Simulation par éléments discrets de fibres flexibles avec frottement de Coulomb

Gilles Daviet

Inria – Laboratoire Jean Kuntzmann

Avec Florence Bertails-Descoubes

Rencontres du GDR 3MF — Nantes 12 juin 2014

MOTIVATION: CHEVELURE NUMÉRIQUES

Deux secteurs principaux

Loisir numérique (cinéma d'animation, effets spéciaux)

Final Fantasy (2000) The Incredibles (2005)

Avatar (2009)

Tangled (2010)

Brave (2012)

MOTIVATION: CHEVELURE NUMÉRIQUES

Deux secteurs principaux

Loisir numérique (cinéma d'animation, effets spéciaux)

Avatar (2009)

Tangled (2010)

Prototypage virtuel en cosmétologie

Final Fantasy (2000) The Incredibles (2005)

©L'Oréal

Brave (2012)

EXIGENCES SUR LE MODÈLE

Simulation dynamique (et non quasi-statique)

EXIGENCES SUR LE MODÈLE

- Simulation dynamique (et non quasi-statique)
- ► Fibres longues mais inextensibles
- ► Flexibles (en courbure et en torsion)
- ► Frisure naturelle

EXIGENCES SUR LE MODÈLE

- Simulation dynamique (et non quasi-statique)
- ► Fibres longues mais inextensibles
- ► Flexibles (en courbure et en torsion)
- ► Frisure naturelle
- Frottement statique (présence d'un seuil)

Plan de l'exposé

TIGES MÉCANIQUES

MODÈLE DE CONTACT

RÉSOLUTION NUMÉRIQUE

RÉSULTATS

Plan de l'exposé

TIGES MÉCANIQUES

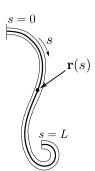
MODÈLE DE CONTACT

RÉSOLUTION NUMÉRIQUE

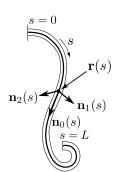
RÉSULTATS

- Ligne moyenne $\mathbf{r}(s)$
- ► Repère matériel $\{\mathbf{t}(s) = \mathbf{n}_0(s), \mathbf{n}_1(s), \mathbf{n}_2(s)\}$

- Ligne moyenne $\mathbf{r}(s)$
- ► Repère matériel $\{\mathbf{t}(s) = \mathbf{n}_0(s), \mathbf{n}_1(s), \mathbf{n}_2(s)\}$
- ▶ Hypothèses de Kirchhoff :
 - Tige sans cisaillement
 - ▶ Tige inextensible
 - ► Inertie en torsion négligeable

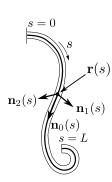


- Ligne moyenne $\mathbf{r}(s)$
- ► Repère matériel $\{\mathbf{t}(s) = \mathbf{n}_0(s), \mathbf{n}_1(s), \mathbf{n}_2(s)\}$
- Hypothèses de Kirchhoff :
 - Tige sans cisaillement
 - ▶ Tige inextensible
 - Inertie en torsion négligeable
- Degrés de liberté :
 - torsion $\tau(s)$
 - courbures $\kappa_1(s)$, $\kappa_2(s)$



- ▶ Ligne moyenne $\mathbf{r}(s)$
- ► Repère matériel $\{\mathbf{t}(s) = \mathbf{n}_0(s), \mathbf{n}_1(s), \mathbf{n}_2(s)\}$
- ▶ Hypothèses de Kirchhoff :
 - ► Tige sans cisaillement
 - ▶ Tige inextensible
 - Inertie en torsion négligeable
- Degrés de liberté :
 - ▶ torsion $\tau(s)$
 - courbures $\kappa_1(s)$, $\kappa_2(s)$
- Grands déplacements mais petites déformations :
 - → Loi de comportement élastique

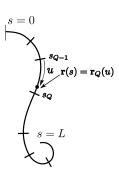
$$\mathbf{M}(s) = K\left(\kappa(s) - \kappa^{0}(s)\right)$$



