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A computing system that is universally accessible and is able to  harness networked 

resources a,s and when necessary ca,n be said to provide computing on demand. This 

report describes and evaluates the design of a network desktop infrastructure tha,t 

provides access to distributed operating system services via standard world-wide web 

lsrowsers. Unmodified browsers can be used to access and use the desktop because 

it zippears as a normal web server to t'hem; the semantics associated with comput- 

ing services are supported by treating URLs as locations in a dynamic, virtual, and 

sideeffect based address space. The desktop interface is not hard-wir'ed to the charac- 

teristics of any specific tool; the use of a programmable state machine in conjunction 

with a illechanism that embeds varia,bles and objects within standa1,rd HTML allow 

the desktop to dynamically generate interfaces for tools and to ern-ulate interactiv- 

ity. Finally, users do not need physical accounts on the resources utilized by the 

desktop infrastructure; logical user accounts are created and managed with the help 

of filesystem and cache proxies, and the use of shadow accounts and software fault 

isolation techniques. The described infrastructure serves as the front end for the Pur- 

due University Network Computing Hubs (PUNCH), a widely used demand-based 

network-computing system that allows users to access a,nd run unmodified software 

tools via world-wide web browsers. 





1. Introduction 

1.1 Introduction 

This report describes and evaluates the software architecture of the network desk- 

top infrastructure for PUNCH. The desktop infrastructure serves two primary func- 

tions: 1) it provides users with distributed operating system services (e.g., file and 

process mana,gen~ent) that can be accessed and used via standard world-wide web 

browsers, a.nd 2) it user-tran~parent~ly interfaces to a distributed co'mputing syste~n 

(SC!ION) calmble of scheduling and executing software applications across wide-area 

networks on demand. The network desktop can be viewed as a u.ser's window to 

web-based wide-area computing. 

The network desktop infra.structure is unique in several ways, as described below. 

The desktop appea,rs as a normal web server to  bl-owsers - the semimtics associated 

wit.3 conlputing services a.re supported by treating URLs as locations in a dynamic, 

virtual? and side-effect based address space. Most tools can be macle usable via the 

infrastructure with very little effort. The tools do not need to be modified, and a.ccess 

to source and/or object code is not required. For tools wit'h text-based user-interfaces, 

the desktop utilizes administrat'or-supplied specification files to dyiiamically gener- 

a.te tool interfaces a.nd to emulate interactivity. This is achieved by way of a pro- 

gra~llmable stsate machine that works in conjunct'ion with a mechanism that embeds 

varia.bles and objects within standard HTML. Tools with graphical user-int'erfaces are 

support,ed by leveraging disp1a.y management technologies such as Broadway [8, 9, 101 

and VNC [26]. Finally, the deskt'op creates and ma.nages its own (logical) user ac- 

counts. As a result, users do not need physical account's on the r~esources utilized 

by the desktop infra.st,ructure. The logical user accounts are managed with the help 

of filesystem and cache proxies, and the use of shadow accounts and software fault 



isolat'ion techniques, as discussed in Section 5.6. 

The work on the desktop infrastructure was motivated by the fact that many of 

the systems and technologies that currently allow computing on the web target a 

single or a relatively small set of tools and/or work within controll'ed environments 

in which many of the issues hl1a.t arise in production envir0nment.s can be ignored. 

Solutions that t,a,rget individual tools tend to be non-reusa,ble in spite of the fact that 

they involve a significant a.mount of duplicated effort.' For exa.mple, a large number 

of systems (e.g., t<he Exploratorium [I],  JSPICE [29], a,nd others) are based on scripts 

that need to be inoclifiecl in order to add any new application to the system. Other 

des'igns are more flexible. The MOL prototype [XI, for example, employs static web 

interfaces that can be adapted for individual tools. The NetSolve [ll], Ninf [27, 281, 

and RCS [3, 41 systems are based on structured designs that target numerical software 

libraries. However, static interfaces a,re not a,dequate for all tools, and structured ap- 

proa.ches cannot be ea,sily applied to general-purpose applications. Another problem 

is tha,t the majority of these designs assume the ava,ila.bilit,y of the source and/or 

object code for tlie applications - which effectively precludes the installation of most 

conlmercial t,ools. Solutions tha.t address individual issues are generally reusable, but 

the tasks of adapting them for a production environment and integrating them into a 

conlplete computing infrastructure are non-trivial. For example, VNC [26] a.nd Win- 

Frame [12, 131 provide very flexible mechanisms for exporting graphical displays to 

remote consoles in a platform-independent manner - but, by themselves, the tech- 

nologies do not help address other issues (e.g., access control a,nd m.anagementj t'hat 

arise in a wide-area distributed computing environment'. 

The report is organized as follows. Chapter 2 provides a brief overview of PUNCH. 

Clhapter 3 introduces the different con~ponents that make up the network desktop 

infrast,ructure. Chapters 4 and 5 describe and evaluate the individual  component,^. 

Finally, (2hajpter 6 presents the conclusions of this work. 

'Reusa.bility! in t,his context, implies an ability to reuse the computing system with other applica.tions 
without making any modifications to the system itself. 



2. The Purdue University Network Computing Hubs 

2.1 Introduction 

PUNCH, the Purdue University Netjwork Computing Hubs, is a demand-based 

net-work-computing system that allowrs users to access and run zinrrzod~fied software 

t'ools via standard world-wide web browsers. Tools do not have to be written in 

any particular language, and access to source-code is not required. The PUNCIH 

infrastructure is geographica.11~ distributed, hut this is transparent t,o users, who can 

run tools wherever they reside. 

PIJNCH can be logically divided into mult,iple discipline-specific "hubs". Cur- 

ren-tly, there axe four l~ubs  tjllat conta,in tools for semiconductor techinology, VLSI de- 

sig~l,  computer architecture, and parallel processing. These hubs co-ntain over thirty 

t'ools from eight uiliversities and four vendors, a.nd serve more t l ia~i  500 users from 

Purdue, across the US, and in Europe. PUNCH serves as the undeflying distributed 

con~puting infrastructure for several collaborative efforts funded by tihe National Sci- 

ence Foundation: two projects involving five universities on the integration of design 

tools into new undergraduate and gradua.t,e curricula, and the Distributed Center for 

Advanced Electronics Simulations (DEsCARTES). PUNCH is also the enabling in- 

fraftructure for a, state-wide Purdue University network-comput,ing ;system curre~it~ly 

being deployed. Student's t,hroughout Indiana will use this system to run tools on 

machines located a,t all Purdue campuses. The current system schedules most runs 

among approxima,tely t,en shared comput,e-servers distributed across Purdue Univer- 

sity, the ITniversity of Illinois at Urbana,-Champaign, the ITniversity of Maryland, and 

the University of Texas a,t Austin. During the past three years, PUNCH users ha.ve 

logged Illore than one million hits and ha,ve ~ e r f o r ~ n e d  over seventy- thousand simu- 

lations. PUNCH can be accessed at " h t t p  : //www . e c n  . p u r d u e  . edu / l abs /punch /"  ; 



courtesy accounts are available. 

2.2 The PUNCH Infrastructure 

PIJNCH [21, 221 is made up of two parts: the front-end (network desktop) and 

SCl ON [see Figure 2.1). The front-end serves two primary functions: I ) it provides 

users with operating system services that can be accessed and used via standard 

wo~ld-wide web browsers, and 2) it user-transparently interfaces t o  one or more dis- 

tributed computirlg systems that are capable of scheduling and executing software 

applications across wide-area networks on demand. SCION serves as PITNCH's user- 

transparent middleware. It consists of a collection of hierarchically distributed servers 

that cooperate t o  provide the following services: 1) user-transparent managernent of 

the run-time environment. 2) independent control over resource access and visibility 

pol cies a t  each management unit node, and 3) cost ancl performance driven schedul- 

ing of available resources. As implied earlier, hardware resources mailaged by SCION 

can include different types of platforms, and software resources caI, consist of arbi- 

trary tools.' Resources can be located at any network-accessible site. and can be 

clyr amically added or removed from the infrastructure. 

From a user's perspective, PUNCH is a WWUJ-accessible collect~on of simulation 

tools and related information. It allows geographically dispersed tools to  be indexed 

and cross-referenced, ancl makes them available to users world-wide. The infrastruc- 

ture  hides all details associated with the remote invocation of tools from its users. 

Functionally. PUNCH allows users to: 1) upload and manipulate input files, 2) run 

programs, and 3) view and download output - all via standard LVViTW browsers. It 

provides a context-sensitive help facility that assists users in the use of the tools and 

the infrastructure itself. Access to  information and resources via PUIVCH can be per- 

sonalized and/or restricted according to  user-specific needs and access-rights. Finally, 

the use of machine learning techniques allows PUNCH to  p r ~ d l c t  run-times for tools. 

