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ABSTRACT 

 

The extremely high rates of heat transfer obtained by employing microchannels makes them an 

attractive alternative to conventional methods of heat dissipation, especially in applications 

related to the cooling of microelectronics. A compilation and analysis of the results from 

investigations on fluid flow and heat transfer in micro- and mini-channels and microtubes in the 

literature is presented in this review, with a special emphasis on quantitative experimental results 

and theoretical predictions. Anomalies and deviations from the behavior expected for 

conventional channels, both in terms of the frictional and heat transfer characteristics, are 

discussed. 
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 Amongst the novel methods for thermal management of the high heat fluxes found in 

microelectronic devices, microchannels are the most effective at heat removal.  The possibility of 

integrating microchannels directly into the heat-generating substrates makes them particularly 

attractive, since thermal contact resistances may be avoided.  The two important objectives in 

electronics cooling – minimization of the maximum substrate temperature and reduction of 

substrate temperature gradients – can be achieved by the use of microchannels. 

  A large number of recent investigations have undertaken to study the fundamentals of 

microchannel flow, as well as to compare the flow and heat transfer characteristics of 

microchannels with conventional channels.  A comprehensive review of these investigations 

conducted over the past decade is presented here in concise tabular form. 

  Predictive correlations have also been proposed in the literature, based on experimental 

investigations on liquid and gas flow in microchannels.  Various combinations of channel size, 

pitch and substrate material have been considered.  Generally, these correlations have been cast 

in the same forms as conventional relationships for larger-diameter tubes and channels, but have 

included modified coefficients.  A comparative study of the correlations for single-phase flow is 

presented in this review. 

REVIEW OF THE LITERATURE 

  Studies on microchannel flows in the past decade are categorized into various topics and 

summarized in Table 1.  The literature survey extends over a wide range of topics such as 

measurement and estimation of friction factor and heat transfer in microchannels and small-

diameter tubes, comparison with flow in conventional channels, investigation of single-phase, 

boiling and two-phase flows in microchannels, mini channels and small tubes, gas flow in 

microchannels, analytical studies on microchannel flows, and design and testing of microchannel 
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heat sinks for electronics cooling.  For each study, key descriptors of the cooling configuration 

and the primary observations are included. 

QUANTITATIVE COMPARISONS 

  A comparative study of correlations for single-phase flow and heat transfer in 

microchannels proposed by various investigators is presented in this section.  Correlations for 

friction factor and heat transfer, in the laminar and turbulent regimes are compared, and 

contrasted with conventional correlations for macrotubes and channels.  Details of each of the 

studies discussed in this section are available in Table 1. 

 

Friction Correlations 

  Correlations for friction factor have been proposed based on experiments with nitrogen 

and water as working fluids [3, 9, 36] in trapezoidal and rectangular channels and microtubes.  

Peng et al. [13] analyzed water flow in rectangular channels to obtain correlations for various 

combinations of the channel hydraulic diameter and channel pitch in rectangular channels for 

laminar and turbulent flow.  A plot of the friction factor correlations proposed for laminar and 

turbulent flow in microchannels is shown in Fig. 1.  The graph shows the product of friction 

factor and Reynolds number (f·Re) plotted against the Reynolds number.  Conventional 

correlations are also included for comparison: the Blasius correlation (f = 0.140 Re
0.182

) is used 

for turbulent flow, while for laminar flow, circular-pipe (f = 64/Re) and square-channel 

predictions (f = 57/Re) are shown.  The f·Re product is independent of Reynolds number for 

laminar flow in conventional channels.  In the turbulent regime, the friction factor is almost 

independent of the Reynolds number (f·Re increases linearly with Re).  The predictions in the 
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literature for microchannels may be analyzed with greater ease by considering the laminar and 

turbulent regions separately. 

  Predictions of f·Re in the laminar regime are shown in Fig. 2.  The correlations of Wu 

and Little [3], Choi et al. [9] and Yu et al. [36] predict constant values of f·Re, with the 

magnitude of this product being greater than for conventional channels in Wu and Little (110), 

and lower in Choi et al. and Yu et al. (55 and 50 respectively).  Predictions from Peng et al. [13] 

for water flow in rectangular microchannels (see Table 2 for details) show an altogether different 

trend: in all cases, f·Re decreases with an increase in the Reynolds number.  For cases A, B, and 

C from Peng et al. (in which Dh  267 m), the laminar regime extends to Re  700, whereas for 

cases E, F, and G (Dh  200 m), the onset of turbulence occurs as early as Re = 300.  (As in the 

original work, the laminar plots for cases A through D are extended till Re = 1000).  While the 

slopes of the curves for all test cases are identical (Re
0.98

), the magnitude of f·Re is highest for 

the largest microchannels (Dh) and lowest for the smallest. 

  The friction correlations in the turbulent regime are compared with conventional 

correlations in Fig. 3.  Predictions for nitrogen flow from Choi et al. agree very well with 

conventional results; the Wu and Little correlation is similar to these two in its trend of variation, 

but the predicted values are much higher in magnitude.  The correlations of Peng et al. [13] for 

water flow again exhibit a very different trend: in all cases, f·Re decreases with an increase in 

Reynolds number (as Re
0.72

), in contradiction to conventional correlations.  The onset of 

turbulence is also seen to occur much earlier for the microchannels studied by Peng et al.  

