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Integer factorization and discrete logarithm problems

Pierrick Gaudry

October 2014

Abstract

These are notes for a lecture given at CIRM in 2014, for the �Journées Nationales du Calcul
Formel�. We explain the basic algorithms based on combining congruences for solving the
integer factorization and the discrete logarithm problems. We highlight two particular situations
where the interaction with symbolic computation is visible: the use of Gröbner basis in Joux's
algorithm for discrete logarithm in �nite �eld of small characteristic, and the exact sparse linear
algebra tools that occur in the Number Field Sieve algorithm for discrete logarithm in large
characteristic.

Disclaimer: These notes contain no new material. They also do not aim to be a survey, and exhaustivity

is not a goal. As a consequence, many important works (old or recent) are not mentioned.

1 The problems and their cryptographic signi�cance

1.1 Cryptographic context

Cryptography, as a science that studies tools to secure communications in a wide sense, contains
various sub-themes among which the so-called public-key cryptography covers algorithms such as
digital signatures, and asymmetric encryption, i.e. encryption systems in which the key that is
used to encrypt is publicly known, while the corresponding decryption key is known only by the
recipient. This is useful in particular when the participants do not share a common secret prior to
any interaction.

Most public key algorithms used today are based on di�cult problems in number theory, and
more precisely integer factorization and discrete logarithm problems, which constitute the central
topic of this lecture. Let us give two examples.

EMV. The EMV is the standard adopted by Visa, Mastercard, the French Carte Bleue and many
others, to secure the chip-and-pin smartcard transactions. The public key part of the standard
is based on the RSA cryptosystem, whose security relies on the presumed di�culty of factoring
integers. The typical key sizes found in today's cards are 1024 bits or slightly more. Anyone who
would be able to factor numbers of this size could easily break into the system and create fake
transactions.
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SSL/TLS. The SSL/TLS standard is the one used to secure many protocols found on the internet.
For instance, the s at the end of https acronym means that the connection between your web-
browser and the server is secured using SSL/TLS. By clicking on the lock picture when browsing
on such a web site, it is easy to know the algorithms that are used for this particular connection.
Currently, depending on the browser, the client OS, and the server, one can see various public key
algorithms, the most frequent being RSA, DSA and ECDSA. The security of DSA relies on the
di�culty to compute discrete logarithms in a prime �nite �elds, while ECDSA's security is linked
to discrete logarithms between points of an elliptic curve over a �nite �eld.

In order to select the key sizes for these applications, it is necessary to study thoroughly the
underlying problems: measuring what can an attacker do with the best known algorithm is crucial,
especially when the technical constraints are such that taking a lot of margin to be on the safe side
is not an option (like in embedding systems where each millijoule is expensive).

1.2 Integer factorization and related notions

Factoring integers is an old and well-known problem; we recall it here for completeness.

De�nition 1. The integer factorization problem is the following: given a positive integer N , compute

its decomposition into prime numbers N =
∏
peii (unique up to reordering).

A related question is primality testing: how hard is it to decide whether a number is a prime
or a composite? Both from the theoretical side [3, 2] and from the practical side [5] this is now
considered as an easy problem. Indeed, there exists a polynomial-time deterministic algorithm, and
there are practical algorithms (maybe probabilistic, maybe Monte-Carlo, like Miller-Rabin) that are
e�cient enough for most purposes.

As a consequence, it is easy to verify whether the result of integer factorisation is correct, so
that if we have a probabilistic algorithm that might fail, detecting the failure is always easy, at least
at the end.

Another important tool is the sieve of Eratosthenes: this is an e�cient way to enumerate all
primes up to a bound B in quasi-linear time in B. Although this is a very old algorithm, there have
been some progress in the past decades [4, 12].

Using the sieve of Eratosthenes, the easiest algorithm we can think of for factoring an integer
N is trial division: for all the primes p in increasing order, check if p|N . If yes, divide N by as
many powers of p as possible. While the remaining part is not a prime, continue. The complexity
of this algorithm is quasi-linear in the second largest prime dividing N .

The dependence of the complexity in the second largest prime dividing N is not speci�c to the
trial division algorithm. It will occur for any factoring algorithm that extract prime divisor one at
a time, with a sub-algorithm whose complexity depends on the size of the prime to be extracted
and almost not on the size of N .

As a consequence, the di�culty of the integer factorization problem is not uniform: factoring
integers N for which the second largest prime is bounded by a polynomial in logN can be done
in polynomial time. Conversely, it is generally assumed that the most di�cult case is when N is
the product of only two primes of the same size. This is the reason why they are used in the RSA
algorithm.

An important notion that will be present in many algorithms is smoothness.
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De�nition 2. An integer is B-smooth if all its prime factors are smaller than B.

Being B-smooth becomes a less di�cult condition when B grows. The two extreme cases are
B = 2, where the only 2-smooth numbers are powers of 2, or B which is larger than the numbers we
consider, so that all of them are smooth. The proportion of B-smooth numbers is an important topic
in analytic number theory. For our purpose, the main result is by Can�eld, Erd®s and Pomerance.

Theorem 1. Let ψ(x, y) be the number of y-smooth positive integers smaller than x. Let u =
log x/ log y. Fix ε > 0 and assume that 3 ≤ u ≤ (1− ε) log x

log log x . Then we have

ψ(x, y)/x = u−u+o(1).

In order to get a better insight of this result, we introduce a function that, in the context of
integer factorization is called the subexponential function.

De�nition 3. The subexponential function is

LN (α, c) = exp
(
c(logN)α(log logN)1−α

)
,

where α is in [0, 1] and c is a positive number.

The main parameter is α: if α = 0, then LN (α, c) = (logN)c, so that it describes a polynomial
complexity, while if α = 1, we get N c, that is an exponential complexity. Any intermediate value
of α yields a complexity that is called subexponential. Sometimes, when only a �rst order estimate
is needed, the second parameter c is omitted.

The theorem of Can�eld, Erd®s and Pomerance can be restated in terms of the subexponential
function as follows.

Corollary 2. Let N be an integer and B = LN (α, c). The proportion of numbers less than N that

are B-smooth is in LN (1− α, (1− α)/c+ o(1))−1.

This estimate is at the heart of the analysis of many algorithms. Indeed, it says that by �xing a
smoothness bound not too small and not too large, the proportion of smooth numbers will also be
su�ciently high so that there is a chance to �nd one by trail and error. This leads to the question
of actually detecting a smooth number.

De�nition 4. The smoothness test problem is as follows: given a number N and a bound B, decide
whether N is B-smooth.

The trial division algorithm can be stopped once the prime p that is considered gets larger
than B. This gives a deterministic algorithm for the smoothness test problem with a complexity
that is quasi-linear in B, i.e. exponential in the size of B.

There exists much better algorithms for testing the smoothness of integers. All known algorithms
in this family also �nd the factorization of N in the case where N is smooth, just like trial division
does. The most famous is the Elliptic Curve Method (ECM) invented by Lenstra [17]. Its behaviour
is probabilistic, in the sense that when the algorithm does not return the factorization of N after
a certain amount of time, all we can deduce is that the probability that N was B-smooth is small
(and this probability can be made arbitrarily small). But the situation is even worse in theory: this
property is not rigorously proven. There are very reasonable heuristics that would imply that the
statement is correct, but with the current knowledge, it can be proven that it is correct only for
most of the input numbers.

Let us give a sloppy statement; we refer to Lenstra's article for a precise theorem.
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Theorem 3. Under reasonable heuristics, there exists a probabilistic algorithm called ECM that,

given an integer N and a bound B, returns either the factorization of N or fails. If N is B-smooth,

then the probability that is succeeds is at least 1/2. The running time is in (logN)O(1)LB(1/2,
√

2 +
o(1)).

By setting the smoothness bound to the maximal possible value of the second largest prime
factor of N , namely B =

√
N , it is possible to turn ECM into a probabilistic factoring algorithm.

Its complexity is therefore in LN (1/2, 1 + o(1)). We will see in Section 2.1 another algorithm with
the same complexity.

