure 1 shows, splitting between samples of the same class can occasionally lead to a smaller tree. 
However, this example does not change the fact that it is difficult to justify, on the basis of a one 
dimensional projection of the data along some attribute, cutting at an interior point rather than a 
boundary point, as we have no way of distinguishing the situation depicted in Figure 1 ,  where it is a 
good idea to  cut at an interior point, from the myriad other situations in which it is a bad idea. 

Insight - Knowing something about where a splitting rule splits may lead to  a deeper understanding 
of its weaknesses, laying the groundwork for new splitting rules that address these weaknesses. 

Figure 1: ,4n example showing that cutting between samples belonging to the same c1as.s is not always a bad 
idea. (a) Hand-drawn partition that cuts between samples of the same class. (b) Entropy-guided partition 
that does not. 

The organization of this paper is as follows: Sections 2 (mathematical preliminariles) and 3 (notation) 
provide a framework in which to discuss the theorems and proofs presented in Section 4; the theory is then 
applied to  specific splitting rules in Section 5. 

2 Mat hemat ical Preliminaries 
The following is intended as a brief review. 

Definition 1 A function f defined on a convex set fl is convex n if for all 5, y ' ~  fl and for all X E  [0,  L]  



Definition 2 A function f defined on a convex set R is strictly conzlex f~ if for all f ,  ii€ R,  f # ij and for 
all X E ( 0 , l )  

f ( A s  + (1 - X ) y 3  > X f  ( 2 )  + ( 1  - X ) f ( y ' )  

Definition 3 The 
tives dejined by 

Hessian matrix V21 

v21 = 

. of an impurity function is the matrix second deriva- 

Fact 1 (Negative semidefinite matrices (Strang, 1988, p. 339)) 
The following are equivalent: 

1. The matrix M is negative semidefinite. 

2. All eigenvalues of M are 5 0. 

3. P M S  5 0 for all 2. 

Fact 2 (Negative definite matrices (Strung, 1988, p. 331)) 
The following are equivalent: 

1. The matrix M is negative definite. 

2. All eigenvalues of M are < 0 .  

3. PMZ< 0 for all Z #  0 .  

Fact 3 (Relation between strict convexity and negative definzte Hessian (Peressini, Sullivan, & Crhl, 1988, 

P 54)) 
For a function f dejined on a convex set 0, if the Hessian o f f  is negative definite, then f is strictly convex 

n. 

Fact 4 (Relation between convexity and negative semidefinite Hessian (Peressini et al., 1988, p. 54)) 
For a function f defined on a convex set R ,  f is convex n zf and only if its Hessian is raegative semidefinite. 

Fact 5 (Conditions for a Minimum (Peressini et al., 1988, p. 3))  
A point x* is a strict local minimum of a function f ( x )  if f ' ( x* )  = 0 and f"(x*) > 0 .  

3 Notation 

The following strategy for partitioning a leaf t into leaves t L  and tR  was used in (Breirnan et al., 1984): 

1. For each attribute A ,  project the training samples down to the A-axis and evaluate the splitting rule 
f at all points that are halfway between adjacent training samples. Let f ( c ( A ) )  denote the minimum 
of the splitting rule over all such points, where c ( A )  is the point that achieves the minimum. 



2. Split along the attribute A. that minimizes f(c(A)) (i.e. A. = a r g m i n ~  f(c(A.))) at  the cut point 
c(Ao). This defines a decision boundary (actually a plane) in feature space that splits t into t~ and t ~ .  

The process of projecting the training data  down to the A-axis produces a sequence: 

Definition 4 A sequence is  an ordering of the samples contained in  some interval after projecting the 
training data onto a feature space axis corresponding to some attribute A, or more generarlly, onto an arbitrary 
vector in  feature space. 

We will be particularly concerned with sequences of samples that all belong to the sanie class: 

Definition 5 A uniform sequence is a sequence that contains only samples belonging t!o the same class. 

We assume we are at the stage of the above algorithm where we are selecting the best cut point for some 
,tribute A. Let N denote the number of training samples in the node to be split, and let the variable 
denote the position of the cut point along A. Since the splitting rules we consider depend only on the 

number of samples of each class on each side of the cut point, and not on their actual positions, without 
loss of generality we can assume that,  after sorting the N training samples in order of increasing A, the first 
sample occurs at n = 0.5, the second at n = 1.5, and so on. Then the set of cuts at n = 1 , .  . . , N - 1 exhaust 
all 

is, 

possible ways of cutting between adjacent samples. 
We have assumed here that the values produced by projecting the data onto the A axis are unique, that 
there are no repeated values. We will develop the theory under this simplifying assumption, and then 

show in Section 4.6 that the theory remains valid even when repeated values are allowed. 
Many of the results in this paper relate to  boundary points, which, for the restricted case we are consid- 

ering (no repeated values), can be defined as follows: 

Definition 6 Given a sequence of training samples, a boundary point is a point between samples belonging 
to  different classes. 

Later, in Section 4.6 ,  we shall give a more precise definition which also applies to the case of repeated values. 
We assume that each training sample belongs to one of m classes, numbered from 1 to m. For a given 

cut point n ,  we define, for i = 1 , .  . . m 

the number of class i samples to the left of n. 

the number of class i samples to the right of n. 

the total number of samples to  the left of n. 

the total number of samples to  the right of n. 

the fraction of class i samples to the left of n. 

the fraction of class i samples to the left of n. 

Figure 2 may help to  make this notation more concrete. 
Collect the fractions &(n)  into a vector q n ) :  

e'(n) = [el (n) e 2  (n)  . . . em, (n)lT 



Figure 2: Notation used for model. 

Then the impurity of the samples to the left of n  is 

which we condense to 

~ ( e ' ( n ) )  

Collect the fractions r i ( n )  into a vector r'(n): 

F(n) = [rl ( n )  r?(n)  . . . r,(n:)] T 

Then the impurity of the samples to the right of n  is 

which we condense to 

I (r ' (n))  

The splitting rule ( 1 )  becomes 
n  - 

f ( n )  = F I ( f ( n ) )  + ( 1  - l )  ~ ( + ( n ) )  N  

We introduce the continuous variable x  = n / N  so that we can use calculus to investigate the necessary and 
sufficient conditions for f to have a minimum. Substituting n  = N x  into ( 5 ) ,  we have 

N x  - N - N x  
f ( N x )  = - I ( e ( N x ) )  + 

N N  I ( ; (Nx ) )  

which becomes 
f ( x )  = X I ( @ X ) )  + ( 1  - x ) I ( F ( x ) )  

under the following identifications: 

f (x) f ( n )  evaluated at  n  = N x .  

e'(x) E f ( n )  evaluated at  n  = N x .  

( x )  E F(n) evaluated at n  = N x .  

Note that: 



As x varies from 0 to 1, ri varies from O to N. 

q n )  and F(n) (and hence q x )  and r'(x)) take on values in the "purity space" 

We shall sometimes write f (x; I )  in place of f (x) to make explicit which impurity mea.sure is being used 

4 Theorems and Proofs 

In this section we show that: 

Splitting rules based on strictly convex n impurity measures cut only at boundary points. 

Splitting rules based on strictly convex n impurity measures are strictly decreasing over the first 
uniform sequence and strictly increasing over the last. 

The set of global minimizers of splitting rules based on convex n impurity measures includes at least 
one boundary point, but may also include all interior and boundary points of one or more uniform 
sequences (see Figure 3). 

Splitting rules based on convex n impurity measures are non-increasing over the first uniform sequence 
and non-decreasing over the last. 

Splitting rules of the form 

cut only at boundary points, under certain conditions on g and h. 

The above results hold even when repeated values of an attribute occur over the training data. 

Below we develop a model for how impurity-based splitting rules behave over uniform sequences; this model 
forms the basis for many of the results in this paper. 

Figure 3: Hypothetical behavior at minimum of splitting rule f (x ;  I )  for a convex n innpurity measure I  



4.1 A Model for Impurity-Based Splitting Rules over Uniform Sequences 

We are interested in studying how the splitting rule behaves as the cut point is varied within a sequence of 
samples belonging t o  the same class. We choose one such sequence, assumed to extend from na to nb and 
to consist entirely of samples from class k. We fix a reference point at some position :no within the chosen 
sequence, and define, for 1 5 i 5 m: 

L, the number of class i samples to the left of no. 

Ri the number of class i samples to the right of no. 

L the total number of samples t o  the left of n.0. 

R the total number of samples t o  the right of no. 