Another observation of interest in Fig. 3 is that the f·Re values predicted by Peng et al. decrease 

in magnitude as the channel hydraulic diameter decreases; the drop in f·Re with Dh is very steep 

when Dh becomes smaller than 200 m. 
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Heat Transfer Correlations 

  Correlations for the average Nusselt number in microchannels in terms of the Reynolds 

and Prandtl numbers have been proposed in the literature for laminar and turbulent regimes, 

based on experiments with a range of fluid-substrate combinations, channel dimensions and 

configurations, as summarized in Table 1. 

  Heat transfer correlations for nitrogen flow [4, 9, 36], water flow in rectangular 

microchannels [12, 14, 16], water flow in circular microchannels [20, 36], and methanol in 

rectangular channels [12] are considered for comparison.  Figure 4 shows a composite plot of 

predicted values of Nu/Pr
0.33

 as a function of Reynolds number from the correlations in these 

studies.  Conventional-channel correlations are also included for comparison: the Dittus-Boelter 

correlation for turbulent flow in conventional channels, and for laminar flow, NuDh = 1.86 (ReDh 

Pr)
0.33 

(Dh/L)
0.33

; a sample set of parameters (L = 50 mm and Dh = 0.24 mm) is used to compute 

values from this correlation.  A significant amount of scatter is seen in these plots, as was true for 

predictions of friction factor, with the predictions of Choi et al. [9] and Yu et al. [36] being 

among the highest in the turbulent regime.  All predictions reflect an increase in Nusselt number 

with increasing Re. 

  The heat transfer correlations are again considered separately in the laminar and turbulent 

regimes in Figs. 5 and 6 respectively.  The end of the laminar regime was identified to be at quite 

different Reynolds numbers in the studies considered, as noted with the friction factor 

predictions.  The dependence of Nusselt number on Reynolds number is stronger in all the 

microchannel predictions when compared to conventional results, as indicated by the steeper 

slopes of the former; Choi et al. [9] predict the strongest variation of Nusselt number with Re.  

Also, the predictions for all cases from Peng et al. fall below those for a conventional channel. 
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  In the turbulent regime (Fig. 6), the predictions of all investigators with the exception of 

Peng et al. [14] and Peng and Peterson [16] fall above the conventional channel values.  In 

particular, Adams et al. 20] and Wu and Little [4] lie in one group.  The predictions of Choi et al. 

[9] and Yu et al. [36] are also somewhat comparable, and lie in a different group.  It may be 

noted that these groups are not divided by fluid type (since both groups include results for 

nitrogen and water) or by microchannel dimensions.  The rectangular microchannels of different 

dimensions (Table 2) considered in Peng et al. [14] exhibit a large variation in predicted Nusselt 

numbers.  In all these results, as well as for Peng and Peterson [16], the predicted values lie 

below those from the Dittus-Boelter correlation.  Turbulent heat transfer predictions for case D 

are not included in this comparison since it appears that the value of C h,t for this case may have 

been erroneously listed in [14] as 0.0926, and instead, should have been 0.00926.  This latter 

value would more closely match other values for C h,t, and would also result in the predictions for 

case D lying in the same group as cases A, B and C. 

 

CONCLUSION 

  A comparative study of the results of investigations in the literature on flow and heat 

transfer in microchannels has been compiled in tabular form, under various research topics. 

Correlations for single-phase friction factor and Nusselt number proposed by various 

investigators based on their experiments have been compared and contrasted with conventional 

correlations for larger, conventional tubes and channels in the laminar and turbulent flow 

regimes.  A number of working fluid and substrate combinations, and shapes and configurations 

of the microchannels are included in this comparison.  Little agreement is seen between the 

predictions of different investigators.  The results are also not seen to be distinguished by fluid or 

substrate type or by microchannel dimensions and shapes. 
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  The comparative study presented here points to differences between the flow and heat 

transfer in microchannels and that in channels of conventional sizes.  However, the information 

in the literature thus far does not point to unequivocal trends of variation or reasons for such 

trends.  There is no evidence that continuum assumptions are violated for the microchannels 

tested, most of which have hydraulic diameters of 50 m or more.  As such, analyses based on 

Navier-Stokes and energy equations would be expected to adequately model the phenomena 

observed, as long as the experimental conditions and measurements are correctly identified and 

simulated.  The discrepancies in predictions may very well be due to entrance and exit effects, 

differences in surface roughness in the different microchannels investigated, nonuniformity of 

channel dimensions, nature of the thermal and flow boundary conditions, and uncertainties and 

errors in instrumentation, measurement and measurement locations.  Given the diversity in the 

results in the literature, a reliable prediction of the heat transfer rates and pressure drops in 

microchannels is not currently possible for design applications such as microchannel heat sinks.  