As can be guessed from its name, the ECM algorithm relies on the theory of elliptic curves. We
will not describe it here, although this is an important tool in algorithmic number theory. In the
following, we will take the ECM algorithm as a black-box, and will always assume that it works as
expected from the heuristics. We �nally mention that ECM is a very practical algorithm, for which
e�cient implementations exist, most notable GMP-ECM [28, 1].

1.3 Discrete logarithm problem

The discrete logarithm problem can be stated in various algebraic structures and with several
assumptions about what is known. We give here the most standard de�nition in a cyclic group.

De�nition 5. Let G be a cyclic group of order N generated by g. Assuming that there exists a

polynomial time algorithm for computing the group law in G, and that N is given, the discrete

logarithm in G is as follows: given any element h in G, compute an integer x such that h = gx.

A naïve algorithm would try all possible values for x in turn, each new value requiring one appli-
cation of the group law. The time complexity of this algorithm is bounded by N , i.e. exponential in
the size of the input problem. In fact, to speak properly of the size of the input problem, and there-
fore of the complexity, it would be required to bound the sizes of the representations of elements
of G. Since the main topic of this lecture is speci�c groups for which the size of the representations
are easily controlled, we will not mention this issue any more and always take logN as input size.

The solution x of a discrete logarithm problem is an exponent for an element of orderN ; therefore
only its value modulo N makes sense, and it is customary to view it, not as an element of Z, but
as an element of Z/NZ. Then, the Chinese Remainder Theorem readily comes to mind in order
to split the discrete logarithm problem modulo N into simpler problems modulo the prime factors
of N .

This simple strategy, combined with an Hensel-lift method to handle powers of prime is known
as the Pohlig-Hellman algorithm that we describe now. We therefore assume that the factorization
of N =

∏
peii is known. For any j, we start by raising g and h to the power N/p

ej
j =

∏
i 6=j p

ei
i . We

obtain g′ of order p
ej
j and h′ an element of the group generated by g′. It is easy to check that the

discrete logarithm of h′ with respect to g′ is exactly x mod p
ej
j , where x was the discrete logarithm

of h w.r.t. g. Since exponentiation can be done in polynomial time using a basic square-and-multiply
technique, this gives a polynomial time reduction of the discrete logarithm problem modulo N to
discrete logarithm problems modulo prime powers dividing N . The Hensel-like trick works similarly
by projecting to appropriate subgroups of prime order, and is left as an exercise for the reader. For
this topic and much more, we recommend to read Galbraith's book[11].
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Theorem 4 (Pohlig-Hellman). Let G be a cyclic group of order N of known factorization N =
∏
peii .

The discrete logarithm problem in G can be reduced in polynomial time to, for each i, solving ei
discrete logarithm problems in subgroups of G of order pi.

The previous result is typical of what is called a generic algorithm, i.e. an algorithm that works
in any group for which we have an e�cient algorithm for the group law. In fact, it is possible to go
further, while still staying in the realm of generic algorithms.

The Baby-step giant-step algorithm, works as follows. Let us write the discrete logarithm
x as x = x0 + d

√
Nex1, where 0 ≤ x0, x1 < d

√
Ne. In a �rst phase, we compute all the possible

values for hg−x0 and store them in a data structure that allows fast searching, together with the

corresponding value of x0. In the second phase, all values gx1d
√
Ne are computed, and each time we

check whether the group element belongs to the list of elements computed in the �rst phase. When

this is the case, we have hg−x0 = gx1d
√
Ne, so that h = gx0+x1d

√
Ne, and we deduce the solution

from x0 and x1. The time and space complexity of this algorithm is in O(
√
N), where maybe a

logarithmic factor should be added to take into account the overhead of the data structure queries.
Combining the Baby-step giant-step and the Pohlig-Hellman algorithms, the discrete logarithm

problem in a group of order N can be solved in time and space Õ(
√
p) where p is the largest

prime factor of N . There exists also another algorithm, with the same time complexity, but with
essentially no memory. This is the Pollard Rho algorithm for which their exist numerous variants.
They also have the advantage to be parallelizable with almost no communications between nodes,
and almost no overhead [27]. Their drawback is that they can not be rigorously analyzed without
assumptions on the existence of hash functions with nice properties. Cryptographers would use
for this the �random oracle model�, where the runtime analysis is made on average on all the hash
functions. In practice the variants of Pollard Rho algorithm are very e�cient and the most basic
choices of hash functions are enough.

For our purpose, the last thing that is worth mentioning about generic algorithms is that they
are essentially optimal. Indeed, Nechaev and then Shoup [19, 25] have proven that any probabilistic
algorithm that can solve the discrete logarithm with a non-negligible success probability in a group
of prime order p requires to perform at least Ω(

√
p) group-operations.

Of course, generic groups do not exist in practice: in practice, the group law is performed with an
algorithm that relies on a structured representation of the elements. A discrete logarithm algorithm
is therefore �free� to make operations on the elements that are not group law operations, and the
lower bound does not apply.

The most classical groups in cryptography, namely multiplicative groups of �nite �elds, and
group of points of an elliptic curve in a �nite �eld, behave very di�erently. For elliptic curves over
prime �elds, apart from a few particular cases that are easy to avoid, we do not know a better
discrete logarithm algorithm than the generic algorithms. They are as close as generic groups as
they can be. For �nite �elds, this is another story, as we will see in the next section.

2 Combining congruences

2.1 Basic subexponential factoring algorithms

Many factorization algorithms start from the following observation: if X and Y are such that
X2 ≡ Y 2 mod N in a non-trivial manner, i.e. with X 6≡ ±Y mod N , then GCD(X − Y,N)
gives a proper factor of N . Let us assume that N has only two prime factors N = pq, and let us
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furthermore assume that X being �xed, Y is chosen uniformly among all possible values that satisfy
X2 ≡ Y 2 mod N . Reducing the equation modulo p, we get that X ≡ ±Y mod p, and the same
holds modulo q. Using the Chinese Remainder Theorem (CRT), it is then clear that there are 4
choices of Y , and among them, 2 will give a proper factorization, and 2 will give nothing. This 50%
chance of success can only improve if N has more than 2 factors.

We remark readily that, although there are e�cient algorithms to compute square root in a �nite
�eld, there are no such algorithm to extract a square root in the ring Z/NZ, with a composite N :
the best known strategy is to factor N and use the CRT.

Let us now describe one of the most basic strategy to generate two numbers with congruent
squares modulo N . Let x be a random number modulo N . Let us compute x2 mod N , viewed as
an integer between 0 and N − 1. The chances that this is a perfect square are low. So, instead, we
are going to hope for this number to be B-smooth, for a smoothness bound B that will be tuned
later. With the ECM algorithm, the test costs Bo(1). We perform this procedure many times, until
we get a collection of relations: numbers xi's for which

x2i ≡
∏
p<B

pep,i mod N,

where the product goes through all the primes smaller than p < B, and the exponents ep,i are
non-negative integers, most of them being 0. Let us form the matrix M whose columns are labelled
by the primes p, and for which the i-th row contains the exponents ep,i of the relation corresponding
to xi. The goal will be to create a square, that is an integer for which all the exponent in its prime
decomposition are even. Hence the matrix that we form needs only to encode the parity of the
exponents, and not the exponent themselves. In other words, the matrix M is viewed as a matrix
over the �eld F2 with two elements.

If there are more rows than columns inM , there exists a non-zero left-kernel vector vi. Then, by
construction, multiplying together all the relations for which vi = 1, we get an equality between two
squares modulo N : on the left-hand-sides, this is a product of the x2i , and on the right-hand-side
we have a number with only even exponents in the prime decomposition. From this, we deduce two
numbers X and Y such that X2 ≡ Y 2 mod N , and we hope that they yield a proper factorization.

