View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-1-1999

THE NETWORK DESKTOP of THE PURDUE
UNIVERSITY NETWORK COMPUTING
HUBS

Nirav H. Kapadia
Purdue University School of Electrical and Computer Engineering

José A. B. Fortes
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Kapadia, Nirav H. and Fortes, José A. B., "THE NETWORK DESKTOP of THE PURDUE UNIVERSITY NETWORK
COMPUTING HUBS" (1999). ECE Technical Reports. Paper 34.
http://docs.lib.purdue.edu/ecetr/34

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/4947163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages

THE NETWORK DESKTOPOF THE

PURDUE UNIVERSITY NETWORK
COMPUTING HUBS

NIRAV H. KAPADIA
JOSE A. B. FORTES

TR-ECE 99-1
JANUARY 1999
0909 “s, SCHOOL OF ELECTRICAL
§% (=% ANDCOMPUTER ENGINEERING
YTN<4 PURDUE UNIVERSITY
f,’)

WEST LAFAYETTE, INDIANA 47907-1285

THE NETWORK DESKTOP

OF
THE PURDUE UNIVERSITY NETWORK COMPUTING HUBS

Nirav H. Kapadia

José A. B. Fortes

School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University

West Lafayette, IN 47907-1285

This work was partially funded by the National Science Foundation under grants MIPS-9500673,
CDA-9617372, EEC-9700762, ECS-9809520, and EIA-9872516, and by a Purdue University academic
reinvestment grant.

- i -

Table of Contents

Page

Listof Tables v
LiSt OF FIQUIES « « « « « o v e e e e e e e e e e e e e e vii
ADSLIAC -« « v o v e ix
1 Introduction e e e e 1
1.1 IntroduCtion . - « v v v o e 1

2 The Purdue University Network Computing Hubs 3
2.1 Introduction - - - -« .« o e e e e e e e e e e e e 3
2.2 The PUNCH Infrastructure 4
23 SUMMAIY « ¢ v v v e e et e e e e 6

3 The Network Desktop Architecture T
31 Run-TimeSystem . « « « « v v v v i i i e 7

3.2 Tool Specification 7
3.3 SUMMArY -« v oo e 11

4 Access MANAGEMENE - « « « v o v o o e 13
4.1 Introduction - - - « . v . oo e e e e e e e e e e e 13
4.2 System-Interface Management Module 13
4.3 Authentication/Encryption Module 16
4.4 Access Control Module - « « « « v e e e 20
441 Access-Code Management 21

4.4.2 Address-Space Translation 26

443 View Customization « « « v v v v e e e 26

5 The Network Desktop - « « « « « v v v v o oo oo 27
5.1 IntroductiOn « « « & ¢« vt e e e e e e 27
5.2 Document. SErVEr . . . v v v i i e 27

i\]

5.3 Directory Services A
54 HTML Generation . . « « « v v v v v i e e e e e e e e e e e e e e e A
55 Programmable Parser - - - - - . .. 38
5.6 File, Process, and Account Management 42
57 CacheManagement it 44
58 Error Management 44
59 Programmable State Machine 44
5.10 Resource Negotiation . - . . -« . . o o o 56
6 Conclusions 57
6.1 CoONClUSIONS . -« + « v v e e e e e e e e e e e e e e e 57
Lists of REfErenCeS. v v v e e e e e e e e e e e e e e e e e e e 59

List of Tables

Tahle Page
4.1 Observed access code proliferation. 24
5.1 Summary of PUNCH user activity over twenty-eight months. 28

5.2 List of instructions supported by the metaprogramming language, in
addition to standard flow control (i.e., conditionals and loops) instruc-

tioNs. e e e e e 45
5.3 Distribution of tool interface transactions. 52
5.4 PUNCH server response timesfor different types of transactions. . . . 55

Figure
21
3.1
3.2
33
34
4.1
4.2
4.3
4.4

45

4.6
4.7
5.1
5.2

5.3

5.4
5.5

5.6
5.7

- vil -

List of Figures

The PUNCH infrastructure.
A simplified functional view of the network desktop infrastructure.
Tool specification. The shaded items are required by all tools.
Skeletal structure of the tool specification file.
Software architecture of the run-time system in the network desktop.
Functional overview of the access management component.
Organization of the access management component.
Effects of using a hash function on authentication time.

Distribution of user accounts achieved by the hash function for: a) eight.
b) sixteen. and c) thirty-two buckets.

Schemat.ic of the lookup mechanism used by the PUNCH database

Effects of using access codes on authenticationtime.
Effects of access codes on information retrieval latency.
Organization of the network-desktop component.

A sample map for translating static information URLs. Default val-
ues are enclosed within square brackets, and an asterisk indicates a
wildcard.

Apache and PUNCH server response times as a function of document
SIZE. e

PUNCH server response time as a function of document size.

Server response time as a function of the number of simultaneous re-

Page

19

24
25
29

29

32

33

- Viil -

5.8 Sample grammar and parsing rules for the programmable parser.
59 Example T-Suprem3 input file.
510 An example metaprogram. e e
5.11 The compiled version o the example metaprogram.
5.12 The entry point to the PUNCH user interface for MINIMOS 6.0.

40
40
47
50
53

_ix -

Abstract

A computing system that is universally accessible and is able to harness networked
resources as and when necessary can be said to provide computing on demand. This
report describes and evaluates the design of a network desktop infrastructure that
provides access to distributed operating system services via standard world-wide web
Isrowsers. Unmodified browsers can be used to access and use the desktop because
it appears as a normal web server to them; the semantics associated with comput-
ing services are supported by treating URLs as locations in a dynamic, virtual, and
side-effect based address space. The desktop interface isnot hard-wired to the charac-
teristics of any specific tool; the use of a programmable state machine in conjunction
with a mechanism that embeds variables and objects within standard HTML allow
the desktop to dynamically generate interfaces for tools and to emulate interactiv-
ity. Finally, users do not need physical accounts on the resources utilized by the
desktop infrastructure; logical user accounts are created and managed with the help
of filesystem and cache proxies, and the use of shadow accounts and software fault
isolation techniques. The described infrastructure serves as thefront end for the Pur-
due University Network Computing Hubs (PUNCH), a widely used demand-based
network-computing system that allows users to access and run unmodified software

tools via world-wide web browsers.

1. Introduction

1.1 Introduction

This report describes and evaluates the software architecture of the network desk-
top infrastructure for PUNCH. The desktop infrastructure serves two primary func-
tions: 1) it provides users with distributed operating system services (e.g., file and
process management) that can be accessed and used via standard world-wide web
browsers, and 2) it user-transparently interfacesto a distributed computing system
(SCION) capable of scheduling and executing software applications across wide-area
networks on demand. The network desktop can be viewed as a user’s window to
web-based wide-area computing.

The network desktop infrastructure is unique in several ways, as described below.
The desktop appears as a normal web server to browsers - the semantics associated
wita computing services are supported by treating URLs as locations in a dynamic,
virtual?and side-effect based address space. Most tools can be made usable via the
infrastructure with very little effort. The tools do not need to be modified, and access
to source and/or object code is not required. For tools with text-based user-interfaces,
the desktop utilizes administrat'or-supplied specification files to dynamically gener-
ate tool interfaces and to emulate interactivity. This is achieved by way of a pro-
grammable state machine that works in conjunction with a mechanism that embeds
variables and objects within standard HTML. Tools with graphical user-interfaces are
supported by leveraging display management technologies such as Broadway [8, 9, 10]
and VNC [26]. Finally, the desktop creates and manages its own (logical) user ac-
counts. As a result, users do not need physical account'son the resources utilized
by the desktop infrastructure. The logical user accounts are managed with the help

of filesystem and cache proxies, and the use of shadow accounts and software fault

-9

1solation techniques, as discussed in Section 5.6.

The work on the desktop infrastructure was motivated by the fact that many o
the systems and technologies that currently allow computing on the web target a
single or a relatively small set of tools and/or work within controlled environments
in which many of the issues that arise in production environments can be ignored.
Solutions that target individual tools tend to be non-reusable in spite of the fact that
they involve a significant amount of duplicated effort.’ For example, a large number
of systems (e.g., the Exploratorium [1], JSPICE [29], and others) are based on scripts
that need to be modified in order to add any new application to the system. Other
designs are more flexible. The MOL prototype [25], for example, employs static web
interfaces that can be adapted for individual tools. The NetSolve [11], Ninf [27, 28],
and RCS [3,4] systems are based on structured designs that target numerical software
libraries. However, static interfaces are not adequate for all tools, and structured ap-
proaches cannot be easily applied to general-purpose applications. Another problem
is that the majority of these designs assume the availability of the source and/or
object code for the applications — which effectively precludes the installation of most
commercial tools. Solutions that address individual issues are generally reusable, but
the tasks of adapting them for a production environment and integrating them into a
complete computing infrastructure are non-trivial. For example, VNC [26] and Win-
Frame [12, 13] provide very flexible mechanisms for exporting graphical displays to
remote consoles in a platform-independent manner — but, by themselves, the tech-
nologies do not help address other issues (e.g., access control and management) that
arise in a wide-area distributed computing environment'.

Thereport isorganized asfollows. Chapter 2 provides a brief overview of PUNCH.
Chapter 3 introduces the different components that make up the network desktop
infrastructure. Chapters 4 and 5 describe and evaluate the individual components.

Finally, Chapter 6 presents the conclusions of this work.

IReusability, in this context, implies an ability to reuse the computing system with other applications
without making any modifications to the system itself.