Une discrétisation : les Super-Hélices

BERTAILS et al. 2006

▶ Découpage de la tige en N éléments $\tau(s)$, $\kappa_1(s)$, $\kappa_2(s)$ constantes p. morceaux

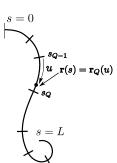


Une discrétisation : les Super-Hélices

BERTAILS et al. 2006

- ▶ Découpage de la tige en N éléments $\tau(s)$, $\kappa_1(s)$, $\kappa_2(s)$ constantes p. morceaux
- Intégration en temps

$$M\mathbf{v} + f = 0, \mathbf{v} = \dot{\boldsymbol{\kappa}}_{t+dt}$$



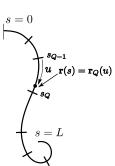
Une discrétisation : les Super-Hélices

BERTAILS et al. 2006

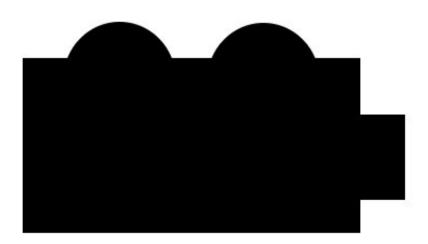
- ▶ Découpage de la tige en N éléments $\tau(s)$, $\kappa_1(s)$, $\kappa_2(s)$ constantes p. morceaux
- Intégration en temps

$$M\mathbf{v} + f = 0, \mathbf{v} = \dot{\mathbf{\kappa}}_{t+dt}$$

Extension : κ linéaire p. morceaux Super-Clothoides (Casati *et al.* 2013)



UNE DISCRÉTISATION : LES SUPER-HÉLICES ILLUSTRATION



Plan de l'exposé

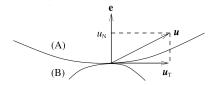
TIGES MÉCANIQUES

MODÈLE DE CONTACT

RÉSOLUTION NUMÉRIQUE

RÉSULTATS

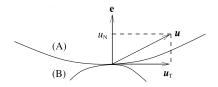
CONTACT PONCTUEL



Hypothèses

- 1. Le contact concerne toujours au plus deux objets, *A* et *B*
- 2. Surface de contact assez lisse pour définir une normale e

CONTACT PONCTUEL



Hypothèses

- 1. Le contact concerne toujours au plus deux objets, *A* et *B*
- 2. Surface de contact assez lisse pour définir une normale e
- → On peut définir un repère local et
 - ▶ la vitesse relative $\mathbf{u} A/B$
 - ▶ la force de contact $\mathbf{r} B \rightarrow A$

Soit $\mu \ge 0$ le coefficient de frottement. On définit le cône du second-ordre $K_{\mu\nu}$

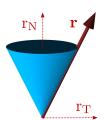
$$K_{\mu} = \{ \|\mathbf{r}_{\mathtt{T}}\| \leq \mu \mathbf{r}_{\mathtt{N}} \} \subset \mathbb{R}^3$$



Soit $\mu > 0$ le coefficient de frottement. On définit le cône du second-ordre $K_{\mu\nu}$

TIGES MÉCANIQUES

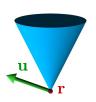
$$K_{\mu} = \{ \|\mathbf{r}_{\mathrm{T}}\| \leq \mu r_{\mathrm{N}} \} \subset \mathbb{R}^3$$



$$(\mathbf{u}, \mathbf{r}) \in C(\mathbf{e}, \mu) \iff$$

Soit $\mu \ge 0$ le coefficient de frottement. On définit le cône du second-ordre K_{μ} ,

$$K_{\mu} = \{ \|\mathbf{r}_{\mathsf{T}}\| \le \mu \mathbf{r}_{\mathsf{N}} \} \subset \mathbb{R}^3$$



$$(\mathbf{u},\mathbf{r})\in C(\mathbf{e},\mu)\iff \left\{ egin{array}{ll} \mathrm{soit}\, \mathrm{d\'ecollage} & \mathbf{r}=\mathbf{0}\, \mathrm{et}\, u_{\mathrm{N}}>0 \end{array}
ight.$$