There is a clear need for additional systematic studies which carefully consider each parameter 

influencing transport in microchannels. 
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Fig. 1. Friction-factor predictions from the literature for microchannels and conventional 

channels, in the laminar and turbulent regimes. 
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Fig. 2. Friction-factor predictions in the laminar regime. 
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Fig. 3. Friction-factor predictions in the turbulent regime. 
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Fig. 4. Heat transfer predictions from the literature for microchannels and conventional 

channels, in the laminar and turbulent regimes. 
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Fig. 5. Heat transfer predictions in the laminar regime. 
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Fig. 6. Heat transfer predictions in the turbulent regime. 

 

 

 



Configuration/Parameters Nature of Work Observations/Conclusions Reference 

MICROCHANNEL CONCEPTS AND EARLY WORK 

Rectangular cross section; water in 
silicon 

W = 50 m; H = 300 m 
Q = 4.7, 6.5, 8.6 cm

3
/s 

Experiments on integral 
heat sink for silicon 
integrated circuits 

 Demonstrated use of microchannels for very high convective 
heat transfer in cooling integrated circuits (790 W/cm

2
 at a 

substrate-to-coolant temperature difference of 71
o
C) 

Tuckerman & 
Pease (1981) 
[1] 

Microchannels in cooling of integrated 
circuits 

Microchannel fabrication 
and implementation details 
discussed 

 Coolant selection, packaging/headering, microstructure 
selection, fabrication and bonding discussed 

 Etching and precision-sawing compared; fabrication and 
advantages of ‘micropillars’ using precision-sawing discussed 

 Expressions for Coolant Figure of Merit provided: CFOM = 

(kcC/)
0.25   

for given coolant pressure, and (kc
2
C

2
/ )

0.25 
for 

given pumping power 

Tuckerman & 
Pease (1982) 
[2] 

Trapezoidal; nitrogen in silicon and 
glass 

W = 130-300 m, H = 30-60 m, Dh = 

55-76 m 

Friction factors measured 
and compared with 
Moody’s chart values for 
commercial channels 

 Friction factor for glass channels 3-5 times larger than smooth-
pipe predictions 

 Flow transition occurred at Re  400 

 Correlations for friction factor 
 f = (110+8) / Re          Re < 900 

 f = 0.165 (3.48 - log Re)
2.4 

+ (0.081+ 0.007)  900 < Re < 3000 

 f = (0.195 + 0.017) / Re
0.11

         3000 < Re < 15000 

Wu & Little 
(1983) [3] 

As in [3] Heat transfer experiments 
 Correlation for Nusselt number in the turbulent regime: 
 Nu = 0.0022 Pr

0.4
 Re

1.09
     Re > 3000 

Wu & Little 
(1984) [4] 
 

Rectangular; air in silicon 
W = 0.13-0.25 mm, H/W = 10, As = 47-
63 cm

2
/cm

3
 

Comparison of 
performance with 
conventional heat sinks, 
based on correlations 

 Micro-structured compact heat sinks attractive compared to 
conventional air circulation heat sinks 

Mahalingam & 
Andrews (1987) 
[5] 

Rectangular; water in silicon 

W = 50-600m 

Theoretical model for fully 
developed, developing 
flows 

 Turbulent flow designs showed equivalent or better performance 
compared to laminar flow designs 

Phillips et al. 
(1989) [6] 

Rectangular; N Propanol in silicon 

Ac = 80-7200 sq. m 
Experiments 

 Channels with larger cross-sectional areas showed better 
agreement with theoretical predictions for the friction factor 

 Proposed f = C/Re with C given as C vs. Re graphs (laminar) 

Pfahler et al. 
(1990) [7] 

Microchannel structures for cooling 
applications 

Microchannel applications 
discussed 

 Applications of microchannels to electronics cooling, compact 
heat exchangers, heat shields and fluid distribution systems 
discussed 

Hoopman 
(1990) [8] 



 

Configuration/Parameters Nature of Work Observations/Conclusions Reference 

Microtubes; nitrogen in silica 

D = 3, 7, 10, 53, 81m, L = 24-52 mm 

Experiments on friction and 
heat transfer 

 Correlations for friction factor and Nusselt number: 

 Laminar (Re < 2000)           f = 64/Re [1+ 30(/Dca)] 
1

 

 Turbulent (2500 < Re < 20000)    f = 0.140 Re
 0.182

 
 Laminar    Nu = 0.000972 Re

1.17
 Pr

1/3
 

 Turbulent  Nu = 3.82x106
 Re

1.96
 Pr 

1/3
 

Choi et al. 
(1991) [9] 

Rectangular; water in etched silicon 

W = 1 mm, H = 176-325 m, L = 46 mm, 
P = 2 mm 

Experiments 
 Nusselt numbers higher than those predicted from analytical 

solutions for developing laminar flow 

Rahman & Gui 
(1993) [10] 

SINGLE-PHASE (LIQUID) EXPERIMENTS 

Rectangular; deionized water in 
stainless steel 
W = 0.6 mm; H = 0.7 mm, Ti = 30-60

o
C, 

v = 0.2-2.1 m/s 

Experiments on single-
phase forced convection 

 In single-phase convection, a steep increase in wall heat flux 
with the wall temperature 