Figure 4 may help to  make this discussion more concrete. For an arbitrary position n within the uniform 

Figure 4: Notation used for model. 

sequence [na,  nb],  the number of class k samples to  the left and right of n are respectively n - L + Lk and 
L - n + Rk ,  while the number of class i samples to  the left and right of n are respectively Li and Ri, for 
i # k.  The number of samples to  the left and right of n are respectively n and N - n. The fraction of the 
samples t o  the left of n that belong to class i is 

Collect these fractions into a vector F(n): 

q n )  = [C1 ( n )  C 2  (n) . . . em (n)lT 

Then the impurity of the samples to  the left of n is 

which we condense t o  
~ ( i ( n ) )  

The fraction of the samples to the right of n that belong t o  class i is 



Collect these fractions into a vector F(n): 

T 
?(n) = [rl ( n )  r2(n) . . . rm ( n ) ]  

Then the impurity of the samples to  the right of n is 

which we condense t o  

I(r'(n)) 

Then our discrete model of how the splitting rule (5) varies as a function of the cut point n is 

where z (n)  and F(n) have components 

and 

R, i f k  
r i (n)  = 

R, i f k  
= { g-" -, NaTn i = k  

The model is valid for n = n,! . . . , nb, since n ,  and nb mark the boundaries of the uniform sequence of 
interest. The quantities nmin and nmax appearing above are defined by 

nman is where the sequence would begin if all class k  points to  the left of the sequence were contiguous with 
i t ,  and thus represents a "worst case7" starting point for the sequence. Similarly, nmaX is where the sequence 
would end if all class k  points to  the right of the sequence were contiguous with i t ,  and thus represents a 
"worst case" end point for the sequence. 

As before, to  get a handle on what is happening between the samples we introduce the continuous variable 
x = n / N  and substitute n = N x  into the above expression to  get 

N X  N - N x  
f ( N x )  = F ~ ( f ( ~ x ) )  + N I ( q N x ) )  

7 0 r  best case, depending on how you look at it. 



where ~ ( N x )  and F ( N x )  have components 

and 

The quantites xmin and xmaX appearing above are defined by 

xmin is where the sequence would begin if all class k points to the left of the sequence were contiguous with 
it ,  and thus represents a "worst case" starting point for the sequence. Similarly, xmar is where the sequence 
would end if all class k points to the right of the sequence were contiguous with it ,  and thus represents a 
"worst case" end point for the sequence. 

Under the identifications 

f ( x )  f ( n )  evaluated at n  = N x .  

e'(x) = 4 n )  evaluated at n  = N x .  

F(x)  = F(n) evaluated at n  = N x .  

our continuous model of how the average impurity varies as a function of the cut point; x  becomes 
4 

f ( x )  = x I ( E ( x ) )  + ( 1  - x )  I ( F ( x ) )  

where f ( x )  and F(x)  have conlponents 



and 

The model is valid for x between x, = 2 and xb = %, since x, and xb mark the boundaries of the sequence 
of interest in x-coordinates. 

4.2 Strictly Convex n Impurity Measures 

The main result of this section is 

Theorem 4.1 If the impuri ty  measure I is  strictly convex n on 

Q = { ( P I  , . . . , p  m ) :  O S p i  5 1 f o r a l l i ,  and Cpi= 1 )  
i = l  

then  the set of global m in ima  of the splitting rule 

n - n 
f ( n ;  I )  = -I(!(n)) + (1 - -)I(?(n)) 

N N 

consists entirely of boundary points. 

Proof: The proof consists of the following steps: 

We first show that f ( x ) ,  the continuous analog of f (n ) ,  is strictly convex n 0vt.r uniform sequences 
(Lemma 4.1). 

We then show that  the convexity o f f  (x )  over a uniform sequence implies that f (n )  attains its minimum 
a t  a boundary point of the sequence (Lemma 4.2). 

Lemma 4.1 does not apply to the first or last uniform sequences, as the model breaks down when 
x = 0 or x = 1. We handle these special cases by showing that f ( n )  is strictly decreasing over the 
first uniform sequence (Lemma 4.5) and strictly increasing over the last (Lemma 4 . 6 ) ,  so that over any 
uniform sequence, f (n )  attains its minimurn at  a boundary point of the sequence. 

Finally, Lemma 4.7 shows that if over any uniform sequence f (n )  attains its minimum a t  a boundary 
point of the sequence, then f ( n )  attains its global minimum a t  a boundary point (note however that 
the global minimum is not necessarily unique). 

We first show that f (x) is strictly convex n over uniform sequences: 

Lemma 4.1 If the impur i ty  measure I is  strictly convex n o n  

m 

Q = { ( p l ,  . . . , p m )  : O < p i < l  f o r a l l i ,  a n d C p ; = l )  
i=l 

then  for  all points x,, xb that delimit un i form sequences, the splitting rule f ( x )  i s  strictly convex n on  
[x,, xb], where 0 < x, < xb < 1. 



Proof: Let x ,  y  E [x,,  x b ] ,  x  # y ,  and A  E ( 0 ,  I ) .  To show that f ( x )  is strictly convex n, we must show 
that 

f ( A x  + ( 1  - A)Y)  > Af  ( 2 )  + ( 1  - A ) f  ( Y )  

or, expanding f  in terms of I ,  that 

( A x  + ( 1  - A ) y ) I ( i ( A x  + ( 1  - A ) y ) )  + ( 1  - ( A x  + ( 1  - A ) Y ) )  I(r'(Ax + ( 1  - A ) Y ) )  

> A  ( x x  + ( 1  - ) + ( 1  - ( Y  + ( 1  - Y ) I ( ~ ( Y ) ) )  

or, after rearranging terms, that 

( A X  + ( 1  - A ) Y ) I ( ~ ( A X  + ( 1  - A ) Y ) )  + ( 1  - ( A X  + ( 1  - A ) Y ) )  I ( F ( A X  + ( 1  - A ) Y ) )  

> ( I  + ( 1  - Y Y )  + ( ( 1  - I ( (  + ( 1  - ( 1  - Y ) I ( ~ ( Y ) ) )  

This is true if 

( A x  + ( 1  - A ) y ) I ( i ( A x  + ( 1  - A ) y ) )  > X Z I ( ~ Z ) )  + ( 1  - A ) y I ( i ( y ) )  ( 11 )  

and 
( 1  - ( A x  + ( 1  - A ) y ) )  I(F'(Ax + ( 1  - A ) y ) )  > A(1 - x ) I ( F ( x ) )  + ( 1  - A ) ( l  - ! / ) I ( F ( y ) )  ( 12 )  

These are verified in Claims 1  and 2.  

Claim 1 (11 )  holds. 
Let 

Ax 
Q = Ax+ ( 1  - A ) y  

Claimla  O < q < l .  
0 < x ,  y, A  < 1  implies 0  < Ax + ( 1  - A)y  < 1  and the claim follows. 

Claim Ib q x )  # Z(y) .  
Assume that q x )  = q y ) .  There exists an i such that Li # 0. If i # k ,  then 

which yields x  = y, a contradiction. If i = k ,  then 

xmin - xmin 1  - - - I - -  
x  Y  

which again yields x  = y. Thus in either case we get a contradiction, so we must have q x )  # q y ) .  

Since I  is strictly convex n, 0  < q  < 1 ,  and 62) # i ( y ) ,  we have 

Since 



the argument of the impurity measure on the left of (14) becomes 

We now show that 

For i # k 

and for i = k 

AX + (1 - A ) y  - Xmin 

Ax + (1 - A ) y  
Xmin 1 - 

Ax + (1 - A ) y  

so that ( 1 7 )  holds. ( 1 6 )  and ( 1 7 )  imply 



Substituting (13), (15), and (18) into (14) gives 

or,  multiplying thru by A x  + (1 - X)y f 0 

as claimed. 

Claim 2 (12) holds. 
Let 

Claim2a O < q < 1 .  
0 < x, y,X < 1 implies0 < Xx+(l-X)y < 1, which in turn impliesthat 0 < 1-(Xx+(l-X)y) < 1 
and hence that  q > 0. We show that  q < 1 by contradiction. Assume that  q > 1. Then 

which is a contradiction. The  claim follows. 

Claim 2b F(x) # r'(y). 
Assume that  F(x) = ?(y). There exists an i such that  Ri f 0. If i f k, then 

which yields x = y, a contradiction. If i = k, then 

which again yields x = y. Thus in either case we get a contradiction, so we must have r'(x) # r'(y). 

