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Abstract. We design a linearly homomorphic encryption scheme whose security relies on
the hardness of the decisional Diffie-Hellman problem. Our approach requires some special
features of the underlying group. In particular, its order is unknown and it contains a
subgroup in which the discrete logarithm problem is tractable. Therefore, our instantiation
holds in the class group of a non maximal order of an imaginary quadratic field. Its algebraic
structure makes it possible to obtain such a linearly homomorphic scheme whose message
space is the whole set of integers modulo a prime p and which supports an unbounded
number of additions modulo p from the ciphertexts. A notable difference with previous
works is that, for the first time, the security does not depend on the hardness of the
factorization of integers. As a consequence, under some conditions, the prime p can be
scaled to fit the application needs.

Keywords: Linearly Homomorphic Encryption, Orders of Quadratic Fields, Diffie-Hellman
Assumptions

1 Introduction

Encryption protocols insure confidentiality during information transmission. They are
the heart of any communication architecture. Their security has been formally defined
for long, and many efficient encryption schemes fulfill the strongest security requirement,
namely the indistinguishability of ciphertexts under an adaptive chosen message attack.
Roughly speaking, it means that an attacker will learn not even a single bit of a message,
given its encryption, even if he has access to a decryption oracle.

Paradoxically, a widely deployed kind of encryption scheme has an “algebraic” prop-
erty which precludes it to reach this highest level of security. It is called homomorphic,
because an operation on the ciphertexts translates into an operation on the underlying
plaintexts. It is well-known that such protocols cannot reach the highest level of security,
even though, this homomorphic property is actually very important for many applica-
tions, like e-voting for instance. Indeed, an additively homomorphic encryption makes it
possible to obtain an encryption of the sum of all the ballots (which consists in 0 or 1
in the case of a 2-choice referendum for instance) from their encryption, so that a single
decryption will reveal the result of the election, saving a lot of computational resources



which would have been necessary to decrypt all the ciphertexts one by one. Linearly ho-
momorphic encryption schemes have attracted a lot of attention because of their poten-
tial applications. A tremendous breakthrough related to homomorphic encryption was
Gentry’s theoretical construction of a fully homomorphic encryption scheme [Gen09],
which actually allows to evaluate any function on messages given their ciphertexts.

Currently, no linearly homomorphic encryption scheme is secure under a discrete
logarithm related assumption. This theoretical question has been open for thirty years.
In this paper, we provide the first construction of such a scheme.

Related Work. The story of homomorphic encryption begins with the first probabilis-
tic encryption scheme, which was also homomorphic, by Goldwasser and Micali from
[GM84], improved by Benaloh in his thesis [Ben88], then by Naccache and Stern in
[NS98] and Okamoto and Uchiyama [OU98]. One of the most achieved system was actu-
ally designed by Paillier [Pai99]. Its semantic security relies on the decisional composite
residuosity assumption. Paillier’s scheme has then been generalized by Damg̊ard and
Jurik [DJ01], allowing to encrypt larger messages. This family of practical linearly ho-
momorphic schemes is still growing with the recent work of Joye and Libert [JL13]. The
security of these schemes is based on the problem of factoring RSA integers (including
the elliptic curve variant of Paillier [Gal02]).

To design a linearly homomorphic encryption based on the Discrete Logarithm prob-
lem (DL), a folklore solution consists in encoding the message in the exponent of an
Elgamal encryption, i.e., in encrypting m as (gr, hrgm) where g is a generator of a cyclic
group G = 〈g〉 and h = gx is the public key. Unfortunately, to decrypt, one has to recover
m from gm and as the DL problem in G must be intractable, m has to be small enough to
ensure a fast decryption. As a result, only a logarithmic number of additions is possible.
There have been some attempts to reach a fully additive homomorphy based on the DL
problem, with a variant of Elgamal modulo p2 ([CPP06]) or with messages encoded as
a small smooth number ([CC07]); both solutions still have a partial homomorphy. In
[W+11], the map m 7→ gm0 mod p0 is used with the plain Elgamal, where p0 is a prime
such that p0−1 is smooth and g0 is a primitive root modulo p0. Unfortunately, although
not clearly stated, this scheme only supports a limited number of additions, and it is not
semantically secure as the set of encoded messages does not belong to a proper subgroup
of (Z/pZ)× where the Decisional Diffie-Hellman assumption (DDH) holds.

A full solution has been proposed by Bresson et al. in [BCP03]. However, their scheme
is not only based on the DL problem but also on the factorization problem. It is less
efficient than [Pai99] but has an additional property: it has a double trapdoor. The idea
is to use the same setting as Paillier: In (Z/N2Z)×, the DL problem in basis f = 1+N is
easy. Bresson et al. use an Elgamal encryption of the message m as (gr, fm · hr) modulo
N2, where N is an RSA integer.

To our knowledge, designing a linearly homomorphic scheme based on the sole hard-
ness of the DL problem is an open problem, as stated in [CPP06]. Some other schemes
allow more homomorphic operations, like [BGN05] or [CL12]. As already mentioned,
a fully homomorphic encryption (FHE) scheme appeared in 2009 [Gen09]. Its security
relies on hard problems related to lattices. The latest developments of FHE [BV14] are
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getting more and more efficient and might become operational soon for applications that
need a complex treatment over ciphertexts. Meanwhile, for applications that need only
to add ciphertexts, protocols that rely on “classical” algorithmic assumptions are still
more competitive, in particular in terms of compactness.

Our Contributions. Our contribution has both a theoretical and a practical impact. On
one hand, we propose a linearly homomorphic encryption scheme whose security relies
on the hardness of the decisional Diffie-Hellman problem. In particular it is the first time
that the security of such a scheme does not depend on the hardness of the factorization of
integers. On the other hand, we provide an efficient implementation within some specific
group, namely the class group of orders in imaginary quadratic fields.

The design of our scheme is somehow similar to the one of [BCP03]. We use a group
G = 〈g〉 such that the DDH assumption holds in G and such that there exists a subgroup
〈f〉 of G where the DL problem is easy (called a DDH group with an easy DL subgroup).
Then the core of the protocol is an Elgamal encryption of the message m as (gr, fm ·hr)
for a random r. In our case, the message space will be (Z/pZ)∗, where p is a prime.
Compared to some other linearly homomorphic schemes, ours allows some flexibility as
p can be chosen (with some restrictions) independently from the security parameter.

To reach this unnatural feature without involving the factorization problem, we had
to use the particular algebraic structure of class groups of imaginary quadratic fields,
which have some specificities which seem hard to find in other groups. We designed
a method to compute a group of unknown3 order (to insure the hardness of a partial
discrete logarithm assumption) which contains an easy DL subgroup (of known order).
The interest of class group of orders in imaginary (or real) quadratic fields in cryptogra-
phy decreased after critical attacks by Castagnos et al. [CL09,CJLN09] on some specific
cryptosystems such as NICE [HPT99,PT00] and its real variant [JSW08]. These attacks
will not apply in our setting. Indeed, these attacks recover the secret key by exposing
the factorization of the discriminant of the field, thanks to the structure of the kernel
of the surjection between the class group of a non maximal order to the class group
of the maximal order. In our case, the factorization of the discriminant will be public
and we will use constructively the ideas of [CL09]: the subgroup with an easy DL will
be precisely the kernel of this surjection. The security of our scheme is proved to rely
only on the hardness of the DDH problem in the class group of a non maximal order
and on the hardness of computing class numbers. Several systems that adapt either
Diffie-Hellman or Elgamal in class groups are already based on the DL problem and the
DDH assumption in class groups of maximal order ([BW88,BDW90,SP05,BH01,BV07])
of discriminant ∆K . The current best known algorithms to solve these problems have a
sub-exponential complexity of complexity L|∆K |(1/2, o(1)) (cf. [BJS10]). It means that
the factorization problem (or the discrete logarithm problem in a finite field) can be
solved asymptotically faster than the discrete logarithm in the class group.4 Moreover,

3 Using groups of unknown order in cryptography has already been done [Bre00,CHN99,DF02]
4 Note that it is well known (see [HM00] for instance) that computing the class number of a quadratic

field of discriminant ∆ allows to factor ∆ . However for our scheme, the factorization of the discrim-
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arithmetic operations in class groups are very efficient, since the reduction and compo-
sition of quadratic forms have a quadratic time complexity (and even quasi linear using
fast arithmetic).