This information is used for on-demand resource management (e.g., longer 

'Tools with graphical user interfaces are support,ed with the help of display mana.gement technologies 
such as VNC [XI. 
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[ Tool (Appl~cat~on) Compute-Server Tool (Appl~cat~on) )N Compute-Server 

Parallel Machlne Tool (Appllcatlon) ) @ # " < Parallel Machlne ... . 
Workstation Cluster Tool (Appl~cat~on) Workstat~on Cluster 

Physical Location '1' Physical Location 'n' I 
Fig. 2.1. The PTJNCH infrastructure. 



runs are routed to  faster machines). A detailed description of PUNCH is available in 

[20, 23, 21, 221. 

Running a typical simulation on PUNCH is a three-step proces:s. The  first step 

involves the  creation of the input file(s) required for t,he relevant simulation. In the 

second step, users define the input parameters (e.g.. command-line arguments, etc. ) 

for the program and start the simulation. Finally, after the simula~tion is complete, 

users can see, postprocess, and download the results via the web-based front-end. 

PIJNCH runs programs in a "background" mode by default. This means that  the 

user's browser window is freed up as soon as the run has been successfully initiated. 

2.3 Summary 

PTJNCH is the result of a coilcerted effort to  harness the existing networking and 

conlputing infrastructures and the rapidly-advancing world-wide web technologies 

with the goal of building a .functional demand-based network-computing infrastruc- 

ture. Over the years. we have found the system to  be an extremely useful resource 

for students and collaborators, and a highly flexible testbed for network-computing 

rewarch. The  ideas and solutions presented in this report are based on (and val- 

idai,ecl by) our experiences in scaling PUNCH from a research project to  a "live" 

sj-stem that  is regularly used by several hundred students each semester. Results 

frorn user-surveys indicate that the system performs well under the highly peaked 

usa5e patterns (very high usage in the hours before homeworks and ljrojects are due) 

characteristic of an academic environment. 



3. The Network Desktop Architecture 

3.1 Run-Time System 

The network desktop infrastructure (see Figure 3.1) consists of: 1) a run-time 

sysl em, 2) databases and templates (specification files) containing dynamic informa- 

tion that controls the behavior of the run-time system, 3) meta-information compilers 

that are used to  generate and/or update the databases and templates, and 4) support 

hardware such as file servers. The run-time system is made up of an access manager, 

a set of run-time services, and a programmable state machine. The access manager 

handles network protocols, enforces access control, and routes transactions to appro- 

pria,te service modules. The run-time services include commands for file manipulation, 

process management, directory services, and the like. The programmable state ma- 

chine dynamically customizes the behavior of the virtual desktop interface for users 

and resources, according to criteria specified in the behavior template. The behavior 

template consists of a server template and one or more hub databases. As indicated 

in the figure, the server template specifies the serIrer configuration and the run-time 

mappings for URLs and filesystems, among other things. Hub databases contain 

pointers to meta-information for tools on the corresponding "hubs" (tools can be log- 

ically grouped/separated across hubs according to desired criteria - by discipline, for 

example), along with associated configuration information (see Figure 3.1). 

3.2 Tool Specification 

A tool specification provides PUNCH with the meta-information ~equired to make 

a, given tool usa,ble via the distributed computing framework. As sho~vn in Figure 3.2, 

the specification describes different aspects of the tool such as general .information, vir- 

tual interface generation, and application management.' This will generally be writ- 

'The specification file for a simple, batch-oriented tool ca.n be written in about 1;wenty minutes. 



Intranet / Internet 

Filesystem Map I 

User Accounts 

Filesystem Map 
Access Control Map 

MIME Types 

Fig. 3.1. A simplified functional view of the network desktop infrastructure. 



General Information Interface Generation 

Documentation Input Grammar 
MIME Types Analysis Rules 

Application Management 

lnput Translation 
Implementation Selection 

lnput Pre-Processing 
Execution Syntax 

Output Post-Processing 

Fig. 3.2. Tool specifica,tion. The sha,ded items are required by all tools. 



Fig. 3.3. Skeletal structure of the tool specification file. 

Begin Specification - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

I 
I 0  
I  .= 
I a 
I E 
I 0 

I I - 
I _ 
I s? 
I 
I a 
I 

Begln Basic'Info I 
I 

<tool classification and access control info.> I 

End BaslcInfo I 
I 

Begin IndexLinks I 

<links to description and manuals for the tool, 
End IndexLinks I 

I 

Begin BelaredLinks 
I 
I 

<links displayed on the main page for the tool> I 
End RelatedLinks I 

I 
L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I I  
I Begin HtrnlTemplateList I 
I 
I <templates to be used to generate html pages> 
I I 
I End HtmlTemplateList I 
I I 

I 
1 0  
I -= 
; a, 

I $ 
I 0  
I , 
10 

I $ 
I2 
I = 

Begin AnalysisGrammar I 
I 

<regular expressions for parslng of user-input> I 

End AnalysisGrammar I 
I 
I 

Begin AnalysisRules I 
I 

<rules for applying the analysis grammar> I 
I 

End AnalysisRules I 
I 

Begin ExacLnterEace 
I 
I 

<instructions for tool interface generation> I 
End ExecInterface I 

I 
I I 
I I 
I Begin PlOtIdterfaCe I 
I 
I 

<instructions for post-processing interface> I 

I End PlotInterface I 

L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - l  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
I 
I Begin Applications I 
I I  

Begin eappl-namez 
1 -  

I 

I C 
I 

I ,  
<execution syntax for application 'I1> I 

End iappl-name> I g I 
I 

j P 
I 
I 
I 

I 5 End Applications 
I  

! 2 
I 
I 

I c Begin Implementati~n~ 
I 
I 

I .s Begln <emplementation name, 
I 

I - I 

I a <execution syntax for implementation 'I1> I 
I .I! I - 
I End <implementation name> I 

i 4" 
I 
I 
I 

I 
I 

I End Implementations I I 

' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - l  

End Specification 



ten by an administrator or a tool installer when a tool is initially added to PUNCH. 

It ca,n subsequently be reused at different sites with minor modifications. The struc- 

t'ure of the tool specification file is shown in Figure 3.3. With refererice t,o the figure, 

the modules for general information specify: 1) the logical classification of a tool for 

crossreferencing purposes: 2) access control policies, and 3) links to tool-specific doc- 

~ m e n t ~ a t i o n  and velated information. The interface generation modules describe the 

characteristics ( s t ru~ t~ure  and workflow) of the tool-specific virtua,l interfaces that are 

a,ccessed bl)~ users via standard web browsers. Finally, the applica,tion management 

motlules specify: 1) the ma,nner in which different implementation:; or  component,^ 

of a, given application are to be selected, and 2) the execution syntax and protocol 

(e.g., command-line arguments, standard input, platform requirements, scheduling 

coni~traints, etc.) for each implementation or component. These modules implicitly 

specify a mapping between the virtual interface(s) and the tool's native interface(s). 

3.3 Summary 

'The next two chapters describe and evaluate the run-time systein shown in Fig- 

ure 3.1; aspects of the compiler that relate to the run-time system are explained 

when necessary. The software for the network desktop interfa.ce is divided into three 

corrlponents (see Figure 3.4): each of which is consists of several modules. The access 

management component authenticates requests and enforces a,ccess control policies. 

The virt'ual desktop component processes transactions that involve document serv- 

ing? directory information, system a,nd process status queries, file m;mipulation! and 

tool interface generation. Finally, the message-passing component provides the pro- 

tocols tha,t allows the desktop interface to communicate with SCION (the PUNCH 

bac'q-end; see Figure 2.1) and other resource management systems (e.g., C ~ n d o r ) . ~  

The software is implemented in Perl [31]. Except when stated otherwise, the results 

presented in this report were obtained on a 300NIHz Sun Ultra-4 running version 

5.005-01 of the Perl interpreter. 

"11,: message-passing component primarily implements esta.blished communication protocols, and 
is not discussed further. 
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Fig. 3.4. Software architecture of the run-time system in the netvvork desktop. 



4. Access Management 

4.1 Introduction 

'The access management component is responsible for: 1) translating external 

prol,ocols into a standard format for internal use, 2) authenticating requests, 3) en- 

forcing access control policies, and 4) rnallagiilg the information stored in PUNCH 

datisbases (see Figure 4.1). The coml~onent is made up of several modules, as shown 

in Figure 4.2. The followillg sections describe and evaluate each of these modules. 

