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Abstract. Optical mapping allows to visualize cardiac action potentials
(AP) on cardiac tissue surfaces by �uorescence using voltage-sensitive
dyes. So far, the surface measurements are directly related to surface
AP. In a previous study was developed a method to reconstruct three-
dimensional depolarization front: the main idea was to solve an inverse
problem using the experimental measures on the surfaces. Although the
method was very accurate on in silico data, it showed di�culties to re-
cover real optical mapping measurements. Here we describe the di�erent
directions we followed to improve the results.
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1 Introduction

Optical mapping is an important tool for the understanding of cardiac arrhyth-
mias [1]. It provides surface optical recordings that are linked to surface AP [5].
Although the photons are known to interact with the tissue up to a few mm
in depth, it remains very challenging to actually retrieve 3D information from
optical recordings. In [2], Khait et al derive a formula to determine the depth
of some �xed electrical sources in a phantom. Instead, we propose to solve an
inverse problem, so as to recover more accurate and complete information on the
electrical sources. The approach is also expected to apply to more general experi-
mental conditions. In a previous study we presented a �rst attempt to obtain
a complete 3D reconstruction following this approach. Although we obtained
excellent agreement between the actual location of the source and the location
found by the inverse method, on in silico data, the results on the experimental
data provided by the authors of [2] were disappointing. Actually, we observed a
large mismatch between the experimental measures and the measures computed
from the optical mapping model and the known experimental locations. Here we
explore the model and its optical parameters as a cause of this mismatch.

2 Optical mapping

For optical mapping of AP, �uorescent voltage-sensitive dyes that attach to the
cells' membrane are injected into a slab of tissue. The tissue is put in a bath,



and cameras and lights are placed on both sides of the preparation (epicardium
and endocardium, �g. 1). A �lter is placed in front of each camera, that al-
lows to choose the wavelength to be recorded. The epi- and endocardium are
alternatively illuminated. The dyes then emit a �uorescent light assumed to be
proportional to both the incident light and the transmembrane potential (TMP).
Optical images are the surface recordings of this light by the cameras [3]. Images
are recorded on the illuminated surface (re�exion mode) and on the opposite one
(transillumination mode). For each time step, optical mapping hence produces
four images.

The medium has a natural �uorescence (called background F0) recorded when
the tissue is at rest. Fluxes captured during an AP are denoted by F . The signal
due only to the AP itself is F−F0. We shall rather use the usual renormalization:

g? = F0 max

(
0,
F − F0

F0

)
. (1)

Indeed the max(. . .) amounts to ignore negative, physically irrelevant, optical
signals (due to noise). The multiplication by the average F0 of the background
signal is a way to retrieve the correct amplitude of the signal. Our main goal is
to reconstruct the 3D front of the AP from these 2D optical data.

Fig. 1. The optical imaging setup: (1) CCD camera, (2) emission �lter, (3) LED illu-
mination, (4) tissue sample, (5) ECG electrode, (6) bipolar stimulating electrode.

3 Model

3.1 Forward problem

In order to write the mathematical model of these observations, we assume the
following: the cameras record photon �uxes through the surfaces, the light inte-
racts with the tissue material in the di�usive regime [2], and a Robin boundary
condition can be used to model the interaction between the tissue and its envi-
ronment. Hence the illumination light is described by its photon density φ0 that
solves the di�usion equation

−D0∆φ0 + µ0φ0 = 0 in Ω,

φ0 + d0
∂φ0
∂n

= 0 on ∂Ω \ Γ, and φ0 =
I0δ0
D0

on Γ,
(2)



where Ω ⊂ R3 represents the slab of tissue, Γ is the illuminated surface, and
n is the unit normal to ∂Ω, outward of Ω. The �uorescent light is assumed to
be proportional to the TMP and the illumination light (multiplicative factor
β > 0). Its photon density solves:

−D∆φ+ µφ = β(Vm − V0)φ0 in Ω,

φ+ d
∂φ

∂n
= 0 on ∂Ω.