The runtime of this algorithm is clearly linked to the choice of the smoothness bound B. If
this is large, then smooth elements are frequent, but we will need more relations to �ll-in the
matrix. If this is small, we need less relations, but they are hard to �nd. By choosing B of the
form LN (1/2, β), we can get a perfect balance and optimize the overall cost. By the prime number
theorem, the number of primes below B is around B/ logB, which we bound crudely by B, since
polynomial factors are not visible with the L notations. The probability that a number smaller
than N is B-smooth is LN (1/2, 1/2β + o(1))−1. Therefore collecting the relations has an expected
cost of LN (1/2, β + 1/2β + o(1)). This is optimized by taking β =

√
2/2, and gives a runtime

of LN (1/2,
√

2 + o(1)). Since the matrix is sparse, the complexity of �nding a kernel element is
quasi-quadratic, that is LN (1/2, 2β). This is again the same value, so that the overall runtime of
the algorithm is LN (1/2,

√
2 + o(1)).

In the algorithm that we described above, the complexity is driven by the size of the elements
we test for smoothness (which, in turn, determines the smoothness bound). There is an easy way
to reduce this size from roughly N to

√
N . Indeed, instead of taking random values modulo N

for the xi's, it is possible to take xi = d
√
Ne + εi, for small random values of εi. In that case,
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x2i − N ≈
√
N , and therefore the smoothness test is done on an integer that has a size half times

smaller than before. Re-tuning β according to this new setting, we get an overall complexity of
LN (1/2, 1 + o(1)).

There was a fair amount of hand-waiving in the description and in the analysis of these sub-
exponential factorization algorithms. In fact, turning them into rigorously proven versions is not
at all a trivial task. A variant with an LN (1/2,

√
2 + o(1)) complexity was proven by Pomerance

in 1987 [22], and a proven complexity of LN (1/2, 1 + o(1)) was obtained in 1992 by Lenstra and
Pomerance [18], but this required to use rather more sophisticated algebraic structures, namely
class groups of number �elds.

This is in fact a general feature of most of the e�cient algorithms for factorization and discrete
logarithm: getting a rigorous proof of the expected running time is often pretty hard or even far
beyond the current knowledge in number theory. As a consequence, in many cases we have to
content ourselves with an analysis based on heuristics.

Following the general strategy of combining congruences to construct a modular equality between
two squares, the algorithm with the currently best known complexity is the Number Field Sieve
(NFS). It was invented in the early 90's, starting with an idea by Pollard for a small class of
numbers, and generalized by many authors to make it applicable to any number [16]. The heuristic
complexity of the NFS algorithm is

LN

(
1/3, 3

√
64/9 + o(1)

)
,

the important improvement compared to previous algorithm being the replacement of the 1/2 by a
1/3 in the formula.

We will not explain the NFS algorithm here, but in Section 4 in the context of discrete logarithm
computations in prime �elds.

2.2 Combining congruences for discrete logarithm

The strategy of combining congruences using smoothness properties can be used for discrete loga-
rithm computations. We describe it �rst for prime �elds, i.e. �nite �elds of the form Fp, where p
is a prime. More precisely, the discrete logarithm problem is de�ned in the multiplicative group of
Fp, and we assume that we work in a prime order subgroup of order `|p − 1. Let g be a generator
of this subgroup, and let h be an element in 〈g〉. In general ` is assumed to be large enough so that
any event that occurs with probability 1/` is considered unlikely. The algorithm proceeds in 3 main
phases:

1. Collect relations between small elements.

2. With sparse linear algebra, compute the logarithms of all the small elements.

3. Find a relation between the target h and the small elements.

The �rst two phases do not depend on h and therefore they can be seen as a precomputation if
many discrete logarithms have to be computed in the same �eld. This works as follows. Let a be a
random integer, and compute ga in F∗p. The �nite �eld Fp can be represented as Z/pZ, so that its
elements can be viewed as integers between 0 and p − 1. Hence, it makes sense to check whether
ga is B-smooth as an integer less than p. Again the bound B will be �xed during the complexity
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analysis. If it is smooth, we get a relation. And we collect many of them: we assume that we have
found a collection of integers ai's such that we can write

gai ≡
∏
q<B

qeq,i mod p,

where the product goes through all the primes smaller than B, and the exponents eq,i are non-
negative integers, most of them being 0. By taking logarithms, each of this equation becomes a
linear equation between discrete logarithms modulo `:

ai ≡
∑
q<B

eq,i log q mod `.

The ai's and the exponents eq,i are known, so that the only unknowns are the log q, for q < B. If
we get enough relations, we can hope to get a linear system of maximal rank, so that all the log q
are uniquely determined and can be computed with (sparse) linear algebra.

Let us insist a bit on a subtle point: a small element q < B whose discrete logarithm occurs
in a relation has no reason at all to belong to the subgroup generated by g. This is an element
of the full multiplicative group F∗p, and if the order ` of g is much smaller than p − 1, then the
chances are quickly negligible that we are actually writing an equation between elements of 〈g〉.
Still, the equations that we wrote above are correct. Indeed, the �rst one is an equation between
�eld elements, and the second one can be deduced by projecting a similar equation between discrete
logarithms in the full group F∗p, i.e. a linear equation modulo p − 1. But ` divides p − 1, so this
equation also makes sense modulo `, even if the elements involved are not in the subgroup.

Once the logarithms of the small elements have been computed by linear algebra, we look for
another relation, but this time involving the target element h: several values of a are tried until ha,
seen as an integer between 0 and p − 1, is B-smooth. When this is the case, then a log h can be
expressed as a linear combination of known logarithms, and provided that a is not divisible by `,
we deduce the value of log h.

The complexity analysis is very similar with the one we sketched in the context of integer
factorization. By setting the smoothness bound B to Lp(1/2,

√
2/2), the probability that an element

is smooth is in Lp(1/2,
√

2/2 + o(1))−1, so that the total cost for getting a square matrix is in
Lp(1/2,

√
2 +o(1)). Again, since the matrix is sparse, we can assume a quadratic running time, and

this �ts in the same complexity.
Let us remark that this algorithm can be made rigorous, as shown by Pomerance [22], after

modifying a bit the generation of relations to guarantee that we get a matrix of maximal rank with
high probability.

We also insist again on the fact that the algorithm has to manipulate elements of the full
multiplicative group and can not stay inside the subgroup of order `. This is the main reason why
the complexity analysis depends mostly on p and not on `.

The Number Field Sieve algorithm, originally designed for integer factorization, has been adapted
in the 90's to the computation of discrete logarithms in prime �elds [14, 23]. The complexity ended

up being of the same form: LN

(
1/3, 3

√
64/9 + o(1)

)
, thus strengthening the links between discrete

logarithm and factorization (although there is no known reduction from one problem to the other).
Much more information on this algorithm will be given in Section 4.
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For �nite �elds of small characteristic, combining congruences can also be used to compute dis-
crete logarithms. This time, however, the smoothness of integers must be replaced by the smooth-
ness of polynomials. For simplicity, we consider the case of �elds of characteristic 2, which can be
represented in the form F2n = F2[t]/ϕ(t), where ϕ(t) is an irreducible polynomial of degree n in
F2[t]. Hence, any element can be uniquely represented by a polynomial of degree less than n. The
multiplicative group F∗2n is cyclic of order 2n − 1, and we consider a discrete logarithm problem in
a subgroup of prime order `|2n − 1, generated by an element g.

The algorithm follows the same three steps as in the prime �eld case. First, we collect relations
by raising g to a random power a, until ga is b-smooth. In that case, this means that, viewed as a
polynomial over F2, the elements have irreducible factors of degree at most b. Tuning b correctly,
this occurs with a high enough probability, so that we can generate many relations, which can be
converted into a system of linear equations where the unknowns are the logarithms of the elements
represented by an irreducible polynomial of degree at most b. One important di�erence with the
factorization and prime �eld case is that testing the smoothness is much easier: this boils down to
factoring univariate polynomials over F2, which can be done in polynomial time, and very e�ciently
in practice.

The main remaining question is about the probability that a polynomial of degree less than n
is b-smooth. This is given by the following general result, which is an equivalent of the theorem of
Can�eld�Erd®s�Pomerance.