4.2 System-Interface Management Module 

'The system-tnterfnce management module is responsible for translating external 

recll~ests from different sources into a standard internal format. The internal for- 

nlat uses the syntax specified by the hlultipurpose Internet Mail Extensions (MIME) 

[14, 171. After translation, the data contained within a request arr3 organized into 

key value pairs and stored in associative arrays. Multiple occurrences of identical 

identifiers (keys) are supported, and the value fields can contain arbitrary text and/or 

binary data. 

Currently, three external protocols are supported. The HT TP intel-fnc~ manages 

browser-based requests. It accepts requests that conform to the HTTI' protocol [6, 151 

and translates them into the internal MIME-based format for subsequent processing. 

In addition, the interface generates authentication challenges wheil necessary and 

enc,spsulates outgoing messages within HTML [5, 241. 

'The shell znterface is designed to interact with very simple shell clients that can 

l ~ e  ntegrated into traditional operating system command interpreters (e.g., UNIX 

shells). Functionally, the operating system parses user-supplied conlmands, decom- 

poses them into their components (e.g.. tool name, arguments, redirection, et c. ) , and 
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Fig. 4.1. Functional overview of the access management component. 





and uses a shell client to  forward selected commands to  one of a set of nodes running 

the network desktop, along with appropriate authentication information. The  role of 

the shell client can be illustrated by way of a simple example in which a user enters 

the following command on a ITNIX platform: f i s h l d  < demo. i n p  > demo. o u t .  On 

11ar:;ing the command, the operating system shell determines that: 1) f i s h l d  is the 

name of the tool to  be executed, 2) standard input ( s t d i n )  will be read from the file 

demo. i n ,  and 3 )  the standard output ( s t d o u t )  will be redirected to  the file demo. o u t .  

.An unmodified shell would then look for an executable file that matches the name 

f l s h i d  within the directories listed in the user's path environment. The  modified 

shell enhances the lookup procedure by allowing users to specify lcigical handles t o  

network-computing systems in their path environment, in addition to  directories. 

When the shell encounters a logical handle, it uses the client to query one of the 

ne t l~o rk  desktops within the network-computing system. If the network-computing 

system is aware of f i s h l d ,  the request is forwarded to  it for processing. The  input for 

f i s h l d  will be read from demo. l n p  and its output will be redirected to  demo. o u t  in 

a user-transparent manner. If the network-computing system is not aware of f i s h l d ,  

the shell continues its search with the next directory or logical handle in the path 

environment. 

Finally, the native interface accepts requests that conform to  the internal MIME- 

based format. This interface is primarily used by PUNCH nodes to communicate 

with each other. The translation processes associated with the currently-supported 

pro ocols are straightforward, and do not contribute significantly to  the overhead of 

processing a request. 

4.3 Authentication/Encryption Module 

The awthenticntion/encryption module is responsible for authenticating transac- 

tiorls and decrypting/encrypting the data stream. The specific a~t~hent icat ion and 

encryption policies to  be used can be configured by a system administrator; the cur- 

rent system uses the basic challenge-response authentication mechanism described 



in [6] and does not encrypt data. lclentification and authentication information is en- 

capsulated within a Base64 encoding [7, 171 before transmitting it over the network. 

Each transaction is authenticated by way of the user's identity, a pa,ssword, and a 

session-specific dynamic identifier generated by the access control module described 

in Section 4.4. For a guest user, the identity field is associa,ted with the IP  address of 

his/her machine, a,nd the pa.ssword field is ignored. For a nlember user, the identity 

a.nd password fields consist of his/her PUNCH login and password, respectively. The 

dy11a.mic identifier consists of a string followed by a sequence of numbers that represent 

access codes. The string identifies the type of user, and takes on one of two values: 

'Guest' or 'Member'. The a.ccess codes allow efficient and scalable lookup of PUNCH 

resources, a,s described in Section 4.4.1. The dynamic identifier is automatically 

generated by the access cont.rol module at the PUNCH node that serves the request 

if it is illcorrect or a.bsent (see Section 3.4.1 for details). It is t,hen cached by the client 

and presented to the PlTNCH node with subsequent requests. The actual mechanism 

by which caching is achieved depends on the type of interface. For example, with the 

H T T P  interface, the identifier is cached implicitly by making it a part of the URL. 

On the other hand, with the shell and na.tive interfaces, it is cached explicitly on the 

client side. 

Authenticating requests from guest users is straightforward. Each active guest 

user is represented by a persistent object that is stored in a d a t a h e  on the local 

( to  the server) filesystem. The object is created when a user regist,ers as a guest, and 

contains the IP  address of the user's machine, identifying informa.tion such as the 

user's email address, and session-specific state information. When PUNCH receives 

a request from a registered guest user, it utilizes the dyna,mic identifier associated 

with this request t o  locate the corresponding object in the dat,abase. Once the object, 

is located, t,he request is authenticated by comparing the IP  address of the machine 

from which the request was received to t.he IP  address stored in the object. 

.Authenticating a request from a nlember user involves looking up the appropri- 

ate  password-file entry and verifying the password supplied with the request. A 
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highly efficient authentication process is crucial to the scalability ant1 performance of 

the overall system because the stateless nature of the PUNCH and HTTP protocols 

malces it necessary to individually authenticate each transaction. The efficiency issues 

are addressed as follows. For requests that contain correct access codes, authentica- 

tior can be accomplished in O ( 1 )  time (see Section 4.4.1). When access codes are 

not available or are incorrect, the authentication procedure involves a search. The 

latency associated with the search is minimized hy distributing the user-account en- 

tries across multiple password files. The distribution is accomplished by way of a 

very simple hash function that selects a file on the hasir of the ASCII values of the 

initial characters of the user's login and the encoded or encrypted password. In par- 

ticu lar , the password file identifier is obtained by evaluating t he following expression: 

(ortl(logzn) + 0rd(~asstuord))%32 + 1. The function o r d  is a standard Per15 function 

tha ,  returns the numeric ASCII value of the first character of its argument. 

Figure 4.3 illustrates the effects of the hash function on the average time required 

to  authenticate a request. The results are based on a real dataset consisting of 994 

PUVC'H user account?. The plots in Figure 4.4 show that the (simple) hash function 

dexribed ahove achieves an acceptably even distribution of accounts across available 

13uckets for a real dataset. 

At the end of the authentication process, each request is tagged with one or more 

logical access groups and forwarded to the access control module. The access groups 

for member users are retrieved from their password-file entries, assunning that the re- 

quest was successf~~lly authenticated. The access group for successfully authenticated 

reclilests from guest users is set to 'GUEST'. Requests that could not; be successfully 

aut ienticated have an empty access group. 

4.4 Access Control Module 

The access confrol module dynamically maps user requests to  the underlying re- 

sou :ces based on the access g roup(~)  associated with the request, the state information 

associated with the user, and the source of the request. 



4.4.1 Access-Code Management 

In the course of processing any given transaction, PUNCH modules access one or 

more clata.ba,ses in order to  retrieve information associated with user,s and resources. 

Examples of such illformation include authentication a.nd access control informahion 

for users, user-interface templates? lea,rned resource usage cha,racteristics, and porta- 

bility information for tools, and availability and sta'tus information for ha,rdtua,re re- 

sources. It is extremely important t,o be able to access this information in a quick, 

efficient, and scalable ma,nner. Information stored in database syst'elns is ret,rieved 

11y way of a query mechanism that typically involves a search. For large databases, 

the high latency associated with this search often translates t o  poor performance. 

The PLTNCH da,tabase system utilizes dynamic access codes to allow 0 (1) access to  

the stored informatmion [21]. An access code represents t,he exa.ct byte offset of a given 

record in a, given database, and is dynami

c

ally encoded into all resource identifiers. 

For any query that includes an access code, the dat,abase system bypasses it,s normal 

search mecha.nism a,nd performs a seek operation to a byte offset that is one less than 

the numeric value of the access code. It then rea,ds the word at that position. If 

the supplied access code is correct, this word will be a record sepa.rator. Assuming 

that a record separator is found, the subsequent read operation will fetch the first 

word of a record. PUNCH databases a,re organized so tha,t the first word in every 

record consists of a string tha.t uniquely identifies the record within tha.t daiabase. 

Typica,lly, this string is the numeric value of the access code for that record: in a few 

ca,ses, the name of the resource is used for the string when it (the name) is guaranteed 

t,o be unique (e.g., as with user logins). As a result of this organization, if the word 

read by the systein ma,tches the supplied access code (or the resource name when 

appropriate), the record being read is guaranteed to be the one tha,t was requested. 

If t,he supplied a,ccess code is determined to be incorrect,, the requested information 

is retrieved via, a normal databa,se search, and an access code is generated for use in 

subsequent queries. 