2. The Purdue University Network Computing Hubs

2.1 Introduction

PUNCH, the Purdue University Network Computing Hubs, is a demand-based
network-computing system that allows users to access and run unmodified software
tools via standard world-wide web browsers. Tools do not have to be written in
any particular language, and access to source-code is not required. The PUNCH
infrastructure is geographically distributed, hut this is transparent to users, who can
run tools wherever they reside.

PUNCH can be logically divided into multiple discipline-specific "hubs". Cur-
rently, there are four hubs that contain tools for semiconductor technology, VLS| de-
sign, computer architecture, and parallel processing. These hubs contain over thirty
tools from eight universities and four vendors, and serve more than 500 users from
Purdue, across the US, and in Europe. PUNCH serves as the underlying distributed
computing infrastructure for several collaborative efforts funded by the National Sci-
ence Foundation: two projects involving five universities on the integration of design
tools into new undergraduate and graduate curricula, and the Distributed Center for
Advanced Electronics Simulations (DESCARTES). PUNCH is aso the enabling in-
frastructure for a state-wide Purdue University network-computing system currently
being deployed. Student's throughout Indiana will use this system to run tools on
machines located at all Purdue campuses. The current system schedules most runs
among approximately ten shared compute-servers distributed across Purdue Univer-
sity, the University of Illinoisat Urbana-Champaign, the University of Maryland, and
the University of Texas at Austin. During the past three years, PUNCH users have
logged more than one million hits and have performed over seventy- thousand simu-

lations. PUNCH can be accessed at “http://www.ecn.purdue.edu/labs/punch/”;

courtesy accounts are available.

2.2 The PUNCH Infrastructure

PUNCH [21, 22] is made up of two parts: the front-end (network desktop) and
SCION (see Figure 2.1). The front-end serves two primary functions: |) it provides
users with operating system services that can be accessed and used via standard
world-wide web browsers, and 2) it user-transparently interfaces to one or more dis-
tributed computing systems that are capable of scheduling and executing software
applications across wide-area networks on demand. SCION serves as PUNCH’s user-
transparent middleware. It consists of a collection of hierarchically distributed servers
that cooperate to provide the following services: 1) user-transparent managernent of
the run-time environment. 2) independent control over resource access and visibility
pol cies at each management unit node, and 3) cost ancl performance driven schedul-
ing of available resources. Asimplied earlier, hardware resources managed by SCION
can include different types of platforms, and software resources can consist of arbi-
trary tools." Resources can be located at any network-accessible site. and can be
dyramically added or removed from the infrastructure.

From a user's perspective, PUNCH is a WWW-accessible collection of simulation
tools and related information. It allows geographically dispersed tools to be indexed
and cross-referenced, and makes them available to users world-wide. The infrastruc-
ture hides all details associated with the remote invocation of tools from its users.
Functionally. PUNCH allows users to: 1) upload and manipulate input files, 2) run
programs, and 3) view and download output - all via standard WWW browsers. It
provides a context-sensitive help facility that assists users in the use of the tools and
theinfrastructure itself. Accessto information and resources via PUNCH can be per-
sonalized and/or restricted according to user-specific needs and access-rights. Finally,
the use of machine learning techniques allows PUNCH to predict run-times for tools.

This information is primarily used for on-demand resource management (e.g., longer

'Tools with graphical user interfaces are supported with the help of display management technologies
such as VNC [26].

The Purdue University Network-Computing Hubs (PUNCH)

The

The The
Computer }_ ParaIIeI- VLSI
A Architecture £\ Programming Design

Hub

Hub Hub

Front End

SCION

» Tool (Application) Compute-Server
Parallel Machine Tool (Application) j - JE[Parallel Machine
| B B
[] E 3 a

L] L]
Workstation Cluster Tool (Application) ; Workstation Cluster

Physical Location ‘1’ Phys:]E

Tool (Application)

Tool (Application) ‘IJ

‘, Tool (Application) lr"l

|

Fig. 2.1. The PTINCH infrastructure.]

-6 -

runs are routed to faster machines). A detailed description of PUNCH is available in
[20, 23, 21, 22].

Running a typical simulation on PUNCH is a three-step process. The first step
involves the creation of the input file(s) required for the relevant simulation. In the
second step, users define the input parameters (e.g., command-line arguments, etc.)
for the program and start the simulation. Finally, after the simulation is complete,
users can see, postprocess, and download the results via the web-based front-end.
PUNCH runs programs in a "background" mode by default. This means that the

user's browser window isfreed up as soon as the run has been successfully initiated.

2.3 Summary

PTJINCH is the result of a concerted effort to harness the existing networking and
computing infrastructures and the rapidly-advancing world-wide web technologies
with the goal of building a .functional demand-based network-computing infrastruc-
ture. Over the years. we have found the system to be an extremely useful resource
for students and collaborators, and a highly flexible testhed for network-computing
research. The ideas and solutions presented in this report are based on (and val-
idated by) our experiences in scaling PUNCH from a research project to a "live"
system that is regularly used by several hundred students each semester. Results
from user-surveys indicate that the system performs well under the highly peaked
usage patterns (very high usage in the hours before homeworks and projects are due)

characteristic of an academic environment.

~J

3. The Network Desktop Architecture

3.1 Run-Time System

The network desktop infrastructure (see Figure 3.1) consists of: 1) a run-time
system, 2) databases and templates (specification files) containing dynamic informa-
tion that controls the behavior of the run-timesystem, 3) meta-information compilers
that are used to generate and/or update the databases and templates, and 4) support
hardware such as file servers. The run-time system is made up of an access manager,
a set of run-time services, and a programmable state machine. The access manager
handles network protocols, enforces access control, and routes transactions to appro-
priate service modules. The run-timeservices include commandsfor file manipulation,
process management, directory services, and the like. The programmable state ma-
chine dynamically customizes the behavior of the virtual desktop interface for users
and resources, according to criteria specified in the behavior template. The behavior
template consists of a server template and one or more hub databases. As indicated
in the figure, the server template specifies the server configuration and the run-time
mappings for URLs and filesystems, among other things. Hub databases contain
pointers to meta-information for tools on the corresponding "hubs" (tools can be log-
ically grouped/separated across hubs according to desired criteria - by discipline, for

example), along with associated configuration information (see Figure 3.1).

3.2 Tool Specification

A tool specification provides PUNCH with the meta-information required to make
a given tool usable viathe distributed computing framework. Asshown in Figure 3.2,
the specification describes different aspects of thetool such as general .information, vir-

tual interface generation, and application management.! This will generally be writ-

IThe specification filefor a simple, batch-oriented tool can be written in about twenty minutes.

Intranet / Internet

! Y
: [
I : File Server
]
1 |
URL Map I I Cach
Filesystem Map ! : ache
MIME Types : : Workspace
1 | User Accounts
| |
\ 1

lapdwon

Server
Configuration

Directory

Cornpiler Organization

URL Map
Filesystem Map
Access Control Map
MIME Types

Fig. 3.1. A simplified functional view o the network desktop infrastructure.

General Information Interface Generation

Access Control

Logical Indexing

Documentation
MIME Types

Compiler

Input Grammar
Analysis Rules

Application Management

Input Translation
Implementation Selection
Input Pre-Processing
Execution Syntax
Output Post-Processing

Fig. 3.2. Tool specification. The shaded items are required by all tools.

- 10 -

End RelatedLinks

| | Begin Bas#¢Thfo

-] <tool classification and access control info.>
:.g End BasicInfo

! .

i O| Begin Indexiiinks

D £ <links to description and manual s for the tools>
:-a End IndexLinks

I

| g Begi n Relgtadinks

: o) <links di spl ayed on the main page for the tool>
]

1

Begi n HimlTamplateliist
<tenpl ates to be used to generate htnl pages>

End HtmlTemplateList

|

! ~| Begin RAzlysisGramvar

L9 <regul ar expressions for parsing of user-input>

|'§ End AnalysisGrammar

o

t . e i snem v e n o

; - Begi n AndlysisRulés

O] <rules for applying the anal ysis granmar>

| 3 End AnalysisRules

| 4

. @| Begin ExecTnterface

o <instructions for tool interface generation>

‘£l End ExecInterface
Begi n Plutinuerfate .

<instructions for post-processing interface>

End PlotInterface

L o e e e e e e e =
Begin Applications

C Begi n “appliriames

! 8 <execution syntax for application ‘1'>

| g End <appl-name>

g

1

' 8| End licati

B En Appl i cations

, | Begin Ifplsgisnt

+ 2 Begin <ifiplEmEdtation names

8 <execution syntax for inplementation '1'>

1 - End <implementation namex

<

1

1 End | npl emrent at i ons

. h

End Speci fication

Fig. 3.3. Skeletal structure of the tool specification file.

-11 -

ten by an administrator or a tool installer when a tool isinitially added to PUNCH.
It can subsequently be reused at different sites with minor modifications. The struc-
ture of the tool specification file is shown in Figure 3.3. With refererice to the figure,
the modules for general information specify: 1) the logical classification of a tool for
crossreferencing purposes: 2) access control policies, and 3) links to tool-specific doc-
umentation and related information. The interface generation modules describe the
characteristics (structure and workflow) of the tool-specific virtual interfaces that are
accessed by users via standard web browsers. Finally, the application management
modules specify: 1) the manner in which different implementation:; or components
of a given application are to be selected, and 2) the execution syntax and protocol
(e.g., command-line arguments, standard input, platform requirements, scheduling
constraints, etc.) for each implementation or component. These modules implicitly

specify a mapping between the virtual interface(s) and the tool's native interface(s).