As a result, our scheme is very competitive. With a straightforward implementation
and using an underlying arithmetics very favorable to [Pai99,BCP03], it compares very
well with these linearly homomorphic protocols. With a similar level of security, it is
faster than [BCP03] with a 2048 bits modulus, and the decryption process is faster than
Paillier’s for a 3072 bits modulus.

A very nice application of our protocol is that it can be used directly in Catalano and
Fiore’s linearly homomorphic encryption transformation to evaluate degree-2 computa-
tions on ciphertexts [CF14]. Their technique requires the message space to be a public
ring in which it is possible to sample elements uniformly at random. Our scheme has
this feature naturally, contrary to some of the other additively homomorphic schemes.
It is therefore a very competitive candidate in 2-server delegation of computation over
encrypted data (see [CF14] for more details).

The rest of the paper is organized as follows. In Section 2, we formalize the notion
of DDH Group with an Easy DL Subgroup, give reductions between related problems
and propose a generic construction of a linearly homomorphic encryption scheme which
relies on such group, and prove its security. Sections 3 and 4 present our instantiation
in class groups. We give benchmarks and comparisons before concluding. Background
on linearly homomorphic encryption can be found in Appendix A. Background on class
groups of imaginary quadratic fields and their use for DL based cryptography are given
in Appendix B.

2 DDH Group with an Easy DL Subgroup

In this section, we introduce and formalize the concept of a group in which the decisional
Diffie-Hellman problem is hard, whereas it contains a subgroup in which the discrete
logarithm problem is easy. This problem has already been used to design cryptosystems,
including, for instance, Bresson et al.’s encryption scheme [BCP03]. It will be adjusted
to build our new encryption protocol.

2.1 Definitions and Reductions

Definition 1. We define a DDH group with an easy DL subgroup as a pair of algorithms
(Gen, Solve). The Gen algorithm is a group generator which takes as input two parameters
λ and µ and outputs a tuple (B,n, p, s, g, f,G, F ). The integers B,n, p and s are such that
s is a λ-bit integer, p is a µ-bit integer, gcd(p, s) = 1, n = p · s and B is an upper bound
for s. The set (G, ·) is a cyclic group of order n generated by g, and F ⊂ G is the subgroup
of G of order p and f is a generator of F . The upper bound B is chosen such that the

distribution induced by {gr, r $←− {0, . . . , Bp − 1}} is statistically indistinguishable from

inant ∆ will be public or ∆ will be a prime, so we will not rely on the hardness of the factorization
problem.
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the uniform distribution on G. We assume that the canonical surjection π : G → G/F
is efficiently computable from the description of G,H and p and that given an element
h ∈ G/F one can efficiently lift h in G, i.e., compute an element h` ∈ π−1(h).

We suppose moreover that:

1. The DL problem is easy in F . The Solve algorithm is a deterministic polynomial time
algorithm that solves the discrete logarithm problem in F :

Pr
[
x = x? : (B,n, p, s, g, f,G, F )

$←− Gen(1λ, 1µ), x
$←− Z/pZ, X = fx,

x? ← Solve(B, p, g, f,G, F,X)
]

= 1

2. The DDH problem is hard in G even with access to the Solve algorithm:∣∣∣∣Pr
[
b = b? : (B,n, p, s, g, f,G, F )

$←− Gen(1λ, 1µ), x, y, z
$←− Z/nZ, X = gx, Y = gy,

b
$←− {0, 1}, Z0 = gz, Z1 = gxy, b?

$←− A(B, p, g, f,G, F,X, Y, Zb,Solve(.))
]
− 1

2

∣∣∣∣
is negligible for all probabilistic polynomial time attacker A.

The bound B for the order s in Definition 1 can be chosen as B = 22λ. Indeed,

according to Lemma 4 in Appendix C, the statistical distance of {gr, r $←− {0, . . . , Bp−1}}
to the uniform distribution is upper bounded by n/(4pB) = s/22λ+2 6 2−λ−2 which a
negligible function of λ.

It is fundamental to note that in this definition, the order n of the group G is not
an input of the adversary or of the Solve algorithm: Only the bound Bp is implicitly
given. Indeed, if n or s were efficiently computable from the description of G, a DDH
group with an easy DL subgroup would not exist since it would be possible to partially
compute discrete logarithms. More formally, let us define the following partial discrete
logarithm problem initially introduced by Paillier in [Pai99], in the context of the group
(Z/N2Z)×.

Definition 2 (Partial Discrete Logarithm (PDL) Problem). Let (Gen, Solve) be

a DDH group with an easy DL subgroup. Let (B,n, p, s, g, f,G, F )
$←− Gen(1λ, 1µ), x

$←−
Z/nZ, X = gx. The Partial Discrete Logarithm Problem consists in computing x modulo
p; given (B, p, g, f,G, F,X) and access to the Solve algorithm.

Lemma 1. Let (Gen,Solve) be a DDH group with an easy DL subgroup and let the tuple
(B,n, p, s, g, f,G, F ) be an output of Gen(1λ, 1µ). The knowledge of n makes the PDL
problem easy.

Proof. If an adversary is given an instance (B, p, g, f,G, F,X) of the PDL problem, as
well as n, he can compute s = n/p and then for all h ∈ G, hs lies in F . The adversary
can run the Solve algorithm with gs as input to find α ∈ Z/pZ such that gs = fα. Note
that α 6≡ 0 (mod p) as g has order n. Thanks to another run of the Solve algorithm with
Xs as input, the adversary obtains β ∈ Z/pZ such that Xs = gsx = fβ. Eventually, he
computes x ≡ βα−1 (mod p). ut
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Lemma 2. Let G be a DDH group with an easy DL subgroup. The DDH problem in G
reduces to the PDL problem.

Proof. Let (B, p, g, f,G, F,X, Y, Z) be an instance of the DDH problem in G. Three
queries to the PDL oracle respectively on (B, p, g, f,G, F,X), (B, p, g, f,G, F, Y ) and
(B, p, g, f,G, F, Z), gives the adversary x, y and z modulo p. His answer to the DDH
instance will be 1 if and only if xy ≡ z (mod p). Indeed, if (X,Y, Z) is a true DDH triple
then xy ≡ z (mod n) and he always finds the right answer. Conversely, if (X,Y, Z) is
not a DDH triple, xy 6≡ z (mod n), and then the adversary fails to correctly responds if
xy ≡ z (mod p). But this happens with probability 1/p. As a result, we have sketched
a probabilistic polynomial time adversary against DDH with a non negligible advantage
equals to 1

2(1− 1
p). ut

Remark 1. Combining Lemmas 1 and 2 we get that as previously mentioned, with the
notation of Definition 1, if n is easily computable from the description of G, then the
DDH problem in G is easy so, G can not be a DDH group with an easy DL subgroup.

The following problem was introduced in [BCP03] in (Z/N2Z)×. It is a variant of
the computational Diffie-Hellman problem, that we adapt to our general context.

Definition 3 (Lift Diffie-Hellman (LDH) Problem). Let (Gen,Solve) be a DDH

group with an easy DL subgroup. Let (B,n, p, s, g, f,G, F )
$←− Gen(1λ, 1µ). Let x, y

$←−
Z/nZ, X = gx, Y = gy and Z = gxy and π : G → G/F be the canonical surjec-
tion. The Lift Discrete Logarithm Problem consists in computing Z, given the tuple
(B, p, g, f,G, F,X, Y, π(Z)) and access to the Solve algorithm.

In the following theorem we prove that this problem is equivalent to the PDL problem.
Curiously only one implication was proved in [BCP03].

Theorem 1. In a DDH group with an easy DL subgroup, the LDH and PDL are equiv-
alent.

Proof. In all the proof, we implicitly set s = n/p and α ∈ (Z/pZ)× such that gs = fα

and denote β ≡ α−1 (mod p). Let us first prove that the PDL problem reduces to the
LDH problem, which is a direct generalization of the proof of [BCP03, Theorem 10].
Let (B, p, g, f,G, F,X) be a PDL challenge and let denote X = gx where x = x1 + x2p

with x1 = x mod p. The adversary draws r1
$←− {0, . . . , B − 1}, r2

$←− {0, . . . , p− 1} and
sets Y = gr1f r2 . Note that Y = gr1+sβr2 . Let us prove that the random variable Y is
statistically indistinguishable from the uniform distribution in G.