Once obtained, access codes are cached at the source of the request, allowing them 



(n Identifiers) 

Identifier Password 

I Hash Function Hash-Table Size (k) 

Hash Index (k files; - n/k 
Identifier 

(Filename Extension) entries per file) 

Access Code 
(Offset in File) 

( O ( 1 )  access 

Resource Access Code with code) 
(Offset in File) 

Fig. 4.5. Schematic of the lookup mechanism used by t,he PlTNCH database system. 



t,o be reused. However, access codes can change over time - although this happens 

relatively infrequently in practice. (The change is generally a result of a resource 

l~eing added to or removed from the database.) In order to minimize the search 

penalty when access codes are not available or are incorrect, resources are hashed 

across multiple c1a.tabases on the basis of the initial characters of their identifiers and 

encrypted or encoded passwords. ,4 schematic of the lookup mechanism used by the 

PUNCH data.base system is shown in Figure 4.5. 

Figure 4.6 shows t,he average time required t'o authenticatme a reyuest when correct 

access codes are available. The results represent the same dataset (994 PlJNCH 

user accounts) used to  generate the plot in Figure 4.3; coinpa,re the range of Y- 

axis values in the two plots. The utility of access codes ca,n be illustrat,ed more 

effectively by way of a synthetic clataset. Consider the information associated with 

tools (e.g., templates employed for user-interfa.ce genera,tion, learned resource usage 

characteristics, portability information, etc.). In order to process any tool-related 

transaction, the run-time syst'em must first locate the database for the tool. The 

scalability characteristics of t'he lookup time, when the a,ccess code is not known or 

incorrect, are shown in the left hand plot in Figure 4.7; the right hand plot shows 

the (c,onsta,nt) lookup time when a correct access code is supplied t,o the database 

system. Both plots were generated for a synthet.ic dataset using a database system 

with a linear search. 

A typical reyuest will contain several access codes - one for each database record 

that is accessed in the course of processing the corresponding transaction. For 

database records tha.t consist of multiple sub-records, access codes are defined as 

a hierarchy of byte offsets. 

Table 4.1 shows the observed proliferation of a'ccess codes in the PUNCH envi- 

ronment. About 96% of t,he transactions initiated by member users contained access 

codes that could be used for authenticzition purposes. Access code:; associated with 

tool-related information were present in virtually all transactions that involved such 

references, as indicated by the second row of the table. 
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Table 4.1 
Observed access code proliferation. 

1 Internal References 1 946,652 1 81 1 

Access Code Proliferation 

Type of Use 

Member Authentication 

Access Code 

Present 

1,086,732 

Absent 

45,896 
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4.4.2 Address-Space Translation 

PUNCH draws on the basic premise of virtual memory management to control 

access to its resources. Requests are assumed t,o conta.in virtual addresses (identifiers) 

t(11a.t can be dynamically translated to physical ones. This model is used within the 

fra.mework of the world-wide web by trea.ting UR.Ls as locations in a, clynamic, virtual, 

and acti t le  (side-effect ba.sed) address spa.ce. The client i n i t k i n g  a, given transaction 

is equated to a distinct user-level process in a multi-user system? and the request is 

treated as a,n att.empt to access a memory location with a lexicographical address 

wit:hin the private address space of the associated process. 

lising this perspective, analogous to virtual memory management, each request 

ca.n he verified for validity in terms of: 1) being within the address space bounds for 

the associated process (user), and 2) the type of access (read or write). All accesses 

to  I'UNCB undergo this validation process, allowing the system to (control access to 

its :resources on a per-user a n d  a. per-resource basis. 

4.4.3 View Customization 

Once the validity of a request has been verified, it is m a p p e d  to  a physical resource. 

This ma.pl~ing process is implicitly dependent upon the source (user-id) of the request, 

and can be customized by system administrators. Thus, different users attempting to 

access the sa,me logical resource identifier (URL,  in the case of the world-wide web) 

could potentially trigger completely different actions. 

PUNCH leverages this fact to dynamically genera,te a logical (virtual) view of 

available tools and resources for each class of users. For example, users who have 

mei.nber access to a given tool on PUNCH can view the corresponding on-line docu- 

mei~tat~ion 11y following an appropriate set of web links. Other users who follow these 

links are shown a different set of documents (typically a messa.ge st'ating that the user 

clocumentatio~l for the tool is only available to a.uthorized users). It is also possible 

to configure PUNCH so that such links are not generated at all for users who do not 

have member privileges for the corresponding tool. 



5. The Network Desktop 

5.1 Introduction 

The network desktop component processes transactions that involve document 

serving, directory information, system and process status queries, file manipula.tion, 

a,nd tool interface management. Data. obt,ained by profiling the user activit,y on 

PITNCH over the past twent.y-eight months (see Table 5.1) indicates t,hat transactions 

associated with tool interfaces, &tic and dynamic information, and process stmatus 

queries a,ccount for more than 95% of the total. Consequently, the evaluation focuses 

on the modules that process these transactions. A schematic. for the network desktop 

conlponent is shown in Figure 5.1. 

5.2 Document Server 

The docu~ment server module handles transactions involving access to sta,tic in- 

formation that is stored in files that reside on locally mounted filesystems. The in- 

formation is static in the sense tha,t, except for minor substitutions (e.g., server-side 

includes)? it does not need to be processed or personalized before it is transmitted over 

the network. These transactiolls are the PIJNCH equivalent of traditional document 

serving on the world-wide web. Of the 247,152 static information transactions (see 

Table .5.1)? 92,524 (37%) resulted in accesses t'o text (e.g., HTML, I'DF, postscript) 

filer;; t,he other 63% resulted in accesses to image (e.g., GIF, JPG) files. URLs a,sso- 

ciated with static information transactions are dynamica'lly mapped to files by way 

of a.n administmtor-specified URL map that allows the document server module to 

transla,t,e URLs that. match specified templates to corresponding paths to files. A 

sample lTRL map is shown in Figure 5.2; default values are enclosed within square 

brackets, and a,n asterisk indicates a wildcard. 



Table 5.1 
Summary of PUNCH user activity over t,went,y-eight months. 

~ Summary of PUNCH Access Statistics I 

1 process status I 168,548 I 12.910 I 

Distribution in Percent Type of Transaction 

Tool Interface 

Static Information 

1 Dvnamic Information I 66,252 I 5.017 I 

1 Number of Transactions 

777,795 

247,152 18.912 

Directory Service 

Account Creation 

Invalid 

36,186 

9,006 

1,753 

Total 

2.7'7 

0.69 -4 
1,306,692 100.00 ~ 



Fig. 5.1. Organization of the network-desktop compone~lt. 

Begin UrlMap 
/ /home/users/punch/www/[punch.html~l 
/Directory/ /home/users/punch/www/directory.html 
/Help/ * /home/users/punch/help/ [manual.htrnl] 
/Images/ /home/users/punch/images/ 
/People/ * / h o m e / u s e r s / p u n c h / i n f o / p e o p l e . h t m l l  

End Ur lMap 

Fig;. 5.2. A sample map for translating static informati011 TJRLs. Default values are 
enclosed within square brackets, and an asterisk indicates a wildcard. 
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Fig. 5.3. Apache and PUNCH server response times as a function o:F document size. 



'I'he following results characterize the response time of PUNCH for static infor- 

mation transactions. Figure 5.3 shows the average response times associated with 

PUIVCH and Apache [2, 161 for clocument serving, as a function of document size. 

The results were obtained with the client(s) running on a 167MHz Sun Ultra-2 and 

the serlrers running on a 300MHz Sun Ultra-4. The n~acllines were connected via a 

lO0lMb switched ethernet. Observe that,  for similar configurations1 (plots labelled 

PUNCH and Apache ( o p t i m i z a t i o n s  o f f )  in the figure), both servers scale eclually 

well, although Apache exhibits a better response time for smaller clocuments. The 

PUIVC'H server has a higher overhead because it runs in an interpreted environment. 

The plot labelled Apache ( o p t i m i z a t i o n s  on)  in the figure shows I-he performance 

of Apache when it is allowed to pre-fork multiple processes and run spare servers in 

anticipation of demand - note the improved response time characteristics. 

Once implemented, these optimizations can be expected to result in similar per- 

fornlance improvements in PUNCH. Figure 5.4 demonstrates the effects of preforking 

server processes in PUNCH - observe that the response time improves by a factor of 

two for small document sizes. In order to filter out the effects of the network, the 

response time characteristics shown in the figure were obtained with the client and 

the server running on the same machine (a  300MHz Ultra-4) and co~nmunicating via 

filehandles. 