3.3 Summary

'The next two chapters describe and evaluate the run-time system shown in Fig-
ure 3.1; aspects of the compiler that relate to the run-time system are explained
when necessary. The software for the network desktop interface is divided into three
components (see Figure 3.4), each of which is consists of several modules. The access
management component authenticates requests and enforces access control policies.
The virtual desktop component processes transactions that involve document serv-
ing?directory information, system and process status queries, file manipulation, and
tool interface generation. Finally, the message-passing component provides the pro-
tocols that allows the desktop interface to communicate with SCION (the PUNCH
back-end; see Figure 2.1) and other resource management systems (e.g., Condor).?
The software isimplemented in Perl [31]. Except when stated otherwise, the results
presented in this report were obtained on a 300MHz Sun Ultra-4 running version

5.005-01 of the Perl interpreter.

2The message-passing component primarily implements established communication protocols, and
is not. discussed further.

12

User with
standard WWW browser

Network Desktop Interface

Application-invocation requests
are forwarded to an appropriate
resource management system

Fig. 3.4. Software architecture of the run-time system in the netvvork desktop.

- 13 -

4. Access Management

4.1 Introduction

'The access management component is responsible for: 1) translating external
protocols into a standard format for internal use, 2) authenticating requests, 3) en-
forcing access control policies, and 4) managing the information stored in PUNCH
datisbases (see Figure 4.1). The component is made up of severa modules, as shown

in Figure 4.2. The following sections describe and evaluate each of these modules.

4.2 System-Interface Management Module

'The system-interface management module is responsible for translating external
requests from different sources into a standard internal format. The internal for-
mat uses the syntax specified by the Multipurpose Internet Mail Extensions (MIME)
[14, 17]. After translation, the data contained within a request are organized into
key value pairs and stored in associative arrays. Multiple occurrences of identical
identifiers (keys) are supported, and the valuefields can contain arbitrary text and/or
binary data.

Currently, three external protocols are supported. The HTTP interface manages
browser-based requests. It accepts requests that conform tothe HTTI" protocol [6, 15]
and translates them into the internal MIME-based format for subsequent processing.
In addition, the interface generates authentication challenges when necessary and
encapsulates outgoing messages within HTML [5, 24].

"The shell znterface is designed to interact with very simple shell clients that can
be ntegrated into traditional operating system command interpreters (e.g., UNIX
shells). Functionally, the operating system parses user-supplied commands, decom-

poses them into their components (e.g., tool name, arguments, redirection, etc.), and

- 14 -

Accept request
from network

'

Translate request header
into internal format

Y

Authenticate request
and decrypt data

Map request to resource
based on specified criteria

Is
Mapping
Valid

]
I
1
|
1
1
1
1
1
1
1
:
Attempt error recovery; |
Reject request on failure |
I

1

1

1

I

I

1

1

1

1

1

1

1

1

Access Control

Forward request
for processing

Fig. 4.1. Functional overview o the access management component.

- 15 -

Fig. 4.2. Organization of the access management component.

- 16 -

and uses a shell client to forward selected commandsto one of a set of nodes running
the network desktop, along with appropriate authentication information. The role of
the shell client can be illustrated by way of a simple example in which a user enters
the following command on a UNIX platform: fishld < demo.inp > demo.out. On
parsing the command, the operating system shell determines that: 1) fishld is the
name of the tool to be executed, 2) standard input (stdin) will be read from thefile
demo. in, and 3) the standard output (stdout) will be redirected to the file demo. out.
An unmodified shell would then look for an executable file that matches the name
fish1ld within the directories listed in the user's path environment. The modified
shell enhances the lookup procedure by allowing users to specify lcgical handles to
network-computing systems in their path environment, in addition to directories.
When the shell encounters a logical handle, it uses the client to query one of the
network desktops within the network-computing system. If the network-computing
systemisawareof fishld, the request isforwarded to it for processing. Theinput for
fishld will be read from demo. 1np and its output will be redirected to demo.out in
a user-transparent manner. If the network-computing system is not aware of fishid,
the shell continues its search with the next directory or logical handle in the path

environment.

Finally, the native interface accepts requests that conform to the internal MIME-
based format. This interface is primarily used by PUNCH nodes to communicate
with each other. The translation processes associated with the currently-supported
pro ocols are straightforward, and do not contribute significantly to the overhead of

processing a request.

4.3 Authentication/Encryption Module

The authentication/encryption module is responsible for authenticating transac-
tions and decrypting/encrypting the data stream. The specific authentication and
encryption policies to be used can be configured by a system administrator; the cur-

rent system uses the basic challenge-response authentication mechanism described

in [6] and does not encrypt data. Iclentification and authentication information is en-

capsulated within a Base64 encoding [7, 17] before transmitting it over the network.

Each transaction is authenticated by way of the user's identity, a password, and a
session-specific dynamic identifier generated by the access control module described
in Section 4.4. For a guest user, theidentity field is associated with the | P address of
his/her machine, and the password field is ignored. For a member user, the identity
and password fields consist of his/her PUNCH login and password, respectively. The
dynamicidentifier consists of astring followed by a sequenceof numbersthat represent
access codes. The string identifies the type of user, and takes on one of two values:
'Guest' or ‘Member’., The access codes allow efficient and scalable lookup of PUNCH
resources, as described in Section 4.4.1. The dynamic identifier is automatically
generated by the access control module at the PUNCH node that serves the request
if it isincorrect or absent (seeSection 4.4.1 for details). It isthen cached by the client
and presented to the PUNCH node with subsequent requests. The actual mechanism
by which caching is achieved depends on the type of interface. For example, with the
HTTP interface, the identifier is cached implicitly by making it a part of the URL.
On the other hand, with the shell and native interfaces, it is cached explicitly on the

client side.

Authenticating requests from guest users is straightforward. Each active guest
user is represented by a persistent object that is stored in a database on the local
(tothe server) filesystem. The object is created when a user registers as a guest, and
contains the IP address of the user's machine, identifying information such as the
user's email address, and session-specific state information. When PUNCH receives
a request from a registered guest user, it utilizes the dynamic identifier associated
with this request to locate the corresponding object in the database. Once the object,
is located, the request is authenticated by comparing the | P address of the machine

from which the request was received to the | P address stored in the object.

Authenticating a request from a member user involves looking up the appropri-

ate password-file entry and verifying the password supplied with the request. A

Effects of Using a Hash Function (994 Users)

20

Y Y - —_
(] N + =2}
T T L T

Average Authentication Time, in milliseconds
@
T

2\;

1 1

1l 1

T

Fig. 4.3

10

15 20
Number of Buckets

25

30

. Effects of using a hash function on authentication time.

35

- 19 -

o 150 T T T —T T
1S
2
IS
8100 -
<
k]
3 sof .
E
=
< o | 1 1 I |
0 5 10 15 20 25 30
Distribution of Accounts (a)
«» 100 T T T T T T
IS
3
e
(8]
(8]
<
s 50 4
o
o]
E
3
pd
0 L | 1
0 5 10 15 20 25 30
Distribution of Accounts (b)
o 80 T T — T T T
s
=
9
3 40
<
k]
3 20
E
>
< 0
0 5 10 15 20 25 30

Distribution of Accounts (c)

Fig. 4.4. Distribution of user accounts achieved by the hash function for: a,) eight,
b) sixteen, and c) thirty-two buckets.

- 90 -

highly efficient authentication process is crucial to the scalability and performance of
the overall system because the stateless nature of the PUNCH and HTTP protocols
makes it necessary to individually authenticate each transaction. The efficiency issues
are addressed as follows. For requests that contain correct access codes, authentica-
tior can be accomplished in 0(1) time (see Section 4.4.1). When access codes are
not available or are incorrect, the authentication procedure involves a search. The
latency associated with the search is minimized by distributing the user-account en-
tries across multiple password files. The distribution is accomplished by way of a
very simple hash function that selects a file on the basis of the ASCII values of the
initial characters of the user's login and the encoded or encrypted password. In par-
ticular, the password file identifier is obtained by evaluating the following expression:
(ord(login) T ord(password))%32 + 1. The function ord is a standard Perl5 function

tha, returns the numeric ASCII value of thefirst character of its argument.

Figure 4.3 illustrates the effects of the hash function on the average time required
to authenticate a request. The results are based on a real dataset consisting of 994
PUNCH user account?. The plots in Figure 4.4 show that the (simple) hash function
described ahove achieves an acceptably even distribution of accounts across available

buckets for a real dataset.

At the end of the authentication process, each request is tagged with one or more
logical access groups and forwarded to the access control module. The access groups
for member users are retrieved from their password-file entries, assunning that the re-
quest was successfully authenticated. The access group for successfully authenticated
requests from guest users is set to' QEST . Requests that could not; be successfully

aut ienticated have an empty access group.

4.4 Access Control Module

The access control module dynamically maps user requests to the underlying re-
sou:ces based on the access group(~associated with therequest, the state information

associated with the user, and the source of the request.

4.4.1 Access-Code Management

In the course of processing any given transaction, PUNCH modules access one or
more databases in order to retrieve information associated with users and resources.
Examples of such information include authentication and access control information
for users, user-interface templates?learned resource usage characteristics, and porta-
bility information for tools, and availability and status information for hardware re-
sources. It is extremely important to be able to access this information in a quick,
efficient, and scalable manner. Information stored in database systems is retrieved
by way of a query mechanism that typically involves a search. For large databases,

the high latency associated with this search often translates to poor performance.