 Heat flux for microchannels higher than for normal-size tube 

Peng & Wang 
(1993) [11] 

Rectangular; water, methanol in 
stainless steel 
W = 0.2, 0.4, 0.6, 0.8 mm, H = 0.7 mm, 
Ti = 10-35

o
C (water), 14-19

o
C 

(methanol), v = 0.2-2.1 m/s 

Experiments on forced 
convection flow and heat 
transfer 

 Heat transfer augmented as liquid temperature was reduced and 
as liquid velocity was increased 

 Fully developed turbulent convection regime starts at Re = 
1000-1500 

 Correlation for turbulent heat transfer  Nu = 0.00805 Re
4/5

 Pr
1/3

 

Wang & Peng 
(1994) [12] 

Rectangular; water in stainless steel 
Dh = 0.133-0.367 mm, L = 50 mm, H/W 
= 0.333-1, Ti = 22-44

o
C, v = 0.25-12 

m/s, Re = 50-4000 

Experiments on frictional 
behavior in laminar and 
turbulent flow 

 Flow transition occurred for Re = 200-700 

 Correlations proposed (values for C f, l, C f, t provided in Table 2) 
 f = C f, l /Re

1.98
      laminar flow 

 f = C f, t /Re
1.72

       turbulent flow 

Peng et al.  
(1994a) [13] 

As in [13] 
Experiments on forced 
convection heat transfer 
characteristics 

 Fully turbulent convective conditions reached at Re = 400-1500 

 Transition Re diminished with a reduction in microchannel 
dimension 

 Nu = Ch, l Re 
0.62

 Pr
1/3      

  Laminar 
 Nu = Ch, t Re 

0.8
 Pr 

1/3
     Turbulent 

 (values for C h, l, C h, t provided in Table 2) 

Peng et al.  
(1994b) [14] 

As in [12] except 
Ti = 11-28

o
C (water), 12-20

o
C 

(methanol) 
v = 0.2-2.1 m/s (water), 0.2-1.5 m/s 
(methanol) 

Experiments on effect of 
thermofluid properties and 
geometry on convective 
heat transfer 

 Changes in flow regimes and heat transfer modes initiated at 
lower Re in microchannels compared to conventional channels 

 Transition zone and heat transfer characteristics in laminar and 
transition flow influenced by liquid temperature, velocity, Re and 
microchannel size 

Peng & 
Peterson (1995) 
[15] 

As in [13] 
Experiments on single-
phase flow and heat 
transfer 

 Ratio of experimental to theoretical friction factor at critical Re  
plotted as a function of Z (= min [H,W] / max [H,W]) 

 Correlations proposed 

    33.062.079.081.0
PrRe//1165.0


 WHPDNu h

    Laminar 

    33.08.0215.1
PrRe]5.0421.21[/072.0  ZPDNu h

 Turbulent 

Peng & 
Peterson 
(1996a) [16] 



 

Configuration/Parameters Nature of Work Observations/Conclusions Reference 

Rectangular; water-methanol mixture in 
stainless steel 
Dh = 0.133-0.367 mm, L = 50 mm 
W = 0.1, 0.2, 0.3, 0.4 mm, H = 0.2, 0.3 
mm, Ti = 14-36

o
C, v = 0.04-3.8m/s, Re = 

6-3500 

Experiments 

 Laminar heat transfer ceased for Re  70-400 depending on 
flow conditions; fully developed turbulent heat transfer achieved 
at Re = 200-700, depending on Dh 

 Transition Re reduced with a reduction in microchannel size 

 Dh, H/W and mixture mole fraction influenced heat transfer 

 Heat transfer increased for smaller mole fractions of the more 
volatile component 

Peng & 
Peterson 
(1996b) [17] 

Rectangular; deionized water in silicon 

W = 251 m, H = 1030 m, Dh = 404 

m, L = 2.5 cm, Q = 5.47-118 cm
3
/s 

Experimental & theoretical 
study 

 Critical Re of 1500 identified for onset of turbulence 

 Analysis showed that flow and heat transfer performance could 
be improved by increasing H, and that for the same pressure 
drop and pumping power, thermal resistance was smaller for 
deeper channels 

Harms et al. 
(1997) [18] 

Rectangular; FC-72 and transformer oil 
in stainless steel 
H = 0.10-0.58 mm; nozzle dimensions 
(mm): Length = 35, B = 0.146, 0.210, 
0.234, Height = 12, v = 0.54-8.45 m/s 
Re = 70-170 (oil), 911-4807 (FC72) 

Experiments in 
impingement on 2D 
microchannels 

 Empirical correlation for Nusselt number for the two liquids 

 Nux = 0.429 Re 
0.583

 Pr
1/3 

(x / 2H) 
0.349 

(B/2H) 
0.494

 

Zhuang et al. 
(1997) [19] 

Circular; distilled water in copper 
D = 0.102-1.09 mm 
v < 18.9 m/s, Re = 2.6 x 10