(3)

In both equations, the optical parameters D, µ, d stand respectively for di�usion
coe�cient, absorption coe�cient and extrapolation distance. The attenuation

length is the parameter δ0 de�ned by δ0 =
√

D0

µ0
. The intensity of the illumi-

nation, assumed uniform, is the parameter I0. The multiplicative factor β > 0
is known for the dye used during the experiments. The dyes are assumed to
be uniformly distributed in the tissue. Finally the �uxes measured through the
surfaces are given by Fick's law:

g = −D∂φ

∂n
on the epi or endocardium. (4)

Remark that the experimental �ux g? given by (1) does not satisfy equation (3),
because of the renormalization. The quantity F − F0 does. However we shall
consider g? as a good approximation of g, following the recommendations of the
experimenters.

Since we consider a rectangular slab of tissue, we may have used structured
meshes. We choose to work with unstructured meshes in order to allow more
general geometries. This is necessary to study data from heart tissues. The dif-
fusion equations are solved with with P1-Lagrange �nite elements method using
the solver FreeFem++[4].

3.2 Inverse problem

The problem of retrieving the 3D spatial distribution of the TMP, denoted by
Vm(t,x) from the 2D optical signals at time t > 0 is under-determined. Hereafter,
x = (x, y, z) denotes a point in Ω with Cartesian coordinates (x, y, z). Instead of
�nding the complete distribution Vm(t,x), we look for a depolarization front at
each time. Speci�cally, we assume that a surface S(t) = {x ∈ Ω : f(t,x) = 0}
de�ned as the level 0 of the function f splits the domain Ω into the region
Ωr = {x ∈ Ω : f(t,x) > 0} of tissue at rest, and the region Ωp = {x ∈ Ω :
f(t,x) < 0} of excited tissue. It follows that Vm(t,x) = Vp if x ∈ Ωp, and
Vm(t,x) = V0 if x ∈ Ωr. We consider simple depolarization fronts S modeled

� either by the sphere centered in x0 ∈ Ω and expanding with the velocity
c > 0 after the given time t = t0 ≥ 0, de�ned by the level-set function
f(t,x) = |x− x0| − c(t− t0),

� or by the �xed ellipsoid centered in x0 ∈ Ω and with radiuses rx, ry, rz > 0,

de�ned by the level-set function f(t,x) = (x−x0)
2

r2x
+ (y−y0)2

r2y
+ (z−z0)2

r2z
− 1.



This level-set approach generalizes to more complex AP, once these simple
cases are completely understood. In both cases, the inverse problem reduces
to the identi�cation of a small parameters set P = (x, c, t0) ⊂ R5 (sphere) or
P = (x, rx, ry, rz) ⊂ R6 (ellipsoid). In order to identify these parameters, we
minimize the least squares di�erence e(P) between the actual measurements
and the measurements computed from equations (2), (3), and (4) with a TMP
as above:

e(P) = 1

2

4∑
i=1

‖giP − g?,i‖2L2(Si), (5)

where the functions g?,i are the data. Here i refers to one of the four images (i ∈
{1, 2, 3, 4}), and the surface Si is either the epicardium or the endocardium, as
detailed in Table 1. Although this is the natural way to de�ne the cost function,

# illuminated surface measured surface

1 epicardium S1 = epicardium
2 epicardium S2 = endocardium
3 endocardium S3 = endocardium
4 endocardium S4 = epicardium

Table 1. References of the measures

the value I0 of the illumination in equation (2) is unknown, while the optical
parameters are. Consequently, and since equations (2), (3), and (4) are linear,
the density φ0, or φ, can only be computed up to a multiplicative constant. The
mapping I0 7→ gi is also linear, the measurement in-silico gi is consequently
proportional to I0, and we can change the cost function to account for this
unknown value. A �rst idea is to identify the intensity I0, and consider the
following modi�ed cost function:

e(P) = 1

2

2∑
i=1

2∑
j=1

‖Ii0g
ij
P − g

?,ij‖2L2(Sj), (6)