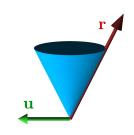
Soit $\mu \ge 0$ le coefficient de frottement. On définit le cône du second-ordre $K_{\mu\nu}$

$$K_{\mu} = \{ \|\mathbf{r}_{\mathtt{T}}\| \leq \mu r_{\mathtt{N}} \} \subset \mathbb{R}^3$$

$$(\mathbf{u}, \mathbf{r}) \in C(\mathbf{e}, \mu) \iff \left\{ egin{array}{ll} \mathrm{soit} \ \mathrm{d\'ecollage} & \mathbf{r} = \mathbf{0} \ \mathrm{et} \ u_\mathrm{N} > 0 \\ \mathrm{soit} \ \mathrm{adh\'erence} & \mathbf{r} \in K_\mu \ \mathrm{et} \ \mathbf{u} = 0 \end{array}
ight.$$

Soit $\mu \ge 0$ le coefficient de frottement. On définit le cône du second-ordre $K_{\mu\nu}$

$$K_{\mu} = \{ \|\mathbf{r}_{\mathrm{T}}\| \leq \mu \mathbf{r}_{\mathrm{N}} \} \subset \mathbb{R}^3$$



$$(\mathbf{u},\mathbf{r}) \in C(\mathbf{e},\mu) \iff \begin{cases} \text{ soit d\'ecollage} & \mathbf{r} = \mathbf{0} \text{ et } u_{\text{\tiny N}} > 0 \\ \text{ soit adh\'erence} & \mathbf{r} \in K_{\mu} \text{ et } \mathbf{u} = 0 \\ \text{ soit glissement} & \mathbf{r} \in \partial K_{\mu} \setminus 0, u_{\text{\tiny N}} = 0 \\ \text{ et } \exists \alpha \geq 0, \ \mathbf{u}_{\text{\tiny T}} = -\alpha \ \mathbf{r}_{\text{\tiny T}} \end{cases}$$

APPROCHE EXPLICITE

Ajout d'une force de pénalité $\mathbf{r}=r_{\scriptscriptstyle \mathrm{N}}\mathbf{e}+\mathbf{r}_{\scriptscriptstyle \mathrm{T}}$

APPROCHE EXPLICITE

Ajout d'une force de pénalité $\mathbf{r} = r_{\text{N}}\mathbf{e} + \mathbf{r}_{\text{T}}$

- $r_{\rm N} := \eta(d) + \nu {\bf v}_{\rm N}^{k-1}$, d distance de pénétration
- $\mathbf{r}_{\mathrm{T}} := -\mu r_n \|\mathbf{v}_{\mathrm{T}}^{k-1}\|$

APPROCHE EXPLICITE

Ajout d'une force de pénalité $\mathbf{r} = r_{\text{N}}\mathbf{e} + \mathbf{r}_{\text{T}}$

- $ho r_{\rm N} := \eta(d) + \nu {f v}_{\rm N}^{k-1}$, d distance de pénétration
- $\mathbf{r}_{\mathrm{T}} := -\mu r_n \|\mathbf{v}_{\mathrm{T}}^{k-1}\|$
- Explicite, peu stable
- $ightharpoonup \mathbf{r}_{\scriptscriptstyle T} > 0 \implies \mathbf{u}_{\scriptscriptstyle T} > 0$, pas de seuil

FORMULATION PAR CONTRAINTES

Système global (sans interactions) :

$$\mathbf{M}\,\mathbf{v}+\mathbf{f}=0$$

$$\rightarrow$$
 inconnues : $\mathbf{q} = \boldsymbol{\kappa}_{t+dt}$ et \mathbf{v}

FORMULATION PAR CONTRAINTES

Système global (sans interactions) :

$$\mathbf{M}\mathbf{v} + \mathbf{f} = 0$$

- \rightarrow inconnues : $\mathbf{q} = \boldsymbol{\kappa}_{t+dt}$ et \mathbf{v}
- Système global (avec contact frottant) :

$$\begin{cases} \mathbf{M} \mathbf{v} + \mathbf{f} &= \mathbf{H}^{\top} \mathbf{r} \\ \mathbf{u} &= \mathbf{H} \mathbf{v} + \mathbf{w} \\ (\mathbf{u}, \mathbf{r}) & \text{v\'erifie la loi de Coulomb} \end{cases}$$
 (1)