3
 – 2.3 x 10

4
, 

Pr = 1.53-6.43 
q” < 3.0 MW/m

2
 

Experiments on turbulent 
single-phase flow 

 Nusselt numbers higher than those predicted by large-channel 
correlations 

 Gnielinski [71] correlation modified for Nusselt number for 
turbulent flow in circular microchannels (f from Filonenko, 1954): 

 Nu = NuGn (1+F) where F = C Re [1-(D/Do)
2
] 

 NuGn = (f/8)(Re - 1000)Pr / [1+12.7(f/8)
1/2

(Pr
2/3

-1)] 

 C = 7.6x10
-5  

; Do = 1.164 mm, f = [1.82 log (Re) – 1.64] 
2
 

Adams et al. 
(1998) [20] 

Non-circular; water in copper 
Dh = 1.13 mm, Re = 3.9x10

3 
- 2.14x10

4
, 

Pr = 1.22-3.02 

Experiments on turbulent 
convection 

 Experimental Nusselt number well-predicted by Nu Gn 

 Dh  1.2 mm proposed as reasonable lower limit for applicability 
of standard Nusselt-type correlations to non-circular channels 

Adams et al. 
(1999) [21] 

Rectangular 
laminar and transition flow 

Dimensional analysis 
based on experimental 
data in the literature 

 Attempted to explain the observation that Nu may decrease with 
increasing Re in laminar regime and may remain unaffected in 
transition regime 

 Proposed that Brinkman number may better correlate convective 
heat transfer 

Tso & Mahulikar 
(1998, 1999) 
[22, 23] 

Almost circular; water in aluminum 
Dh = 0.73 mm 

Experiments 
 Laminar flow data found to correlate well using Brinkman 

number 

Tso & Mahulikar 
(2000) [24] 

SINGLE-PHASE (LIQUID) MODELS AND OPTIMIZATION STUDIES 

Triangular microgrooves 
channel angle 20-60 deg. 

Analytical/numerical 
analysis 

 Friction factor-Reynolds number product strongly dependent on 
channel angle, contact angle, and dimensionless vapor-liquid 
interface flow number 

Ma et al. (1994) 
[25] 



 

Configuration/Parameters Nature of Work Observations/Conclusions Reference 

Microchannel plate-fin heat sink; air in 
copper, aluminum 

W = 400, 500m, H = 2.5 cm, Q = 1-6 
l/s 

Thermal resistance model, 
experiments, optimization 

 Thermal resistance of microchanneled heat sink lower than for 
heat sinks employing direct air cooling, by a factor of more than 
3 

Kleiner et al. 
(1995) [26] 

Circular capillary channels 

D = 8.1-96 m, 0.76-4.7 m 

Numerical study on the flow 
of superfluid Helium using 
a “two-fluid model” 

 Existence of an optimum channel diameter for maximum mass 
flow rate indicated 

Takamatsu et 
al. (1997) [27] 

Rectangular; fluorocarbon in silicon 

P = 100-1000 m, H = 150-200 m, W = 

56.6-113.4 m, v = 0.1-1.0 m/s 

Numerical analysis of 
manifold microchannel heat 
sinks 

 3D model showed close agreement with simple 1D model at 
high inlet velocity 

 Numerical results showed much weaker effect of W compared to 
analytical results 

 L had almost no effect on thermal resistance and affected only 
pressure drop 

Copeland et al. 
(1997) [28] 

Parallel plates at 25 m separation 
dilute aqueous electrolyte 
L = 10 mm 

Theoretical analysis 
incorporating effects of 
electric double layer field 

 EDL resulted in a reduced flow velocity than in conventional 
theory, thus affecting temperature distribution and reducing Re 

 Higher heat transfer predicted without the double layer 

Mala et al. 
(1997a) [29] 

Parallel plates (10 x 20 mm) of P-type 

silicon and glass at 10-280 m 

separation; P = 0-350 mbar 

Experimental study and 
comparison with predicted 
volume flow rates 

 For solutions of high ionic concentration as well as for Dh > few 

hundred m, EDL effect negligible 

 EDL effect becomes significant for dilute solutions 

Mala et al. 
(1997b) [30] 

Rectangular; dilute aqueous electrolyte 
in silicon 

H = 20 m, W = 30 m, L = 10 mm, P 

= 2 atm, Ti = 298 K, q = 1.0 x 10
5 
W/m

2
 

Numerical analysis with 
effects of EDL and flow-
induced electrokinetic field 

 The EDL field and electrokinetic potential act against the liquid 
flow, resulting in higher friction coefficient, reduced flow rate and 
a reduced Nusselt number, for dilute solutions 

Yang et al. 
(1998) [31] 

Rectangular (flat plate micro heat 
exchangers) 

Optimization study on 
microchannel shape 

 Width of heat exchanger conduits may be optimized to reduce 
maximum temperature of the uniformly heated surface 

Bau (1998) [32] 

Microchannel cooling  
and jet impingement   

Comparative analysis of jet 
impingement and 
microchannel cooling 

 Thermal performance of jet impingement without any treatment 
of spent flow substantially lower than microchannel cooling, 
regardless of target dimension 