The distance between Y and the uniform distribution in G is the same than the
distance between Y ′ = r1 + sβr2 mod n with r1 uniformly drawn in {0, . . . , B − 1}
and r2 independently uniformly drawn in {0, . . . , p − 1} and the uniform distribution
in {0, . . . , n − 1}. Let y be an element of {0, . . . , n − 1}, we denote y = y1 + y2s with
y1 ∈ {0, . . . , s− 1} and y2 ∈ {0, . . . , p− 1} the euclidean division of y by s. We have

Pr[Y ′ = y] = Pr[Y ′ = y1 + y2s] = Pr[r1 + sβr2 ≡ y1 + y2s (mod n)] =
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Pr[r1 ≡ y1 (mod s)] Pr[r2β ≡ y2 (mod p)] = Pr[r1 ≡ y1 (mod s)]/p

as β 6≡ 0 (mod p). Now let B = qs + r with 0 6 r < s be the euclidean division of B
by s. We proceed as in the proof of Lemma 4 in Appendix C. For y1 < r, Pr[r1 ≡ y1

(mod s)] = (q + 1)/B > 1
s and for y1 > r, Pr[r1 ≡ y1 (mod s)] = q/B 6 1

s . Eventually,

∆(X,Y ) = r

(
q + 1

Bp
− 1

n

)
=
r(s− r)
Bn

=
r(n− pr)
pBn

6
r(n− r)
pBn

·

This last quantity is the statistical distance of {gr, r $←− {0, . . . , Bp− 1}} to the uniform
distribution in G which is suppose to be negligible. This proves that Y is statistically
indistinguishable from the uniform distribution in G.

The adversary then compute Z ′ = π(Xr1) = π(Xr1+sβr2) and queries the LDH oracle
with (B, p, g, f,G, F,X, Y, Z ′). The oracle provides with non negligible probability

Z = Xr1+sβr2 = Xr1(gx)sβr2 = Xr1g(x1+x2p)(sβr2) = Xr1gx1sβr2 = Xr1fx1r2 .

Then, Z/Xr1 = fx1r2 and running the Solve algorithm on this value gives x1r2 (mod p)
to the adversary from which he can get x1, the answer to the PDL instance.

Now, let us prove that the LDH problem reduces to the PDL problem. Let us consider
X = gx, Y = gy, Z = gxy for random x and y, such that the LDH challenge writes as
(B, p, g, f,G, F,X, Y, Z ′ = π(Z)). The adversary makes two queries to the PDL oracle
relative to X and Y , from which he obtains x (mod p) and y (mod p). The adversary

draws r1
$←− {0, . . . B−1} and r2

$←− {0, . . . , p−1} and sets U = gr1f r2 , which is as before
statistically indistinguishable from the uniform distribution in G. The adversary queries
the PDL oracle with U , which gives r1 + sβr2 (mod p) as U = gr1+sβr2 . From this
answer, the adversary can compute sβ (mod p). From the definition of a DDH group
with an easy DL subgroup, the adversary can compute Z ′` ∈ π−1(Z ′). He then draws

r
$←− Z/pZ and computes V = f rZ ′`. The random variable V is uniformly distributed in

G. As π(V ) = Z ′ = π(Z), there exists γ ∈ Z/pZ such that V = fγZ = gsβγ+xy. From a
last call to the PDL oracle, the adversary can get sβγ + xy (mod p) from which he can
compute γ since gcd(sβ, p) = 1. Eventually, the adversary deduces Z from V = fγZ. ut

We now further analyze the relations between the problems in G/F and G. We first
give a lemma that shows that we can define a morphism in order to lift the elements
from G/F to G.

Lemma 3. Let (B,n, p, s, g, f,G, F )
$←− Gen(1λ, 1µ) where (Gen, Solve) is a DDH group

with an easy DL subgroup. Denote π : G → G/F the canonical surjection. The map
ψ : G/F → G s.t. h 7→ hp` , where h` ∈ π−1(h), is an effective injective morphism.

Proof. First ψ is well defined: if h
(1)
` , h

(2)
` ∈ π−1(h) are two distinct pre-images of h

then there exists an element f r ∈ F such that h
(1)
` = f rh

(2)
` , and (h

(1)
` )p = (h

(2)
` )p as

F is of order p. Moreover it is easy to see that ψ is a morphism. Consider h in G/F
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such that ψ(h) = hp` = 1 in G, with h` ∈ π−1(h). Applying π gives π(h`)
p = hp = 1.

As G/F is of order s prime to p then h = 1, so the map is injective. Eventually, ψ is
efficiently computable as computing h` is easy by definition of a DDH group with an
easy DL subgroup. ut

Theorem 2. Let (B,n, p, s, g, f,G, F )
$←− Gen(1λ, 1µ) where (Gen, Solve) is a DDH group

with an easy DL subgroup. The DL problem in G/F reduces to the DL problem in G.

Proof. Consider a DL problem instance in G/F : Let h = gx where g is a generator of

G/F of order s and x
$←− Z/sZ. The adversary chooses r, r′

$←− (Z/pZ)× and computes
g` = ψ(g)f r and h` = ψ(h)f r

′
where the map ψ is defined in Lemma 3. The element

ψ(g) has order s as ψ is injective and f r has order p. As gcd(p, s) = 1, g` has order ps
and is a generator of G. Moreover, G can be viewed as the direct product ψ(G/F )× F .
The element h is uniformly distributed in G/F , f r

′
is uniformly distributed in F so h` =

ψ(h)f r
′

is uniformly distributed in G. As a consequence, an oracle for the DL problem
in G gives x` such that gx`` = h` to the adversary with a non negligible advantage. He

then has gx`` = ψ(g)x`f rx` = h` = ψ(h)f r
′
. By the uniqueness of the decomposition of

an element of G in a product of an element of ψ(G/F ) and an element of F , and because
ψ is injective, we must have gx` = h and therefore x` ≡ x (mod s). ut

Unfortunately, it seems unlikely that a similar reduction of the DDH problem in
G/F to the DDH problem in G exists. Indeed, a DDH challenge in G/F can be lifted
into ψ(G/F ) ⊂ G. But G = ψ(G/F )×F , so the reduction has to fill the F−part to keep
the DDH challenge’s form. This seems impossible with a non-negligeable advantage.

2.2 Examples

Let G be the group of quadratic residues modulo N2 where N = (2p′+ 1)(2q′+ 1) is the
product of two safe primes. In this case, the order of G is Np′q′. The subgroup H of order
N of G is generated by 1 +N , and since (1 +N)k ≡ 1 + kN (mod N2), the DL problem
is easy in H (cf. [Pai99]). If the factorization of N is known, then DDH problem in G can
not be hard (cf. Remark 1). This inspired [BCP03, Theorem 4] where the factorization
acts as a second trapdoor to an Elgamal-like protocol in G. A generalization of this
protocol is given in the next subsection.

Now, let G be the group of quadratic residues modulo p2 where p = 2p′ + 1 is a
safe prime. In this case, the DL problem is easy in the subgroup of order p generated by
1 + p. The order of G is pp′ and it can not be hidden from the description of G (i.e., the
integer p2). As a result, the PDL and DDH problems are easy. In [CPP06], the partial
logarithm of an element is called the class of an element. They define a variant of the
DDH problem, namely the Decision Class Diffie-Hellman problem, which is believed to
be intractable in such a group G. From that problem, [CPP06] derived a modification of
Elgamal which, unfortunately, is partially homomorphic: it only supports the addition
of a constant.
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2.3 A Generic Linearly Homomorphic Encryption Scheme

From a DDH group with an easy DL subgroup, we can devise generically a linearly
homomorphic encryption scheme. An Elgamal type scheme is used in G, with plaintext
message m ∈ Z/pZ mapped to fm ∈ F . The resulted scheme is linearly homomorphic.
Thanks to the Solve algorithm, the decryption does not need a complex DL computation.
We depict this scheme in Fig. 1. Note that the outputs n and s of Gen are not used in
the algorithms.