Since I is strictly convex n, 0 < q < 1, and r'(x) # r'(y), we have 

Since 



- - 
1 - ( A X +  ( 1  - A)y )  - A ( l - X )  

1  - ( A x  + $1 - A ) y )  

- - 1 - Ax - ( 1  - A)y - A + Ax 
1  - ( A x  + (1  - A) y )  

- - ( 1  - A )  - ( 1  - A ) y  

1  - ( A x  + ( 1  - A)y )  

- - ( 1  - A ) ( l -  9 )  
1  - ( A x  + ( 1  - A ) y )  

the argument of the impurity measure on the left of ( 2 0 )  becomes 

We now show that 
- + ( l  - - Y)'(Y) ;(Ax + ( 1  - A)y )  

1  - ( A x  + ( 1  - A)y )  

For i # k 

- - A % + ( I - A ) +  
1  - ( A x  + ( 1  - A ) y )  

EL 
- - N 

1 - ( A x  + ( 1  - A ) y )  

- - Ri 
N ( l  - ( A X  + ( 1  - A ) y ) )  

and for i = k 

A(1 - x ) ~ k ( x )  s $1 - A ) ( 1  - Y ) T ~ ( Y )  - 
X m a z - 1  A(1 - x ) ( l  + + ( 1  - A ) ( l  - y ) ( l  + w) 

- 

1 - ( A x  + ( 1  - A)y )  1  - ( A x  + ( 1  - A ) y )  

- A(1 - X )  + A(xmaz - 1 )  + ( 1  - A ) ( l  - ! j )  + ( 1  - A ) ( ~ m a z  - 1 )  
1  - ( A x  + ( 1  - A)y )  

- - A(1 - X )  + ( 1  - A ) ( l  - y )  + (xmaz - 1)- 

1  - ( A x  + ( 1  - A)y )  

- A(1 - X )  (1 - A ) ( ~ - ! J )  xmar - 1 
- - + 

1 - (A X + ( 1  - A ) y )  + 1 - (A X + ( 1  - A)y )  1  - ( A X  + ( 1  - A)y )  



- xnaz - 1  
- 

1  - (Ax + ( 1  - A)y) 
= rk(Ax + ( 1  - X ) Y )  

so that (23)  holds. (22)  and (23)  imply 

Substituting (19) ,  (21) ,  and (24)  into (20)  gives 

or, multiplying thru by 1  - ( A x  + ( 1  - A)y)  # 0  

( 1  - (AX + ( 1  - A)y) ) I (F(Ax  + (1  - A)y) )  > A(1 - x ) I ( F ( x ) )  + ( 1  - A ) ( l  - Y ) I ( F ( Y ) )  

as claimed 

Thus we have shown that f ( x )  is strictly convex f I  on [x,, xb] ,  as required. 
We next show that convexity of f  ( x )  over a uniform sequence implies that f  ( n )  attains its minimum at a 
boundary point of the sequence: 

Lemma 4.2 If f ( x )  is strictly convex n on [x,, xb] ,  then f ( n )  attains its mznzmum at a  boundary point, 
that is, at either n ,  or nb. 

Proof: Let Cab denote the line segment connecting the points (x , ,  f ( x , ) )  and ( 2 6 ,  f l :xb)).  We have three 
cases to consider: 

f ( x a )  < f ( 2 6 )  

In this case, Cab has positive slope (see Figure 5). Since f ( x )  is strictly convex n ,  it lies above this 
line for all x  E (x , ,  2 6 ) ;  consequently 

f  (2,) < f  ( x )  for a11 x E (x , ,  xb) 

which implies, since f  ( n )  is just f ( x )  sampled at the points 5 ,  that 

f (n , )  < f ( n )  for a l l n  € i n a +  1,  . . . n  b) 

GZSS.~ f ( x a )  > f ( x b )  
In this case, Cab has negative slope (see Figure 6).  Since f ( x )  is strictly convex n, it lies above this 
line for all x  E (x , ,  2 6 ) ;  consequently 

f  ( x b )  < f ( x )  for all x  E ( x a  , xb) 

which implies, since f  ( n )  is just f  ( x )  sampled at the ~ o i n t s  z ,  that 

f  ( n b )  < f  ( n )  for all n  E {n , ,  . . . nb - 1 )  



Figure 5: Case 1: f (xu) < f (xb). 

t 

Figure 6: Case 2: f (xu) > f (26) 

case 3 f (xa) = f (26) 
In this case, -Cab has zero slope (see Figure 7). Since f (x) is strictly convex n, it lies above Lab for all 
x E (xu, xb), i.e. 

f (xa) f (rb) < f (2) for all E (za, zb) 

which implies, since f (n) is just f (x) sampled at the points El  that 

f (nu) = f (nb) < f (n) for all n E {nu + 1? . . . nb - 1) 

In all cases, f(n) attains its minimum at one of the boundary points, either na or nb. 
The next two lemmas will be used to show that f(n) is strictly decreasing over the first uniform sequence 
and strictly increasing over the last. 

L e m m a  4.3 For n = 1.. . .N - I 



Figure 7: Case 3: f (2,)  = f (zb) .  

Proof: Note that r'(0) = Z ( N )  is the purity vect.or of the entire sequence of da ta  a t  t.he node to  be split. 
For any n ,  we have for each class i 

which proves the result. 
The next lemma, due t o  Breiman et al. (Breiman et al., 1984), shows that splitting a node can never increase 
the average impurity: 

Lemma 4.4 For n = 1 ,  . . . N - 1 ,  if F(n) # F(n) then 

Proof: By Lemma 4.3, we have for each n 

Thus for e'(n) # F(n) 



since I is strictly convex n. Likewise 

as required. 
We next show that f (n)  is strictly decreasing over the first uniform sequence: 

Lemma 4.5 Let nb be the right boundary point of the first uniform sequence. Then for n = 1 , .  . . nb 

Proof: Assuming that the first uniform sequence consists of samples from class k, $(I) = &, where & is a 
vector of length m with a 1 in the kth position and zeros elsewhere. Furthermore F(1) f f(1) (otherwise the 
node to be split would consist purely of class k samples), so by Lemma 4.4 

Thus (25) liolds for n = 1. For n > 2, Lemma 4.3 implies that 

Since n 5 nb, n is eith+er within the first uniform sequence or is a boundary point of that sequence. It follows 
that for 2 5 n 5 nb, !(n) = e'(n - 1) = &, so (26) becomes 

Since F(n) # @n) (otherwise the node to be split would consist purely of class k samples), it follows from 
the convexity of I that 



and thus f ( n  - 1) > f ( n ) ,  as required. 
We next show that f (n)  is strictly increasing over the last uniform sequence: 

Lemma 4.6 Let n, be the left boundary point of the last uniform sequence. Then for ,n = n, + 1 , .  . . N 

Proof: Assuming the last uniform sequence consists of samples from class k ,  F(N - 1) = &, where e;i is 
a vector of length rn with a 1 in the kth position and zeros elsewhere. Furthermore i:(N - 1) # l ? ( ~  - 1) 
(otherwise the node to be split would consist purely of class k samples), so by Lemma 4.4 

Thus (27) holds for n = N .  For n 5 N - 1, Lemma 4.3 implies that 

n - n - l -  
F(n) = -t(n - 1) + (1 - 9) F(n - 1) 

N N 

Since n > n, + 1, n is either within the last uniform sequence or is a boundary point of that sequence. It 
follows that for n ,  + 1 5 n 5 N - 1, F(n) = F(n - 1) = &, so (28) becomes 

n - N - n  n - 1 -  N -  
-t(n) + - F(n - 1) = -t(n - 1) + 

N 
n + l F ( n -  1) 

N N N 

n - n - l -  
-!(n) = - 1 

N N 
t ( n  - 1) + -F(n - 1) 

N 
or - n - l -  

t ( n )  = - 
1 

t ( n  - 1) + -F(n - 1) 
n n - 

Since F(n - 1) # t ( n  - 1) (otherwise the node to be split would consist purely of class .k samples), it follows 
from the convexity of I that 

n - l -  
~ ( ~ j n ) )  = I ( -t(n - 1) + 

n n 



and thus f ( n )  > f (n  - I ) ,  as required. 
The next lemma connects the global behavior of f (n) to  its local behavior over uniform sequences: 

Lemma 4.7 The set of global minimizers o f f  ( n )  includes only boundary points. 

Proof: Assume not. Then a global minimum occurs at  an interior point no of a uniform sequence. This 
uniform sequence cannot be the first or last, as we have shown that f (n )  is strictly decreasing over the first 
(Lemma 4.5) and strictly increasing over the last (Lemma 4.6). For any other uniform sequence, Lemma 4.2 
shows that f ( n )  is smaller a t  one of the boundary points nb of this sequence than at  any interior point, so 

and no is not a global minimum, which is a contradiction. The lemma follows. 
This completes the proof of Theorem 4.1. 

4.3 Convex n Impurity Measures 

The main result of this section is 

Theorem 4.2 If the impurity measure I is convex n on 

m 

Q = { ( p i  l . . . l p m )  : 0 < p i  5 1 for all i, and xp; = 1) 
i=l 

then the set of global minima of the splitting rule f (n) includes at least one boundary point, but may also 
include all interior and boundary points of one or more uniform sequences (see Figure 3). 