Figure 5 .5  shows the average response times as a function of the number of si- 

mu1 taneous (but independent) requests. The results were obtained urit h the client (s) 

running on a 167MHz Sun Ultra,-2 and the servers running on a 300MHz Sun Cltra- 

4. ,The experiment's were repeated using different document sizes (two of which are 

s l ~ o ~ ~ v n  in the figure) to a,cconnt for artifacts due to network traffic. For the range 

shown in t,he plots, t,he PUNCH server scales somewhat better than a similarly con- 

figured Apache server, but the results (plot labelled Apache ( o p t i m j - z a t i o n s  on)  in 

the figure) clearly show t,he performance benefits of the optin~izat~ions implemented 

'TI12 following changes were made to the default parameters provided in the Apache distribution 
(Veision 1.3.3) : MinSpareServers= 1. MaxSpareServers=l, StartServers= 1, ant1 MaxRequestsPer- 
Child=2. Apache's performance optin~izations are largely disabled with this configurat.ion. 
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in Apache. 

5 .3  Directory Services 

The directory sei-vjces module handles requests for complete or partial (cross- 

referenced) listings of tools available to users. These transactions typically access 

information that is distributed across nlultiple PUNCH databases. In order to mini- 

mize the latency visible to users, a full listing is generated once for ea,ch class of users 

and then cached. ('rossreferenced listings are dynamically generated from the cached 

(full) listings. In practice, requests for full listings dominate requests for crossrefer- 

enct3d listings - of the 36,186 directory service transactions in Table 5.1, about 10,487 

(29%) involved requests for crossreferenced listings. When a cachecl listing is avail- 

able, the response time characteristics for directory service transact,ions are similar 

to those for document serving. 

5.4 HTML Generation 

'The network desktop interface provides support for embedding tiariables and ob- 

jects within st,andard HTML; documents (HTRIL pages) that conta.in these variables 

and/or objects are called HTML templates. The HTAJL generation module behaves 

as a filt,er for HTML templates - it dynanlically repla.ces the tokens representing these 

variables and objects with their current values a.s the template is being sent to a client 

(browser). 

Va.riables include standard types provided by high-level languages - integers, float- 

ing point numbers, a,nd strings. Objects include HTML-specific constructs such as 

check-boxes: menus, and radio-boxes. HTML templates are made up of two parts: 1) 

variable and object declarations, and 2) HTML code. The va.riables and objects serve 

the same purpose as corresponding constructs in high-level languages - they a.llow 

the compiler and the run-time system to track, interpret, and manipulate informa- 

tion (flow control is handled by the programmable state machine; see Section 5.9). 

The functionality provided by the HTML generation module is lsest explained by 

wa,y of an example. Consider a situation in which users need to "wi5lkn through the 



Begin PageTemplate 
Begin Declarations 
menu myFiles = l:<UserFiles>; 
bind myFiles = <WorkingFolder>; 

End Declarations 

Begin HTML 
<FORM> 
Select a file (or folder to open): <myFiles> <P> 
<CENTER><INPUT TYPE="submitW VALUE="Proceed":.</CENTER> 

<FORM> 
End HTML 

End PageTemplate 

Fig. 5.6. An example HTML template. 



files and directories in their (PUNCH) accounts via a browser. Figure 5.6 shows a 

simple HTML template that can be used to accomplish this task. The left hand side 

of the first declaration statement specifies an object of type menu called myFiles. 

The right hand side specifies the size of the menu (one) and initializes its contents via 

a directory handle ( ~ s e r ~ i l e s )  exported by the desktop infrastructure. The second 

declaration statement binds the contents of the menu object to the current directory 

of the user for whom the transaction is being processed. Once a variable or an object 

has been declared, it can be referenced by name in the HTML part of the template, as 

sholvn in the figure. The name will he dynamically replaced with appropriate "static" 

1lT:ML code and data when the template is accessed via an appropriate TJRL. For 

example, the reference to myFiles in Figure 5.6 will be replaced with the HTML 

specification for a menu whose contents are the list of files in the current directory of 

the user who initiated the transaction that references the template. 

'I'he syntax associated with the template shown in Figure 5.6 was specifically 

designed to supplement standard HTML without requiring any changes to the lan- 

guage. Unfortunately, this syntax does not lend itself to efficient run-time parsing of 

the template. This problem is addressed by using a compiler to translate the template 

into a format that is more conducive to efficient run-time substitu1,ion of variables 

and objects. The compiled version of the template is shown in Figure 5.7. The first 

line coritains the size of the compiled template file in bytes; this is used to eliminate 

race conditions that arise when the file is accessed while it is in the process of being 

(as] nchronously) loaded into the disk cache for the desktop. The second line contains 

information that is used for version control. The database "record" starts at the third 

line. As noted in Section 4.4.1, this line contains the access code for the record. The 

next four lines list the names and access codes of the four sub-records that make up 

this record (byte offsets for sub-records begin after the end of the record healder). 

The next two lines contain the (sub)record separator and the access code for the first 

sub-record ( ~ a r s p e c ] .  respectively (the "5" represents the number of lines in the sub- 

record). The VarSpec record tells the HTML generation module how to locate and 



543 
v2.0 
70 
VarSpec : 1 
PageTemplate:117 
BindSpec : 290 
VariableNames:397 

1 5  
2 5 8 
B B M  

- formTarget SformTarget 
- hiddenTags @hiddenTags 
- myFiles 1 0 0 - /$dirName/Input/$cUrl 
End VarSpec 

Select a file (or folder to open): 
- myFiles 
<P> 
<CENTER><INPUT TYPE="submitU VALUE="Proceed"></CENTER> 
</FORM> 
End PageTemplate 

Fig. 5.7. The compiled version of the HTML templabe. 



interpret the variables and objects in the PageTemplate sub-record. The location 

information is contained in the first line within the sub-record: the numbers (2 5 

8, i l l  the figure) refer to the line numbers in the PageTemplate reclord that require 

sub:;titution. The rest of the record contains information that suppli,es the semantics 

for the substitution process. 

Observe that each variahle/object is stored by itself on a sepa,rate line in the 

PageTemplat e record. This organization allows for very efficient variable/object sub- 

stitution. When a template is accessed, the HTML generation module first loads the 

VarSpec record. Then, it jumps to the PageTemplate record and starts sending its 

contents over the network connection. When it reaches a line nrhose number matches 

the ones listed in the VarSpec record, it sends (generates) t,he contents of the appro- 

pria,te variable (object) instead of sending the tag on the line. Experi-ments show that 

the overhead of variable and object substitution using this procedurl~ is negligible in 

corrlparison to the document serving times reported earlier. 

5.5 Programmable Parser 

'The programmable parser. module provides the deskt,op infrastructure with a means 

to estract information that is embedded in strings (e.g., a specific flag in the set of 

co~rlmand-line arguments to a tool) or files. The extracted information is subsequently 

useti by the the programmable state machine module described in Section 5.9 to  

rllotlify the behavior of the infrastructure according to  specified criteria. This allows 

the desktop infrastructure to react to input provided by users and/or clutput generated 

by 1,ools. 

'The current implementation parses its input using grammar specified via regular 

expressions that are supplied by tool installers. This approach is limited to parsing 

context-free grammars, but it has been found to be adequate in most cases. This is 

a consequence of two factors: 1) the structure of the input to most programs tends 

to be relatively simple. and 2) the kind of infornlatio~l needed bj. the computing 

infrastructure (e.g., the names of files referenced withi11 a given input file) does not 



generally require the parser to understand the complete grammar for the underlying 

input. 

'The functionality provided by the programmable parser is best explained by way 

of an example. Figure .5.8 shows the grammar and the parsing rules supplied to the 

parser for T-Suprem3, a commercial package (from Technology Modeling Associates, 

Inc.) that simulates the processing steps used in the manufacture of silicon inte- 

grated circuits and discrete devices. A ba,sic feel for the type of input being parsed 

can be obtained from the sample T-Suprem3 input file shown in Figure 5.9. The 

programmable parser uses Perl's regular expression engine for string matching; the 

state machine associated with the regular expression engine and thle syntax for the 

regular expressions are described in the Per15 documentation and in [18, 3 11. The 

following explanation assumes a basic familiarity with Per15 regular expressions. 