Algorithm KeyGen(1λ)

1. (B,n, p, s, g, f,G, F )
$←− Gen(1λ, 1µ)

2. Picka x
$←− {0, . . . , Bp− 1} and set h← gx

3. Set pk ← (B, p, g, h, f) and sk ← x.
4. Return (pk, sk)

Algorithm Encrypt(1λ, pk,m)

1. Pick r
$←− {0, . . . , Bp− 1}

2. Compute c1 ← gr

3. Compute c2 ← fmhr

4. Return (c1, c2)

a As n will be unknown in the sequel, x is picked at
random in {0, . . . , Bp− 1}

Algorithm Decrypt(1λ, pk, sk, (c1, c2))

1. Compute M ← c2/c
x
1

2. m← Solve(p, g, f,G, F,M)
3. Return m

Algorithm EvalSum(1λ, pk, (c1, c2), (c′1, c
′
2))

1. Compute c′′1 ← c1c
′
1 and c′′2 ← c2c

′
2

2. Pick r
$←− {0, . . . , Bp− 1}

3. Return (c′′1g
r, c′′2h

r)

Algorithm EvalScal(1λ, pk, (c1, c2), α)

1. Compute c′1 ← cα1 and c′2 ← cα2

2. Pick r
$←− {0, . . . , Bp− 1}

3. Return (c′1g
r, c′2h

r)

Fig. 1. A generic linearly homomorphic encryption scheme

Let us prove the homomorphic property of the scheme. Let us consider an output of
the EvalSum algorithm on an input corresponding to encryptions of m and m′. Due to
Elgamal’s multiplicativity, the first line of the decryption algorithm applied on this out-
put gives M = fmfm

′
= fm+m′ mod p as f as multiplicative order p. As a consequence,

the decryption process indeed returns m+m′ mod p, and the EvalSum algorithm gives a
random encryption of m+m′ (mod p) (in the sense that it has the same output distribu-
tion than the encryption algorithm on the input m+m′ (mod p)). The same argument
works for the EvalScal algorithm, with any scalar α ∈ Z/pZ.

2.4 Security

The total break of our scheme (tb− cpa attack) consists in finding x from (B, p, g, gx, f),
i.e., in computing a discrete logarithm in G. From Theorem 2, this is harder than com-
puting a discrete logarithm in G/F .

Theorem 3. The scheme described in Fig. 1 is one-way under chosen plaintext attack
(ow − cpa) if and only if the Lift Diffie-Hellman (LDH) problem is hard (so if and only
if the partial discrete logarithm problem (PDL) is hard).

9



Proof. From the equivalence of Theorem 1, it suffices to prove the equivalence between
the ow − cpa security and the hardness of the LDH problem. Let us consider (c1, c2) =
(gr, fmhr), a ciphertext with the public key h = gx. Then as π(c2) = π(hr) = π(gxr), the
triplet (h, c1, π(c2)) is an LDH challenge. Given a LDH oracle, we obtain Z = gxr = hr

and recover m by running Solve on c2/Z.
Conversely let (X,Y, Z ′) = (gx, gy, π(Z)) be an LDH challenge with Z = gxy. From

this triplet, one can set X as public key and construct the ciphertext (c1, c2) = (Y, f rZ ′`)
where Z ′` ∈ π−1(Z ′) and r is a random element of Z/pZ. As π(c2) = Z ′ = π(Z), one
as c2 = fmZ for an element m ∈ Z/pZ. As a result, (c1, c2) is a correct ciphertext of
m, and a decryption oracle would respond m from which we can compute c2/f

m and
recover Z.

Theorem 4. The scheme described in Fig. 1 is semantically secure under chosen plain-
text attacks (ind − cpa) if and only the decisional Diffie-Hellman problem is hard in
G.

Proof. Let’s construct a reduction R that solve the DDH assumption using an efficient
ind − cpa adversary A. R takes as input a DDH instance (B, p, g, f,G, F,X, Y, Z) and
sets pk = (B, p, g,X, f). When A requests an encryption of one of his choice of challenge
messages m0 and m1, R flips a bit b encrypts mb as (Y, fmbZ) and sends this ciphertext
as its answer to A. If Z was not a random element, this ciphertext would be indistin-
guishable from a true encryption of mb because of the choice of the bound B, and A
will correctly answer with its (non-negligeable) advantage ε. Otherwise, the encryption
is independent of the message and A’s advantage to distinguish is 1/2. Therefore, the
reduction returns one if and only A correctly guessed b and has advantage ε/2 to solve
the DDH assumption. ut

3 A Linearly Homomorphic Encryption from DDH

We prove that, somewhat like in Paillier’s encryption scheme [Pai99] within Z/N2Z, a
subgroup with an easy discrete logarithm problem exists in class groups of imaginary
quadratic fields, and it allows to design a new linearly homomorphic encryption scheme.
We refer the reader to Appendix B for background on class groups of imaginary quadratic
fields and their use in Discrete Logarithm based cryptography.

3.1 A Subgroup with an Easy DL Problem

The next proposition, inspired by [CL09, Theorem 2], establish the existence of a sub-
group of a class group of an imaginary quadratic fields where the DL problem is easy.

Proposition 1. Let ∆K be a fundamental discriminant with ∆K ≡ 1 (mod 4) of the
form ∆K = −pq where p is an odd prime and q a non-negative integer prime to p such
that q > 4p. Let f = (p2, p) be an ideal of O∆p, the order of discriminant ∆p = ∆Kp

2.
Denote by f = [f] the class of f in C(O∆p). For m ∈ {1, . . . , p−1}, Red(fm) = (p2, L(m)p)
where L(m) is the odd integer in [−p, p] such that L(m) ≡ 1/m (mod p). Moreover, f
is a generator of the subgroup of order p of C(O∆p).

10



Proof. We consider the surjection ϕ̄p : C(O∆p) −→ C(O∆K ). From [CL09, Lemma
1] and [Cox99, Proposition 7.22 and Theorem 7.24], the kernel of ϕ̄p is isomorphic
to (O∆K/pO∆K )×/(Z/pZ)×. As p | ∆K , the group (O∆K/pO∆K )× is isomorphic to
(Fp[X]/(X2))×. This group contains p(p− 1) elements of the form a+ b

√
∆K where a ∈

(Z/pZ)× and b ∈ Z/pZ. Now let us consider the quotient group (O∆K/pO∆K )×/(Z/pZ)×

where [x] = [y] with x, y ∈ (O∆K/pO∆K )× if and only if there exists λ ∈ (Z/pZ)×

such that x = λy. This quotient is cyclic of order p and a system of representatives
is [1] and [a +

√
∆K ] where a is an element of (Z/pZ)×. Let g = [1 +

√
∆K ], one has

gm = [1 +m
√
∆K ] = [L(m) +

√
∆K ] for all m ∈ {1, . . . , p− 1} and gp = [1].

Let αm = L(m)+
√
∆K

2 ∈ O∆K . Then αm is a representative of the class gm. The ele-
ment gm maps to the class [ϕ−1

p (αmO∆K )] of the kernel of ϕ̄p. From [BTW95, Proposition
2.9], one can see that αmO∆K = (N(αm),−L(m) mod 2N(αm)) where the remainder
is computed from the centered euclidean division. Now,

ϕ−1
p (αmO∆K ) = (N(αm),−L(m)p mod 2N(αm)) .

As N(αm) = L(m)2−∆K
4 and q > 4p, it follows that p2 < N(αm) and that −L(m)p

mod 2N(αm) = −L(m)p. As a consequence, this ideal ϕ−1
p (αmO∆K ) corresponds to

the quadratic form
(
L(m)2−∆K

4 ,−L(m)p, p2
)
, of discriminant ∆p. Moreover this form is

equivalent to the form (p2, L(m)p, L(m)2−∆K
4 ) which corresponds to the ideal (p2, L(m)p).