Theorem 5 (Panario � Gourdon � Flajolet [20]). Let Nq(n,m) be the number of monic polynomials

over Fq, of degree n that are m-smooth.

Then we have

Nq(n,m)/qn = u−u(1+o(1)),

where u = n/m.

The direct consequence is that by setting b = log2 L2n(1/2,
√

2/2), the probability of getting a
b-smooth element is in L2n(1/2,

√
2/2 + o(1))−1, so that the analysis is exactly the same as in the

prime �eld case, and the �nal complexity is again in L2n(1/2,
√

2 + o(1)).

This concludes our description of basic algorithms using the combination of congruences. We
are now ready to zoom-in on two more recent topics, in order to highlight links with symbolic
computation.

3 Discrete logarithms in �nite �elds of small characteristic

In 2013, many improvements were discovered for discrete logarithm computation in the case of
�nite �elds of small characteristic, starting with an algorithm with an L2n(1/4) complexity due to
Joux [15], that was then modi�ed to get a quasi-polynomial complexity [7]. By quasi-polynomial, we
mean a complexity of nO(logn) where n is the number of bits of the input, which would correspond
to L2n(o(1)) in the L-notation.

In this lecture, we present these algorithms in reverse-chronological order.

3.1 The BaGaJoTh quasi-polynomial algorithm

The canonical setting for the quasi-polynomial algorithm is unusual, since we require that the �nite
�eld is of the form Fq2k , where k is less than or equal to q + 2, but still close to q, so that in
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the complexity estimates we can replace k by q without losing too much. The size of the input
is log(q2k) ≈ q log q. Therefore, any algorithmic step whose complexity is in qO(1) is polynomial
time, and can therefore be counted as one unit of time in the analysis, since in the end we will get
something that is quasi-polynomial, i.e. qO(log q). Also, in the following, we will freely assume that
the discrete logarithms of the elements of Fq2 have been precomputed (in polynomial time).

The starting point of the algorithm is to choose an appropriate representation for the �eld
that we call a �sparse medium sub�eld representation�: we assume that there exist two quadratic
polynomials h0 and h1 in Fq2 [X] such that h1(X)Xq − h0(X) has an irreducible factor ϕ(X) of
degree k. Although we know no proof for the existence of such a representation, heuristic arguments
and practical experiments for small cases suggest that if they are exceptions, they must be quite
rare.

We now describe a method that allows to express the discrete logarithm of any element in terms
of discrete logarithms of �smaller� elements. Here, the size of an element is its degree, assuming
that the element is represented as a polynomial over Fq2 [X], modulo ϕ(X). Let P (X) be such an
element. We start with the main equation of the �nite �eld Fq:

Xq −X =
∏
α∈Fq

X − α, (1)

which is valid as a polynomial equation in Fq2 [X]. For any quadruple (a, b, c, d) of elements in Fq2 ,
we replace X by (aP + b)/(cP + d) in the equation. It is easier to write things projectively, and we
get

(aP + b)q(cP + d)− (aP + b)(cP + d)q =
∏

(α:β)∈P1(Fq)

(−cα+ aβ)P − (dα− bβ),

where the set of representatives (α : β) for P1(Fq) is chosen so that no correcting factor is needed.
We will study both sides of the equation in turn.

Left-hand-side. This part of the equation has high degree, but using the sparse representation
of the �eld extension, we can rewrite it as an equation of smaller degree modulo ϕ. Indeed, by
q-linearity, (aP + b)q = (aqP q + bq), and P (X)q = P̃ (Xq), where P̃ is the same polynomial as P ,
where all the coe�cients have been raised to the power q. In particular, P̃ has the same degree as
P . Now, modulo ϕ(X), we can rewrite Xq as h0(X)/h1(X), hence

(aP + b)q ≡ aqP̃ (h0/h1) + bq mod ϕ.

After multiplication by hdegP1 , the denominator gets clear, and the expression becomes a polynomial
of degree 2 degP . Doing this also for (cP + d)q, we see �nally that the left-hand-side can be
rewritten, modulo ϕ, as a polynomial of degree 3 degP divided by a large power of h1. Assuming
that it behaves like a random polynomial of the same degree, it splits in polynomials of degree at
most 1

2 degP with a constant probability.

Right-hand-side. This part of the equation does not need any transformation: we just remark
that all the factors are, up to multiplication by an elements of Fq2 (for which the discrete logarithms
have been precomputed), translates of P by an element of Fq2 . More precisely, the set of translations
is given by the image of P1(Fq) by the inverse of the homography described by the matrix m =(
a b
c d

)
.
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The algorithm then proceeds as follows: for all possible quadruple (a, b, c, d), we check whether
the left-hand-side is 1

2 degP -smooth. If yes, we collect this as a relation. The right-hand-sides of all
the collected relations involve only translates of P , and there are only q2 + 1 of them (projectively).
Hence, if we get more than that number of relations, we can hope to be able to eliminate all these
unknowns except for the one we are interested in, namely P itself. Since the left-hand-sides involve
only polynomials of degree at most 1

2 degP , we obtain an equation relating P to elements of degree
half of its size.

Is there any chance to get enough relations? At �rst sight, there seems to be q8 choices for
(a, b, c, d). However, some of them yield useless relations, and many of them yield the same relation.

In the end, this is not too di�cult to check that the matrix m =

(
a b
c d

)
should visit only one

representative in each coset of P = PGL2(Fq2)/PGL2(Fq) to avoid obvious duplicates. Since the
cardinality of P is q3 + q and since the probability of getting a smooth left-hand-side is constant,
we expect to get Θ(q3) relations, so that there is a fair chance that the matrix with only q2 + 1
columns has full rank. We will assume that this is indeed the case.

All the operations we have just mentioned take a time complexity within qO(1): they are
polynomial-time. It remains to call this building-block recursively, and to estimate the size of
the recursion tree. The depth of the tree is the logarithm of the degree of the initial P , that is
itself bounded by k ≈ q. The arity of the tree is bounded by the number of factors we have in the
left-hand-side times the number of relations we have to combine to eliminate the translates of P .
This is within qO(1) (for a constant in the O() that is the same all along the tree). Therefore, the
number of nodes in the tree of arity qO(1) and depth log q is qO(log q), that is quasi-polynomial.

One last comment is about the end of the recursion. Getting the logarithms of the linear factors
is done with the same strategy of collecting relations with the action of P = PGL2(Fq2)/PGL2(Fq).
The only di�erence is that the linear algebra step will involve an homogeneous system instead of
an inhomogeneous one. We skip the details and refer to the paper.

How can we handle �nite �elds of small characteristic that are not in the appropriate shape?
Let Fpn be the �eld in which we want to compute discrete logarithms, where p is small, i.e. p < n.
If p ≈ n, then we can set q = p and k = n, embed our discrete logarithm problem into Fq2k =
Fp2n which is only twice as large, and therefore the quasi-polynomial complexity will still hold.
The surprising thing is that this strategy of embedding in a larger �eld also preserves the quasi-
polynomial complexity when p is much smaller than n. Consider the worst case, where p = 2 and
n is prime. Let q be the smallest power of 2 that is larger than n and set k = n. The initial �eld
cardinality is Q = 2n, while the BaGaJoTh algorithm is run in a �eld of cardinality 22ndlogne. In
that case, the time complexity is nO(logn), that is also quasi-polynomial in the original input size.

3.2 In practice: Joux's L(1/4) descent based on Gröbner basis

The main drawback of the BaGaJoTh algorithm is that the arity of the descent tree is very large
(on the order of q2), and therefore it does not behave well in practice. Joux's L(1/4) algorithm,
that was invented before the BaGaJoTh algorithm, is a nice way to circumvent this di�culty. This
works well only at the bottom of the descent tree, when the degree of the polynomial P is less than√
q.
The setting is the same as before: we assume that the �nite �eld Fq2k is represented by

Fq2 [X]/ϕ(X), where ϕ is an irreducible factor of degree k of h1(X)Xq−h0(X), with h0 and h1 two
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quadratic polynomials over Fq2 .
Let P be an irreducible polynomial of degree D over Fq2 the logarithm of which we want to

express in terms of logarithms of polynomials of smaller degrees. The strategy is to look for a
rational fraction k1(X)/k2(X) to plug into Equation 1: we wish to enforce the left-hand-side to be
divisible by P , while keeping k1 and k2 of su�ciently small degrees so that both sides can be hoped
to be smooth for a smoothness bound yet to be determined, but that should be smaller than D.