The PUNCH database system utilizes dynamic access codes to alow 0(1) accessto
the stored information [21]. An access code represents the exact byte offset of a given
record in a given database, and is dynami ally encoded into all resource identifiers.
For any query that includes an access code, the database system bypasses its normal
search mechanism and performs a seek operation to a byte offset that is one less than
the numeric value of the access code. It then reads the word at that position. If
the supplied access code is correct, this word will be a record separator. Assuming
that a record separator is found, the subsequent read operation will fetch the first
word of a record. PUNCH databases are organized so that the first word in every
record consists of a string that uniquely identifies the record within that database.
Typically, this string is the numeric value of the access code for that record: in a few
cases, the nameof theresourceis used for the string when it (the name) is guaranteed
to be unique (e.g., as with user logins). As a result of this organization, if the word
read by the system matches the supplied access code (or the resource name when
appropriate), the record being read is guaranteed to be the one that was requested.
If the supplied access code is determined to be incorrect,, the requested information
is retrieved via a normal database search, and an access code is generated for usein

subsequent queries.

Once obtained, access codes are cached at the source of the request, allowing them

Cc

(n ldentifiers)
Identifier Password

Hash-Table Size (k)

. Hash Index (k files; - n/k
jdenti-ier (Filename Extension) entries per file)

Access Code
(Offset in File)

(O0(1l) access

Resource Access Code wi t h code)
(Offset in File)

Fig. 4.5. Schematic of the lookup mechanism used by the PUNCH database system.

to be reused. However, access codes can change over time — although this happens
relatively infrequently in practice. (The change is generally a result of a resource
being added to or removed from the database.) In order to minimize the search
penalty when access codes are not available or are incorrect, resources are hashed
across multiple databases on the basis of the initial characters of their identifiers and
encrypted or encoded passwords. A schematic of the lookup mechanism used by the
PUNCH database system is shown in Figure 4.5.

Figure 4.6 shows the average timerequired to authenticate a reyuest when correct
access codes are available. The results represent the same dataset (994 PUNCH
user accounts) used to generate the plot in Figure 4.3; compare the range of Y-
axis values in the two plots. The utility of access codes can be illustrated more
effectively by way of a synthetic clataset. Consider the information associated with
tools (e.g., templates employed for user-interface generation, learned resource usage
characteristics, portability information, etc.). In order to process any tool-related
transaction, the run-time system must first locate the database for the tool. The
scalability characteristics of the lookup time, when the access code is not known or
incorrect, are shown in the left hand plot in Figure 4.7; the right hand plot shows
the (constant) lookup time when a correct access code is supplied to the database
system. Both plots were generated for a synthetic dataset using a database system
with a linear search.

A typical reyuest will contain several access codes — one for each database record
that is accessed in the course of processing the corresponding transaction. For
database records that consist of multiple sub-records, access codes are defined as
a hierarchy of byte offsets.

Table 4.1 shows the observed proliferation of access codes in the PUNCH envi-
ronment. About 96% of the transactions initiated by member users contained access
codes that could be used for authentication purposes. Access code; associated with
tool-related information were present in virtually all transactions that involved such

references, as indicated by the second row o the table.

Awrage Authentication Time, in m liseconds

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

- 24 -

Effects of Using Access Codes (994 Users)

T T T T T .

|] 1 1 1 | B

5 10 15 20 25 30 35
Number of Buckets

Fig. 4.6. Effects of using access codes on authentication time.

Table 4.1
Observed access code proliferation.

Access Code Proliferation

Access Code

Type of Use
Present Absent
Member Authentication 1,086,732 45,896
Internal References 946,652 81

Access Time, in milliseconds

200

130

150

140

120

100

50

20

0
0

Invalid/Incorrect Access Code

T

T

T

Invalid Code

Incorrect Code

2000

4000

Number of Tools

6000

8000

10000

Access Time, in milliseconds

0.6

0.55

05

0.45

e
b

Correct Access Code

0.35

0.3

0.25

0.2

2000 4000 6000
Number of Tools

8000

Fig. 4.7. Effects of access codes on information retrieval latency.

10000

- 96 -

4.4.2 Address-Space Translation

PUNCH draws on the basic premise of virtual memory management to control
access to itsresources. Requests are assumed to contain virtual addresses (identifiers)
that can be dynamically translated to physical ones. This model is used within the
framework of the world-wide web by treating URLs aslocations in a clynamic, virtual,
and active (side-effect based) address space. The client initiating a given transaction
is equated to a distinct user-level process in a multi-user system?and the request is
treated as an attempt to access a memory location with a lexicographical address
within the private address space of the associated process.

Using this perspective, analogous to virtual memory management, each request
can be verified for validity in terms of: 1) being within the address space bounds for
the associated process (user), and 2) the type of access (read or write). All accesses
to PUNCH undergo this validation process, allowing the system to control access to

its :resources on a per-user and a per-resource basis.

4.4.3 View Customization

Oncethe validity of arequest has been verified, it is mappedto a physical resource.
This mapping processisimplicitly dependent upon the source (user-id) of the request,
and can be customized by system administrators. Thus, different users attempting to
access the same logical resource identifier (URL, in the case of the world-wide web)
could potentially trigger completely different actions.

PUNCH leverages this fact to dynamically generate a logical (virtual) view of
available tools and resources for each class o users. For example, users who have
member access to a given tool on PUNCH can view the corresponding on-line docu-
mentation by following an appropriate set of web links. Other users who follow these
links are shown a different set of documents (typically a message stating that the user
documentation for the tool is only available to authorized users). It is also possible
to configure PUNCH so that such links are not generated at all for users who do not

have member privileges for the corresponding tool.

S — T

5. The Network Desktop

5.1 Introduction

The network desktop component processes transactions that involve document
serving, directory information, system and process status queries, file manipulation,
and tool interface management. Data. obtained by profiling the user activity on
PUNCH over the past twenty-eight months (seeTable5.1) indicates that transactions
associated with tool interfaces, static and dynamic information, and process status
queries account for more than 95% of the total. Consequently, the evaluation focuses
on the modules that process these transactions. A schematic.for the network desktop

component is shown in Figure 5.1.

5.2 Document Server

The document server module handles transactions involving access to static in-
formation that is stored in files that reside on locally mounted filesystems. The in-
formation is static in the sense that, except for minor substitutions (e.g., server-side
includes)t does not need to be processed or personalized beforeit istransmitted over
the network. These transactions are the PUNCH equivalent of traditional document
serving on the world-wide web. Of the 247,152 static information transactions (see
Table 5.1), 92,524 (37%) resulted in accesses to text (e.g., HTML, PDF, postscript)
files; the other 63% resulted in accesses to image (e.g., GIF, JPG) files. URLS asso-
ciated with static information transactions are dynamically mapped to files by way
of an administrator-specified URL map that alows the document server module to
translate URLs that. match specified templates to corresponding paths to files. A
sample URL map is shown in Figure 5.2; default values are enclosed within square

brackets, and an asterisk indicates a wildcard.

Table 5.1

Summary of PUNCH user activity over twenty-eight months.

Summary of PUNCH Access Statistics

Type of Transaction

Number of Transactions

Distribution in Percent

Tool Interface 777,795 59.52
Static Information 247,152 18912
Process Status 168,548 12910
Dynamic Information 66,252 5.07
Directory Service 36,186 2.77
Account Creation 9,006 0.69
Invalid 1,753 0.13

Total 1,306,692 100.00

Fig. 5.1. Organization of the network-desktop component.

Begi n UrlMap
/
/Directory/
/ Hel p/ *

/1 mages/
/ Peopl e/ *
End Ur 1Map

/home/users/punch/www/ [punch.html]
/home/users/punch/www/directory.html
/home/users/punch/help/ [manual .html]
/home/users/punch/images/
/home/users/punch/info/people/ [people.html]

Fig;.5.2. A sample map for translating static information URLs. Default values are
enclosed within square brackets, and an asterisk indicates a wildcard.

- 30 -

Document Serving: Communication via LAN

600 T T T T T T T T T

PUNCH
Apache goptimizations off
-------- Apache (optimizations on

500

400

300

200

Response Time, in milliseconds

100

0— T T T T T T T . :
0 50 100 150 200 250 300 350 400 450 500
Size of Document, in kilobytes
Fig. 5.3. Apache and PUNCH server response times as a function of document size.

- 31 -

The following results characterize the response time of PUNCH for static infor-
mation transactions. Figure 5.3 shows the average response times associated with
PUNCH and Apache [2, 16] for clocument serving, as a function o document size.
The results were obtained with the client(s) running on a 16TMHz Sun Ultra-2 and
the servers running on a 300MHz Sun Ultra-4. The machines were connected via a
100Mb switched ethernet. Observe that, for similar configurations' (plots labelled
PUNCH and Apache (optimizations off) in the figure), both servers scale equally
well, although Apache exhibits a better response time for smaller clocuments. The
PUNCH server has a higher overhead because it runs in an interpreted environment.
The plot labelled Apache (optimizations on) in the figure shows I-he performance
of Apache when it is allowed to pre-fork multiple processes and run spare serversin
anticipation of demand — note the improved response time characteristics.

Once implemented, these optimizations can be expected to result in similar per-
formance improvementsin PUNCH. Figure 5.4 demonstrates the effects of preforking
server processes in PUNCH - observe that the response time improves by a factor of
two for small document sizes. In order to filter out the effects of the network, the
response time characteristics shown in the figure were obtained with the client and
the server running on the same machine (a300MHz Ultra-4) and comnmunicating via
filehandles.

Figure 5.5 shows the average response times as a function of the number of si-
multaneous (but independent) requests. The results were obtained with the client(s)
running on a 167MHz Sun Ultra,-2and the servers running on a 300MHz Sun Ultra-
4. The experiment's were repeated using different document sizes (two of which are
shown in the figure) to account for artifacts due to network traffic. For the range
shown in the plots, the PUNCH server scales somewhat better than a similarly con-
figured Apache server, but the results (plot labelled Apache (optimizations on) in

the figure) clearly show the performance benefits of the optimizations implemented

!The following changes were made to the default parameters provided in the Apache distribution
(Version 1.3.3): MinSpareServers=1, MaxSpareServers=1, StartServers=1, and MaxRequestsPer-
Child=2. Apache's performance optimizations are largely disabled with this configuration.