Eventually, this ideal of O∆p is reduced as |L(m)p| < p2 <
√
|∆p|/2, where the second

inequality holds because q > 4p. Consequently, if f = (p2, p), then [f] generates the kernel
of ϕ̄p as [f] = [ϕ−1

p (α1O∆K )]. Moreover, [f]m = [ϕ−1(αmO∆K )] so Red([f]m) = (p2, L(m)p),
for m ∈ {1, . . . , p− 1}. ut

We devise, in Fig. 2, a new DDH group with an easy DL subgroup in class groups
of imaginary quadratic fields, by assuming the difficulty of the DDH problem. In the
Gen algorithm, we first construct a fundamental discriminant ∆K = −pq such that the
2-Sylow subgroup of C(∆K) is of order 2 (cf. Appendix B.3). Then, using [HJPT98,
Subsection 3.1]’s method, we construct an ideal r of O∆K of norm r, where r is a prime

satisfying
(
∆K
r

)
= 1. We then assume, as in the previous implementations of Elgamal

(cf. Appendix B.4) that the class [r2] will be of order s, an integer of the same order
of magnitude than the odd part, h(∆K)/2. Due to our choice of p and q, pq is 2λ-bit
integer, and as s is close to

√
|∆K | (cf. Appendix B.3), it will be a λ-bit integer.

If µ > 80, following the Cohen-Lenstra heuristics, the probability that p divides
h(∆K) and s is negligible. Therefore, we can assume that gcd(p, h(∆K)) = 1. We consider
the non-maximal order O∆p of discriminant p2∆K as in Proposition 1. The fact that
λ > µ+ 2 ensures that q > 4p. As a result, the subgroup F generated by f gives an easy
DL subgroup. The morphism ϕ̄p defined in Appendix B.1 plays the role of the surjection
π between C(O∆p) and C(O∆p)/F ' C(O∆K ), which is computable in polynomial time,
knowing p (cf. [HJPT98, Algorithm 3]). Moreover, still with the knowledge of p, it is
possible to lift elements of C(O∆K ) in C(O∆p), using [HPT99, Algorithm 2]. We can
then apply the injective morphism of Lemma 3 on [r2] to get a class of C(∆p) with the

11



same order s and multiply this class by fk where k
$←− {1, p − 1}. As gcd(p, s) = 1 the

result, g is of order ps (this procedure to get an element of order ps was also used in the
proof of Theorem 2). Note that g is still a square of C(∆p): as the map of Lemma 3 is
a morphism, the lift of [r2] gives a square of C(∆p). Moreover, F is a subgroup of the

squares: f = (f2−1 mod p)2 as p is odd. As a consequence, g is a square as it is a product
of two squares.

Eventually, we take B = d|∆K |3/4e. According to Lemma 4 in Appendix C, the

statistical distance of {gr, r $←− {0, . . . , Bp − 1}} to the uniform distribution is upper
bounded by ps/(4pB) = s/(4d|∆K |3/4e). By Equation 1 in Appendix B.3 , this is less

than log |∆K |
4πd|∆K |1/4e

∈ Õ(2−λ/2) which is a negligible function of λ. As a consequence, the

distribution {gr, r $←− {0, . . . , Bp− 1}} is statistically indistinguishable from the uniform
distribution in G = 〈g〉. In practice, for performance issue, one can take a better bound
for B, for example B = 280dlog(|∆K |)|∆K |1/2/(4π)e, which makes the statistical distance
less than 2−80.

Algorithm Gen(1λ, 1µ)

1. Assume λ > µ+ 2
2. Pick p a random µ-bits prime and q a random (2λ−µ)

prime such that pq ≡ −1 (mod 4) and (p/q) = −1.
3. Set ∆K ← −pq and ∆p ← p2∆K .
4. Set f ← [(p2, p)] in C(∆p) and F = 〈f〉
5. Let r be a small prime, with r 6= p and

(
∆K
r

)
= 1

and set r an ideal lying above r.

6. Let k
$←− {1, p−1} and set g ← [ϕ−1

p (r2)]pfk in C(∆p)
and G← 〈g〉

7. Let B ← d|∆K |3/4e
8. Return (B, ∅, p, ∅, g, f,G, F )

Algorithm Solve(B, p, g, f,G, F,X)

1. Parse Red(X) as (p2, x̃p)
2. If fails return ⊥
3. Else return x̃−1 (mod p)

Fig. 2. A new DDH Group with an Easy DL Subgroup

3.2 The new protocol

The DDH group with an easy DL subgroup of Fig. 2 gives rise to a linearly homomorphic
encryption scheme in quadratic fields, using the generic construction of Fig. 1. Compared
to previous solutions based on a similar construction ([BCP03]), this scheme is only based
on the difficulty of the discrete logarithm in G, and does not rely on the difficulty of
factorization.

In practice, the best attack against the scheme consists in retrieving the private key,
i.e., in computing a discrete logarithm. As said in Appendix B.3, the problems of com-
puting discrete logarithm in C(O∆K ) and computing h(O∆K ) have similar complexity.
Given oracle for both problems, one can compute discrete logarithm in C(O∆p) and
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totally break the scheme. Indeed, if s = h(O∆K ), given g and h = gx, we can com-
pute ϕ̄p(g) and ϕ̄p(h) = ϕ̄p(g)x mod s. The oracle for discrete logarithm in C(O∆K ) gives
x mod s. Furthermore, as shown in Lemma 1, if s is known the PDL problem is easy,
so one can compute x mod p and we get x as gcd(p, s) = 1 with the Chinese remainder
theorem. Moreover, finding h(O∆K ) or the multiplicative order of g can be sufficient:
knowing s = h(O∆K ) breaks the PDL problem (cf. Lemma 1) and the one wayness of
the scheme by Theorem 3.

4 Extensions

4.1 Removing the Condition on the Relative Size of p and q

To have a polynomial Solve algorithm, we impose that q > 4p, in order that the reduced
elements of 〈f〉 are the ideals of norm p2. If we want a large message space, for example
2048 bits (as for the cryptosystem of Paillier or the scheme of [BCP03] with a 2048 bit
RSA integer), this means that p has 2048 bits, so |∆p| = p3q > 4p4 has more than 8194
bits and |∆K | = pq > 4p2 has more than 4098 bits. Therefore we loose our advantage
over factoring based schemes, as we only need a discriminant ∆K of 1348 bits to have
the same security than a 2048 bit RSA integer (cf. Appendix B.3).

For example, suppose that we work with ∆K = −p. In the order O∆p of discriminant
∆p = p2∆K = −p3, the ideals of norm p2 are no longer reduced. However, we can
still have a polynomial time algorithm to solve the discrete logarithm in 〈f〉 where
f = [(p2, p)]. From the proof of Proposition 1, f still generate the subgroup of order p,
and for k ∈ {1, . . . , p−1}, the class fk still contains a non reduced ideal (p2, L(k)p) where
L(k) is defined as in Proposition 1. We can use the main result of [CL09] constructively
to find this non reduced ideal that will disclose the discrete logarithm k given the reduced
element of the class fk. The idea is to lift this reduced element in a class group of a
suborder where the ideals of norm p2 are reduced. Let ∆p2 = p4∆K . For p > 4, we
have p2 <

√
|∆p2 |/2 so the ideals of norm p2 are reduced. We lift an element of O∆p in

O∆p2 by computing [ϕ−1
p (·)]p on a representative ideal prime to p (we can use [HJPT98,

Algorithm 1] to find an ideal prime to p in a given class). This map is injective, so
applied on f we get a class f` of order p in C(O∆p2 ). Moreover, this class is in the kernel

of the map ϕ̄p2 from C(O∆p2 ) to C(O∆K ), and an easy generalization of Proposition 1

shows that the subgroup of C(O∆p2 ) generated by f` is also generated by [(p2, p)]. As a

result, if h = fx in C(O∆p), we have h` = [ϕ−1
p ([h])]p = ([ϕ−1

p ([f ])]p)x = fx` and x can
be computed as x = y/z where y is the discrete logarithm of h` in basis [(p2, p)] and y
is the discrete logarithm of f` in basis [(p2, p)]. Both logarithms can be computed as in
C(O∆p).