where i, j ∈ {1, 2}, i stands for the illuminated surface while j stands for the
measured surface (i = j for the re�exion mode, and i 6= j for the transillumina-
tion mode). Since the intensities are di�erent, we have two additional parameters
to retrieve, I10 and I20 . A second idea consists in comparing the normalized �uxes:

e(P) = 1

2

4∑
i=1

‖ gi

‖gi‖
− g?,i

‖g?,i‖
‖2L2(Si), (7)

where the inner norms ‖·‖ are also L2 norms on the surface Si. In this case there
is no additional parameter to be identi�ed, but the problem becomes nonlinear
with respect to Vm.

In all cases, a �xed-step gradient method followed by the BFGS algorithm is
used to solve the inverse problem. We need the gradient of all the cost functions e



with respect to the unknown parameters P, which is computed with the adjoint
method.

4 Summary of the results and issues

4.1 Summary of previous results

In this part we quickly recall the �rst results we obtained. We �rst compared
the formula derived in [2] and our method for the expanding sphere and the cost
function (5) on data in silico.

Figure 2 shows the depth of the source computed from Khait's formula (di-
amonds) and from our method (squares) as a function of time. Results are pre-
sented for inclusions at four di�erent locations, excitation time t0 = 0 and ve-
locity c = 0.5 m.s−1. The last example was carried out on a cylinder, in order to
illustrate the case of a complex geometry. For all cases we retrieved the complete
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Fig. 2. Comparison between with Khait's formula (diamonds) and our method
(squares). The vertical lines mark the breakthrough of the wave on the observed surface.

unknown location x0 of the source, at any time, and even after the breakthrough,
with an accuracy up to machine precision. Additionally, the velocity c could be
recovered from any time-sequence of data. These were very good results, based
on data in-silico.

The method was then tested on the experimental data from the optical phan-
tom experiments set up by Khait and coworkers [2]. In this case, �xed ellipsoidal
sources were considered and the intensity I0 of the illumination was unknown.
We chose to work with the normalized cost function (7), so that we had to
identify six parameters.

Figure 3 shows the results obtained for a phantom located at a depth z0 = 13
mm. Although the reconstruction of the photon �uxes looks qualitatively correct



(�rst and second rows of images), the reconstructed depth is z? = 16.7 mm.
In order to understand this large error (3 mm over a total depth of 20 mm),

Fig. 3. Results for one set of experimental data. Domain size: 40x40x20mm. Columns
1 and 2: records on the epicardium. Columns 3 and 4: records on the endocardium.

we computed the theoretical observations associated to the exact experimental
location of phantom source: from P known, we compute the TMP distribution
Vm(x), solve equations (3) and (4), and �nally compute the observation g with
equation (4). These normalized �uxes (third row of images on �gure 3) clearly
have di�erent amplitudes than the experimental signal. These �uxes are also
more di�use than the experimental ones. We observe the same behavior with
seven other experimental phantoms. We tried to replace the measure g? (eq. (1))
by the simpler di�erence max (F − F0, 0) and obtained similar errors on the
location. We deduce from these results that the optical model (2) and (3) is
questionable. In the next section, we identify and study in depth several possible
sources of error.

4.2 Model improvements to �x the mismatch

Uniform Illumination. First, we addressed the approximation of uniform
distribution of the illumination I0. We tested the e�ect of several spatially
distributed illumination intensities I0(x, y): constant, narrow Gaussian, di�use
Gaussian, supposed to mimic the experimental lights. They read

I0(x, y) = A exp

[
−
(
(x− x0)2

σ2
x

+
(y − y0)2

σ2
y

+
(x− x0)(y − y0)

2σxy

)]
. (8)

We observed the same �uxes g for the three cases. Indeed, the source term
(Vm(x)− V0)φ0(x) in the �uorescence equation is the same in all cases because
the photon density φ0 becomes quickly constant inside the tissue (see Figure 4).
Finally it is not a limitation to consider an uniform illumination.