Proof: The proof consists of the following steps: 

We first show that f (z) is convex n over uniform sequences (Lemma 4.8). 

We then show that the convexity of f (z) over a uniform sequence implies that f ( n )  either attains its 
minimum a t  a boundary point of the sequence or is constant over that sequence. ('Lemma 4.9). 



Lemma 4.8 does not apply to the first or last uniform sequences, as the model breaks down when x = 0 
or x = 1. We handle these special cases by showing that f (n )  is non-increasing over the first uniform 
sequence (Lemma 4.1 1) and non-decreasing over the last (Lemma 4.12), so that over any uniform 
sequence, f (n)  either attains its minimum at a boundary point of the sequence or is constant over that 
sequence. 

Finally, Lemma 4.13 shows that if over any uniform sequence f (n) attains its minimum at a boundary 
point of the sequence or is constant over that sequence, then the set of global minima of f (n) includes 
at least one boundary point, but may also include all interior and boundary points of one or more 
uniform sequences (hence the global minimum is not necessarily unique). 

We first show that f (x) is convex n over uniform sequences: 

Lemma 4.8 If the impurity measure I is  convex n on 

m 

= {(PI, . . . , p,) : 0 5 pi 5 1 for all i, and xpi = 1 )  
i=l  

then for all points x,, xb that delimit uniform sequences, the splitting rule f ( x )  is convex f l  on [xu, xb], where 
o <  2, < Xb < 1. 

Proof: Replace ">" with "2" in the proof of Lemma 4.1. 
U'e next show that convexity of f (x) over a uniform sequence implies that f (n) either attains its minimum 
at a boundary point of the sequence or is constant over that sequence: 

Lemma 4.9 Iff (x) is  convex n on [x,, xb], then f (n) either attains its minimum at a botrndary point, that 
is, at either n, or nb, or is constant for n E {n,, n, + 1, . . . , nb). 

Proof: Let Cab denote the line segment connecting the points (x,, f (x,)) and (xb, f(xb)). We have three 
cases to consider: 

c,,, f (2,) < f (xb) 
In this case, Cab has positive slope (see Figure 5). Since f (x )  is convex n, it lies on or above this line 
for all x E (x,, 2 6 ) ;  consequently 

which implies, since f (n )  is just f (x) sampled at the points 5, that 

f (n,) < f (n) for all n E {n, + 1, . . . nb) 

Case f(%) > f ( ~ b )  
In this case, Lab has negative slope (see Figure 6). Since f (x) is convex n, it lies on or above this line 
for all x E (x,, xb); consequently 

f (xb) < f (2) for all x E (x,, xb) 

which implies, since f (n) is just f (x) sampled at the points 5, that 

f (nb) < f (n) for all n E {n,, . . . nb - 1) 



case 3 f ( x a )  = f (xb)  
In this case, Lab has zero slope (see Figure 7). Let x ,  be any point between x ,  and xb for which 
f (x , )  > f ( z , ) .  If there is no such point, then f ( x )  is constant on [x,, ~ b ] ,  an,d consequently f ( n ) ,  
which is just f ( x )  sampled at the points $, is also constant for n E {n,,  . . . nb}. 

If there is such a point, let Lac denote the line connecting (x, ,  f ( x , ) )  and (x, ,  f ( : x , ) ) ,  and Lcb denote 
the line connecting (z , ,  f (x,)) and ( x b ,  f (26) ) .  Since f (x,)  > f (x , )  = f (xb) C,zc has positive slope, 
and Lcb has negative slope. Since f ( x )  is convex n, it lies on or above Lac for all x E (x , ,  x,) and on 
or above Lcb for all x  E (x , ,  xb); consequently 

and 

Thus 

f (xb) < f ( x )  for all x  E (xc ,  xb) 

f ( x , )  = f (xb)  < f ( x )  for all z E (xa ,  2 6 )  

which implies, since f ( n )  is just f ( x )  sampled at the points E, that 

f ( n a )  = f ( n b )  < f ( n )  for all n E {na + 1, . . .nb - 1 )  

In all cases, either 

f ( n )  attains its minimum a t  one of the endpoints, either n ,  or nb, or 

f ( n )  is constant for n E {n,, . . . n b )  . 

The next lemma, due to Breiman et al. (Breiman et al., 1984), shows that splitting a node can never increase 
the average impurity: 

Lemma 4.10 For n  = 1 , .  . . N - 1, 
f ( 0 )  = f ( N )  > f ( n )  

Proof: Replace ">" with "2" in the proof of Lemma 4.4. 
We next show that f ( n )  is non-increasing over the first uniform sequence: 

Lemma 4.11 Let nb be the right boundary point of the first uniform sequence. Then J'or n  = 1 , .  . . nb 

Proof: Use Lemma 4.10 to conclude that f ( 1 )  5 f ( 0 ) ,  then replace ">" with "2" in the remainder of the 
proof of Lemma 4.5. 
We next show that f ( n )  is non-decreasing over the last uniform sequence: 

Lemma 4.12 Let n ,  be the left boundary point of the last uniform sequence. Then for- n = n ,  + 1 , .  . . N 

Proof: Use Lemma 4.10 to conclude that f ( N )  > f ( N  - I ) ,  then replace ">" with ">" in the remainder 
of the proof of Lemma 4.6. 
The next lemma connects the global behavior of f ( n )  t,o its local behavior over uniform sequences: 



Lemma 4.13 The set of global minimizers of the splitting rule f ( n )  includes at least one boundary point, 
but may also include all interior and boundary points of one or more uniform sequences. 

Proof: Assume that the set of global minimizers includes only interior points. Let 1x0 be one such point. 
We have three cases to  consider: 

Case 1 If no is within the first uniform sequence, then by Lemma 4.11 f ( n )  must be constant over 
this sequence; it follows that  all interior points and the right boundary point of this sequence belong 
to the set of global minimizers. 

Case 2 If no is within the last uniform sequence, then by Lemma 4.12 f ( n )  must be constant over 
this sequence; it follows that all interior points and the left boundary point of this sequence belong to 
the set of global minimizers. 

Case 3 If no is within a uniform sequence other than the first or last, then by Lemma 4.9 f ( n )  
must be constant over this sequence; it follows that all interior points and both boundary points of 
this sequence belong to  the set of global minimizers. 

Since no was an arbitrary element of the set of global minimizers, it follows that this set contains at least 
one boundary point, and may contain the interior and boundary points of one or more uniform sequences. 
This completes the proof of Theorem 4.2. 

4.4 A Calculus Proof of the Minima-Free Property 

Above we showed that the minima-free property follows from the convexity of the splitting rule f ( x ) ,  which 
in turn follows from the convexity of the impurity measure I via Lemma 4.1. These results were obtained 
using primarily geometric arguments. In this section we show that similar results ca.n be obtained using 
calculus; in particular, we have 

Theorem 4.3 If the Hessian V21 of the impurity measure I ( p l ,  . . . , p,) is negative definite on 

na 

(p l  , . . . ,  p,): O < p i <  l f o r a l l i ,  and xpi=l 
i = l  

then the splitting rule f ( x )  is strictly convex n 

Theorem 4.4 If the Hessian V21 of the impurity measure I ( p l ,  . . . ,p,) is negative semidefinite on 

  PI,...,^,): O < p , < l f o r a l l i ,  and 

then the splitting rule f ( x )  is convex n. 

In order to  apply the above theorems, we cannot just test the matrix of second derivatives defined by 



for negative definiteness or semidefiniteness, as this fails to take account of the fact. that p l ,  . . . , pm are 
related by 

Instead we must first substitute the above constraint for, say, pm to get a function of the m - 1 independent 
variables pl , . . . , pm-1 which we designate as I :  

It follows by construction that 

V 2 i  is negative definite on 

(p1, ...p,-1) : 0 < p i  5 1 for all i ,  and xpi < 1 
i = l  - I 

if and only if V21  is negative definite on R. 

a V 2 j  is negative semidefinite on fi if and only if V21 is negative semidefinite on 0. 

Thus the problem of determining whether V 21  is negative definite on R reduces to the problem of determining 

is negative definite on a. 
Proofs of these theorems are given more for completeness than because they add anything to the presen- 

tation, and can be skipped without any loss of continuity. In fact, Theorems 4.3 and 4.4 are much weaker 
than their geometric counterparts, as: 

a they require the impurity measure to  have continuous first and second partial deri~vatives, and 

they follow directly from Lemmas 4.1 and 4.8, in view of Facts 3 and 4. 