Response Time, in milliseconds

350

300

250

200

150

100

50

-39

Document Serving: Communication via Local Filehandles

T T 1 1 T T ' !

- - - PUNCH Rg gptimizations)
Epreforked processes)

S — PUNCH

| 1 L | | L | 1 1

50 100 150 200 250 300 350 400 450 500
Size of Document, in kilobytes

Fig. 5.4. PUNCH server response time as afunction of document size.

-33-

Document Size: 2 bytes Document Size: 10,000 bytes
350 . T ; ; 350 T T T T
— PUNCH — PUNCH) 4
- - Apache Eopt,imjzatjons off — - Apache (optimizations off)
... Apache (optimizations on Apache (optimizations on)
300F | 300 .
/ /
/ /
/ /
/ /
250 / - 250 / 1
[72] 7]
o / o
C cC
Q /]
Q O
(V] 1]
2 2
Z 200t E 2001
£ c
oy)
£ £
[[
o 150 o 150L
[72] w
j C
[o] Q
Q Q
7] 0 /
e} (]
o o /
100 100 - / -
/
/
/
/ J
501 50 /
‘ / et
0| - I 1 1 1 0 ‘ L] 1 ! L
0 2 4 6 8 10 0 2 4 6 8 10
Number of Simultaneous Requests Number of Simultaneous Requests

Fig. 5.5. Server response time as a function o the number of simultaneous requests.

- 34 -

in Apache.

5.3 Directory Services

The directory services module handles requests for complete or partial (cross-
referenced) listings o tools available to users. These transactions typically access
information that is distributed across multiple PUNCH databases. In order to mini-
mizethe latency visible to users, afull listing is generated once for each class of users
and then cached. Crossreferenced listings are dynamically generated from the cached
(full) listings. In practice, requests for full listings dominate requests for crossrefer-
enced listings - of the 36,186 directory service transactions in Table 5.1, about 10,487
(29%) involved requests for crossreferenced listings. When a cached listing is avail-
able, the response time characteristics for directory service transactions are similar

to those for document serving.

5.4 HTML Generation

"The network desktop interface provides support for embedding variables and ob-
jects within standard HTML; documents (HTML pages) that contain these variables
and/or objects are caled HTML templates. The HTML generation module behaves
as a filter for HTML templates - it dynamically replaces the tokens representing these
variables and objects with their current values as the templateis being sent to a client
(browser).

Variables include standard types provided by high-level languages - integers, float-
ing point numbers, and strings. Objects include HTML-specific constructs such as
check-boxes: menus, and radio-boxes. HTML templates are made up of two parts: 1)
variable and object declarations, and 2) HTML code. The variables and objects serve
the same purpose as corresponding constructs in high-level languages — they allow
the compiler and the run-time system to track, interpret, and manipulate informa-
tion (flow control is handled by the programmable state machine; see Section 5.9).

The functionality provided by the HTML generation module is best explained by

way of an example. Consider a situation in which users need to “walk” through the

Begin PageTenpl ate
Begin Declarations
menu myFiles = 1:<UserFiles>;
bind myFiles = <WorkingFolders>;

End Decl ar ati ons
Begin HTM
<FORM>

Select a file (or folder to open): <myFiles> <P>
<CENTER><INPUT TYPE="submit" VALUE="Proceed"></CENTER>

<FORM>
End HTML
End PageTemplate

Fig. 5.6. An example HTML template.

- 36 -

files and directories in their (PUNCH) accounts via a browser. Figure 5.6 shows a
simple HTML template that can be used to accomplish this task. The left hand side
of the first declaration statement specifies an object of type menu called myFiles.
The right hand side specifies the size of the menu (one) and initializesits contents via
a directory handle (UserFiles) exported by the desktop infrastructure. The second
declaration statement binds the contents of the menu object to the current directory
of the user for whom the transaction is being processed. Once a variable or an object
has been declared, it can be referenced by nameinthe HTML part of the template, as
shown in thefigure. The name will he dynamically replaced with appropriate “static”
HTML code and data when the template is accessed via an appropriate URL. For
example, the reference to myFiles in Figure 5.6 will be replaced with the HTML
specification for a menu whose contents are thelist of filesin the current directory of

the user who initiated the transaction that references the template.

The syntax associated with the template shown in Figure 5.6 was specifically
designed to supplement standard HTML without requiring any changes to the lan-
guage. Unfortunately, this syntax does not lend itself to efficient run-time parsing of
the template. This problem isaddressed by using a compiler to translate the template
into a format that is more conducive to efficient run-time substitution of variables
and objects. The compiled version of the template is shown in Figure 5.7. The first
line contains the size of the compiled template file in bytes; this is used to eliminate
race conditions that arise when the file is accessed while it isin the process of being
(asy nchronously) loaded into the disk cachefor the desktop. The second line contains
information that is used for version control. The database "record" starts at thethird
line. As noted in Section 4.4.1, this line contains the access code for the record. The
next four lines list the names and access codes o the four sub-records that make up
this record (byte offsets for sub-records begin after the end of the record header).
The next two lines contain the (sub)record separator and the access code for the first
sub-record (VarSpec). respectively (the“5” represents the number of linesin the sub-

record). The VarSpec record tells the HTML generation module how to locate and

543

v2.0

70

Var Spec:1
PageTemplate:117
BindSpec:290
VariableNames:397
15

258

BBM

_formTarget S$SformTarget
_hiddenTags @hiddenTags

_myFiles 1 0 0 - /S$dirName/Input/S$ScUrl
End Var Spec

117 11
<FORM
_formTarget
>

_hiddenTags

Select a file (or folder to open):
_myFiles
<P>
<CENTER><INPUT TYPE="submit" VALUE="Proceed"></CENTER>
</FORM>
End PageTemplate

Fig. 5.7. The compiled version of the HTML template.

- 38 -

interpret the variables and objects in the PageTemplate sub-record. The location
information is contained in the first line within the sub-record: the numbers (2 5
8, in the figure) refer to the line numbers in the PageTemplate record that require
substitution. The rest of the record contains information that supplies the semantics

for the substitution process.

Observe that each variable/object is stored by itself on a separate line in the
PageTenmplaterecord. This organization allows for very efficient variable/object sub-
stitution. When a templateis accessed, the HTML generation modulefirst loads the
VarSpec record. Then, it jumps to the PageTemplate record and starts sending its
contents over the network connection. When it reaches a line whose number matches
the ones listed in the VarSpec record, it sends (generates) the contents of the appro-
priate variable (object) instead o sending thetag on theline. Experiments show that
the overhead of variable and object substitution using this procedure is negligible in

comparison to the document serving times reported earlier.

5.5 Programmable Parser

The programmable parser.module provides the desktop infrastructure with a means
to extract information that is embedded in strings (e.g., a specific flag in the set of
command-line argumentsto a tool) or files. Theextracted information issubsequently
used by the the programmable state machine module described in Section 5.9 to
modify the behavior of the infrastructure according to specified criteria. This allows
the desktop infrastructure to react to input provided by usersand/or cutput generated

by tools.

‘The current implementation parses its input using grammar specified via regular
expressions that are supplied by tool installers. This approach is limited to parsing
context-free grammars, but it has been found to be adequate in most cases. Thisis
a consequence o two factors: 1) the structure of the input to most programs tends
to be relatively simple. and 2) the kind of information needed by the computing

infrastructure (e.g., the names dof files referenced within a given input file) does not

- 39 -

generally require the parser to understand the complete grammar for the underlying
input.

‘The functionality provided by the programmable parser is best explained by way
of an example. Figure 5.8 shows the grammar and the parsing rules supplied to the
parser for T-Suprem3, a commercial package (from Technology Modeling Associates,
Inc.) that simulates the processing steps used in the manufacture of silicon inte-
grated circuits and discrete devices. A bhasic feel for the type of input being parsed
can be obtained from the sample T-Suprem3 input file shown in Figure 5.9. The
programmable parser uses Perl's regular expression engine for string matching; the
state machine associated with the regular expression engine and the syntax for the
regular expressions are described in the Perl5 documentation and in [18, 3l]. The

following explanation assumes a basic familiarity with Perl5 regular expressions.

The first two statementsin the AnalysisGrammar section in Figure 5.8 are special
cases — they provide the programmable parser with the grammar needed to parse
files that contain comments and have statements that span multiplelines. The first
statement specifies that, for T-Suprem3, lines that begin with a string that matches
either CUMMENT, comment, or $ should be treated as a comment line (the ‘~’ anchors
the regular expression to the beginning of a line). A statement that specifies the
comment-line grammar can optionally contain a second regular expression — in which
case the comments are assumed to be enclosed within strings that match the first
and second regular expressions, respectively. Thisformat would be required to parse
a file containing ‘C’-like comments, for example. The second statement specifies that
a given line in a T-Suprem3 file is to be treated as a continuation of the preceding
line if the first character in the line is a plus sign (the ‘\s*’ matches zero or more
occurrences of spaces). For input files whose statementsare not delimited by anewline
character, an arbitrary regular expression for a statement delimiter can be specified

via the StatementDelimiter keyword.

The remaining statements in the AnalysisGrammar section are treated as normal

declaration statements. Theleft hand side of the statement can be any valid variable

End

- 40 -

Begin AnalysisGrammar
CommentLine_Grammar = '~ ((COMMENT) |(commrent) | (\$))’
ContinuationlLine Grammar = ‘~\+\s*’;

The foll owi ng regul ar expressions are used to determ ne the nhanes
of data files referenced within other input files.