 \rightarrow Inconnues : q, v, u et r

FORMULATION PAR CONTRAINTES

Système global (sans interactions) :

$$\mathbf{M}\mathbf{v} + \mathbf{f} = 0$$

- \rightarrow inconnues : $\mathbf{q} = \boldsymbol{\kappa}_{t+dt}$ et \mathbf{v}
- Système global (avec contact frottant) :

$$\begin{cases}
\mathbf{M}\mathbf{v} + \mathbf{f} &= \mathbf{H}^{\top}\mathbf{r} \\
\mathbf{u} &= \mathbf{H}\mathbf{v} + \mathbf{w} \\
(\mathbf{u}, \mathbf{r}) & \text{v\'erifie la loi de Coulomb}
\end{cases}$$
(1)

- \rightarrow Inconnues : q, v, u et r
- → Non-lisse, non linéaire, pas de garantie d'existence

Plan de l'exposé

TIGES MÉCANIQUES

MODÈLE DE CONTACT

RÉSOLUTION NUMÉRIQUE

RÉSULTATS

PROBLÈME À *n* CONTACTS MÉTHODE CHOISIE

Méthode de Gauss-Seidel projeté

- Très stable
- ► Convergence $O(\log k)$
- ... mais erreur suffisamment faible très rapidement

PROBLÈME À *n* CONTACTS MÉTHODE CHOISIE

Méthode de Gauss-Seidel projeté

- ► Très stable
- ► Convergence $O(\log k)$
- ... mais erreur suffisamment faible très rapidement

Idée

► Tant que la convergence n'est pas atteinte

Problème à n contacts

Méthode de Gauss-Seidel projeté

- ► Très stable
- ► Convergence $O(\log k)$
- ... mais erreur suffisamment faible très rapidement

Idée

MÉTHODE CHOISIE

- ► Tant que la convergence n'est pas atteinte
 - Pour chaque contact

Problème à n contacts

Méthode de Gauss-Seidel projeté

- ► Très stable
- ► Convergence $O(\log k)$
- ... mais erreur suffisamment faible très rapidement

Idée

MÉTHODE CHOISIE

- ► Tant que la convergence n'est pas atteinte
 - Pour chaque contact
 - Résoudre le contact de manière isolée

Problème à n contacts

Méthode de Gauss-Seidel projeté

- ► Très stable
- ► Convergence $O(\log k)$
- ... mais erreur suffisamment faible très rapidement

Idée

MÉTHODE CHOISIE

- ► Tant que la convergence n'est pas atteinte
 - Pour chaque contact
 - Résoudre le contact de manière isolée

REFORMULATION

Rappel de la formulation primale en $(\mathbf{v}, \mathbf{u} \text{ et } \mathbf{r})$:

$$\left\{ \begin{array}{lll} M\, v + f &=& H^\top r \\ u &=& H\, v + w \\ (u,r) & \text{v\'erifie la loi de Coulomb} \end{array} \right.$$

REFORMULATION

Rappel de la formulation primale en $(\mathbf{v}, \mathbf{u} \text{ et } \mathbf{r})$:

$$\left\{ \begin{array}{lll} M\, v + f & = & H^\top r \\ u & = & H\, v + w \\ (u,r) & & \text{v\'erifie la loi de Coulomb} \end{array} \right.$$

Formulation duale compacte en (\mathbf{u}, \mathbf{r}) :

$$\left\{ \begin{array}{ll} u & = & W\,r + b \\ (u,r) & & \text{v\'erifie la loi de Coulomb} \end{array} \right.$$

où $\mathbf{W} = \mathbf{H} \mathbf{M}^{-1} \mathbf{H}^{\top} \in \mathcal{M}_{3n}(\mathbb{R})$ est l'opérateur de Delassus