This variant can also work with ∆K = −pq and q < 4p, so p can be chosen in-
dependently from the security level, with the restriction that p must have at least 80
bits.
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4.2 A Faster Variant

We can change the KeyGen algorithm as follows: g is now in the class group of the
maximal order (i. e., g is the class of r2) and we set h = gx where x is the secret key
and the computation is done in C(O∆K ). Let us denote by ψ : C(O∆K )→ C(O∆p) the
injective morphism of Lemma 3, that computes [ϕ−1

p (·)]p on a representative ideal prime
to p.

To encrypt m ∈ Z/pZ, we compute c1 = gr and c2 = fmψ(hr) in C(O∆p). To de-
crypt, we first compute cx1 and lift it, by computing c′1 = ψ(cx1) in C(O∆p). Then we
retrieve fm = c2/c

′
1. This variant can be viewed as a mix of an Elgamal cryptosystem in

C(O∆K ) (lifted in C(O∆p) by applying ψ) and of a cryptosystem based on the subgroup
decomposition problem using the direct product between ψ(〈g〉) and 〈f〉. The advan-
tage of this variant is that ciphertexts are smaller (c1 is in C(O∆K ) instead of C(O∆p))
and that computations are faster: encryption performs two exponentiations in C(O∆K )
instead of C(O∆p) and one lift (which computational cost is essentially the exponen-
tiation to the power p). Decryption similarly involves one exponentiation in C(O∆K )
instead of C(O∆p) and a lift. However, the semantic security is now based on a non
standard problem. Let g be a generator of a subgroup of C(O∆K ) of order s. After
having chosen m, the adversary is asked to distinguished the following distributions :

{(gx, gy, ψ(gxy)), x, y
$←− Z/sZ} and {(gx, gy, ψ(gxy)fm), x, y

$←− Z/sZ}. The total break
is equivalent to the DL problem in C(O∆K ).

5 Performances and Comparisons.

We now compare the efficiency of our cryptosystem with some other linearly homomor-
phic encryptions schemes, namely the system of Paillier and the one from [BCP03]. The
security of the Paillier cryptosystem is based on the factorization problem of RSA in-
tegers, while [BCP03] is based on both the factorization and the DL problems. For our
scheme, the best attack consists in computing DL in C(O∆K ) or in computing h(O∆K )
and both problems have similar complexity.

As said in Appendix B.3, in [BJS10], the Discrete Logarithm problem with a dis-
criminant ∆K of 1348 (resp. 1828 bits) is estimated as hard as factoring a 2048 (resp.
3072 bits) RSA integer n. In Fig. 1, we give the timings in ms of the time to perform
an encryption and decryption for the three schemes. Concerning Paillier, for encryption
and decryption, the main operation is an exponentiation of the form xk mod n2 where k
has the same bit length as n. Concerning [BCP03], which has an Elgamal structure, two
exponentiations of the form xk mod n2 with k an integer of the same bit length as n2

are used for encryption and one for decryption. Our scheme has also this structure with
two exponentiations for encryption and one for decryption. Decryption also involves an
inversion modulo p. The exponentiations are made in C(O∆p) with ∆p = p2∆K . The
size of the exponent is bounded by Bp where we have seen that B can be chosen roughly
of the bit size of

√
∆K plus 80 bits. For a same security level, our scheme is thus more

efficient for a small p.
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The timings where performed with Sage 6.3 on a standard laptop with a straight-
forward implementation. The exponentiation in class group uses a PARI/GP function
(qfbnupow). We must stress that this function is far less optimized than the exponenti-
ation in Z/nZ, so there is a huge bias in favor of BCP and Paillier. A more optimized
implementation would give much better results for our system. Nevertheless, we see
that for a 2048 bits modulus, our cryptosystem is already faster than the protocol from
[BCP03]. Moreover, for stronger securities, our system will be faster, as asymptotically,
the factorization algorithms have complexity L(1/3, ·) whereas the algorithms for class
groups of quadratic fields have complexity L(1/2, ·). Moreover the multiplication modulo
n and the composition of quadratic forms have both quasi linear complexity [Sch91]. As
shown in Table 1, already with a 3072 bits modulus our cryptosystem is competitive:
faster than Paillier for decryption. For a very high security level (7680 bits modulus),
our system would be twice as fast as Paillier for encryption, for messages of 512 bits.
We also give timings of our faster variant of Subsection 4.2. For a same security level,
this variant becomes more interesting when the message space grows. In Table 1, we see
that even with a naive implementation, our system is competitive for message space up
to 256 bits (resp. 912 bits) for 2048 bits security (resp. for 3072 bits security).

Note that a medium size message space can be sufficient for applications. For ex-
ample, our system may be used as in [CGS97] to design a voting scheme. For a yes/no
pool, a voter encrypts 0 (resp. 1) to vote no (resp. to vote yes). By combining all the
ciphertexts, the election manager would get an encryption of the sum of the vote modulo
p. Decryption allows to decide the result if the number of voters ` satisfies ` < p. So
a 80-bit p is largely sufficient as 280 ≈ 1024. With Elgamal, in [CGS97], the discrete
logarithm in decryption involves a baby-step giant-step computation of time O(

√
`) (so

a very low number of voters can be handled) whereas a single inversion modulo p is
needed for our scheme. For a multi-candidate election system with m candidates and
` voters, one votes for the ith candidate by encrypting `i. The tally is decrypted with
a decomposition in base `, so we must have `m < p. With a 256 bit integer p, we can
have for example 216 voters and 16 candidates, which is the good order of magnitude
for real life elections, for which there are around a thousand registered voters by polling
stations.

6 Conclusion

We proposed the first linearly homomorphic encryption whose security relies on a sole
Diffie-Hellman-like assumption. Our construction crucially uses the algebraic properties
of the class group of a non maximal order of an imaginary quadratic field. They make it
possible to avoid the factorization assumption and to have Z/pZ as the set of messages.
Other improvements than those we presented are possible: we can gain efficiency using
the Chinese Remainder Theorem using discriminant of the form ∆K = −(

∏n
i=1 pi)q,

and generalizing à la Damg̊ard and Jurik (cf. [DJ01]), with discriminants of the form
∆pt = p2t∆K , with ∆K = −pq and t > 1 to enlarge the message space to Z/ptZ without
losing the homomorphic property. A non-trivial adaptation may also be possible with
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Cryptosystem Parameter Message Space Encryption (ms) Decryption (ms)

Paillier 2048 bits modulus 2048 bits 28 28

BCP03 2048 bits modulus 2048 bits 107 54

New Proposal 1348 bits ∆K 80 bits 93 49

Variant Subsec. 4.2 1348 bits ∆K 80 bits 82 45

Variant Subsec. 4.2 1348 bits ∆K 256 bits 105 68

Paillier 3072 bits modulus 3072 bits 109 109

BCP03 3072 bits modulus 3072 bits 427 214

New Proposal 1828 bits ∆K 80 bits 179 91

Variant Subsec. 4.2 1828 bits ∆K 80 bits 145 78

Variant Subsec. 4.2 1828 bits ∆K 512 bits 226 159

Variant Subsec. 4.2 1828 bits ∆K 912 bits 340 271

Table 1. Efficiency Comparison of Linearly Homomorphic Encryption Schemes

real quadratic fields. Experiments show that our protocol is competitive with existing
ones.
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A Public-key Encryption: Definitions

Encryption Scheme: Definition. Let λ be an integer. An encryption scheme is a tu-
ple of algorithms Π = (KeyGen,Encrypt,Decrypt). The probabilistic polynomial-time key
generation algorithm KeyGen takes a security parameter λ in unary as input and returns a
pair (pk, sk) of public key and the matching secret key. The probabilistic polynomial-time
encryption algorithm Encrypt takes a security parameter, a public key pk and a message
m as inputs, and outputs a ciphertext c. The deterministic polynomial-time Decrypt de-
cryption algorithm takes a security parameter, a secret key sk and a ciphertext c and
returns either a message m or the symbol ⊥ which indicates the invalidity of the cipher-
text. The scheme must be correct, which means that for all security parameters λ, and for
all messages m, if (pk, sk) ← KeyGen(1λ) then Decrypt(1λ, sk,Encrypt(1λ, pk,m)) = m
with probability (taken on all internal random coins and random choices).