Refl = file:<inputFile>

RegExpl, RegExXp2, RegExp3, RegExp4,
RegExp5, RegExp6, RegExp7, RegExp8:;

Ref2 = file:<*:RegExp7:1> RegExpl, RegiExp2, RegExp3, RegExp4d,

RegExp5, RegExp6, RegExp7, RegExp8;

AnalysisRules

Fig. 5.8. Sample grammar and parsing rules for the programmable parser.

TI TLE

COVMENT
INITIALIZE

COVMENT
4_
CALL

COMVENT
PLOT

LABEL

COVMENT
SAVEFI LE

TVA SUPREM 3 - Exanple 1
MOS gat e regi on simul ation.

Start with the result of an earlier sinulation
IN.FILE=S3EX1S

Performthe process steps for the source
and drai n regions.
FILE=s3calll.inp

Plot the net chemical inpurity distribution.

CHEM CAL NET RIGHT=1.5 device=postscript
TITLE="Example 1 - Gate" plot.out=s3exlg.ps
LABEL="Chemical Net" START.LE LX.F=.9 X=1.1 Y=1e20

Save the final gate region structure.
STRUCTURE OUT.FILE=S3EX1GS

Fig. 5.9. Example T-Suprem3 input file.

'

RegExpl = ""“\s*init\S*\s+((in\.file) | (structur))\s*=\s* ([0-%a-zA-Z.]+)’;
RegExp2 = ‘~\s*loadfile\s+((in\.file)I(file))\s*=\s*{[0-9a-zA-Z._]+).
RegExp3 = ‘"\s*mask\s+in\.file\s*=\s*([0~%a-zA-Z._]+)"; '
RegExpd = ‘~\s*profile\s+((in\.file)i(file))\s*=\s*([0-%a-zA-2._]+)';
RegExp5 = ""\s*plot\s+((in\.file)|(data))\s*=\s*([0-9a-za-7Z._]+) .
RegExp6 = ‘“\s*extract\s+((in\.file)I(profile))\s*=\s*([0-%a-zA-2.]+)"';
RegExp7 = '"\s*call\s+file\s*=\s*([0-9]a-zA-Z._]+)’;
RegExp8 = '"\s*assign\s+in\.file\s*=\s*([0-9a-zA-Z._]+)’;

End AnalysisGrammar

Begin AnalysisRules

S 4] -

name (using the ‘C’ naming semantics). and theright hand side can contain arbitrary
Perl5 regular expressions. As an example, the regular expression associated with
RegExp1 will match a statement that beginswith a keyword whose initial part contains
the string init (the ‘\S*’ matches zero or more occurrences of non-space characters)
and is followed by either of the strings in.file or structur, an equality sign, and
a string that is made up of one or more occurrences of alphanumeric characters,
underscores, and/or periods. Thus, regular expression associated with RegExp! will
match the third statement in Figure 5.9. Similarly, the regular expression associated

with RegExp7 will match the fifth statement in Figure 5.9.

The AnalysisRules section in Figure 5.8 tells the programmable parser how to
apply the regular expressions that were defined in the AnalysisGrammar section.
Again, the left hand side can contain any valid ‘C’-language variable name. The first
token in theright hand side specifies thetarget fileor string to be parsed viaa PUNCH
variable that has been previously declared in a template file (e.g., the <myFiles>
object defined in the preceding section) or a metaprogram (see Section 5.9). The
remaining tokens on the right hand side are the (names of) regular expressions that

are to be applied to the file or string specified in the first token.

The results of regular expression matches can be referenced in templates and
metaprograms via special variables. These variables are created and initialized at run
time as and when they are referenced, using dataflow semantics. Special variables
are named in terms of the names of the corresponding rules and regular expressions,
and the index of the required match within the regular expression. The index of a
match within a regular expression is defined in terms of Perl backreference variables
- thus, any match that is referenced via a special variable must be enclosed within
parentheses in the regular expression. The value of the index associated with a given
pair of parentheses within a regular expression is determined by counting the number
of opening parentheses from the beginning of the expression up to (and including) the
pair in consideration. Thus, for RegExp1 (see Figure 5.8), the indicesfor the matches

corresponding to the patterns in.file, structure, and [0-9a-zA-Z.]+ are two,

- 42 .

three, and four, respectively. The associated variahle names are <Ref| :RegExp1:2>,
<Refl| :RegExp1:3>, and <Refl :RegExp1:4> (for rule Ref I). If a particular regular
expression matches more than one statement in a given file or string, the results
are stored in the appropriate variable(s) as a space delimited list. The number of
statements in a file or string that were matched by a particular regular expression
can be determined by omitting the index field in the corresponding special variable

(e.g., <Refl :RegExp1>).

T-Suprem3 input files can reference other input filesviaa cal | keyword (seefifth
statement in Figure 5.9). The referenced input files, in turn, can referenceother input
files. This recursive behavior is captured by the second rule in the AnalysisRules
section in Figure 5.8. Observe that the first field in the special variable that specifies
the target filefor the rule contains a wildcard character. The wildcard specifies that
the corresponding rule should be applied to all files matched via RegExp7. Thus, if
the file specified by <inputFile> in Ref | contains a cal | statement that references
another file. the second rule will be applied to the referenced file. If the referenced
file contains another cal | statement, the second rule will subsequently be applied to
the called file. This process will continue until the second rule has been applied to

al files matched via RegExp7.

5.6 File, Process, and Account Management

'The filesystem proxy, command-shell proxy, and the account management modules
supplement the file, process, and account management mechanisms provided by the
local operating systems running on individual machines. File management is left
entirely up to the local operating systems, except that all requests that manipulate
file, are routed viafilesystem proxies. Filesystem proxies allow the logical filenames
used within the distributed computing environment to be dynamically mapped to

real pathnames within physical filesystems.

Similarly, system commands are routed via shell proxies, which rnap logical com-

mands to real ones. Process management is accomplished by maintaining extended

process tables that complement the ones provided by thelocal operating systems. The
extended process tables contain information such as the process identifier within the
distributed computing environment, the machine(s) on which the process is running
and the corresponding native process identifier(s], the current status of the process
(e.g., queued, running, being terminated, etc.), the specific execution protocol (e.g.,
PVM, VNC, X-RX, etc.) associated with the process, the expected execution time,
and local directory information. In the interest of efficiency, these tables are only
updated periodically. Also, a separate table is maintained for each user that has an
active process. This alows process status queries to he handled very efficiently (the
scalability characteristics are almost identical to the ones shown for document serv-
ing). Modifications to the process status (e.g., a request to abort a process) involve
significantly higher overhead, however, because the desktop component is required
to contact remote machines and wait for acknowledgement. Most of the observed

process status transactions involve status queries.

Account management in a distributed computing environment is complicated by
the fact that, in general, it is impractical to create physical accounts for individual
users on all the resources available to the system. This problem is a consequence of
three factors: the size of the system (interms of the number of users:and resources),
the dynamic nature of the system (users and resources can be addled and removed
at will), and the varying administrative policies (available resources typically span
multipleinstitutions). The basic problem is addressed by dynamically creating logical
user accounts within a single physical account on the underlying operating system.
The filesystem proxies and shell proxies ensure that users can only access and modify
their own data - the associated mapping processes are implicitly keyed to the user who
initiates the request. Security concerns with respect to tools that allow users to make
direct system-level calls are addressed by way of shadow accounts. Shadow accounts
consist of a pool of physical accounts that are dynamically assigned to individual
users when they attempt to execute "unsafe" commands, allowing such commands to

be executed safely within separate physical accounts. The accounts are subsequently

- 44 -

reclaimed by the system. Shadow accounts are managed in a secure manner without
requiring superuser privileges by leveraging protocols that can establish one-way trust
(e.g., secure shell [30]). Access management with smaller granularity can be achieved

via software fault isolation techniques (e.g., [19]).

5.7 Cache Management

The cache management module is designed to work as an independent process (or
thread) that periodically clears cached templates and database entries. The cache is
managed on alocal disk (e.g., in /tmp). This module does not affect the performance
of the run-time system during normal operation, except to the extent that the contents

of the cache need to be reloaded after they have been flushed.

5.8 Error Management

I'he error management module handles error logging, management, and recov-
ery operations. Control is passed to this module when an abnormal condition or an
internal error is detected. When this happens, the module first logs critical state
information and a stack trace. (A synopsis of this information is mailed to specified
system administrators periodically.) Then, if necessary, the error management mod-
ule undoes the side effects of the partially processed transaction. (The information
required to do this is dynamically generated by PUNCH modules in the course of
processing a transaction.) Finally, the module initiates an appropriate, configurable
error recovery procedure, and, depending on the results, instructs the calling module
to retry or abort its procedure. This module does not affect the performance of the

system during normal operation.

5.9 Programmable State Machine

The programmable state machine module has three functional units: a metapro-
gram interpreter, a virtual machine, and a persistence engine. A metaprogram is a
program whose instructions are themselves programs. In this environment, metapro-

grains are used to define the behavior of the programmable state machine, and are

-~ 45 -

Table 5.2

List of instructions supported by the metaprogramming language, in addition to
standard flow contral. (i.e., conditionals and loops) instructions.