Fig. 4. Narrow Gaussian example for an epi-illumination. Domain size: 40x40x20mm.
On the left: spatial distribution of I0, on the right: photon density φ0, cut plane in
z-direction.

Optical parameters. Another possibility is that the values of the optical pa-
rameters are not correct. In order to understand the role of these parameters,
we derive a dimensionless version of the equations. Consider a space scale L > 0
and let rescale x as : x′ = x

L . Equations (2) and (3) rewritten
− D0

L2
∆φ0 + µ0φ0 = 0 in Ω,

φ0 +
d0
L

∂φ0
∂n

= 0 on ∂Ω \ Γ,

φ0 =
I0δ0
D0

on Γ,


− D

L2
∆φ+ µφ = β(Vm − V0)φ0 in Ω,

φ+
d

L

∂φ

∂n
= 0 on ∂Ω.

We de�ne γ = I0δ0
D0

and rescale the density as φ′0 = φ0

γ and φ′ = φ
γ , in such a

way that:
− D0

L2
∆φ′0 + µ0φ

′
0 = 0 in Ω,

φ′0 +
d0
L

∂φ′0
∂n

= 0 on ∂Ω \ Γ,

φ′0 = 1 on Γ,


− D

L2
∆φ′ + µφ′ = β(Vm − V0)φ′0 in Ω,

φ′ +
d

L

∂φ′

∂n
= 0 on ∂Ω.

Dividing the di�usion equation by µ0 (resp. µ) the dimensionless system reads:
− δ0

2
∆φ′0 + φ′0 = 0 in Ω,

φ′0 + d0
∂φ′0
∂n

= 0 on ∂Ω \ Γ,

φ′0 = 1 on Γ,

 − δ
2
∆φ′ + φ′ = (Vm − V0)φ′0 in Ω,

φ′ + d
∂φ′

∂n
= 0 on ∂Ω.

where δ0
2
= D0

µ0L2 , d0 = d0
L , δ

2
= D

µL2 and d = d
L are dimensionless optical

parameters. Finally the �uxes are given by g′ = φ′ on the epi or endocardium.
The other parameters, I0 and β are hidden in a dimensionless number γ and we
compare the experimental �uxes g? to γg′. The optical system is characterized by
the four optical parameters. Adding the two terms γ (one for each illumination),



we end up with six parameters. We tried to solve a second inverse problem:
knowing the characteristics P of the inclusion, identify the six new parameters
by minimizing the cost function

e1(δ0
2
, d0, δ

2
, d, γ1, γ2) =

1

2

2∑
i=1

2∑
j=1

‖γig′ij − g?,ij‖2L2(Sj). (9)

To date, the numerical solutions to this optimization problem are still being
computed.

Other possibilities. In our model we do not consider the distance between the
preparation and the camera. We could consider the di�usion of the photon den-
sity in the air by ensuring the continuity of the �uxes at the border medium/air.
Instead, we impose a Robin condition on all the surfaces. We consider that the
�uxes are recorded directly through the tissue surfaces, and not through the
Plexiglas, because the Plexiglas has a negligible absorption coe�cient.

5 Discussion

Modeling the optical measurements by the di�usion equations (2) and (3) is
widely used in cardiac optical mapping. But when we confront the measurements
obtained with this model to the experimental ones in a well controlled setup,
we observe an important mismatch (�g. 3). We studied several ideas that might
explain the di�erences, always with a negative result. To our opinion, this is
likely to suggest that the di�usive regime is a too coarse approximation of the
interaction between light and matter in the cardiac context. If this is con�rmed
by further experiments, the complete radiative transfer equation (RTE) might
be used to model the measurements.

6 Conclusion

The aim of this study was to detail our investigations concerning the current
model of cardiac optical mapping measurements. Having recalled previous results
we described our attempts to improve our mathematical model. The most likely
assumption was that the illumination on the tissue was not constant. Few tests
showed that it was not the key. We eliminated several other sources of error, but
there remains some more. We keep on working on the dimensionless problem in
order to identify its parameters. Otherwise the RTE might be used.
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