 Microchannel cooling preferable for target dimensions smaller 
than 7x7 cm 

Lee and Vafai 
(1999) [33] 

GAS FLOW 

Rectangular; helium in silicon 

W = 52.25 m, H = 1.33  m, L = 7500 

m; Inlet to outlet pressure ratio = 1.2-
2.5, Re = (0.5-4)x10

-3
 

Flow rates measured and 
compared with theoretical 
model 

 Mass flow–pressure relationship accurately modeled by 
including a slip flow boundary condition at the wall 

Arkilic et al. 
(1994) [34] 

As in [34] with 
pressure ratio = 1.6-4.2, Re = (1.4-12) 
x10

-3
 

Experiments and 
comparison of mass flow 
with results from 2D 
analysis with slip boundary 
condition 

 Discussions on nondimensional formulation and perturbation 
solution 

Arkilic et al. 
(1997) [35] 



 

Configuration/Parameters Nature of Work Observations/Conclusions Reference 

Microtubes; nitrogen and water in silica 

D = 19, 52, 102 m, Pr = 0.7-5, Re = 
250-20000 

Experiments; theoretical 
scaling analysis 

 Turbulent momentum and energy transport in the radial direction 
significant in the near-wall zone of a microtube 

 Correlations proposed: 
 f = 50.13/Re        (laminar, Re < 2000) 

 f = 0.302/Re
0.25             

 (transition, 2000 < Re < 6000) 

 Nu = 0.007Re
1.2

 Pr 
0.2

      (turbulent, 6000 < Re < 20000) 

Yu et al. (1995) 
[36] 

Rectangular 

H = 0.5, 5 m, H/W = 2.5, 5, 10, 20 
(subsonic); 5, 10, 20 (supersonic) 

Numerical study using 
direct simulation Monte 
Carlo technique 

 Heat flux on the channel surface decreases with increase in 
Knudsen number and channel length in supersonic flow 

Mavriplis et al. 
(1995) [37] 

Rectangular 
helium (as in [34]) 

helium and nitrogen, Dh = 1.01m , L = 
10.9 mm (as in [38]) 

2D numerical model, 
comparison with 
experiments in literature 

 Nusselt number and friction coefficient substantially reduced for 
slip flows compared to continuum flows 

 Effect of compressibility significant at high Re 

Kavehpour & 
Faghri (1997) 
[39] 

Smooth microtubes 
Gas flow 

Numerical solution of gas 
flow in microtubes 

 Local Nusselt number increased with dimensionless length, due 
to compressibility 

 f-Re product not constant; dependent on Re 

Guo & Wu 
(1997) [40] 

Rectangular; nitrogen, helium in silicon 

W = 40 m, H = 1.2 m, L = 3 mm (N2), 

W = 52 m, H = 1.33 m, L = 7.5 mm 
(He) 

Numerical solution with slip 
boundary condition 

 Small velocities and high pressure gradients due to large wall 
shear stresses 

 Comparisons with experiments of [34] 

Chen et al. 
(1998) [41] 

3D straight and spiral grooves 
Numerical study on slip 
flow in long microchannels 

 Non-linear pressure gradients along the microchannels due to 
density variations 

Niu (1999) [42] 

BOILING IN MICROCHANNELS 

Circular; R-113 in copper 

D = 2.45 mm (mini), 510 m (micro) 

Q = 19-95 ml/min, T: 10-32C 

Experiments on boiling & 

two- flow; boiling curves & 
CHF values obtained 

 Microchannel yielded higher CHF (28% greater at Q = 64 

ml/min) than mini channel, with a larger P (0.3 bar for micro, 
0.03 bar for mini) 

Bowers & 
Mudawar 
(1994a) [43] 

As in [43] 
Pressure drop model 
developed; predictions 
compared to experiments 

 Major contributor to pressure drop identified as the acceleration 
resulting from evaporation 

 Compressibility effect important for microchannel when Mach 
number > 0.22 

 Channel erosion effects more predominant in microchannels 
than in mini channels 

Bowers & 
Mudawar 
(1994b) [44] 

As in [43] 
Experiments on boiling and 
two-phase flow 

 Single CHF correlation for mini and microchannels developed: 

   54.019.0

, /16.0)(/ DLWehGq fgpm

  

Bowers & 
Mudawar 
(1994c) [45] 



 

Configuration/Parameters Nature of Work Observations/Conclusions Reference 

Rectangular; water in stainless steel 

W = 0.6 mm, H = 0.7 mm, Ti = 30-60C, 
v = 1.5 - 4.0 m/s 

Experiments on subcooled 
boiling of water 

 Nucleate boiling intensified and wall superheat for flow boiling 
smaller in microchannels than in normal-sized channels for the 
same wall heat flux 

 No partial nucleate boiling observed in microchannels 

Peng & Wang 
(1993) [11] 