ILLUSTRATION POUR 4 CONTACTS

$\mathbf{u} = \mathbf{b} + egin{pmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} & \mathbf{W}_{14} \ \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{23} & \mathbf{W}_{24} \ \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{v}_{24} \ \mathbf{W}_{14} & \mathbf{W}_{24} & \mathbf{W}_{44} \end{pmatrix} egin{pmatrix} \mathbf{r}_1 \ \mathbf{r}_2 \ \mathbf{r}_3 \ \mathbf{r}_4 \end{pmatrix}$

- Découper la matrice W en blocs 3 x 3
 → Chaque ligne de blocs correspond à un unique contact
- ▶ Puis pour $k := 1 \dots N_{\text{itermax}}$ itérer sur ces lignes :

ILLUSTRATION POUR 4 CONTACTS

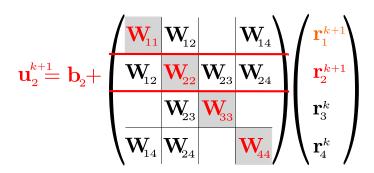
$$egin{aligned} \mathbf{u}_{1}^{k+1} &= \mathbf{b}_{1} + \overbrace{egin{array}{c|ccccc} \mathbf{W}_{11} & \mathbf{W}_{12} & \mathbf{W}_{14} \\ \hline \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{23} & \mathbf{W}_{24} \\ \hline \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{r}_{24} \\ \hline \mathbf{W}_{14} & \mathbf{W}_{24} & \mathbf{W}_{44} \\ \hline \end{aligned}} egin{array}{c|cccc} \mathbf{r}_{1}^{k+1} & \mathbf{r}_{2}^{k} \\ \hline \mathbf{r}_{3}^{k} & \mathbf{r}_{4}^{k} \\ \hline \end{aligned}$$

→ Résoudre le problème à un contact

$$(\mathbf{u}_1^{k+1}, \mathbf{r}_1^{k+1}) \in \mathcal{C}(\mu)$$

avec \mathbf{r}_{2}^{k} , \mathbf{r}_{3}^{k} , \mathbf{r}_{4}^{k} fixés, \mathbf{u}_{1}^{k+1} linéaire en \mathbf{r}_{1}^{k+1}

ILLUSTRATION POUR 4 CONTACTS

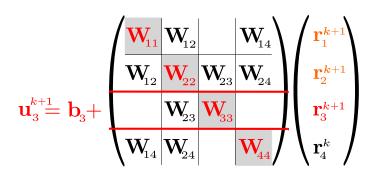


→ Résoudre le problème à un contact

$$(\mathbf{u}_2^{k+1}, \mathbf{r}_2^{k+1}) \in \mathcal{C}(\mu)$$

avec \mathbf{r}_1^{k+1} , \mathbf{r}_3^k , \mathbf{r}_4^k fixés, \mathbf{u}_2^{k+1} linéaire en \mathbf{r}_2^{k+1}

ILLUSTRATION POUR 4 CONTACTS

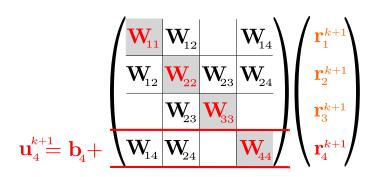


→ Résoudre le problème à un contact

$$(\mathbf{u}_3^{k+1}, \mathbf{r}_3^{k+1}) \in \mathcal{C}(\mu)$$

avec \mathbf{r}_1^{k+1} , \mathbf{r}_2^{k+1} , \mathbf{r}_4^k fixés, \mathbf{u}_3^{k+1} linéaire en \mathbf{r}_3^{k+1}

ILLUSTRATION POUR 4 CONTACTS



→ Résoudre le problème à un contact

$$(\mathbf{u}_4^{k+1}, \mathbf{r}_4^{k+1}) \in \mathcal{C}(\mu)$$

avec \mathbf{r}_1^{k+1} , \mathbf{r}_2^{k+1} , \mathbf{r}_3^{k+1} fixés, \mathbf{u}_4^{k+1} linéaire en \mathbf{r}_4^{k+1}