We prove Theorems 4.3 and 4.4 below. 
Proof of Theorem 4.3: We show that f"(x) < 0 on (x,, xb); Fact 3 then implies that f (x )  is strictly 
convex n. In order to differentiate f ( x ) ,  we must know how to differentiate a function taking a vector 
argument. To review how this is done, we will compute the first two derivatives of the simpler function 



which are 

aI ( r i  ( x ) ,  r z ( z ) ,  . . . r m ( x ) )  8ri 
by the chain rule 

i = l  
dri ax  

a T = V I ( F ( x ) )  . , [rl ( x )  r2(x)  . . . rm(x ) ]  

where V21(F'(x)) is the Hesssian matrix of the impurity measure I  evaluated at the point F(x). This completes 
the review. We now comput,e the first, and second derivatives of 

f ( x )  = X I ( ~ X ) )  + ( 1  - x )  I (F (x ) )  

which are 

f )  = ~ ( q x ) )  + Z V I ( ~ X ) )  . ? ( X I  - I (F (x ) )  + ( 1  - x ) V I ( F ( x ) )  . F1(x)  

f " ( x )  = V I ( ~ X ) )  . ?(x )  + V I ( ~ ( X ) )  . 2 ( x )  + x i ' ( x ) T V 2 ~ ( ~ ( x ) ) i ' ( x )  + X V I ( ~ ( X ) )  . P ( x )  

- V I ( F ( x ) )  . f l ( x )  - V I ( F ( x ) )  . F1(x)  + ( 1  - x ) ~ ~ ( x ) ~ V ~ ~ ( F ( x ) ) r ' ~ ( x )  + ( 1  - x ) V I ( F ( x ) )  . F1'(x) 



We now show that two terms in the above expression are zero by showing that 

and 
- 2 F 1 ( x )  + ( 1  - X ) ~ ' ~ I ( X )  = lj 

Claim 1 (30 )  holds. 
For i # k 

and for i = k 

Xmin Pk = I - -  
x 

Xmin e; = - 
z2 

Xmin e; = -2 -  
23 

+ 
Thus each component of 2?(x) + x 4 I 1 ( x )  is zero, as claimed. 

Claim 2 ( 3 1 )  holds. 
For i # k 



and for i = k 

Thus each component of - 2 F 1 ( x )  + ( 1  - x) r '" (x )  is zero, as claimed. 

In view of ( 3 0 )  and ( 3 1 ) ,  two terms drop out of ( 2 9 ) ,  leaving 

The following observations are sufficient to ensure that f l 1 ( x )  < 0  on ( x , ,  x b ) :  

At least one of ? ( x ) ,  F 1 ( x )  is not equal to the zero vector. For if ? ( x )  = f l ( x )  == 6,  then 

L .  
? ( x ) = o '  + ~ ! : ( x ) = - : = o  N x 2  f o r i f k  

+ L i = O  f o r i f k  

+ all samples left of x  are class k 

F 1 ( x )  = 6 + r i ( x )  = Ri 
= O  f o r i f k  

N ( l  - x ) ~  
R i = O  f o r i f k  

+ all samples right of x  are class k 

so that all samples in the sequence are class k ,  and we would not be splitting it i:n the first place. 

The Hessian V 21  is negative definite on S1, which implies that 

2 
Y v I(??C<o for all y' # 0  arid p' E S1 

Since f l 1 ( x )  < 0 ,  f  ( x )  is strictly convex n by Fact 3 .  
Proof of Theorem 4.4: Exactly as in the proof of Theorem 4 . 3 ,  we obtain 

but the negative semidefiniteness of the impurity measure allows us to conclude only that f l 1 ( x )  5 0 ,  and 
therefore that f ( x )  is convex n by Fact 4. 



4.5 Rational Splitting Rules and the Minima-Free Property 
Some splitting rules, notably the information gain ratio (Quinlan, 1990), do not fit into the framework 
developed thus far; we must therefore develop additional tools to analyze these cases. In particular, we 
consider splitting rules of the form 

and we seek conditions on g ( x )  and h ( x )  which ensure that F ( x )  attains its minimum at a boundary ~ o i n t .  
The main result of this section is: 

Theorem 4.5 Consider the splitting rule 

If g ( x )  and h ( x )  are twice differentiable and satisfy the following: 

g"(x) < 0 over uniform sequences. 

g ( x )  < 0 for x E ( 0 , l ) .  

h U ( x )  < 0 for x E ( 0 , l ) .  

h ( x )  > 0 for x E ( 0 , l ) .  

For G ( x )  = g'h - h'g, 
G ( 0 )  = lirn G ( x )  = lim g'h - h'g < 0 

2-+o+ z+o+ 

and 
G ( 1 )  = lirn G ( x )  = lirn g'h - hig >_ 0 

z41 -  241-  

then F(x) attains its minimum at a boundary point. 

Proof: Fix a uniform sequence extending from x ,  to xb. ?Ve must show that F ( x )  attains its minimum at 
either x,  or xb. We have immediately that for x E (x, ,  xb): 

from which it follows that g"h - hug < 0 for all x E (x, ,  xb)  and thus by Lemma 4.14 that F ( x )  attains its 
minimum at either x ,  or 26. Since this holds for ally uniform sequence, F ( x )  must attain its minimum over 
[ O ,  11 at a boundary point. 

Note however that this result does not rule out the possibility of F ( x )  attaining it:; minimum at x = 0 
or x = 1 (or equivalently, of F ( n )  attaining its minimum at n = 0 or n = N).  We want to rule out this 
possibility. because if F ( n )  attains its minimum at n = 0 ,  say, then since we are only evaluating F ( n )  at the 
points n = 1 , 2 , .  . . , N - 1,  it may be that the minimum of F ( n )  over this set occurs at n = 1 , which may 
not be a boundary point. To exclude this possibility, we note that 



F ( x )  cannot attain its minimum at x  = CI because by Lemma 4.15, F ( x )  is strictly decreasing over the 
first uniform sequence. 

F ( x )  cannot attain its minimum at x  = 1  because by Lemma 4.16, F ( x )  is strictly increasing over the 
last uniform sequence. 

Thus we have shown that F ( x )  attains its minimum over [0, I] at a boundary point, i ~ n d  furthermore that 
this point is not x  = 0  or x  = 1. 
We prove Lemmas 4.14, 4.15 and 4.16 below: 

Lemma 4.14 Consider o function of the form 

If h  # 0  and gl'h - gh" < 0 over on interval (x , ,  x b ) ,  then F  attains its minimum on [.c,, xb] at either x ,  07. 

X b -  

Proof: We show that g"h - gh" < 0 for all x  E (x , ,  xb)  implies that F U ( x * )  < 0  for any critical point x* 
in the interval ( x a , x b ) ,  that is, for any point x* satisfying F t ( x * )  = 0. This effectively forces all extrema of 
F ( x )  in this interval to he maxima. The first and second derivatives of F  are: 

g'h - gh' 
F' = 

h" 

F" 1 (g"h +gth'-g'h'  -gh")  h2 - (g'h -gh ' )2hh'  
h4 

- - (g"h - gh") h2 - (g'h - gh') 2hh' 
h4 

Now, for any critical point x* ,  F' ( x * )  = 0 ,  which implies that g'h - gh' = 0.  Hence at the critical point, 

- - (g"h - g h " )  h2 
h4 since g'h - gh' = 0 

< O since x* E ( x u ,  xb )  (34) 

Thus F" ( r * )  < 0 for any critical point x* E ( x u ,  x b ) ,  which implies that F ( x )  has no minimain this interval. 
It follows that F  either increases, decreases, or increases and then decreases on [ x u ,  ~ b ] ;  in all cases F  attains 
its minimum over [ x u ,  xb] at either xu or xb. 

Lemma 4.15 Assume the first uniform sequence lies between 0  and xb. Let F ( x ) ,  G ( x )  be as above. If 
h  # 0  and g"h - gh" < 0  for x  E (0 ,  x b ) ,  and if 

G ( 0 )  = lim G ( x )  = lim g'h - htg 5 0  
z+o+ r + o +  

then F ( x )  is strictly decreasing over the first uniform sequence 



Proof: For any x E ( 0 ,  xb),  

G 1 ( x )  = g"h - g'h' + g'h' - gh" 

= 9'' h - g h" 

< 0 

by assumption. Since G 1( x )  < 0 for x E ( 0 ,  x b )  and G ( 0 )  5 0,  it follows that G ( x )  < 0 for x E ( 0 ,  xb). Thus 
for x E ( 0 ,  z b )  

g'h - gh' 
F 1( x )  = 

h2 

so that F ( x )  is strictly decreasing over the first uniform sequence. 

Lemma 4.16 Assume the last uniform sequence lies between x ,  and 1. Let F ( x ) ,  G ( x )  be as above. If 
h # 0 and gl'h - gh" < 0 for x E (x , ,  I ) ,  and if 

G ( l )  = lim G ( x )  = lim glh - hlg > 0 
z-tl- z+1- 

then F ( x )  is strictly increasing over the last uniform sequence. 