Encryption Scheme: Security. The total break of an encryption scheme is declared if
an attacker can recover the secret key from (at least) the public key. Therefore any prob-
abilistic polynomial-time Turing machine B must have a success in recovering the public
key arbitrarily small, where the success is defined, for an integer λ, as the probability

Pr
[
(pk, sk)← Π.KeyGen(1λ) : B(pk) = sk

]
.

The intuitive security notion expected from an encryption scheme is the one-wayness,
which means that, given only the public data, an adversary cannot recover the mes-
sage corresponding to a given ciphertext. More precisely, any probabilistic polynomial-
time Turing machine A (the attacker) has a success in inverting the encryption algo-
rithm arbitrarily small, where the success is defined, for an integer λ, as the probability

Pr
[
(pk, sk)← Π.KeyGen(1λ) : A(pk,Π.Encrypt(1λ, sk,m)) = m

]
.

The previous definition supposes that the attacker has no more information that the
public key : the attacker is said to do a chosen-plaintext attack (since he can produce the
ciphertext of message of his choice). If he has access to a decryption oracle, the attack
is said be a chosen-ciphertext attack.
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An encryption scheme must indeed reach a stronger notion of security : it must have
semantic security (aka indistinguishability). This means that an attacker is computation-
ally unable to distinguish between two messages, chosen by himself, which one has been
encrypted, with a probability significantly better than one half. The indistinguishability
game is formally defined as:

Experiment Expind-atk
Π (A)

(pk, sk)← Π.KeyGen(1λ)

(m0,m1, s)← AO1
1 (pk)

b?
$←− {0, 1}

c? ← Π.Encrypt(pk,mb?)

b← AO2
2 (s, c?)

Return 1 if b = b? and 0 otherwise

with

– atk = cpa and
• O1 = ∅
• O2 = ∅

– atk = cca1 and
• O1 = Π.Decrypt(params, sk, ·)
• O2 = ∅

– atk = cca2 and
• O1 = Π.Decrypt(params, sk, ·)
• O2 = Π.Decrypt(params, sk, ·)

where the adversary A is modelled as a 2-stage PPTM (A1,A2). The advantage of
the attacker is then defined as

Advind-atkΠ (A) =

∣∣∣∣Pr
(
Expind-atk

Π (A) = 1
)
− 1

2

∣∣∣∣ .
Linearly Homomorphic Encryption Let suppose that the set of plaintextsM (resp.
the set of ciphertexts C) is equipped with an additive (resp. a multiplicative) group
structure. An encryption scheme Π is said to be homomorphic if ∀λ ∈ N, ∀(pk, sk) ←
KeyGen(1λ), ∀m1,m2 ∈M, if c1 ← Encrypt(pk,m1) and c2 ← Encrypt(pk,m2), then the
product c1c2 is a valid encryption of m1 + m2. The exponentiation of a ciphertext c1

to a power α is as well a valid encryption of αm1. The formal definition of a linearly
homomorphic encryption includes two algorithms EvalSum and EvalScal that fulfills the
corresponding correctness property.

Of course, to achieve semantic security Π.Encrypt has to be probabilistic, but even
though, the highest level of indistinguishability an homomorphic encryption scheme can
achieve is indeed ind − cca1. As a matter of fact, an attacker will always win the cca2
game by querying, in the second phase, for instance c? · Encrypt(pk, 0) to the decryption
oracle: this one will answer with mb? + 0 = mb? .

B Background on Imaginary Quadratic Fields

B.1 Imaginary Quadratic Fields and Class Group

Let D < 0 be a squarefree integer and consider the quadratic imaginary field K =
Q(
√
D). The fundamental discriminant ∆K of K is defined as ∆K = D if D ≡ 1

(mod 4) and ∆K = 4D otherwise. An order O in K is a subset of K such that O is
a subring of K containing 1 and O is a free Z-module of rank 2. The ring O∆K of
algebraic integers in K is the maximal order of K. It can be written as Z +ωKZ, where
ωK = 1

2(∆K +
√
∆K). If we set f = [O∆K : O] the finite index of any order O in O∆K ,
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then O = Z + fωKZ. The integer f is called the conductor of O. The discriminant of
O is then ∆f = f2∆K . Now, let O∆ be an order of discriminant ∆ and a be a nonzero
ideal of O∆, its norm is N(a) = |O∆/a|. A fractional ideal is a subset a ⊂ K such that
da is an ideal of O∆ for d ∈ N. A fractional ideal a is said to be invertible if there
exists an another fractional ideal b such that ab = O∆. The ideal class group of O∆ is
C(O∆) = I(O∆)/P (O∆), where I(O∆) is the group of invertible fractional ideals of O∆
and P (O∆) the subgroup consisting of principal ideals. Its cardinality is the class number
of O∆ denoted by h(O∆). The group O?∆ of units in O∆ is equal to {±1} for all ∆ < 0,
except when ∆ is equal to −3 and −4 (O?−3 and O?−4 are respectively the group of sixth
and fourth roots of unity)

A nonzero ideal a of O∆, a is said to be prime to f if a + fO∆ = O∆. We denote
by I(O∆, f) the subgroup of I(O∆) of ideals prime to f . The map ϕf : I(O∆f , f) →
I(O∆K , f), a 7→ aO∆K is an isomorphism. This map induces a surjection ϕ̄f : C(O∆f )�
C(O∆K ). In our settings, we will use a prime conductor f = p and consider ∆p = p2∆K ,
for a fundamental discriminant ∆K divisible by p. The order of the kernel of ϕ̄p is
then given by the classical analytic class number formula (see for instance [BV07]):
h(O∆p )

h(O∆K ) = p if ∆K < −4.

B.2 Representation of the Classes

Working with ideals modulo the equivalence relation of the class group is essentially
equivalent to work with binary quadratic forms modulo SL2(Z) (cf. Section 5.2 of [Coh00]).

Every (primitive) ideal a of O∆ can be written as a =
(
aZ + −b+

√
∆

2 Z
)

with a ∈ N and

b ∈ Z such that b2 ≡ ∆ (mod 4a), and denoted by (a, b) for short. The norm of such an
ideal is then a. This notation also represents the binary quadratic form ax2 + bxy + cy2

with b2 − 4ac = ∆. This representation of the ideal is unique if the form is normal:
−a < b 6 a.

An ideal is reduced if it is normal, and a 6 c, and b > 0 for a = c. Note that in every
class of O∆-ideals there exists exactly one reduced ideal. We note Red(a) the unique
reduced ideal equivalent to an ideal a, or Red([a]) the unique reduced ideal in the class
[a]. From the theory of quadratic forms, we can efficiently compute Red(a) given a. The
algorithm, which is due to Gauss, is described in [Coh00, Algorithm 5.4.2 p. 243] and is
called Red in this paper. In general, instead of working with classes, we will work with
reduced ideals. The product of ideals is also efficiently computable with the composition
of quadratic forms algorithm, see [Coh00, Algorithm 5.4.7 p. 243]. These two algorithms
have quadratic complexity (and even quasi linear using fast arithmetic).

A crucial fact for our purpose is described in [Coh00, Lemma 5.3.4] and [BV07,
Lemma 6.5.1]: a normal ideal a = (a, b) with |a| <

√
|∆|/2 is reduced.

B.3 Class Number Computation and DL Problem

In 2000, Jacobson has described an index-calculus method to solve the discrete logarithm
problem in class group of imaginary quadratic field of discriminant ∆K [Jac00]. Various
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improvements have been proposed to this algorithm: In [BJS10], it is conjecture that a
state of the art implementation has conjectured complexity L|∆K |[1/2, o(1)] . Moreover,
the best known algorithm to compute class numbers of fundamental discriminant are
again index-calculus method with the same complexity.

In [HM00], Hamdy and Möller discuss the selection of a discriminant ∆K such that
the discrete logarithm problem in C(O∆K ) is as hard as in finite fields: It is advised to
construct a fundamental discriminant ∆K and to minimize to 2-Sylow subgroup of the
class group. In our case, by construction ∆K will be the product of two odd primes. If
we take ∆K = −pq with p and q such that p ≡ −q (mod 4) then ∆K is a fundamental
discriminant. Moreover the 2-Sylow subgroup will be isomorphic to Z/2Z if we choose
p and q such that (p/q) = (q/p) = −1 (cf. [Kap78, p. 598]). In that case, we will work
with the odd part, which is the group of squares of C(O∆K ).