GAUSS-SEIDEL ILLUSTRATION POUR 4 CONTACTS

$$egin{pmatrix} \mathbf{r}_1^{k+1} \ \mathbf{r}_2^{k+1} \ \mathbf{r}_3^{k+1} \ \mathbf{r}_4^{k+1} \end{pmatrix}$$

 \rightarrow Recommencer la boucle avec k := k + 1

Résolution de $(\mathbf{u}_i, \mathbf{r}_i) \in \mathcal{C}(\mu)$

- Linéarisation
 - Cône polygonal (pyramide)
 - Problème linéaire
 - ... mais plus de variables
 - ... et artefacts visables

Résolution de $(\mathbf{u}_i,\mathbf{r}_i)\in\mathcal{C}(\mu)$

- Linéarisation
- ► Formulation fonctionelle $f(\mathbf{u}, \mathbf{r}) = 0$
 - ► Alart-Curnier (1992)
 - ▶ MFB (2011) : Fischer-Burmeister sur cône du second ordre
 - \rightarrow Newton, point-fixe...
 - → Non-convexe, pas de convergence globale

Résolution de $(\mathbf{u}_i, \mathbf{r}_i) \in \mathcal{C}(\mu)$

- Linéarisation
- Formulation fonctionelle $f(\mathbf{u}, \mathbf{r}) = 0$
- ► Formulation énumérative
 - Test successif de chaque cas cas (décollage → adhérence → glissement)
 - Glissement : polynôme de degré 4
 - Formule exacte
 - \rightarrow Nombreux tests, lent
 - ... ou valeurs propres matrice compagnon
 - → Possiblement mal conditionnée
 - Si non-existence, pas de solution approchée

Résolution de $(\mathbf{u}_i, \mathbf{r}_i) \in \mathcal{C}(\mu)$

- Linéarisation
- Formulation fonctionelle $f(\mathbf{u}, \mathbf{r}) = 0$
- Formulation énumérative
- Méthode hybride
 - Cas simple ou glissement grossier par énumératif
 - Raffinement par Newton

Plan de l'exposé

TIGES MÉCANIQUES

MODÈLE DE CONTACT

RÉSOLUTION NUMÉRIQUE

RÉSULTATS

RÉSULTATS

 ≈ 2000 super-hélices

COMPARAISONS NUMÉRIQUES

SUR 306 PROBLÈMES INCRÉMENTAUX

Solveur local	Taux d'échec (%)	GS Iters	Time (ms)
Linéarisé	0	575	6497
PAC	19.3	163	1265
DAC	0.33	60	874
MFB	4.9	72	484
Enum	1	67	1044
MFB + Enum	0	41	312

 Le solveur hybride améliore à la fois la robustesse et l'efficacité en temps de calcul

COMPARAISONS NUMÉRIQUES

SUR 306 PROBLÈMES INCRÉMENTAUX

Solveur local	Taux d'échec (%)	GS Iters	Time (ms)
Linéarisé	0	575	6497
PAC	19.3	163	1265
DAC	0.33	60	874
MFB	4.9	72	484
Enum	1	67	1044
MFB + Enum	0	41	312

- ► Le solveur hybride améliore à la fois la robustesse et l'efficacité en temps de calcul
- Le solveur linéarisé résout bien le problème approché, mais requiert plus d'itérations de Gauss–Seidel pour converger → performance globale moindre

CONCLUSION

Remarques

- Modèles visuellement réalistes
- Solveur stable

CONCLUSION

Remarques

- Modèles visuellement réalistes
- Solveur stable
- ► Coût du calcul en $O(n^2)$
- ▶ *n* augmente super-linéairement avec le nombre de fibres
- ightharpoonup ightharpoonup limité à des systèmes de taille moyenne

CONCLUSION

Remarques

- Modèles visuellement réalistes
- Solveur stable
- Coût du calcul en $O(n^2)$
- ▶ *n* augmente super-linéairement avec le nombre de fibres
- ightharpoonup ightharpoonup limité à des systèmes de taille moyenne