Proof: For any x E (x, ,  I) ,  

by assumption. Since G 1 ( x )  < O for x E (x, ,  1) and G ( l )  2 0 ,  it follows that G ( x )  > 0 for x E ( x a ,  1) .  Thus 
for x E (x , ,  1 )  

so that F ( x )  is strictly increasing over the last uniform sequence. 
This completes the proof of Theorem 4.5. 

4.6 Repeated Values 

In this section, we show that the above results, which were obtained assuming no repeai;ed values, carry over 
to the case in which repeated values are allowed. We distinguish two types of repeated value: 



Definition 7 A uniform repeated value (URV) is an attribute value to which more than one instance is 
mapped, and all such instances belong to  the same class. 

Definition 8 A non-uniform repeated value (IlrRV) is an attribute value to  which mcwe than one instance 
is mapped, and at least two such instances belong to  different classes. 

The definition of a boundary point given in Section 3 is not general enuf to handle repeated values, so we 
use the definition given in (Fayyad gi Irani, 1992b): 

Definition 9 A point c is a boundary point if there exists instances s l ,  s2 such that: 

sl and s2 belong to  different classes, 

c lies between the projected valves of sl and s2, i.e. A ( s1 )  < c < A ( s ~ ) ,  and 

No sample s maps to  a valve between A ( s l )  and A ( s 2 ) ,  that is, for all instances s 

With this definition of a boundary point, all of the results obtained up to this point hold even when repeated 
values are allowed: 

Theorem 4.6 Let f be a splitting rule .which, when applied to  sequences .with no repeated tlalues, has the 
following properties: 

1. Over any uniform sequence, it attains its minimum at a boundary point of that sequence. 

2. It is strictly decreasing over the first uniform sequence. 

3. It is strictly increasing over the last uniform sequence. 

Then f has the same properties over sequences with repeated values. 

Proof: Fix a sequence S of training data, possibly containing URVs and NRVs; then we must show that 
the splitting rule f has properties 1-3 over S .  These properties relate to the behavior of f over uniform 
sequences, so we pick a particular uniform sequence (1 from S, possibly containing URVs, and investigate 
the behavior of f over U. 

Let S' be the sequence produced by "unstacking" the URVs in S, meaning that tlne instances mapped 
to a given URV are remapped to distinct values in the interval (URV - 6, URV + c) ,  where c is chosen small 
enuf that no other instances map to this interval. Then S' consists of uniform sequences, possibly separated 
by zero or Inore NRVs. One such uniform sequence, call it U', corresponds to U with all URVs unstacked. 

Let S" be the sequence produced by unstacking the NRVs in S'; clearly this does not affect U', which 
contains no NRVs (because it was obtained from a uniform sequence in S ) .  Now, S" is a sequence with 
no repeated values, and U' is a uniform sequence from S", so by the assumptions of the theorem we can 
conclude that: 

f attains its minimum at a boundary point of U' 

If U' is the first uniform sequence, then f is strictly decreasing over U' 

If U' is the last uniform sequence, then f is strictly increasing over U' 



The splitting rules f we consider have the property that the behavior of f over a. uniform sequence is 
unaffected by how the samples are arranged outside that sequence, so long as the number of samples of each 
class t o  the left and right of that sequence stays the same. This implies that the behavior of f over li' 
when U' is regarded as a subsequence of S' is exactly the same as its behavior when U' is regarded as a 
subsequence of S". It follows that the above properties also apply to  the behavior of f over U' when Zi '  is 
regarded as a subsequence of S ' .  

Next, we plot how f varies over U' and also how f varies over U (these plots are called splitting curves). 
The relation between these curves is that the splitting curve o f f  over U is just the splitting curve o f f  over 
U' with some sections taken out (those corresponding to unstacked URVs). We observe that: 

In view of the fact that U and U' have the same boundary points, that f attains its minimum over 
U' at a boundary point implies that f will attain its minimum over U at a bouildary point (because 
throwing away certain sections over which f does not attain its minimum does not affect the location 
of the minimum). 

The fact that f is strictly decreasing on U' when U' is the first uniform sequence implies that f will be 
strictly decreasing on U when U is the first uniform sequence (because throwing away certain sections 
of a curve does not affect its monotonicity properties). 

The fact that f is strictly increasing on U' when U' is the last uniform sequence implies that f will be 
strictly increasing on U when Gr is the last uniform sequence (because throwing away certain sections 
of a curve does not affect its monotonicity properties). 

The theorem follows. 

Corollary 4.7 For the case in which repeated values are allowed, the set of global m i n ~ m a  of a splitting rule 
f satisfying the conditions of Theorem 4.6 includes only boundary points. 

Proof: Assume not. Then a global minimum occurs at an interior point no of a uniform sequence. This 
uniform sequence cannot be the first or last, as Theorem 4.6 shows that f is strictly decreasing over the first 
uniform sequence and strictly increasing over the last. For any other uniform sequence, Theorem 4.6 shows 
that f is smaller a t  one of the boundary points nb of this sequence than at any interior point, so 

and no is not a global minimum, which is a contradiction. The result follows. 

Corollary 4.8 For the case in which repeated values are allowed, splitting rules of thc form 

f (x; I) = xI(t?(x)) + (1 - x)I(F(x)) 

where I is strictly convex n cut only at boundary points. 

Proof: This follows from Corollary 4.7, since splitting rules of this form satisfy the conditions of Theorem 
4.6 by Lemmas 4.2, 4.5 and 4.6. 



Corollary 4.9 For the case in which repeated values are ~l loufed,  splitting rules of the form 

where g and h satisfy the conditions of Theorem 4.5 cut only at boundary points. 

Proof: This follows from Corollary 4.7, since splitting rules of this form satisfy the conditions of Theorem 
4.6 by Lemmas 4.14, 4.15 and 4.16. 
Similar arguments can be used to show that all of the results obtained previously assuming no repeated 
values carry over to the case in which repeated values are allowed. 

5 Applications 

We now apply the theory developed above to the Entropy, Gini, and Inaccuracy impurit,y measures, as well as 
to the purity gain and purity gain ratio, which respectively generalize the information gain and information 
gain ratio t.o impurity measures other than Entropy. 

5.1 Entropy 

It is well-known that the Entropy impurity measure 

Ent ( p l ,  . . . 

is strictly convex n (see, for example (Cover & Thomas, 1991)); it follows that the splitting rule f ( n  : Ent) 
inherits all of the properties discussed in Section 4, including the minima-free property. We thus obtain, via 
a slightly different approach (Theorem 4.1), Fayyad and Irani's result (Fayyad & Irani, 1992b) that Entropy 
always cuts at boundary points. For completeness, we include a proof that the Entropy impurity measure is 
strictly convex n: 

Theorem 5.1 The Entropy impurity measure (35) is strictly convex n, that is, for p', q ' ~  0, X E ( 0 , l )  

Proof: Recall that p and q are purity vectors, i.e. 

Fix p', f, and A ,  and let 
W ( Y )  = -Y log(y) 

Claim 1 For each i ,  w(Xpi + (1 - X)q , )  2 Xw(pi) + (1 - X)w(qi), with equality if and only if pi = q i .  
If pi = qi, it is clear that equality holds. Thus assume pi # qi. We have three cases to consider: 



Case 1 pi > 0 ,  qi = 0  
We have 

and the claim holds. 

Case2 p i = O , q i > O  
We have 

and the claim holds. 

Case 3 pi > 0 ,  qi > 0  
The first and second derivatives of w  ( y)  = - y  l o g ( y )  are: 

Thus w ( y )  is strictly convex n for y > 0  b y  Fact 3,  and since pi # qi and X E ( 0 ,  I ) ,  it follows that 

as required. This completes the proof of Claim 1  

Thus for each i, we have 
w(XPi + ( 1  - A)%)  2 X w ( p i )  + ( 1  - X)w(qi )  

and, since p'f q', for at least one i we have 

It follows by summing over i that 



or equivalently 

as required. 

5.2 Gini 

The Gini impurity measure 

has been shown to be strictly convex n (Breiman et al., 1984). Here we extend this result: 

Theorem 5.2 For a > 1? the impurity measure 

is  strictly convex n. 

Proof: Let X E ( 0 ,  l ) ,  and 

where @ #  f. Then we must show that 

but before doing so we prove a few claims. 