Let us start from Equation 1 where we have replaced X by k1(X)/k2(X) for two polynomials
k1 and k2 over Fq2 of respective degrees d1 and d2. After clearing denominators, we obtain

k1(X)qk2(X)− k1(X)k2(X)q =
∏

(α:β)∈P1(Fq)

βk1(X)− αk2(X).

The right-hand-side raises no di�culty: it comes readily in a factored form, with factors of degree
at most max(d1, d2). On the left-hand-side, we will use the plain expression to write a system of
equations that encode the divisibility by P , while using the equality h1(X)Xq −h0(X) = 0, we will
be able to control its degree.

Modeling divisibility by a bilinear system. In a �nite �eld that is an extension of Fq, raising
to the power q is a q-linear operation. In order to make it explicit, we write Fq2 with a polynomial
basis over Fq:

Fq2 = Fq[t]/(t2 + τ1t+ τ0),

where τ0 and τ1 are elements of Fq such that the polynomial t2 + τ1t+ τ0 is irreducible. Let us write
the coe�cients of k1 and k2 on this basis:

k1(X) = a0 + a1X + · · ·+ ad1X
d1

= (a′0 + a′′0t) + (a′1 + a′′1t)X + · · ·+ (a′d1 + a′′d1t)X
d1 ,

k2(X) = b0 + b1X + · · ·+ bd2X
d2

= (b′0 + b′′0t) + (b′1 + b′′1t)X + · · ·+ (b′d2 + b′′d2t)X
d2 .

The product k1(X)qk2(X) can then be expanded: any coe�cient in X of this product is a sum of
terms of the form (a′i + a′′i t)

q(b′j + b′′j t). By q-linearity, this can be rewritten as (a′i + a′′i t
q)(b′j + b′′j t).

This expression is a polynomial in t, where each coe�cient is a linear combination of monomials
AB, where A is one of the a′i or a

′′
i , and B is one of the b′j or b′′j . This polynomial in t can be

reduced modulo t2 + τ1t + τ0, and this preserves the bilinear nature of its coe�cients. At the end
of the line, k1(X)qk2(X) is a polynomial in X whose coe�cients are linear polynomials in t over
the polynomial ring over Fq with all the a′i, a

′′
i , b
′
j , b
′′
j as indeterminates, and these coe�cients are

bilinear expressions with the two sets of indeterminates {a′i, a′′i } on one side, and {b′j , b′′j } on the
other side.

The same is true for the product k1(X)k2(X)q, so that it is also true for their di�erence, which
is the left-hand-side that we want to be divisible by P . This divisibility can be expressed by
D = degP linear conditions over Fq2 , involving the coe�cients of the left-hand-side. Since a linear
combination of bilinear expressions is still a bilinear expression, we obtain the key to the e�ciency
of Joux's algorithm: the divisibility by P can be encoded by a system of bilinear equations.
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Degrees of freedom. The number of Fq2-conditions isD, and therefore, the number of Fq-bilinear
equations is 2D. The number of indeterminates is 2d1 + 2 for k1 and 2d2 + 2 for k2. As usual,
there are some redundancies that must be taken into account. In this case, this amounts to �rst
forcing one of the polynomials to be monic, and second to ensure that one of the coe�cients (say,
the leading coe�cient of the second one) is set to a �x element of Fq2 − Fq. The remaining number
of unknowns is then 2d1 + 2d2. Finally, we need a bit of margin, in order to have several solutions
among which one is expected to yield a relation. Hence the degrees of k1 and k2 are chosen with
the following constraint:

d1 + d2 = D + 1.

Algorithm and complexity analysis. The algorithm proceeds as follows: for a given P of degree
D, we write the system of bilinear equations over Fq encoding the fact that two polynomials k1 and
k2 yield an equation for which P divides the left-hand-side. This bilinear system can be solved
using Gröbner basis techniques. When a solution is found, the left-hand-side for the corresponding
(k1, k2) pair can be rewritten using the equation Xq = h0(X)/h1(X). After clearing denominators,
this gives a polynomial of degree d1 + d2 + max(d1, d2) = D + 1 + max(d1, d2), that is at most
2D. We test its smoothness for a smoothness bound that is max(d1, d2), in order to reach the same
level of smoothness as on the right-hand-side. Under the heuristic that this behaves like a random
polynomial, the smoothness probability is constant. If it is not smooth, we look for another solution
(k1, k2) and try again.

We have therefore explained a building-block that allows to express the logarithm of a polynomial
of degreeD in terms of logarithms of polynomials of degrees at most max(d1, d2), under the condition
d1+d2 = D+1. If the bilinear system could be solved in polynomial time, then choosing d1 ≈ d2 ≈ D

2
would yield another quasi-polynomial time algorithm. This is unfortunately not the case, but recent
progress in structured polynomial system solving provide a complexity estimate that is better that
for general polynomial systems. In [10], it is proven that for a 0-dimensional a�ne bilinear system
involving nx and ny unknowns, the complexity is in

O

((
nx + ny + min(nx + 1, ny + 1)

min(nx + 1, ny + 1)

)ω)
.

In our case, we have nx = 2d1 and ny = 2d2 = 2(D + 1 − d1) and, assuming d1 < d2, the formula

becomes O
((

2D+3+2d1
2d1+1

)ω)
. From here, it is possible to optimize d1: taking a smaller value makes

the polynomial system solving easier, but since the smoothness bound is then D− d1, we get a tree
with a larger depth (the arity is always close to q). In Joux's paper, this Gröbner basis trick is used
only for polynomials of degree at most

√
q, and in that case, it can be shown that taking d1 ≈ 4

√
q

yields the appropriate balance in the costs. Together with a more classical strategy to deal with
polynomials of degrees from q to

√
q, this combines into an algorithm with a complexity of

Lq2k(1/4 + o(1)),

which, at the time it was made public was a big surprise in the community.

This algorithm is a very good example where knowing and using the latest results in symbolic
computation was necessary to design and analyze a new technique: sticking to the basic worst-case
doubly-exponential estimate would end-up in a non-competitive complexity.
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It is also interesting to note that the bilinear systems that occur in this discrete logarithm
algorithm are not really random. This could mean that in fact the complexity estimate of [10] that
is given for random systems is not valid here. However, we view this as a chance to potentially
further optimize the practical resolution.

4 The number �eld sieve for prime �eld discrete logarithm

4.1 Overview of the NFS algorithm

The Number Field Sieve algorithm falls in the category of the discrete logarithm algorithms based on
combining congruences. As such it follows the 3 main phases listed in Section 2.2: collect relations,
solve a linear algebra problem, solve the individual logarithm question. The �rst 2 phases do not
depend on the element whose discrete logarithm is wanted and can be seen as a precomputation if
many logarithms must be computed.