Perspectives

- Validation plus précise
- ► Raffinement du modèle de contact : anisotropie, adhésion
- ► Interactions avec l'air
- ► Modèle macroscopique (passage à l'échelle)

MERCI POUR VOTRE ATTENTION

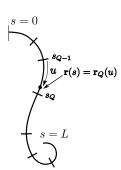
Code disponible:

http://gdaviet.fr/code/bogus

http://bipop.inrialpes.fr/~bertails/Papiers/Code

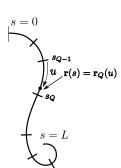
BERTAILS et al. 2006

▶ Découpage de la tige en N éléments $\tau(s), \kappa_1(s), \kappa_2(s)$ constantes p. morceaux



BERTAILS et al. 2006

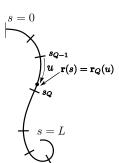
- ▶ Découpage de la tige en N éléments $\tau(s)$, $\kappa_1(s)$, $\kappa_2(s)$ constantes p. morceaux
- ▶ Éléments raccordés de manière C¹



UNE DISCRÉTISATION: LES SUPER-HÉLICES

BERTAILS et al. 2006

- ▶ Découpage de la tige en *N* éléments $\tau(s), \kappa_1(s), \kappa_2(s)$ constantes p. morceaux
- Éléments raccordés de manière C¹
 - → Courbe lisse en hélices par morceaux

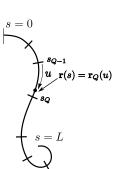


BERTAILS et al. 2006

- ▶ Découpage de la tige en N éléments $\tau(s)$, $\kappa_1(s)$, $\kappa_2(s)$ constantes p. morceaux
- Éléments raccordés de manière C¹
 → Courbe lisse en hélices par morceaux
- ► Équation dynamique :

$$\mathbb{M}(\boldsymbol{\kappa},t)\ddot{\boldsymbol{\kappa}} + \nu \,\mathbb{K}\dot{\boldsymbol{\kappa}} + \mathbb{K}\boldsymbol{\kappa} = \mathbf{F}(\boldsymbol{\kappa},\dot{\boldsymbol{\kappa}},t)$$

M dense non-linéaire, K diagonale cste



BERTAILS et al. 2006

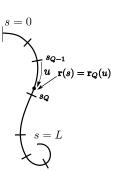
- ▶ Découpage de la tige en N éléments $\tau(s)$, $\kappa_1(s)$, $\kappa_2(s)$ constantes p. morceaux
- Éléments raccordés de manière C¹
 → Courbe lisse en hélices par morceaux
- ► Équation dynamique :

$$\mathbb{M}(\boldsymbol{\kappa},t)\,\ddot{\boldsymbol{\kappa}} + \nu\,\mathbb{K}\,\dot{\boldsymbol{\kappa}} + \mathbb{K}\,\boldsymbol{\kappa} = \mathbf{F}(\boldsymbol{\kappa},\dot{\boldsymbol{\kappa}},t)$$

M dense non-linéaire, K diagonale cste

► Intégration en temps stable

$$M \mathbf{v} + f = 0, \mathbf{v} = \dot{\boldsymbol{\kappa}}_{t+dt}$$



BERTAILS et al. 2006

- ▶ Découpage de la tige en N éléments $\tau(s)$, $\kappa_1(s)$, $\kappa_2(s)$ constantes p. morceaux
- Éléments raccordés de manière C¹
 → Courbe lisse en hélices par morceaux
- Équation dynamique :

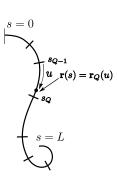
$$\mathbb{M}(\boldsymbol{\kappa},t)\,\ddot{\boldsymbol{\kappa}} + \nu\,\mathbb{K}\,\dot{\boldsymbol{\kappa}} + \mathbb{K}\,\boldsymbol{\kappa} = \mathbf{F}(\boldsymbol{\kappa},\dot{\boldsymbol{\kappa}},t)$$

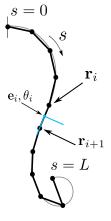
 \mathbb{M} dense non-linéaire, \mathbb{K} diagonale cste