'The first two statements in the AnalysisGrammar section in Figure 5.8 are special 

cases - they provide the programma,ble parser with the grammar needed to pa,rse 

files tha,t contain comments aad have statements that span multiple lines. The first 

staterneilt specifies that,  for T-Suprem3, lines that begin with a string that matches 

either CUMMENT, comment, or $ should be treated as a cornment line (the '-' anchors 

the regula,r expression to the beginning of a line). A sta,tement that specifies the 

comment-line grammar can optionally contain a second regular expression - in which 

case the commerits are assumed to be enclosed within strings that match the first 

and second regular expressions, respectively. This format would be required to parse 

a, file containing 'C'-like comments, for example. The second statement specifies that 

a given line in a T-Suprem3 file is to be trea,ted as a continuation of t,he preceding 

line if the first character in the line is a plus sign (the ' \s*'  matches zero or more 

occurrences of spaces). For input files whose statements a.re not delimited by a newline 

cha-racter, an arbitrary regular expression for a st'atelnent delimiter can be specified 

via the S t  atementDelimiter keyword. 

The remaining statements in the AnalysisGrammar section are treated as normal 

declaration statements. The left hand side of the statement can be any valid variable 



Beg in AnalysisGrarnrnar 
ComrnentLine-Grammar = ' A ( (COMMENT) (comment) 1 ( \ $ )  ) ' ; 
ContinuationLine-Grammar = '"\+\s*'; 
# The following regular expressions are used to determine t.he names 
# of data files referenced within other input files. 
RegExpl = "'\s*init\S*\s+((in\.file) I(structur))\s*=\s*([O-9a-zA-Z.-I+)'; 
RegExp2 = '^\s*loadf ile\s+ ( (in\. file) I (file) ) \s*=\s* ( [O-9a- zA-Z .-I + )  ; 
RegExp3 = '"\s*mask\s+in\.file\s*=\s*([O-9a-zA-Z.-]+Ir; 
RegExp4 = "'\s*profile\s+ ( (in\. file) I (file) ) \s*=\s* ( [O-9a->:A-Z .-I +)  ' ; 
RegExp5 = "'\s*plot\s+ ( (in\. f ile) I (data) ) \s*=\s* ( [O-9a-zA-5; .-] + )  ; 
RegExp6 = "'\s*extract\s+ ( (in\. file) I (profile) ) \s*=\s* ( [0-Sja-zA-Z.-] + )  I ; 

RegExp7 = "'\s*call\s+file\s*=\s*([O-~]~-ZA-Z.-]+)~; 
RegExp8 = "'\s*assign\s+in\.file\s*=\s*([O-9a-zA-Z.-]+)I; 

End AnalysisGrammar 

Beg in AnalysisRules 
~ e f l  = file:<input~ile> RegExpl, RegExp2, RegExp3, RegExp4, 

RegExp5, RegExpG, RegExp7, RegExp8; 
Ref2 = file:<*:~egExp7:1> RegExpl, RegExp2, RegExp3, RegExp4, 

RegExp5, RegExp6, RegExp7, RegExp8; 
End AnalysisRules 

Fig. 5.8. Sa.mple grammar and parsing rules for the programma-ble parser. 

TITLE TMA SUPREM-3 - Example 1 
i- MOS gate region simulation. 

COMMENT Start with the result of an earlier simulation 
IINITIALIZE IN.FILE=S3EXlS 

COMMENT Perform the process steps for the source 
i- and drain regions. 
CALL FILE=s3calll.inp 

COMMENT Plot the net chemical impurity distribution. 
PLOT CHEMICAL NET RIGHT=1.5 device=postscript: 
-. TITLE="Exarnple 1 - Gate" plot.out=s3exlg.ps 

LABEL LABEL="Chemical Net" START.LE LX.F=.9 X=1.1 Y=le20 

COMMENT Save the final gate region structure. 
SAVEF ILE STRUCTURE OUT.FILE=S3EXlGS 

Fig. 5.9. Example T-Suprem3 input file. 



name (using the 'C" naming semantics). and the right hand side can contain arbitrary 

Per15 regular expressions. As an example, the regular expression associated with 

RegExpl will match a statement that begins with a keyword whose initial part contains 

the string l n l t  ( the '\s*' matches zero or more occurrences of non-space characters) 

and is followed by either of the strings 1 n . f  l l e  or s t r u c t u r ,  an ecjuality sign, and 

a string that is made up of one or more occurrences of alpllailunieric characters, 

underscores, and/or periods. Thus, regular expression associated with RegExp I will 

match the third statement in Figure 5.9. Similarly, the regular espression associated 

with RegExp7 will match the fifth statement in Figure 5.9. 

'The Analys i sRu les  sectmion in Figure 5.8 tells the programmab1,e parser how to 

apply the regular expressions that were defined in the AnalysisCirammar section. 

Again, the left hand side can contain any valid 'C'-language variable name. The  first 

token in the right hand side specifies the target file or string to  be parsed via a PUNCH 

variable that has been previously declared in a template file (e.g., the <myFiles> 

object defined in the preceding section) or a metaprogram (see Section 5.9). The  

remaining tokens on the right hand side are the (names of) regular mexpressions that 

are to  be applied to  the file or string specified in the first token. 

'The results of regular expression matches can be referenced in templates and 

metaprograms via special variables. These variables are created and initialized at run 

time as and when they are referenced, using dataflow semantics. Special variables 

are named in terms of the names of the correspo~ldi~lg rules and regular expressions, 

and the index of the required match within the regular expression. The  index of a 

match within a regular espression is defined in terms of Per1 backreference variables 

- thus, any match that is referenced via a special variable must be enclosed within 

parentheses in the regular expression. The value of the index associated with a given 

pair of parentheses within a regular expression is determined by counting the number 

of opening parentheses from the beginning of the expression up to (and including) the 

pail in consideration. Thus, for RegExpl (see Figure 5.S), the indices for the matches 

corresponding to the patterns i n .  f i l e ,  s t r u c t u r e ,  and [0-9a-ZA-Z. -]+ are two, 



three, and four, respectively. The associated variahle names are <Ref I : RegExpl : 2>, 

<Ref I : RegExpl : 3>, and <Ref I : RegExpl:4> (for rule Ref I). If a particular regular 

expi-ession matches more than one statement in a given file or string, the results 

are stored in the appropriate variable(s) as a space delimited list. The number of 

statements in a file or string that were matched by a particular regular expression 

can be determined by omitting the index field in the corresponding special variable 

(e.g., <Ref I : ~egExpl>). 

'I?-Supre1n3 input files can reference other input files via a call keyword (see fifth 

statement in Figure .5.9). The referenced input files, in turn, can reference other input 

files. This recursive behavior is captured by the second rule in the AnalysisRules 

section in Figure 5.8. Observe that the first field in the special variable that specifies 

the target file for the rule contains a wildcard character. The wildcard specifies that 

the corresponding rule should be applied to all files matched via RegExp7. Thus, if 

t,he file specified by <inputFile> in Ref I contains a call statement that references 

another file. the second rule will be applied to the referenced file. I f  the referenced 

file contains another call statement, the second rule will subsequeni,ly be applied to 

the called file. This process will cont,inue until the second rule has been applied to 

all files matched via RegExp7. 

5.6  File, Process, and Account Management 

'The filesystem. proxy, command-shell proxy, and the account rnana.ge~nent modules 

sup-plement the file, process, and account ma.nagement ~llechanisms provided by the 

local operating systems running on individual machines. File management is left 

entirely up to the local operating systerns, except that all requests tha,t manipulate 

file:, a,re rout.ed via filesystem proxies. File~yst~em proxies allow the logical filenames 

use,-1 within the distributed computing environment to  be dynamically ma,pped to 

real pathnames within physical filesystems. 

Similarly, system commands are routed via shell proxies, which rnap logical com- 

mailds to  real ones. Process management is accomplished by maintaining extended 



process tables that complement the ones povided by the local opera,tii~g syst,ems. The 

extended process ta.bles contain information such as the process identifier within the 

distributed computing environment, the machine(s) on which the process is running 

and the corresponding native process identifier(s), the current status of the process 

(e.g., queued, running, being terminated, etc.), the specific execution prot,ocol (e.g., 

PVM, VNC, X-RX, etc.) associated with the process, the expected execution time, 

a,nd local directory information. In the interest of efficiency, these tables are only 

upda,ted periodically. -Also: a separa.t.e table is maintained for each user tha,t has an 

active process. This allows process status queries t'o he handled very efficiently (the 

scalability cha,racterist,ics are almost ident,ical to the ones shown for document serv- 

ing). Modifications to the process status (e.g., a request to abort a process) involve 

significantly higher overhead, however, because the desktop component is required 

to contact remote machines and wait for acknowledgement. Most of the observed 

pro(-ess status transa,ctions involve status queries. 