Instruction \ Description
cache onlcff I Enable/disable the cachina of templates for this metaprogram.
chdir <directory> Chanae directory - this instruction updates internal :state information.
cleardir <directory»> Delete the contents of the specifieddirectory.
dirof <file> Get the name of the directory in which the specified file resides.
display <html tenplate> Generate HTML code using specified template; stop metaprograrn.
end <metaprogram> Terminate rnetaprograrn - execution cannot be resumed.
execute <metaprogram>|<tool> | Execute metaprogram/tool on possibly remote machine; non-blocking.
exists <filename> Finds the absolute path to a fite, if it exists within searched directories.
isdef <variable> Evaluates to one if variable is defined, zero otherwise. ‘
isdir <vari abl e> Evaluatesto one if variable contains a valid directory, zero otherwise. T
length <string> Determines the lenath of the string in bytes.

logstatus

<status file»

Log current status; used for error notificationand recovery.

re-rievestate

<name>

maxof <lists> Determinesthe largest value within a space delimited list.
minotf <list> Determines the smallest value within a space delimited list.
retrieve <name>, f[<var list>] Retrieve saved values of specified variables. _

Restore the state of the metaprogramfrom a previously saved image.

save

<name>», <var list»>

Save specified variablesto persistent storage.

savestace

<name>

Save an image of the current state of the metaprogram.

s

(2]

<vari abl e> = <value>

Assign a value to the specified variable.

Stop the execution of the rnetaprograrn - execution may be resumed.

STOD
swros <list> Determinesthe numerical sum of the values in a space delimited list.
writeln <var list> Writes values of the variablesin the list to the current output.

- 46 -

written in a specially designed ‘C’-like language. In addition to the standard flow
control constructs (conditionalsand loops) available in high-level languages, this lan-
guage provides instructionsto: 1) customize and manipulate information for different
types of users, 2) manage filesand directories, 3) customize and serve documents and
templatesin response to user requests, 4) save and retrieve state information, and 5)
start and stop child metaprograms and processes on local or remote machines. These
instructions are summarized in Table 5.2. As the name suggests, the metaprogram
interpreter parses and executes the metaprograms. The virtual machine manages the
run-time environment for the metaprogram interpreter. It execute:; the lower-level
code that makes up the instructions in the metaprograms, enforces access control at
the instruction level, and maintains low-level data structures (e.g., the stack) and
state information (e.g., the program counter) associated with the underlying com-
pute engine. Finally, the persistence engine maintains state information that allows

metaprograms to be started and stopped as and when necessary.

The programmable state machine can be used to generated a customized HTML
interface for each tool. The input to this state-machine consists of: 1) a list of
available states, and 2) a description of the transitions between these states (flow
control). States are specified in terms of HTML templates. Flow control information
is specified via metaprograms. The state machine executes metaprograms in response
to an attempt to access corresponding URLs. It keeps traclc of the values of variables
and objects for interfaces that span multiple HTML pages by storing them in hidden
forra fields and/or encoding them within URLs. Moreover, the state-machine can
react to any run-specific information (e.g., values embedded within user-supplied
strings, data within files, etc.) that can be extracted by the programmable parser
described earlier. This alows the desktop interface to support programs that accept

input in an interactive manner.?

The roles of the three functional units described above are best explained by

2Programs with graphical user interfaces are managed via browser-compatible remote-display pro-
tocols such as VNC [26].

S 47 -

string myFiles = :/°'
retrievestate "directory';
di splay ‘Pagel’;
while{(isdir{<myFiles>))
{

chdir {(<myFiles>) ;

di splay ‘Pagel”;
}
savestate 'directory';

Fig. 5.10. An example metaprogram.

- 48 -

using an example. Figure 5.10 shows a sample metaprogram that could be used
in conjunction with the HTML template described in Section 5.4 to allow users to
"walk" through their files and directories. The execution of the metaprogram is
triggered when a user accesses an appropriate URL, and proceeds as follows. The
first instruction shown in the figure is a declaration statement that causes the value
of the variable myFiles to be initialized to the root directory (for this user). The
second instruction shown in thefigure causes the persistence engine to set the variables
and objects in the metaprogram to the values saved previously (for this particular
user) via a 'savestate' instruction. This instruction does not affect the values of
variables and objects for which no state inforination exists. The third instruction
triggers several steps. The virtual machine: 1) instructs the persistence engine to
save the internal state of the metaprogram, 2) generates access code and program
counter information that can be used to restart the metaprogram at the appropriate
instruction (i.e., theonefollowing the current ‘display’ instruction), 3) uses the HTML
generation module to send the template associated with ‘Pagel’ (previously specified
via a declaration statement) to the user who initiated the transaction, and 4) shuts
the metaprogram down. At this point, the transaction that initiated the execution o
the metaprogram is considered to be complete. On the browser (client) side, it simply
appears as if astandard HTML document was returned in response to an attempt to
access a given URL. Subsequently, when the user selects an entry from the contents of
the menu and submits another request, the metaprogram is automatically restarted
at the instruction that follows the previously executed 'display’ instruction. Thisis
accomplished as follows. The access code and program counter information generated
by the virtual machine in response to a ‘display’ instruction is cached within hidden
fields in the corresponding document and/or is encoded into the URLs that appear
within that document. On the subsequent request, this information is extracted by
the microkernel (see Figure 5.1) and presented to the metaprogram interpreter. The
interpreter, in turn, restarts the metaprogram and instructs the persistence engine

to restore its internal state. At this point the instruction that follows the 'display’

- 49 -

instruction can be executed without regard to the fact that the previous instructions
were executed by a different process, possibly on a different machine. In this particular
example, thefirst instruction in the restarted metaprogram is the test for the 'while'
statement. If the menu entry selected by the user happens to be a directory, the
programmable state machinewill change the current directory for the user and display
the HTML template again. The contents of the menu will now represent the contents
of the new current directory. Eventually, when the menu entry selected by the user
is not a directory?the test for the loop will fail and the metaprogram interpreter will

execute subsequent instructions.

In the interest of run-time efficiency, metaprograms are compiled prior to execu-
tion. The instructions generated by the compiler for the example metaprogram in
Figure 5.10 are shown in Figure 5.11. Each instruction in the compiled metaprogram
consists of multiplefields that are separated by two colons, as shown in the figure.
The number in thefirst field of any given instruction represents the byte offset of the
following instruction. When a metaprogram is stopped after executing an instruction
(e.g., display), this number represents the byte offset at which the metaprogram
should be restarted. The number in the second fidcl identifies the relative position of
the instruction in the metaprogram — it is used by the virtual machine to maintain a
program counter. Observe that the information conveyed by the first; and the second
fields is redundant - this allows the virtual machine to maintain correct operation in
the presence incorrect or missing access codes. The string in the third fidd represents
the name of the instruction; the set of valid strings is the instruction set supported
by the virtual machine. The semantics of the remaining fields depend on the type
of instruction. For example, in the case of the test instruction, the fourth and the
fifth fields represent the byte offset and the relative position o the instruction to be
executed if the result of the test is true; the sixth and the seventh fields contain the
address of the instruction to be executed if the test evaluates to either zero, false,
or undefined using the evaluation semantics of Perl5. The final field in the instruc-

tion contains the expression that is to be evaluated for the test. This expression is

- 50 -

27::1::set::<_myFileg>::/
59::2::retrievestate::directory

121::3::display::Pagel::/home/users/punch/templates/pagel.meta
167::4::test::167::5::277::8::-dir <_myFiles>
193::5::chdir::<_myFiles>
256::6::display::Pagel::/home/users/punch/templates/pagel.meta
277::7::goto::121::4

306::8::savestate: :directory

Fig. 5.11. The compiled version o the example metaprogram.

- 51 -

represented in the prefix notation, and is executed by way of a stack: machine.

The ability to start and stop metaprograms at will has several advantages. For
example, it allows the virtual desktop infrastructure to work within the framework
of the stateless world-wide web protocols. On the other hand, this ability makes
it necessary to specifically address information consistency issues. Given the time-
distributed nature of the execution process, it is possible that a metaprogram will
be updated and recompiled by an administrator before it has been completely exe-
cuted. In order to help detect the resulting information inconsistency, all compiled
rnetaprograms contain a sequence number that represent'sthe time of modification
of the source metaprogram file. This sequence number is encoded into the program
counter used to restart a metaprogram. During the startup procedure, the encoded
sequence number is compared to the one contained in the compiled metaprogram and
execution is aborted if the numbers do not match.?

"The programmable state machine handles all transactions that need to be in-
terpreted within a specified context (i.e., involve flow control). This includes tool
interface, dynamic information, and account creation transactions (see Table 5.1).
In order to optimize the response time for common types of transactions, a few
metaprograms are integrated into the programmable state machine module. Such
metaprograms can he executed more quickly because they do not incur any startup
overhead. On the other hand, integrated metaprograms cannot be updated without
modifying the programmable state machine module. Consequently, this optimization
is only useful for situations in which the metaprograms are not expected to change.
The integrated metaprograms handle entry page, input management, and output
management transactions associated with tool interface generation (see Table 5.3).
They also handle dynamic information links for which customization is limited to
simple variable substitution. Entry pages (see Figure 5.12) contain links to tool-

specific information (e.g., manuals) and to the metaprograms associated with input

3In principle, one could lock and/or copy metaprograms being executed. However, this does not
guarantee consistency because a metaprogram may reference other metaprograms that could also
have been modified.

_ 59 -

Table 5.3

Distribution of tool interface transactions.

Distribution of Tool Interface Transactions

Type of Transaction

Number of Transactions

Distribution in Percent

Entry Page 35,139 4.52
Input Management 287,861 37.01
Run Management 178,677 22.97

Output Management 276,118 35.50
Total 777,795 100.00

- 53 -

Fig. 5.12. The entry point to the PUNCH user interface for MINIMOS 6.0.

_ 54 -

management (Step 1 in the figure), run management (Step 2 in the figure), and
output management (Step 3 in thefigure). Input management and output manage-
ment transactions involve processing and manipulating input and output data files,
respectively. Run management transactions allow users to select input and output

files and directories, specify command-line arguments, and initiate runs.