Intégration en temps stable

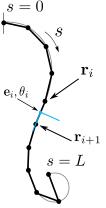
$$M \mathbf{v} + f = 0, \mathbf{v} = \dot{\boldsymbol{\kappa}}_{t+dt}$$

Extension : κ linéaire p. morceaux Super-Clothoides (Casati *et al.* 2013)

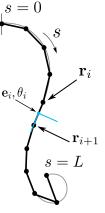




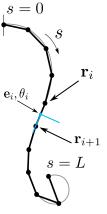
- Coordonnées maximales (squelette explicite):
 - ▶ N + 1 nœuds (points 3D) \mathbf{r}_i
 - ightharpoonup N torsions matérielles θ_i
 - \rightarrow 4*N* + 3 degrés de libertés



- Coordonnées maximales (squelette explicite):
 - ▶ N + 1 nœuds (points 3D) r_i
 - N torsions matérielles θ_i
 - \rightarrow 4*N* + 3 degrés de libertés
- Inextensibilité non-intrinsèque
 - → Ressorts ou contraintes dures



- Coordonnées maximales (squelette explicite) :
 - ▶ N + 1 nœuds (points 3D) r_i
 - N torsions matérielles θ_i
 - \rightarrow 4*N* + 3 degrés de libertés
- Inextensibilité non-intrinsèque
 - → Ressorts ou contraintes dures
- Intégration implicite
 - ► Forces non-linéaires → Newton
 - Matrice creuse par bandes



- Coordonnées maximales (squelette explicite) :
 - N + 1 nœuds (points 3D) r_i
 N torsions matérielles θ_i
 - 437 . 0 1 . . . 1 121 . . .
 - \rightarrow 4*N* + 3 degrés de libertés
- Inextensibilité non-intrinsèque
 - → Ressorts ou contraintes dures
- Intégration implicite
 - ► Forces non-linéaires → Newton
 - ► Matrice creuse par bandes
 - ... mais pas forcément positive

- Approximation linéaire par morceaux de r(s) (indépendante de la résolution de la tige)
- ightharpoonup Cylindres englobants de rayon ϵ

- Approximation linéaire par morceaux de r(s) (indépendante de la résolution de la tige)
- ightharpoonup Cylindres englobants de rayon ϵ
- Détection du contact par le calcul de distance minimale entre les axes des cylindres :
 - \rightarrow si $d < 2\epsilon$, un contact est activé

- Approximation linéaire par morceaux de r(s) (indépendante de la résolution de la tige)
- ightharpoonup Cylindres englobants de rayon ϵ
- Détection du contact par le calcul de distance minimale entre les axes des cylindres :
 - \rightarrow si $d < 2 \epsilon$, un contact est activé
- ► Sortie:
 - ► Positions s_i^A et s_i^B du point de contact i pour chaque corps A, B
 - Normale **e**_i au contact *i*

- Approximation linéaire par morceaux de r(s) (indépendante de la résolution de la tige)
- ightharpoonup Cylindres englobants de rayon ϵ
- Détection du contact par le calcul de distance minimale entre les axes des cylindres :
 - \rightarrow si d < 2 ϵ , un contact est activé
- ► Sortie:
 - ▶ Positions s_i^A et s_i^B du point de contact i pour chaque corps A, B
 - ► Normale e_i au contact *i*
- Méthodes d'accélération
 - Partitionnement des contraintes
 - ► Table de hachage en espace

- Approximation linéaire par morceaux de r(s) (indépendante de la résolution de la tige)
- ightharpoonup Cylindres englobants de rayon ϵ
- Détection du contact par le calcul de distance minimale entre les axes des cylindres :
 - \rightarrow si $d < 2 \epsilon$, un contact est activé
- ► Sortie :
 - ▶ Positions s_i^A et s_i^B du point de contact i pour chaque corps A, B
 - Normale $\mathbf{e_i}$ au contact i
- Méthodes d'accélération
 - Partitionnement des contraintes
 - ► Table de hachage en espace