.4ccount. management in a distributed conlputing environment is complicated by 

the fact that,  in general, it is impract'ical to create physical accounts for individual 

users on all the resources available to the system. This problem is a, consequence of 

three fact,ors: the size of the system (in terllls of the number of users: and resources), 

the dynamic nature of the system (users and resources can be addled a,nd removed 

at will), and t'he varying administrative policies (available resources typically span 

multiple institutions). The basic problem is addressed by clyna,micall:y crea,ting logical 

user accounts within a single physical account on the underlying operatsing system. 

The filesystem proxies and shell proxies ensure that users can only access and modify 

their own data - the associated mapping processes are implicitly keyed to the user who 

init,iates the request. Security concerns with respect to tools that allow users to make 

direct system-level calls a,re a,ddressed by way of .&adow acco.unts. Shadow accounts 

consist of a pool of physical accounts that are dynamically assignled to individual 

users when they at t e ~ n p t  to execute "unsafe" con~mands, allowing such commands to 

be executed safely within sepa,rate physical accounts. The accounts ;are subsequently 



reclaimed by the system. Shadow accounts are managed in a secure manner without 

requiring superuser privileges by leveraging protoc,ols that can establish one-way trust 

(e.g., secure shell [30]). Access management wit,h smaller granularity can be achieved 

via software fault isolation techniques (e.g., [19]). 

5.7 Cache Management 

'The cache manngemei-rt module is designed to work as an independent process (or 

thread) that periodically clears a c h e d  templates and database entries. The cache is 

managed on a local disk (e.g., in /tmp). This module does not affect -the performance 

of the run-t,ime system during normal operation, except to the extent that the cont,ents 

of the cache need to be reloaded after they have been flushed. 

5.8 Error Management 

The error manage rnent module handles error logging, management, and recov- 

ery operations. Control is passed to this module when an abnormal condition or an 

internal error is detected. When this happens, the module first lolgs critical state 

information and a stack trace. ( A  synopsis of this information is mailed to  specified 

system administrators periodically.) Then, if necessary, the error management mod- 

ule undoes the side effects of the partially processed transaction. (The information 

required to  do t,his is dynamically generated by PUNCH modules in the course of 

processing a transaction.) Finally, the module initiates an appropriate, configurable 

error recovery procedure, and, depending on the results, instructs the calling module 

to retry or abort its procedure. This module does not affect the performance of the 

system during normal operation. 

5.9 Programmable State Machine 

The programnlnble state machine module has three functional unit,s: a metapro- 

gram interpreter, a virtual machine, and a persistence engine. A mletaprogram is a 

program whose instructio~ls are themselves programs. In this environment, metapro- 

grains are used to define the behavior of the programmable state machine, and are 



Table 5.2 
List of instructions supported by the meta,programming language, in addition to 

standa,rd flow control. (i.e., conditionals and loops) instruct ions. 

1 cache onlcff 1 Enableldisable the cachina of templates for this metaproaram. I 
L 
1 chtiir <airectorv> 1 Chanae directorv - this instruction updates internal :state information. I 

Instruction 

cleardi r of the specified directory. 

di:rof I- <file> Get the name of the directory in which the specified file resides. 

Description 

I dl:;play <html template> 1 Generate HTML code using specified template; stop metaprograrn. 1 

I 

<metaprogram> 

I Determines the lenath of the strina in bvtes. 

Terminate rnetaprograrn - execution cannot be 

ext?cu t e <met aprogram> I <tool> 

<filename> 

<variable> 

isdir <variable> 

1 13asta~us <status file> I Loa current status; used for error notification and recovery. 1 

I 

Evaluates to one if variable contains a valid directow. zero otherw~se. 

1 ma:<of <list> / Determines the largest value within a space delirnit,ed list. I 1 
1 millof <list> I Determines the smallest value within a space delimited list. I 
k : r l e v e  <name>, [<var 1 ist> I Retrieve saved values of specified variables. 

I I 
1 rezrievestate <narr.e> 
t- 

I Restore the state of the metaprogram from a previously saved image. 
1 

L~P Stop the execution of the rnetaprograrn - execution may be resumed. 

<name>, <var 1 ist, 

<name> 

<variable> = <value:. 

Save specified variables to persistent storage. 

Save an image of the current state of the 

Assign a value to the specified variable. 

I writeln <var list> I Writes values of the variables in the list to the current output. 1 
<list> Determines the numerical sum of the values in a space delimited list. 



written in a specially designed 'C'-like language. In addition to the sta,ndard flow 

conlrol constructs (conditionals and loops) available in high-level languages, this 1a.n- 

guage provides instructions to: 1) customize and manipulate informa.tion for different 

types of users, 2) manage files and directories, 3) customize and serve documents and 

templates in response to user requests, 4) save and retrieve state infclrmation, a,nd 5 )  

start and stop child metaprograms and processes on local or remote machines. These 

instructions are summa.rized in Table 5.2. As the name suggests, the metaprogram 

int'erpreter parses and executes the metaprograms. The virtual machine manages t , l~e  

run--time environment for the metaprogram interpreter. It execute:; the lower-level 

code tha,t makes up the instructions in t'he meta,programs, enforces access control at 

the instruction level, and maintains low-level data structures (e.g., the stack) and 

state information (e.g., the program counter) associa.ted with the underlying com- 

pute engine. Finally, the persistence engine maintains state informakion that allows 

inetaprograms to be start,ed and stopped as a,nd when necessary. 

'The programmable state machine can be used to generated a cu:;tomized HTML 

interface for each tool. The input to this state-machine consists of: 1) a list of 

avajla.ble states, and 2) a description of the transitions between these states (flow 

con1:rol). States a,re specified in terms of HTML templates. Flow control information 

is specified via metaprograms. The state machine executes meta,programs in response 

to a,n att,empt to a,ccess corresponding URLs. It keeps traclc of the values of variables 

and objects for interfaces that span multiple HTML pages b? storing them in hidden 

form fields and/or encoding them within URLs. Moreover, tlie state-machine can 

react to any run-specific information (e.g., values embedded within user-supplied 

strings, data within files, etc.) that can be extracted by the progra,mmable parser 

described earlier. This allows the desktop interface to support programs tha,t accept 

input in an interactive n~a~nner.' 

The roles of the three functional units described above are best explained by 

'Progra.ms with graphical user interfaces are mana.ged via browser-compatible remote-disp1a.y pro- 
tocols such as VNC [26]. 



string myFiles = : / ' ;  
retrievestate 'directory'; 
display 'Pagel'; 
while(isdir(<myFiles>)) 
{ 
chdir (<myFiles>) ; 
display 'Pagel'; 

1 
savestate 'directory'; 

Fig. 5.10. An example metaprogram. 



using a,n example. Figure 5.10 shows a sample metaprogram that could be used 

in conjunction with the HTML t'emplate described in Section 5.4 to allow users to 

"walk" through their files and directories. The execution of t,he metaprogram is 

triggered when a user accesses an appropriate URL, and proceeds as follows. The 

first instruct'ion shown in the figure is a declaration stat,ement that causes the value 

of the va,ria,ble myFiles to be initialized to the root directory (for this user). The 

second instruction shown in the figure causes the persistence engine to set the variables 

and objects in the metaprogra,m to t'he values sa,ved previously (for this particular 

user) via a 'savestate' instruction. This instruction does not affect the va,lues of 

variables a,nd objects for which no state inforination exists. The third instruction 

triggers several steps. The virtual machine: 1) instructs t,he persistence engine to 

save the internal state of the met,aprogram, 2) generates access code and program 

couilter information tha,t can be used to restart the metaprograin at the appropriate 

instruction (i.e., the one following the current 'displa,y' instruction), 3) uses the HTML 

generation module to send t,he template msociated with 'Pa,gel' (previously specified 

via a declaration statement) to t,he user who initiated the transaction, and 4) shuts 

t,he metaprogram down. At this point, the transaction that initia,ted the execution of 

the rlleta,program is considered to be complete. On the browser (client) side, it simply 

appears as if a standard HTML document was returned in response t,o an attempt to 

access a given URL. Subsequently, when the user selects an e n t q  from the contents of 

the menu and submits another request, the metaprogram is automatically resta'rted 

a,t the instruction that follows the previously executed 'display' instruction. This is 

accomplished as follows. The access code and pr0gra.m counter information generated 

by the virtual machine in response to a 'display' instruction is cached within hidden 

fields in the corresponding document and/or is encoded into the CTItLs that appear 

within that document. On the subsequent request, this information is ext,racted by 

the microkernel (see Figure 5.1 ) and present.ed t'o the metaprogram interpreter. The 

interpreter, in turn, rest,arts the niet'aprogram and instructs the persistence engine 

to restore its internal st,ate. At this point tbhe instruction that follows the 'display' 



instruction ca,n be executed without regard to the fact that the previous instructions 

were executed by a different process, possibly on a different machine. In this part,icular 

exa,i-rlple, the first instruction in t,he restarted meta,program is the test for the 'while' 

statement. If the menu entry selected by the user happens to be a directory, the 

proj;rammable state machine will change t'he current directory for the user and display 

the HTML template aga.in. The cont,ents of the menu will now represent the contents 

of the new current directory. Eventually, when the menu entry selected by the user 

is not a directory? the test for the loop will fail and the metaprogra11-1 interpreter will 

execute subsequent instructions. 