Claim 1 Xya + ( 1  - A) - (Xy  + ( 1  - > 0 ,  with equality if and only if y = 1,  where y > 0 ,  
O < X < 1 ,  a n d a > l .  
Let 

w ( y )  = Xya + ( 1  - A) - ( X y  + ( 1  - 

Then 

w l ( y )  = Xaya-l - a ( X y  + ( 1  - ~ ) ) ~ - l  X 



a-1 
where rul ( y )  = 1 - ( A  + y) . Furthermore, 

- ( a  - l ) ( l  - A) 
- ( A  + 

y2 
> 0 since a > 1 ,  0 < A <  1 ,  y > 0 

so that w l ( y )  is strictly increasing for y > 0. Since 

and w l  ( y )  is strictly increasing, it follows that 

and thus that 

so that w ( ~ )  is strictly decreasing for y < 1 and strictly increasing for y > 1. Since 

this implies that 

which proves the claim. 

Clailn 2 F o r  each i, Apq + ( 1  - A)qy - (Api  + ( 1  - A ) g i ) a  2 0; with equality if a n d  on ly  if pi = qi ,  
when:  0 < A < 1 a n d  a > 1 .  
We have four cases: 

Case 1 pi = 0, gi = 0. 
In this case 

A P ~  + ( 1  - A)qq - (Ap i  + ( 1  - A ) q i y  = 0 
so that equality holds for pi = qi = 0 



Case 2 pi = 0 ,  qi > 0  
In this case 

so that the inequality is strict for q; # pi = 0 .  

C a s e 3  p ; > O , q ; = O .  
In this case 

so that the inequality is strict for pi # qi = 0 .  

Let 

Then 

= qq (Xy* + ( 1  - A) - ( X y  + ( 1  - A))*)  
> 0  for y  # 1  (i.e. pi # qi)  by Claim 1  
= 0  for y  = 1  (i.e. pi = qi )  by Claim 1  

SO that if pi = qi equality holds, and if pi # qi the inequality is strict. 

This proves the claim. 

Claim 3 ELl (Xpq + ( 1  - X)qy - (Xpi + ( 1  - X)qi)*)  > 0 ,  where 0  < X < 1  a,ad a > 1. 
Each term in the sum is 2 0 ,  by Claim 2. If all terms were zero, then we would have pi = q, for all 
i, or ;o'= q', in violation of the assumption that p'f f. Thus the sum is strictly ;> 0 ,  which proves the 
claim. 

We now have the necessary tools to prove ( 3 6 ) :  

na 

= C ('P? + ( 1  - X)ql  - (Xpi + ( 1  - x ) ~ ~ ) *  
i=l 

> 0  by Claim 3  

It follows that I is strictly convex n. 



5.3 Inaccuracy 

Inaccuracy is in some sense the natural impurity measure to use, since what we really want to do is to 
maximize the accuracy of the classification over the test data. However, this ignores the lact that decision tree 
construction is a multi-step process, and it is not clear that choosing the split to minimize an Inaccuracy-based 
splitting rule at each step will yield a tree that performs well on the test data. In fact, experimental evidence 
suggests that the Inaccuracy impurity measure yields larger trees (Brodley, 1995) and lower predictive 
accuracy (Pazzani, Merz, Murphy, Ali, Hume, & Brunk, 1994) than the Entropy impurity measure. Such 
problems led to the abandonment of Inaccuracy in favor of measures such as Entropy and Gini (Brodley, 
1995; Lubinsky, 1995). 

The problems with Inaccuracy can be traced to the fact that it is not strictly convex n, but only convex 
n ,  as shown below: 

Theorem 5.3 The Inaccvracy impvrzty measure 

is convex n, but not strictly so. 

Proof: For X E [0, 11 and 

we must show that 

I (V+ (1 - X)g3  2 XI(p3 + (1 - 

Consider 

The 2 holds because one can vary the indices i in pi and j in q j  independently to achieve a potentially 
higher maximum value of 

Xmax p i +  (1-X)max q j  
Z I 

than would be possible if they were required to be the same, as in 

Thus 
I ( X p ' +  (1 - X)g3  2 XI(p3 + (1 - X ) I ( g 3  



so that I is convex n, but not strictly so, since equality holds when the intersection of the set of indices that 
maximize y, with those that maximize q j  is non-empty. 
That Inaccuracy is only convex n admits, by Theorem 4.2, the possibility that f (z; 1nacc:l attains its minimum 
in a flat valley that is constant over a uniform sequence.' Indeed, it was recognized as long ago as 1984 
that there exist non-trivial sequences for which the the Inaccuracy-based splitting rule is constant over the 
entire sequence (Breiman et al., 1984). Such sequences are not at all atypical; they ha,ve the property that 
for every cut point c, the same class is in the majority on either side of c (an example is shown in Figure 
8) .  To see why this causes problems, if an attribute A is selected for which the splitting curve is constant, 
the algoritllm will most likely split off the first or last instance along A,  so that one of the newly created 
nodes contains only a single instance. If this occurs repeatedly, it could explain the large tree sizes and poor 
generalization performance of the Inaccuracy impurity measure. 

It appears that Inaccuracy can be fixed, however. The key observation was made by Lubinsky (Lubinsky, 
1995), who noted that the splitting rule 

1 
1nacc.Gini = f (n; Inacc) + -f (n; Gini) 

N 

breaks ties in Inaccuracy using Gini, by virtue of the following facts: 

f ( n ;  Inacc) changes in increments of a t  most h ,  as it is the fraction of samples that are wrongly 
classified. 

0 5 f ( n ;  Gini) 5 1. 

Lubinsky reported that the 1nacc.Gini splitting rule produced significantly smaller trees than Gini, with 
comparable error rates on all data sets but one (Lubinsky, 1995). The relevance of this to the present work 
is that the 1nacc.Gini splitting rule (37) has the minima-free property: 

Theorem 5.4 Let I be a strictly convex n impurity meastrre, and define the impurity measure 

1 I($ Inacc. I($') = Inacc(p') + - - 
N M  

where 

Then the splitting rule f (n;  Inacc.4 only cuts at boundary points. 

Proof: We show that the impurity measure 1nacc.Iis strictly convex n. It then fo1:lows by Theorem 4.1 
that f (n.; 1nacc.I) only cuts at boundary points. For X E ( 0 , l )  and 

m 

6 E S1 = {(pl, . . . , p m )  : 0 < p i  < 1 for all i, and xpi = 1) 
i = l  

we must show that 
Inacc.I(Ap'+ (1 - X)g? 2 A Inacc.I(p') + (1 - A) Inacc.I(g? 

'Elomaa and Rousu (Elomaa & Rousu, 1996) have shown that f (x; Inacc) is "well-behaved", meaning that its value at one 
of the boundary points of a uniform sequence is at least as small as that at any interior point. 



We have 

1 
Inacc.I(Ap'+ (1  - A)$ = (Inacc + -I)(Ap'+ (1 - A)$ 

N M  

1 1 = A(1nacc + -I) (p3 + (1 - A )  (Inacc + -I) (93 N M  N M  
= A Inacc.I(p3 + (1 - A )  Inacc.I($ 

as required 

Corollary 5.5 The Inacc.Gini splitting rule (37) has the minima-free property. 

Proof: First note that 

1 
1nacc.Gini = f (n;  Inacc) + - f (n ;  Gini) 

N  
n n 1 n n 

= -1nacc(qn)) + (1 - -)Inacc(F(n)) + - ( - ~ i n i ( 4 n ) )  + (1 - F ) ~ i n i ( i ( n ) ) )  
N  N  N N  

- - 1 1 n (Inacc(4n)) + -~ in i ($n ) )  Inacc(4n)) + -Gini(i(n)) 
N  N  N  

1 = f (n;  Inacc + -Gini) 
N  

Theorem 5.4 and the convexity of the Gini impurity measure (Theorem 5.2) then imply that 1nacc.Gini has 
the minima-free property. 

That 1nacc.Gini has the minima-free property may explain why it produces smaller trees than either 
Inaccuracy or Gini alone. 1nacc.Gini generally splits where Inaccuracy does, and thus produces more balanced 
splits than Gini, which has a preference for splitting near the ends of the sequence (Breiman, 1996; Lubinsky, 
1995); it follows that 1nacc.Gini generally produces smaller trees than Gini. Moreover, the problem of 
Inaccuracy producing large trees as a result of being constant over the entire sequence does not occur 
for Inacc.Gini, which has the minima-free property; it follows that 1nacc.Gini produces smaller trees than 
Inaccuracy. 

5.4 Purity Gain and Purity Gain Ratio 

We now generalize the information gain and information gain ratio to impurity measures other than entropy 
by introducing the purity gain, defined as 

purity gain = f (0; I) - f (x; I) (38) 



f (x: Inacc) 

Figure 8: Sequence for which the splitting rule based on the Inaccuracy impurity rrleasure is a constant 
function of the cut point. 

and the purity gain ratio, defined as 

purity gain 
purity gain ratio = 

-x log(x) - (1 - x) log(1 - x) 

In this section we derive sufficient conditions for the purity gain and purity gain ratio to cut only at boundary 
points, and show that the information gain and information gain ratio satisfy these conditions, thus showing 
that they cut only at boundary points. We begin with the easy case, purity gain: 

Theorem 5.6 For any strictly convex n impurity measure I ,  the purity gain (38) only cuts at boundary 
points. 