Rectangular; methanol in stainless steel 
W = 0.2, 0.4, 0.6 mm, H = 0.7 mm, L = 

45 mm, P = 2.4-4 mm; Ti = 14-19C 

(Subcooling: 45-50C), v = 0.2-1.5 m/s 

Experiments on boiling 

 Liquid velocity and subcooling do not affect fully developed 
nucleate boiling 

 Greater subcooling increased velocity and suppressed initiation 
of flow boiling 

Peng et al. 
(1995) [46] 

Rectangular; methanol-water mixture in 
stainless steel 
W = 0.1, 0.2, 0.3, 0.4 mm, H = 0.2, 0.3 
mm, L = 45 mm, Dh = 0.133-0.343 mm, 

v = 0.1-4.0 m/s, Ti = 18-27.5C 

(Subcooling: 38-82C) 

Experiments on flow boiling 
in binary mixtures 

 Heat transfer coefficient at onset of flow boiling and in partial 
nucleate boiling greatly influenced by concentration, 
microchannel/substrate dimensions, flow velocity and 
subcooling 

 These parameters had no significant effect on heat transfer 
coefficient in the fully nucleate boiling regime 

 Mixtures with small concentrations of methanol augmented flow 
boiling heat transfer 

Peng et al. 
(1996) [47] 

V-shaped; water and methanol in 
stainless steel 
Groove angle: 30-60 deg; Dh = 0.2-0.6 
mm 
v (water) = 0.31-1.03 m/s 
v (methanol) = 0.12-2.14 m/s 

Experiments on flow boiling 

 Heat transfer and pressure drop were affected by flow velocity, 
subcooling,  Dh and groove angle 

 No bubbles observed in microchannels during flow boiling, 
unlike in conventional channels 

 Experiments indicated an optimum Dh and groove angle 

Peng et al. 
(1998) [48] 

V-shaped 
Analysis of microgrooves 
with non-uniform heat input 

 Analytical expression developed for the evaporating film profile 
Ha & Peterson 
(1996) [49] 

V-shaped 
Analysis of axial flow of 
evaporating thin film 

 Used perturbation method to solve the axial flow of an 
evaporating thin film through a V-shaped microchannel with tilt 

Ha & Peterson 
(1998) [50] 

Circular and rod bundle; water in copper 
D = 1.17,1.45 mm, Dh = 1.131 mm 
m = 250-1000 kg/m

2
s 

Exit pressure = 344-1043 kPa 
Inlet pressure = 407-1204 kPa 

Ti = 49-72.5C 

Experiments on CHF in 
flow of subcooled water 

 CHF found to increase monotonically with increasing mass flux 
or pressure 

 CHF depends on the channel cross section geometry, and 
increases with increasing D 

Roach et al. 
(1999) [51] 

BOILING IN SMALL DIAMETER TUBES AND CHANNELS 

Circular; water in stainless steel 
D = 2.5 mm, t = 0.25 mm, v = 10-40 m/s 

Experiments on subcooled 
flow boiling of water under 
high heat fluxes 

 Experimental data did not match predictions from CHF 
correlations in the literature 

Celata et al. 
(1993) [52] 

Rectangular; water and R141b in copper 
W = 1, 2, 3 mm, H/W < 3, m = 50, 200, 
300 kg/m

2
s 

Experiments on flow boiling 
in narrow channels of 
planar heat exchanger 
elements 

 Boiling curves and variations of heat transfer coefficient with 
local and average heat fluxes obtained 

Mertz et al. 
(1996) [53] 



 

Configuration/Parameters Nature of Work Observations/Conclusions Reference 

Rectangular; FC-72 in fiberglass 
W = 5 mm, H = 2.5 mm, Heated length = 
101.6 mm, v = 0.25-10 m/s, Re = 2000-
130000 

Subcooling at outlet = 3, 16, 29C 

CHF experiments on long 
channels; flow visualization 

 Propagation of vapor patches resembling a wavy vapor layer 
along the heated wall at the critical heat flux 

 Length and height of vapor patch found to increase along flow 
direction, and decreased with increasing subcooling and velocity 

Sturgis & 
Mudawar 
(1999a) [54] 

As in [54] 
Theoretical model for CHF; 
data analysis 

 Effect of periodic distribution of vapor patches idealized as a 
sinusoidal interface with amplitude and wavelength increasing in 
flow direction 

Sturgis & 
Mudawar 
(1999b) [55] 

TWO-PHASE FLOW 

Rectangular; R124 in copper 
W = 0.27 mm, H = 1.0 mm, Dh = 425 

mm, ReDh = 100-750; q < 40 W/cm
2
 

Experiments on 
microchannel heat 
exchanger 

 Nusselt number (~ 5 to 12) showed an increase with Reynolds 

number in single- flow, but was approximately constant in two- 
flow 

Cuta et al. 
(1996) [56] 

Rectangular; R124 in copper 

W = 270 m, H = 1000 m, L = 2.052 

cm, Dh = 425 m; Inlet subcooling: 5-

15C; Q = 35-300 ml/min 

Experiments with two 
microchannel patterns 
(parallel and diamond) 

 Heat transfer coefficient and pressure drop found to be functions 
of flow quality and mass flux, in addition to the heat flux and 
surface superheat 