-[n the interest of run-time efficiency, metaprogra.ms are compiled prior to  execu- 

tion. The instruct'ions generated hy the compiler for t,he example rneta,program in 

Figure 5.10 are shown in Figure 5.11. Each instruction in the compiled metaprogram 

consists of multiple fields tha.t are separated by two colons, as shown in the figure. 

The number in the first field of any given instruction represents the byte offset of the 

following instruction. When a metaprogram is stopped after executing an instruction 

(e.g., d i s p l a y ) ,  this number represents the byte offset at which the metaprogram 

shoi~lcl be restxted. The number in the second fielcl identifies the relative position of 

the instruction in the meta,prograrn - it is used by the virtua.1 machiine t'o ma,inta.in a 

program counter. Observe that the informat,io~l conveyed by the first; and the second 

fielcls is redundant - this allows the virtual machine to maintain correct operation in 

the presence incorrect or missing access codes. The string in the third fielcl represents 

t,he name of the instruction; the set of valid strings is the instruction set supported 

by ];he virtual machine. The semantics of the remaining fields depend on the type 

of instruction. For example, in the case of the t e s t  instruction, the fourth and the 

fifth fields represent the byte offset and the relative position of the instruction to be 

esel;uted if the result of the test is true; the sixth and the seventh fields contain the 

address of the instruction to be executed if the test evaluates to either zero, false, 

or undefined using the evaluation serna,ntics of Perl5. The final field in the instruc- 

tion contains the expression that is to be evaluated for the test. This expression is 



Fig. 5.11. The compiled version of the example metaprogram. 



represented in the prefix notation, a.nd is execut,ed by way of a stack: machine. 

The ability to start and stop meta.programs at will has several advantages. For 

example, it allows the virtual desktop infrastructure to work within the framework 

of the stateless world-wide web prot,ocols. On the other hand, this ability makes 

it necessa.ry to specifically address information consistency issues. Given the time- 

distribut,ed nature of the execution process, it is possible that a metaprogram will 

he i~pdat~ed and recompiled by an administrator before it has been completely ese- 

cuted. In order to help detect the resulting information inconsistency, all compiled 

rnetaprograms conta,in a sequence number that represent's t'he time of modification 

of the source metaprogram file. This sequence number is encoded into the program 

cou:nter used to rest'art a metaprogram. During the stmartup procedure, the encoded 

sequence number is compa.red to the one contained in the compiled m~etaprogram and 

execution is aborted if t'he numhers do not match.3 

'The programmable stat'e machine handles a.11 transactions t,hat need to he in- 

t,erpreted within a specified context (i.e., involve flow control). This includes tool 

interface, dynamic information, and account creation transactions (see Table 5.1). 

In order to optimize the response time for common types of trar~sactions, a few 

metaprograms are integrated into the programmable state machine module. Such 

metaprograms can he executed more quickly because they do not incur any startup 

overhead. On the other hand, integrated ~net~aprograms cannot be updated without 

modifying the programn~a~ble state machine module. Consequently, this optimization 

is only useful for situations in which the metaprograms are not expected to change. 

The integrated metaprograms handle entry page, input management, and output 

management transa.ct'ions associated with tool interface generation (see Table 5 . 3 ) .  

They also handle dynamic information links for which customization is limited to 

simple variable substitution. Entry pages (see Figure 5.12) contain links to tool- 

specific information (e.g., manuals) and to the metaprograms a.ssocia.t'ed with input 

31n principle, one could lock and/or copy metaprograms being executed. However, this does not 
guarantee consistency because a. metaprogram ma.y reference other metaprograms that could also 
have been modified. 



Table 5.3 
Distribution of tool interface transactions. 

Distribution of Tool Interface Transactions 

I Input Management I 287,861 I 37.01 1 

Type of Transaction 

Entry Page 

I Run Manaaement I 1 78,677 I 22.97 1 

Number of Transactions 

35,139 

Total 

Distribution in Percent 

Output Management 276,118 



Fig. 5.12. The entry point to the PUNCH user interface for NIIIVIMOS 6.0. 



management ( s t e p  I in the figure), run management (Step  2 in the figure), and 

output management (Step 3 in the figure). Input management and output manage- 

ment trailsactions involve processing and manipulating input and output data files, 

respectively. Run management transactions allow users to select input and output 

files and directories, specify command-line arguments, and initiate runs. 

'I'he average response times of the PUNCH server for several common types of 

trar~sactions are shown in Table 5.4. In order to filter out the effects of the network, 

the response times shown in the table were obtained with the client and the server 

running on the same machine (a 300MHz Ultra-4) and communicating via filehandles. 

The responses generated by the PUNCH server for the specific transactions used to 

obtain the results shown in Table 5.4 ranged in size from about one to three kilobytes. 

Experiments (see Figure 5.4) show that,  for the described setup and the given range 

of data sizes, the differences in data transfer times are less than two milliseconds. 

(Lal-ge differences and/or variations in data transfer times would ad~ersely affect the 

reliability of the results.) 

Several conclusions can be drawn from the results in Table 5.4, the most obvious 

one being that there is a significant time penalty associated with forking a process 

in response to a (real-time) request. The response times associated with entry page, 

input management, and output management transactions are about 20% lower than 

the corresponding times for run management transactions. This improvement is the 

result of using integrated metaprograms that do not incur any startup overhead. The 

response times for static information transactions are included in the table because 

they serve as a benchmark for the other results. Static information transactions that 

access "public" documents involve no user-specific authentication or access control - 

a request of this type is simply mapped to a physical file which is then returned to the 

client. Static information transactions that access "private" clocumerlts are processed 

in a similar manner, except that they undergo the dynamic authentication and access 

con1,rol procedures described in Section 4.1. The results in the table show that these 

procedures add about five lnilliseconds to the time required to process a transaction. 



Table 5.4 
PITNCH server response times for different types of transactions. 

Response Time (milliseconds) 
Type of Transaction 

No Preforking With 

Entry Page 60 
m 
5 - Input Management 61 
c - --, Run Management 75 35 ' Output Management 61 27 

0 - = Publicly-Accessible URL 
0 

47 
.- 
Z Access Control Enforced 
cn 53 24 

I Process Status I 64 I 30 I 
I Dynamic Information I 58 1 29 I 



Fin;dly, the last two rows in the table show the response times as~ociat~ed with process 

status queries (with one active process) and dynamic information transactions (using 

an integrated metaprogram) - these are largely included in the table for completeness. 

5.10 Resource Negotiation 

'The resource negotiatzon module selects an appropriate managernent sub-system 

for transactions that require a tool to be invoked. The selection process is based on 

critc.ria that can be customized for specific sets of users and resource:,. In the current 

implementation, administrators specify a prioritized list of management sub-systems 

to contact for each class of users and resources; the resource negotiation module uses 

this list to forward tool-invocation requests to the first system that is willing to serve 

the request. Also, in order to distribute peak loads, the resource negotiation module 

dynamically lowers the priority associated with a given management sub-system as 

the number of pending requests associated with that system increase. Support for 

QoS negotiation is not yet available. 



6.1 Conclusions 

'The desktop infrastructure described in this report serves as the front end for 

PUIVCH. It currently provides access to over thirty tools developed by eight univer- 

sities and four vendors. The ideas and solutions presented in this report are based 

on ( and  validated by) our experiences in scaling PUNCH from a research project to 

a "live'' system that is regularly used by several hundred student$, each semester. 

Results from user-surveys indicate that the system perforrns well under the highly 

peatted usage patterns (very high usage in the hours before homeworks and projects 

are due) characteristic of an academic environment. 

'The PITNCH infrastructure has been successfully applied to  education, research, 

and technology-transfer. PUNCH serves as the underlying distributed computing in- 

frastructure for two collaborative efforts involving five universities: the integration 

of design tools into new undergraduate and graduate curricula, and the Distributed 

Center for Advanced Electronics Simulations (DEsCARTES). PUNCH is also the 

enabling infrastructure for a statewide Purdue University network-computing sys- 

tem currently being deployed. Over the years, we have found PUNCH to  be an 

extremely useful resource for students and collaborators, and a highly flexible testbed 

for network-computing research. 
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