The main di�erence lies in the way the algorithm produces relations. Let p be a prime de�ning
the �nite �eld Fp, and let ` be a large prime divided p− 1. We want to solve the discrete logarithm
problem in the subgroup of order ` of F∗p. We start by selecting two irreducible polynomials f and
g over Z with appropriate degrees and coe�cients sizes, such that f and g have a common root m
modulo p. To facilitate the exposition, we assume furthermore that f and g are monic, but this
is not necessary. By construction, the following diagram, where arrows are ring homomorphisms,
commutes:

Z[x]

Z[x]/f(x) Z[x]/g(x)

Fp

The strategy to produce relations is to plug at the top of the diagram many linear polynomials
a− bx and try to smooth them on both paths. Since the algebraic structures on the f - and on the
g-sides have a priori nothing to do with each others, this should yield a non-trivial equality at the
bottom of the diagram, namely in the target �eld Fp. Before discussing the notion of smoothness
that we are going to use, we explain how f and g can be constructed. They are many strategies
for that task, and this is still an active research topic [6]. However, a very basic method gives the
appropriate complexity and is enough for our purpose. Let us �x a degree d for the polynomial f
and set m to an integer close to p1/d. Then the integer p can be written in base m as

p = f0 + f1m+ · · ·+ fd−1m
d−1 +md

= f(m) ,

where the fi are bounded by m. With tremendous probability, f is irreducible over Z, and if not,
then we try again with another value for m. The polynomial g is just x−m, and by construction,
f and g have a common root modulo p, namely m. The degree d of f has to be tuned after a
complexity analysis that we will not include here. The optimal asymptotic value for d is the closest
integer to (3 log p/ log log p)1/3. This grows slowly to in�nity, and for all practical cases considered
nowadays, d is 4, 5 or 6, depending on size of p.

14



Smoothness in number �elds. Since g is monic and linear, the ring Z[x]/g(x) is isomorphic
to Z in which factorization is well de�ned, and we can use the usual notion of smoothness. On the
f -side, however, we need to work in the ring Z[x]/f(x) which has no reason to be a principal ideal
domain, and not even a unique factorization domain. In fact, cases where Z[x]/f(x) is a UFD are
rare enough so that we can consider that they can not occur by accident and we have no way to
force this property unless for very particular choices of p.

As a subring of the ring of integers of a number �eld, Z[x]/f(x) is a Dedekind domain, i.e.
every non-zero ideal factors into a product of prime ideals, and this factorization is unique up to
reordering. The norm of an ideal is an integer that drives its factorization as an ideal: the norm of
a prime ideal is a prime number or a prime power, and since the norm is multiplicative, by testing
the smoothness of the norm of an ideal, one can detect if it is a product of prime ideals of small
norms (some care must be taken with powers, but this can be delt with).

Hence, the algorithm proceeds as announced: for many linear polynomials a− bx, we send them
on both paths of the diagram. On the g-side, it becomes the integer a − bm that we test for B-
smoothness in a classical way. If it is smooth, we go on with the f -side and study the ideal generated
by a− bα, where α is a root of f in the ring Z[x]/f(x). For this, we compute its norm, which in this
case is just the integer bdf(a/b), and test its B-smoothness in Z. If the norm is smooth, then we
can write the principal ideal (a− bα) as a product of prime ideals of norm less than B. Therefore,
we have the two factorizations:

(a− bα) =
∏

Norm(q)<B qeq

a− bm =
∏
q<B qeq .

Finally, we would like to map those two factorizations in Fp, which is no problem on the g-side, but
does not directly make sense on the f -side. Indeed, the ring homomorphism in the diagram can
operate on elements, but not on ideals. This di�culty caused many problems during the genesis of
the algorithm, in the 90's, until Schirokauer found an elegant way of solving it. The general idea is
to convert the equality between ideals into an equality between elements. For this, we need �rst to
make the ideal principals by raising the equation to the cardinality of the class group of the number
�eld Q[x]/f(x), and then to adjust the contribution of the unit group. However, the polynomial f
is in general way too complicated to leave a hope to compute the class group and the unit group
explicitly. Schirokauer noticed that we just need to ensure that the equality between elements holds
up to `-powers. Indeed, once we have mapped a relation into Fp, we are only interested in taking
its logarithm modulo `, and any `-power contributes to 0 in such a setting.

The Schirokauer maps are characters from elements of Q[x]/f(x) coprime to ` to Z/`Z, that
can be computed in polynomial time, with the property that if all the characters vanish, then a
factorization of ideals can be mapped in the �nite �eld with a meaningful sense. Hence modulo
the use of Schirokauer maps, it makes sense to talk about the logarithm of an ideal q of Z[x]/f(x)
mapped into Fp. This is called a virtual logarithm in the literature [24]. The number of Schirokauer
maps (SM) to use is exactly the unit rank as given by Dirichlet theorem: if the polynomial f has
r1 real roots and 2r2 complex roots, then we need r1 + r2 − 1 SMs.

Finally, any a − bx for which the two sides are B-smooth becomes a row of a matrix, where
columns are labelled by prime numbers less than B and prime ideals of norm less than B, plus a
few columns for the SMs. The entries are the valuations eq and eq that occur in both factorizations,
and the evaluation of the SMs at a− bx.

Once we have reached a point where we get enough relations so that the matrix has maximal rank
(which is full-rank minus 1), computing a non-zero vector of its right-kernel gives the logarithms of
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all the primes below B (and also the virtual logarithms of the prime ideals). We skip completely
the last phase of the algorithm which is to rewrite the target element h in terms of these small
elements in order to get its logarithm. Although this is less simple as for the basic combination of
congruences, this still takes only a small amount of time compared to the rest of the algorithm.

A few words on the complexity. With the choice of d = deg f already mentioned, the value of
m is in Lp(2/3, c), for a constant c that we do not make explicit, because the formulae quickly get
ugly. In fact, in this paragraph, we will only write the �rst parameter in the L-notation. The sizes
of a and b can not be decided in advance, because while we do not �nd enough relations, we need to
take larger and larger values for a, b. So we just pretend that we try with a bound in Lp(1/3) for a
and b, and we check in the end that this leaves enough room for getting a matrix of maximal rank.
On the g-side, the element that we test for smoothness is a− bm, which is in Lp(2/3), while on the
f -side, we test bdf(a/b), which is also bounded by an expression of the form Lp(2/3). Now, we set
a smoothness bound B of the form B = Lp(1/3). Using Can�eld�Erd®s�Pomerance's theorem, we
can check that on both sides the probability of being smooth is of the form Lp(1/3)−1. Hence, after
Lp(1/3) trials, we get more relations than unknowns, and we can solve the linear algebra problem,
again in time Lp(1/3). All the exponent constants can be made explicit and optimized. This is the
typical exercise that is best left to the reader! We just recall the �nal complexity that we already
gave in Section 2.2: Lp(1/3,

3
√

64/9 + o(1)).

Beside the formulae of the analysis, it is legitimate to ask ourselves where did the improvement
from Lp(1/2) to Lp(1/3) come from. The most important change is due to the splitting of the
smoothness condition into two other conditions. In the basic congruence combination algorithm, in
order to �nd a relation, we need to be lucky enough to get an element of roughly the same size as
p that is smooth. By using the two-paths diagram, the condition to get a relation is now to have
two elements simultaneously smooth, which sounds harder at �rst sight, but since those elements
are much smaller � they are in Lp(2/3) � this is actually an easier condition.

Can we go further, and get a better complexity, like Lp(1/4)? This is of course an important
open question to which there is no obvious answer. One idea that did not yet succeed would be
to replace the NFS diagram with two sides with a more complicated one, involving more than one
indeterminates. Restating the �common root modulo p� condition would probably involve some
ideal-theoretic point of view in a multivariate ring of polynomials.

4.2 The linear algebra step

We resume our description of the classical NFS algorithm, and explain with more details what is
done in the linear algebra step. Indeed, although this is a simple kernel computation for a sparse
matrix de�ned over a �nite �eld, the speci�cities of the matrix and the large sizes of the problem
we consider in record computations make it interesting or even necessary not to content ourselves
with using an existing library as a black-box.

The general strategy is rather classical: we start by a few steps of Gaussian elimination with
heuristics trying to keep the matrix as sparse as possible, and then we switch to an iterative method,
usually block-Wiedemann. In the factorization and discrete logarithm community, the �rst step is
usually called �ltering.

In order to �x ideas, we will give some examples (sizes, densities, running times), coming from
a record computation that we did in June 2014, for an integer p of 180 decimal digits [8] (we refer
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to this as the p180 example).

Properties of the initial matrix. The matrix, as it comes from the �rst step of the algorithm
is just a set of �les containing relations in a format that is close to their number-theoretic meaning.
For the p180 examples, there were about 253 millions (we write 253M) of relations, each of them
taking about 80 bytes on average in compressed format. That sums-up to more than 20 GB of
data. At this stage, we have not yet computed the 3 Schirokauer maps that are required in this
case. On this example, this would add more than 50 GB of data. Since they can be computed on
the �y and since they are not needed until we enter the iterative step, it is better to postpone their
computation.