Following the Cohen-Lenstra heuristics, cf. [Coh00, Chapter 5.10.1], the probability
that the odd part of the class group is cyclic is 97.757% and the probability that an odd
prime r divides h(O∆K ) is approximately 1/r+ 1/r2. As a result, we can not guarantee
that the order of the odd part is not divisible by small primes. Nevertheless, as indicated
in [HM00], this does not lead to a weakness on the discrete logarithm problem, as there is
no efficient algorithm to compute h(O∆K ) or odd multiples or factors of h(O∆K ), hence
an adaptation of the Pohlig-Hellman Algorithm is not possible.

On average, h(O∆K ) is in the order of
√
|∆K |, see [Coh00, Theorem 4.9.15 (Brauer-

Siegel)]. Moreover (cf. [Coh00, p. 295]),

h(∆K) <
1

π
log |∆K |

√
|∆K |. (1)

To conclude, following [HM00], if ∆K is taken large enough, generic methods to com-
pute discrete logarithm such as Pollard λ−method are slower than the index-calculus
algorithms. Thus, since index-calculus algorithms for solving the discrete logarithm prob-
lem are asymptotically much slower than index-calculus algorithms to solve the integer
factorization problem, the discriminant can be taken smaller than RSA modulus. In
[BJS10], the discrete logarithm problem with a discriminant of 1348 bits (resp. 1828
bits) is estimated as hard as factoring a 2048 bits (resp. 3072 bits) RSA integer.

B.4 Elgamal Cryptosystem Adaptations in Class Group

In [BW88], Buchmann and Williams proposed an adaptation of the Diffie-Hellman key
exchange in imaginary quadratic fields and briefly described an adaptation of the Elgamal
cryptosystem in the same setting. Efficient implementations of these cryptosystems are
discussed in [BDW90,SP05,BH01] and [BV07]. At a high level, the key generation process
of these adaptations of Elgamal can be sketched as follows:

– Generate ∆K a fundamental negative discriminant, such that |∆K | is large enough
to thwart the computation of discrete logarithm (cf. previous subsection) ;

– choose g a class of C(O∆K ) of even order (from the discussion of the previous sub-
section, the order of g will be close to h(∆K) ≈

√
|∆K | with high probability) ;
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– the private key is x
$←− {0, . . . , b

√
|∆K |c} and the public key is (g, h), where h = gx.

To implement Elgamal, it remains the problem of the embedding of a message. In
[BW88], an integer m is encrypted as (gr,m+N(hr)) where N(hr) denotes the norm of
the reduced ideal of the class hr. As a result, the scheme is not based on the traditional
DDH assumption.

Another solution is given in [SP05, Section 2]. An integer message m ≤
√
|∆|/2 is

mapped to the class M of an ideal above p where p is the first prime with p > m such
that ∆ is a quadratic residue modulo p. If d = m − p, the message m is encrypted as
(gr,Mhr, d): The distance d seems to be public, in order to recover m from M . This can
be a problem for semantic security: the first stage adversary can choose two messages
m0,m1 such that d0 6= d1 and easily win the indistinguishability game with probability
one by recognizing the message thanks to the distance.

In [BH01], a “hashed” version is used, a bit-string m is encrypted as (gr,m⊕H(hr))
where H is a cryptographic hash function. In [BV07], an adaptation of DHIES is de-
scribed.

An variant of the Elgamal cryptosystem in a non maximal order of discriminant
∆q = q2∆K is presented in [HJPT98]. A traditional setup of Elgamal is done in C(O∆q),
h = gx. A ciphertext is (gr,mhr) in C(O∆q) where m is an ideal of norm smaller than√
∆K/2. To decrypt, the ciphertext is moved in the maximal order with the trapdoor q

where a traditional decryption is made to recover the message in C(O∆K ). Eventually,
the message is lifted back in C(O∆q). This variant can be seen as an Elgamal with a CRT
decryption procedure: its advantage is that most of the decryption computation is done
in C(O∆K ) and ∆K can be chosen relatively small (big enough such the factorization of
∆q is intractable, the discrete logarithm problem can be easy in C(O∆K )). The problem
of the embedding of the plaintext in an ideal is not addressed in this paper. A chosen-
ciphertext attack against this cryptosystem has been proposed in [JJ00].

In [KM03], an adaptation of the Diffie-Hellman key exchange and of the Elgamal
cryptosystem are given using class semigroup of an imaginary non-maximal quadratic
order. Unfortunately a cryptanalysis of this proposal has been presented in [Jac04].

A final important remark on the adaptation of the Elgamal cryptosystem is that it is
necessary to work in the group of squares, i. e., the principal genus. We didn’t find this
remark in previous works: in the whole class group, the DDH problem is easy. Indeed,
it is well known that in (Z/pZ)×, one can compute Legendre symbols and defeats the
DDH assumption. As a consequence, it is necessary to work in the group of squares.
In a class group, for example if the discriminant ∆ = −

∏k
i=1 pi is odd and the pi are

distinct primes numbers, we can associate to a class the value of the generic characters,
the Legendre symbols (r, pi) for i from 1 to k where r is an integer represented by the
class (see [Cox99] for details on genus theory). It is easy to see that the previous attack in
(Z/pZ)× can be adapted in class groups with the computation of the generic characters.
As a result, it is necessary to work in the group of squares, which is the principal genus
(cf. [Cox99, Theorem 3.15]), i. e., the set of classes such that the generic characters all
equal 1.
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C Uniform Sampling in a Cyclic Group

Let us first recall some well known facts on the statistical distance of two discrete random
variables.

Let X and Y two discrete random variables with values in Ω. The statistical distance
between X and Y is defined as ∆(X,Y ) = supA⊆Ω |Pr[X ∈ A]− Pr[Y ∈ A]| .

Note that Pr[X ∈ Ā]− Pr[Y ∈ Ā] = 1− Pr[X ∈ A]− 1 + Pr[Y ∈ A] = Pr[Y ∈ A]−
Pr[X ∈ A]. So we can restrict to subsets A such that the difference is positive. Moreover,
in order to maximize the difference, we can let A = {ω ∈ Ω,Pr[X = ω] > Pr[Y = ω]}.
So

∆(X,Y ) =
∑
ω∈A

Pr[X = ω]− Pr[Y = ω].

Now as

∆(X,Y ) = ∆(Y,X) = Pr[Y ∈ Ā]− Pr[X ∈ Ā] =
∑
ω∈Ā

Pr[Y = ω]− Pr[X = ω],

we have

2∆(X,Y ) =
∑
ω∈Ω
|Pr[X = ω]−Pr[Y = ω]|, so ∆(X,Y ) =

1

2

∑
ω∈Ω
|Pr[X = ω]− Pr[Y = ω]| .

Lemma 4. Let G be a cyclic group of order n, generated by g. Consider the random
variable X with values in G with uniform distribution: Pr[X = h] = 1

n for all h in G,
and Y the random variable with values in G defined as follows. Draw y in {0, . . . , B−1}
from the uniform distribution with B > n, and Y = gy. Let r = B mod n. Then,
∆(X,Y ) = r(n−r)

nB 6 n
4B .

Proof. Let X ′ the random variable with values in {0, . . . , n−1} with uniform distribution
and Y ′ defined by Y ′ = (y mod n) where y is drawn in {0, . . . , B − 1} with uniform
distribution. Clearly, ∆(X,Y ) = ∆(X ′, Y ′). Let B = qn + r with 0 6 r < n be the
euclidean division of B by n. For c ∈ {0, . . . , r − 1}, Pr[Y ′ = c] = (q + 1)/B > 1

n as
(q+ 1)n > B. For c ∈ {r, . . . , n− 1}, Pr[Y ′ = c] = q/B 6 1/n. So for A = {0, . . . , r− 1},
we have

∆(X,Y ) = ∆(X ′, Y ′) =
∑
c∈A

Pr[Y ′ = c]− Pr[X ′ = c] = r

(
q + 1

B
− 1

n

)
·

Using the fact that q = B−r
n , this simplifies to ∆(X,Y ) = r(n−r)

nB . Moreover as r(n−r) 6
n2/4,

∆(X,Y ) 6
n

4B
·

ut
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