The average response times of the PUNCH server for several common types o
transactions are shown in Table 5.4. In order to filter out the effects of the network,
the response times shown in the table were obtained with the client and the server
running on the same machine (a300MHz Ultra-4) and communicating via filehandles.
The responses generated by the PUNCH server for the specific transactions used to
obtain the results shown in Table 5.4 ranged in size from about one to three kilobytes.
Experiments (see Figure 5.4) show that, for the described setup and the given range
of data sizes, the differences in data transfer times are less than two milliseconds.
(Large differences and/or variations in data transfer times would adversely affect the

reliability of the results.)

Several conclusions can be drawn from the results in Table 5.4, the most obvious
one being that there is a significant time penalty associated with forking a process
in response to a (real-time) request. The response times associated with entry page,
input management, and output management transactions are about 20% lower than
the corresponding times for run management transactions. This improvement is the
result of using integrated metaprograms that do not incur any startup overhead. The
response times for static information transactions are included in the table because
they serve as a benchmark for the other results. Static information transactions that
access "public" documents involve no user-specific authentication or access control -
arequest of thistypeissimply mapped to a physical file which is then returned to the
client. Staticinformation transactions that access "private" documents are processed
in asimilar manner, except that they undergo the dynamic authentication and access
control procedures described in Section 4.1. The results in the table show that these

procedures add about five milliseconds to the time required to process a transaction.

PUNCH server response timesfor different types of transactions.

Table 5.4

Response Time (milliseconds)
Type of Transaction : :
No Preforking | With Preforking
Entry Page 60 27
“‘é Input Management 61 27
% Run Management 75 35
P Output Management 61 >7
Qo
% Publicly-Accessible URL 47 20
§ Access Control Enforced 53 24
Process Status 64 30
Dynamic Information 58 29

- 56 -

Finally, thelast two rowsin the table show the response times associated with process
status queries (with one active process) and dynamic information transactions (using

an integrated metaprogram) — these are largely included in the table for completeness.

5.10 Resource Negotiation

The resource negotiatzon module selects an appropriate managernent sub-system
for transactions that require a tool to be invoked. The selection process is based on
criteria that can be customized for specific sets of users and resource:,. In the current
implementation, administrators specify a prioritized list of management sub-systems
to contact for each class of users and resources; the resource negotiation modul e uses
this list to forward tool-invocation requests to the first system that is willing to serve
the request. Also, in order to distribute peak loads, the resource negotiation module
dynamically lowers the priority associated with a given management sub-system as
the number of pending requests associated with that system increase. Support for

QoS negotiation is not yet available.

_ 57

6. Conclusions

6.1 Conclusions

The desktop infrastructure described in this report serves as the front end for
PUNCH. It currently provides access to over thirty tools developed by eight univer-
sities and four vendors. The ideas and solutions presented in this report are based
on (andvalidated by) our experiences in scaling PUNCH from a research project to
a "live" system that is regularly used by several hundred students each semester.
Results from user-surveys indicate that the system performs well under the highly
peaxed usage patterns (very high usage in the hours before homeworks and projects
are due) characteristic of an academic environment.

The PUNCH infrastructure has been successfully applied to education, research,
and technology-transfer. PUNCH serves as the underlying distributed computing in-
frastructure for two collaborative efforts involving five universities: the integration
of design tools into new undergraduate and graduate curricula, and the Distributed
Center for Advanced Electronics Simulations (DESCARTES). PUNCH is also the
enabling infrastructure for a statewide Purdue University network-computing sys-
tem currently being deployed. Over the years, we have found PUNCH to be an
extremely useful resource for students and collaborators, and a highly flexible testbed

for network-computing research.

- 58 -

_ 59 _

List of References

[1] Christopher Adasiewicz. Exploratorium: User friendly science and engineering.

NCSA Access, 9(2):10-11, 1995.

[2] The Apache HTTP server project. WWW site at www.apache.org.

[3] Peter Arbenz, Walter Gander, and Michael Oettli. The Remote Computation

System. In High-Performance Computing and Networking (Lecture Notes in
Computer Science. 1067). Springer-Verlag, Berlin, 1996.

[4] Peter Arbenz, Walter Gander, and Michael Oettli. The Remote Computation

System. Parallel Computing, 23:1421-1428, 1997.

[5] T. Berners-Lee and D. Connolly. RFC 1866: Hypertext markup language - 2.0.

Internet Engineering Task Force (IETF) request for comments, November 1995.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext transfer

[

=1

(8]

[9]
[10]

[11]

[12
[13]

[14]

protocol - HTTP/1.0. Internet Engineering Task Force (IETF) request for com-
ments, May 1996.

N. Borenstein and N. Freed. RFC 1521: Mime (multipurpose internet mail
extensions) part one - mechanisms for specifying and describing the format of
internet message bodies. Internet Engineering Task Force (IETF) request for
comments, September 1993. Obsolete; see RFC 2045.

Broadway overview. www.camb.opengroup.org/tech/desktop/x/broadway.htm,
1996. Open Group Desktop Technologies.

X Window System Version 11 Release 6.3: Release Notes, 1996

X web white papers. Web Documents at www.broadwayinfo.corm/bwwhites.htm,
1997. Broadwayinfo.com.

Henri Casanova and Jack Dongarra. NetSolve: A network solver for solving com-
putational science problems. In Proceedings of the Supercomputing Conference,
1996. Also Technical Report #CS-95-313, University of Tennessee.

] 1CA positioning paper. WWW document at www.citrix.com/technology/, March

1996. Citrix Systems, Inc.

ICA technical paper. WWW document at www.citrix.com/technology/, March
1996. Citrix Systems, Inc.

David H. Crocker. RFC 822: Standard for the format of ARPA internet text
messages. Internet Engineering Task Force (IETF) request for comments, August
1982.

[15]

[16]

17]

[18]
[19]

[20]

[21]

[22]

[23]

- 60 -

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068 Hy-
pertext transfer protocol - HTTP/1.1. Internet Engineering Task Force (IETF)
request for comments, January 1997.

Roy T. Fielding and Gail Kaiser. The Apache HTTP server project. |EEE
Internet Computing, 1{4):88-90, July/August 1997.

N. Freed and N. Borenstein. RFC 2045: Multipurpose internet mail extensions
(mime?, part one - format of internet message bodies. Internet Engineering Task
Force (IETF) request for comments, November 1996.

Jeffrey E. F. Friedl. Mastering Reqular Expressions. O’Reilly & Associates, 1997.

lan Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure
environment for untrusted helper applications. Confining the wily hacker. In
Proceedings o the Sixth USENIX Security Symposium, San Jose, California, July
1996.

Nirav H. Kapadia, Carla E. Brodley, José A. B. Fortes, and Mark S. Lundstrom.
Resource-usage prediction for demand-based network-computing. In Proceed-
ings o the 1998 Workshop on Advances in Parallel and Disfributed Systems
(APADS), West Lafayette, Indiana, October 1998.

Nirav H. Kapadia and José A. B. Fortes. On the design of a demand-based
network-computing system: The Purdue University Network-Computing Hubs.
In Proceedings o the 7th IEEE International Symposium on High Performance
Distributed Computing (HPD(C’98), pages 71-80, Chicago, Illinois, July 1998.

Nirav H. Kapadia and Jose A. B. Fortes. PUNCH: An architecture for web-
enabled wide-area network-computing. Cluster Computing, 1999. To appear in
the special issue on High Performance Distributed Computing.

Nirav H. Kapadia, José A. B. Fortes. and Mark S. Lundstrom. The Semiconduc-
tor Simulation Hub: A network-based microelectronics simulation laboratory. In
Proceedings o the 12th Biennial University Government Industry Microelectron-
ics Symposium, pages 72-77, July 1997.

HTML 4.0 specification. World Wide Web Consortium (W3C) Recommendation,
April 1998. Availableat http://www.w3.0org/TR/1998 /REC-htm140-19980424/.

A. Reinefeld, R. Raraglia, T. Decker, J. Gehring, D. Laforenza, F. Ramme,
T. Romke, and J. Simon. The MOL project: An open, extensible metacomputer.
In Proceedings o the 1997 |EEE Heterogeneous Computing Workshop (HCW§7),
pages 17-31, 1997.

Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hop-
per. Virtual network computing. |EEE Internet Conzputing, 2(1):33-38, January-
February 1998.

Mitsuhisa Sato, Hidemoto Nakacla, Satoshi Sekiguchi, Satoshi Matsuoka, Umpei
Nagashima, and Hiromitsu Takagi. Ninf: A network based information library
for global world-wide computing infrastructure. In High-Performance Comput-
ing and Networking (Lecture Notes in Computer Science. 1225), pages 491-502.
Springer-Verlag, Berlin, 1997.

[28]

[29]

[30]

31]

- 61 -

S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. -Ninf-:
Network-based information library for globally high performance computing. In
Proceedings of Parallel Object-Oriented Methods and Applications (POOMA),
Santa Fe, February 1996.

Dan Souder, Morgan Herrington, Rajat P. Garg, and Dennis DeRyke. JSPICE:
A component-based distributed Javafront-end for SPICE. In Proceedings of the
1998 Workshop on Java for High-Performance Network Computing, 1998.

SSH 2.0 protocol specifications. Internet Engineering Task Force (IETF) drafts
available at http://info.internet.isi.edu/l /in-drafts.

Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly & Associates, 2nd edition, 1996.

	Purdue University
	Purdue e-Pubs
	1-1-1999

	THE NETWORK DESKTOP of THE PURDUE UNIVERSITY NETWORK COMPUTING HUBS
	Nirav H. Kapadia
	José A. B. Fortes