Here is the list of the speci�cities of this input matrix:

• The number of non-zero entries per row is very low (say 20). This is essentially the number
of prime factors in the factorizations on each side. The variance for this quantity is also
reasonably low: there is no row with only a couple of non-zero entries, nor is there with
hundreds of entries.

• Most of the non-zero entries are 1's. For the smallest primes and prime ideals (the heaviest
columns), 2's and 3's are also frequent, but they become rare when the primes get larger, since
this correspond to a multiplicity in the prime decomposition.

• The density of the columns is highly variable: a column labelled by a tiny prime or prime
ideal is dense, while a column labelled by a prime or prime ideal at the limit of the smoothness
bound is almost empty (or even completely empty). Sorting the columns by the size of the
prime or ideal they represent gives a gradient of density, from very dense on the left part of
the matrix to very sparse on the right part.

• There is no structural property that can be expected a priori (no natural domain decomposi-
tion).

• There are rows that occur two or more times. This is due to the way the relations are produced
with so-called special-q strategy. On the p180 example, there were only 175M unique relations,
so there were about 30% of duplicates.

• There are empty columns. To be more precise, in a relation, we store information about the
primes and prime ideals, but the correspondence between these prime and prime ideals and
column indices is not yet done. This correspondence is not done a priori, because some primes
occur in no relation.

• There is a lot a redundancy: usually we collect much more rows than what we expect to be
needed for getting maximal rank. Indeed, heuristically, this will allow the �ltering step to
produce a better matrix.

Filtering, interpreted as operations on sparse matrices. Let M0 be the input matrix (that
is stored as raw relations, in various �les). The �rst step is to remove duplicate relations. Although
it is an easy task in theory, the software implementation should be robust enough to handle a large
amount of data, if possible working as a set of �lters that take �les or pipes in input and output,
and use as less memory as possible. This is rather standard �big data� processing. In terms of
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matrices, this amount to �nding a matrix S0, an identity matrix with some missing rows, such that
M1 = S0M0 has no duplicate rows. On the p180 example, the matrix M0 has 175M rows and 82M
non-empty columns.

The second step is to identify empty columns, and columns with only a single non-zero entry.
Indeed, in this case, the row and the column corresponding to this singleton entry can be removed
(or more precisely, kept for later use). This removal can generate new empty columns or singletons,
so that the process should be repeated until we have reached a point where all columns have at least
weight 2. This part of the �ltering requires to keep e�cient data-structures for the matrix, so that
searching for columns of smallest weights should be quick, and everything should be updated easily
after a row removal. This is again a rather standard searching-sorting problem, but here each and
every byte should be saved, since this is a point where we need most of the information in central
memory. The particular shape of the matrix can be used, here. Usually, this singleton-removal
phase of the �ltering is performed only on the sparse part of the matrix: the heaviest columns
are not stored in memory. In terms of matrix operations, this step is a �rst step of row-echelon
computation where we select pivots that are alone on their column, and stop when there is no such
event. So, we compute P1 and Q1 two permutations such that M2 = P1M1Q1, and M2 is a block

matrix of the form

(
A2 B2

0 C2

)
, where A2 is in row-echelon form. In fact, the matrix A2 is very

close to the identity matrix. Finding a kernel vector of the initial matrix is therefore reduced to
�nding a kernel vector of C2. On the p180 example, the matrix C2 has 171M rows and 78M columns.

The third-step of the �ltering is improperly called clique-removal. Due to the redundancy, we
expect C2 to have much more rows than columns, whereas, with a reasonable heuristic, a square
matrix should be enough to get the appropriate rank. Therefore, we can remove some rows. The
goal of this step is to select the rows that we remove, so that we maximize our chances to play again
the singleton-removal game, and further reduce the size of the matrix. The strategy is as follows:
we build a graph, where the nodes are the rows. For each column of weight 2, we add a vertex
between the two rows that contribute entries for this column. Then we compute a decomposition
in connected components for this graph, and select the heaviest component. Removing one row
from this component, will generate a singleton in the column that was of weight 2, so that the rows
directly connected to it can be removed, and this propagates to the whole component. Therefore,
for each excess row that we have, we can remove one connected component. This heuristic strategy
works pretty well, and can be improved by adding further information in the graph; typically, it is
interesting to select the component with not only the largest number of nodes, but also the ones for
which the nodes correspond to heavy rows, or row that have entries in low-weight columns, so that
this increases the chance to create more weight-2 columns. In terms of implementation, this step
is not di�cult from a theoretical point of view (the graph-theoretic part is very basic), but again,
we are at a stage where the memory footprint is problematic: no shortcoming in the way the data
structures are handled can be accepted. In terms of matrix operation on C2, this boils down to a
combination of row deletion and row-echelon form computation, again based on pivot that are alone
on their column. So this means that we �nd a row-removal matrix S2 and permutation matrices P2

and Q2 such that the matrix P2S2C2Q2 is a block matrix

(
A3 B3

0 C3

)
, where A3 is in row-echelon

form and C3 is a square matrix whose columns have weight at least 2. On the p180 example, the
matrix C3 has 21M rows and columns.

The �nal step of the �ltering, called �merge�, is again a partial row-echelon form computation.
Until now, all the pivots were selected so that no pivoting is actually needed, so that the rows were
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not combined. In merge, we allow row combinations. The selection of the pivot is now based on
heuristics that try to keep the densi�cation of the matrix under control. It is clear that this can
not work for long. In order to estimate when to stop, we use the theoretical complexity of iterative
methods as a �rst hint: the cost of the next step is supposed to be proportional to the number of
rows/columns times the total weight of the matrix. This quantity can easily be computed during
the merge phase. Usually, it is decreasing quickly at the beginning, and at some point, it starts
to increase again (unfortunately, this is more chaotic, but the general picture is clear). As for the
heuristics used to choose the pivot, these are based again on working with columns with minimal
weight. Classical tools from graph theory, like minimal spanning trees are also involved, but we do
not enter the details. They are of the same nature as the ones of the previous steps. On the p180

example, the �nal matrix after the �ltering step has 7.2M rows and columns, with an average of
150 non-zero entries per row.

A �nal remark on the whole �ltering process is that its running time is only a small fraction of the
overall running time of a discrete logarithm computation. Indeed, with appropriate data structures,
each step can be performed in quasi-linear time. The main issues are the memory footprint, and
the quality of the output.

Iterative methods taking SMs into account. We come to the next stage, where we have a
square matrixM for which we want to �nd a non-zero kernel vector, and the matrix is much smaller,
but slightly denser that the one we started with. We assume that we have also computed the SM
columns for this matrix. The main part of the matrix have only tiny non-zero entries: these are
(signed) integers of value less than a hundred. On the other hand the columns of SM are dense
columns with entries that are random integer modulo `, the prime modulo which the linear algebra
must be performed. Usually ` is large and �ts from 2 to a dozen of machine words (for the p180

example, ` has almost 600 bits).
The two available methods for this linear algebra step are Lanczos and Wiedemann algorithms.

Indeed, any attempt to use a direct method would result in a dense matrix that does not �t in
memory, while an iterative method keeps the matrix untouched, with the main operation being a
sparse matrix times vector product (SpMV).