Proof: To discuss the purit,y gain, which is to be maximized, in the framework we h.sve developed, which 
deals with splitting rules that are to be minimized, we define the negative purity gain as the negative of the 
purity gain, that is 

negative purity gain = f (x; I) - f (0; I) 

Now, since the negative purity gain differs from the average impurity f (x; I )  by the constant f(0;  I ) ,  the 
negative purity gain inherits all of the properties of the average impurity f (x ;  I ) ,  a,nd in particular the 
minima-free property (Theorem 4.1). It follows that the negative purity gain achieves its minimum at a 
boundary point, or equivalently, that the purity gain achieves its maximum at a boundary point. 

Corollary 5.7 The information gain (2) cuts only at boundary points. 



Proof: This follows from Theorem 5.6 and the convexity of the Entropy impurity measure (Theorem 5.1). 

Theorem 5.8 Let I be a strictly convex f l  impurity meosure and let 

g(x)  = f (x; I) - f (0; I) 

h(x) = -x log(x) - (1 - X) log(1 - X )  

G(x)  = g'h- h'g 

Then if 
G(0) = lim G(x)  = lim g'h - h'g 5 0 

x+o+ x+o+ 

and 
G ( l )  = lim G(x)  = lim g'h - h'g 2 0 

x+1- x+l- 

the purity gain ratio (39) only cuts at boundary points. 

Proof: To discuss the purity gain ratio, which is to  be maximized, in the frameworlc we have developed, 
which deals with splitting rules that are to be minimized, we define the negative purity gain ratio as the 
negative of the purity gain ratio, that is 

negative purity gain ratio = f (x;  1)  - f (0; 1) 
-x log(x) - (1 - 2) log(1 - 2) 

With the goal of applying Theorem 4.5, we compute the first two derivatives of h to  check that h" < 0: 

h' = log (1 - X) + 1 - log (x)  - 1 
= log (1 - x) - log (x)  

So h"(x) is indeed < 0 for x E ( 0 , l ) .  Furthermore, 

g"(x) 5 0 over uniform sequences, as 
gl'(x) = f"(x; I) 

and f"(x; I) is 5 0 by Fact 4, in view of the convexity of f (x ;  I) (Theorem 4.1). 

g(x) < 0 for x E (O,1) by Lemma 4.4. 



Thus we can apply Theorem 4.5 to  conclude that the negative purity gain ratio 

9(x) F (x) = - 
h(x) 

attains its minimum a t  a boundary point, or equivalently, that the purity gain ratio achieves its maximum 
a t  a boundary point. 

Corollary 5.9 The information gain ratio (4)  alway cuts at a boundary point. 

Proof: In view of Theorem 5.8 and the convexity of the Entropy impurity measure (Theorem 5.1), it 
suffices t o  show tha t  G(0) 5 0 and G ( l )  2 0, where 

g(x) = f (x; Ent) - f (0; Ent) 

h(x) = -x log(x) - (1 - x)  log(1 - X) 

G(x)  = g'h - htg 

Clairn 1 G(0) = 0. 
For a cut point x inside the first uniform sequence, assumed t o  consist of class k samples, the fraction 
to  the left of x that  belong to  class i is: 

and the fraction t o  the right that belong t o  class i is: 

where Ni and ni are respectively the number and fraction of class i samples in the entire sequence. It 
follows that  

g(x)  = f (x ;  Ent) - f (0; Ent) 

m 

= -(nk - x)  log (c) 1 - x - ni log (L) + x ni log ni 
1 -  i=1 



. ." 
= -(nk - x) log(nk - x) + (nk - x) log(1 - x) - C ni 10gni + C n, log(1 - X) + C ni log ni 

i f k  i f k  i= l  

= -(nk - x) log(nk - x)  + (nk - x) log(1 - x) + C ni log(1 - x) + nk lognk 
i f k  

and furthermore 

( x )  = log(nk - x) + 1 - log(1 - x) - 1 

= log(nk - x) - log(1 - x) 

Thus 

G(x) = g'h - gh' 
= (log(nk - x) - log(1 - x))(-x log(x) - (1 - x) log(1 - x)) 

- (nk lognk - (nk - x) log(nk - x) + (1 - x) log(1 - x))(log(l - x) - log(x)) 

G(0) = lim G(x) 
2+0+ 

= lim (nk log nk - (nk - x) log(nk - x)  + (1 - x) log(1 - x)) log(x) (= 0 . (-m); indeterminate) 
2+0+ 

= lim log(x) (= cc,/m; indeterminate) 
x+o+ (nk lognk - (nk - x) log(nk - x) + (1 - x) log(1 - 2))-' 

x-I 
= lim 

~ + o +  -(nk log nk - (nk - x) log(nk - x) + (1 - x) log(1 - ~) ) -~ ( log (n ; ,  - x) - log(1 - x))  
by I'Hopital's rule 

-(nk log nk - (nk - 2) log(nk - x) + (1 - x) log(1 - x))2 
= lim (= 0,/0; indeterminate) 

x+o+ x(log(n,$ - x) - log(1 - 2)) 
-2(nk log nk - (nk - X )  log(nk - X )  + (1 - 2) log(l - x))(log(nk - X )  - log(1 - x)) 

= lim 
x+o+ (log(nk - x) - log(1 - x))  + x (A + &) 

by 1'Hopital's rule 

= 0 since 0 < nk < 1 

as required. 

Claim 2 G ( l )  = 0. 
For a cut point x inside the last uniform sequence, assumed to consist of class k samples, the fraction 
to the left of x that belong to class i is: 



and tlie fraction to  the right that belong to class i is: 

It follows that 

g(x)  = f (x; Ent) - f (0; Ent) 

= xEnt ( sx) )  - (- n o n )  since Ent (?I)) = 0 
i = l  

m 

= -(nk - (1 -x) ) log  ) - ni log (z )  + C ni log ni 
i f k  i=l 

= nk log nk - (nk - (1 - x))  log(nk - (1 - x))  + (nk - (1 - x))  log x + x: ni log x 
i f k  

= nk log nk - (nk - (1 - 2)) log(nk - (1 - x)) + nk - (1 - x) + C n; ( i f k  

= nk lognk - (nk - (1 - 2)) log(nk - (1 - x)) + x logx 

and furthermore 

g'(x) = log x + 1 - log(nk - (1 - 2))  - 1 
= log x - log(nk - (1 - x)) 

Thus 

G(x)  = g'h - gh' 

= (log x - log(% - (1 - x)))(-x log(x) - (1 - x) log(1 - 2)) 

- (nk lognk - (nk - (1 - x)) log(nk - (1 - x)) + x logx)(log(l - x) - log(x)) 

G ( l )  = lim G(x)  
z-+1- 



= lim -(nk lognk - (nk - (1 - x)) log(nk - (1 - I)) + a: log X )  log(' - "1 
x+1- 

(= 0 . (-m); indeterminate) 

- log(1 - 2) 
= lim (= mo/co; indeterminate) 

z+1- (nk lognk - (nk - (1 - 2)) log(nk - (1 - x)) + log x)-' 

(1 - x)-I 
= lim 

x-1- -(nk lognk - (nk - (1 - x)) log(nk - (1 - x)) + x 1ogx)-"logx - log(nk - (1 - 2)))  

by llHopital's rule 

-(nk log nk - (nk - (1 - x)) log(nk - (1 - 2) )  + x log 2)' = lim (= 0/0; indeterminate) 
x + l -  (1 - x)(log x - log(nk - (1 - x)))  

-2(nk lognk - (nk - (1 - x)) log(nk - (1 - x)) + x logx)(logx -. log(nk - (1 - x))) = lim 
x+ 1 - 

by llHopital's rule 

= 0 since 0 < nk < 1 

as required. 

6 Conclusion 

We have established that splitting rules f (n;  I) based on strictly convex n impurity measures 

attain their minimum at  a boundary point, and 

are strictly decreasing over the first uniform sequence and strictly increasing oveir the last. 

We applied this theory to show that the Entropy and Gini impurity measures always cut a t  boundary points. 
Splitting rules f ( n ;  I )  based on impurity measures that are only convex n were sllown to have similar 

properties, and this result was used to show that the Inaccuracy impurity measure either cuts at a boudary 
point, or attains its minimum in a flat valley that is constant over a uniform sequence. 

We also developed tools for verifying the minima-free property for rational splitting rules, and used these 
to show that the information gain ratio always cuts a t  boundary points. 
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