We recall brie�y Wiedemann's algorithm. Let x and y be random vectors, and consider the
sequence ai = txM iy of �eld elements. It veri�es a linear recurrence relation, the minimal poly-
nomial of which χM,x,y is a divisor of the minimal polynomial χM of the matrix M , so its degree
is bounded by N , the dimension of M . It is therefore enough to know 2N coe�cients of the ai
sequence to be able to compute χM,x,y, with the rational reconstruction procedure (also known as
continued fraction method, lattice reduction in dimension 2, Berlekamp-Massey, or just Euclidean
algorithm stopped in the middle) that takes a quasi-linear time in N . Let us assume that χM,x,y is
exactly χM . Since M has a non-trivial kernel (by construction), χM (X) is a polynomial divisible
by X, and we write χM (X) = XkP (X), where k is the valuation of χM . For a random vector v, we
then compute w = P (M)v, that we assume to be non-zero. Then, the smallest integer i such that
M iw = 0 is at most k, and is easily computed. Finally the vector M i−1w is a non-trivial kernel
vector. This algorithm is probabilistic, and controlling the probability of failure is not so simple.
In our context, however, the modulus ` is so large that there is no practical problem. And since, on
one hand, verifying that the discrete logarithms are correct at the end is easy, and on the second
hand, the rest of the NFS algorithm is very heuristic, there is no point in trying to be rigorous here.

Computing the ai amounts to 2N applications of the SpMV operation, while the construction
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of the kernel vector from the minimal polynomial requires N of them. Therefore the cost of the
algorithm is in O(N) SpMV, each of them having a cost proportional to the weight of the matrix.

Due to the size of the problems we want to consider, parallelism is a most-wanted feature. Using
several cores available on a computer is the easiest part. This might be not enough, either for
performance reasons, or just because the central memory available on one computing node is not
enough to store the matrix and the few temporary vectors. In that case, using parallelism between
several nodes connected if possible with a fast network like In�niband is also quite important. This
can be done for instance with a message-passing modelling (and the MPI API). All this is very
classical and implemented in most of the linear algebra libraries.

A less classical implementation is a block-version of the Wiedemann algorithm. From the theo-
retical point of view, this means that the random vectors x and y in the non-block description above
are replaced by blocks of m vectors for x and n vectors for y (for small values of m and n). The ai's
are now small m × n matrices, and the rational reconstruction step becomes much more involved.
Also, the construction of the �nal vector can enjoy the same kind of block-e�ect. This strategy does
not change the number of SpMV that have to be computed. However, it brings another possibility
for parallelism, since the n vectors forming y can be processed in parallel, without any interaction.

The concrete consequence is that the costly part of the linear algebra, namely the 3N applications
of SpMV can be split in n independent computations, with just one point of synchronization after
2/3 of the total computation, in order to do the rational reconstruction. This rational reconstruction
step is still an operation that is quasi-linear in the dimension N of the matrix, but the dependency
in the blocking factors m and n is not so nice, so that we can not hope to let m and n go to in�nity.
Still, there have been progress on this topic that make this step practical for m and n up to a
dozen [26, 13].

The other speci�city of the matrix we are dealing with is the presence of the 3 columns of SMs.
It is obvious that they should not be handled in the same way as the other entries of the matrix
that are small integers. There is no canonical way to solve this question, since this is getting too
close to the implementation issue on the target platform. We mention just one example that was
recently experimented by Hamza Jeljeli during his PhD. When implementing the SpMV operation
on a GPU, the RNS representation of integers modulo ` is attractive. Indeed, this is some kind of
Chinese Remainder Theorem representation where computations take place modulo small primes
that �t in one machine word (whatever this means for a GPU that tend to prefer �oating point
operations). This o�ers great opportunities for parallelism in a SIMD manner, which is appropriate
for the programming paradigm of GPUs. During the SpMV, most of the basic operations are of
the type x ← x + ay, where x and y are integers modulo `, while a is a small integer. Therefore,
it is possible to have an accumulator that is only one word larger than what is required for ` in
order to delay the reductions. In RNS representation, this translates into a certain amount of small
moduli. When the computation arrives to the SM columns, a typical operation is of the same type,
but then a is a full integer modulo `. Therefore, it is necessary to enlarge the RNS representation
on-the-�y, so that the accumulator becomes large enough. This demonstrates that optimizing the
implementation for the speci�cities of the matrix can be really intrusive and can hardly be done in
a generic library that would be able to handle any matrix, like LinBox.

For the p180 example, the matrix was slightly too large to �t in the memory of the graphic
cards we had access to, so we fell back to a CPU implementation. We used m = 24 and n = 12 as
blocking factors, meaning that 12 sequences were run in parallel, each of them using 4 nodes with
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16 cores each, with an FDR In�niband interconnect. The total time for the SpMV part was around
80 core-years. The linear generator phase took 15 hours on 144 cores, which remains negligible.

5 Conclusion

In this lecture, we have explained the basic ideas behind modern algorithms for integer factorization
and discrete logarithms in �nite �elds. We have tried to emphasize a few points where using tools
from computer algebra and symbolic computation as black-box was far from optimal.

Polynomial system solving plays an important role in discrete logarithm computation in small
characteristic, but this is really just one of its application to cryptography, where it has become an
ubiquitous tool for cryptanalysis, both in symmetric and asymmetric cryptography, even more than
lattice reduction. Although we had no time to explain it, the case of elliptic curves de�ned over
a �nite �eld of characteristic 2 deserves a special mention, since an algorithm based on combining
congruences can be designed in that case, but the smoothing part is replaced by some polynomial
system solving. Depending on the properties of these systems, there exist or not a subexponential
algorithm for the discrete logarithm in that case [9, 21]. The last place, but not the least, where
Gröbner basis have not yet found an application is integer factorization.

As for linear algebra, this is an important step in all the algorithms based on combining con-
gruences. Historically, factorization was the topic that was the most interesting for the public key
cryptography community, and therefore there was a focus on sparse linear algebra modulo 2. At
that time (80's and 90's), there were no e�cient library available to solve huge sparse systems over
F2, and a lot of work was done independently of the community that was focusing on linear alge-
bra with �oating point computations. In the end, a lot of tools were invented that can certainly
be interpreted as (now) standard operations in other communities, like preconditioning. It is also
unclear to us whether there are other applications that require solving huge exact linear algebra
problems. Who, apart from a cryptanalyst, is ready to spend 6 months of a 1000-core cluster on
just a single kernel computation?

Appendix: literature and software

Besides the articles mentioned in the references, here is a list of recommended reading.

• Mathematics of Public Key Cryptography by Steven Galbraith (CUP, 2012).

This is an excellent book on many mathematical aspects of public key cryptography. A long
part (5 chapters) is dedicated to integer factorization and discrete logarithm. It includes also
a lot of material on algebraic curves and lattices.

• Prime Numbers: A Computational Perspective by Richard Crandall and Carl Pomerance
(Springer, 2001).

Despite the title, this book contains many pages on integer factorization, including the Num-
ber Field Sieve. This is one of the best reference on the topic, written by both a pure
mathematician and a strong implementor.

• Algorithmic cryptanalysis by Antoine Joux (CRC, 2009).
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A very good source of insight for anyone interested in cryptanalysis. This contains a survey
of attacks that use polynomial system solving. Integer factorization and discrete logarithms
take also an important place, but of course the latest improvements are not included.

• The Development of the Number Field Sieve by Arjen Lenstra and Hendrik Lenstra (Springer,
1993).

This book collects the articles of the genesis of the Number Field Sieve for integer factorization.
This is not only of historical interest, since in many places it contains material that is not
covered anywhere else.

We also list some free software that is related to our lecture.

• CADO-NFS. http://cado-nfs.gforge.inria.fr

A complete implementation of the Number Field Sieve for integer factorization, with increas-
ingly more features for discrete logarithm as well.

It is maybe not the fastest implementation (Kleinjung's siever is faster), but is easier to use
and to read. It also contains an e�cient implementation of the Block-Wiedemann algorithm.

• GMP-ECM. http://ecm.gforge.inria.fr

This is the reference implementation of the ECM factoring algorithm.

Although it does not includes the latest improvements (especially for small sizes), this remains
a very good implementation, used by well-known computer algebra systems, like Sage or
Magma.

• LinBox. http://www.linalg.org

A powerful library for exact linear algebra.

It contains many functionalities (system solving, determinant, Smith normal form, . . . ) and
support various types of matrices: dense or sparse, over integers, �nite �elds, rationals. Many
advanced linear algebra algorithms have been implemented by their inventors in LinBox.
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