 Heat transfer coefficient decreased by 20-30% for an increase in 
exit vapor quality from 0.01 to 0.65 

Ravigururajan 
(1998) [57] 

Circular and semi-triangular; air-water 
mixture in glass 
D = 1.1, 1.45 mm, Dh = 1.09, 1.49 mm, 
v(air): 0.02-80 m/s, v(water): 0.02-8 m/s 
(superficial velocity) 

Visual observation of flow 
patterns and pattern maps 

 Bubbly, churn, slug, slug-annular and annular flow patterns 
observed 

Triplett et al. 
(1999a) [58] 

As in [58] 

Frictional pressure drops 
measured and compared 

with various two- friction 
models 

 Models and correlations overpredicted channel void fraction and 
pressure drop in annular flow pattern 

 Annular flow interface momentum transfer and wall friction in 
microchannels significantly different from those in larger 
channels 

Triplett et al 
(1999b) [59] 

Circular and rectangular; air-water 
mixture in glass 
Dh = 1.3-5.5 mm; v = 0.1-100 m/s (gas); 
v = 0.01-10 m/s (liquid) 

Experiments, flow 
visualization 

 Tube diameter influences the superficial gas and liquid velocities 
at which flow transitions take place, due to combined effect of 
surface tension, hydraulic diameter and aspect ratio 

Coleman & 
Garimella 
(1999) [60] 

DESIGN AND TESTING 

Rectangular; water in silicon 

Numerical solution for 
temperature field; 
comparison with 
experiments [61] 

 Design algorithm developed for selection of heat exchanger 
dimensions 

 Expression for maximum pumping power obtained as function of 
channel geometry 

Weisberg et al. 
(1992) [62] 



 

Configuration/Parameters Nature of Work Observations/Conclusions Reference 

Almost rectangular; water in copper 
0.5  x 12 mm, 0.125 x 12 mm 
Q = 0.47-5 gpm 

Design and testing, 
microchannel heat 
exchanger for laser diode 
arrays 

 Thermal resistance due to solder bond estimated 
Roy & Avanic 
(1996) [63] 

Rectangular and almost triangular; air in 
copper, aluminum 

Parametric studies and 
experiments of air 
impingement in 
microchannels 

 Thermal resistance model developed 

 Parametric studies to determine influence of static pressure, 
pumping power and geometric parameters on thermal 
resistance 

Aranyosi et al 
(1997) [64] 

Rectangular, diamond-shaped and 
hexagonal; water in silicon 

3D numerical model; 
optimization for reducing 
thermal resistance 

 Rectangular geometry had the lowest thermal resistance 
Perret et al. 
(1998) [65] 

Rectangular; water, FC72 in copper 

Experiments on micro heat 
sink for power multichip 
module; 3D and 1D thermal 
resistance models 

 Power densities of 230-350 W/cm
2
 dissipated with a 

temperature rise of 35C, and a pumping power of about 1W per 
chip 

 Parameter ‘heat spread effect’ defined 
 s = (Rth1D - Rth3D) / Rth1D 

Gillot et al. 
(1998) [66] 

Rectangular; water, FC72 in copper 

W = 230, 311 m, H = 730, 3040 m, Q 

(ml/min) = 1350 (water, 1-) and 30 (2-

);  2000 (FC 72 1-) and 300 (2-) 

Experiments on single and 
two-phase micro heat 
exchangers for cooling 
transistors 

 Two-phase heat exchanger provided lower thermal resistance 
and pressure drop compared to single-phase heat exchangers 

Gillot et al. 
(1999) [67] 

Rectangular; air in copper 

W = 800 m, H = 50 mm, Q = 140 m
3
/hr 

Experiments and thermal 
resistance model 

 Pressure drop found to have large deviation from predicted 
values at high air flow rates 

 Cooling capacity  1700 W at heat flux  15 W/cm
2
 

Yu et al. (1999) 
[68] 

MEASUREMENT TECHNIQUES 

Triangular; water in silicon 

W = 28-182 m, Q = 0.01-1000 l/min 

Optical flow measurements 
using microscope 

 Measured flow rates in good agreement with theoretical values 
for laminar flow through triangular channels 

Richter et al. 
(1997) [69] 

Rectangular; water in glass 
W = 300 , H = 30, L = 25 mm 

Particle image velocimetry 
 Results agreed well with analytical solutions for Newtonian flow  

in rectangular channels 

Meinhart et al. 
(1999) [70] 

 



 

 

NOMENCLATURE 

Ac   cross sectional area 
As  surface area 
B   slot width 
C coolant heat capacity 
ca acoustic velocity 
D diameter 
Dh hydraulic diameter 
f friction factor 

G mass velocity ( m, mass flux) 
H height (depth) of microchannel  
hfg latent heat of vaporizaton 

kc coolant thermal conductivity 
L length 
Nu Nusselt number 
NuGn Nusselt number (Gnielinski 

correlation) 
P channel pitch 
Pr Prandtl number 

P pressure drop 
Q volumetric flow rate 
q m,p CHF based on heated channel area  
Rth 1D thermal resistance from 1D analysis   

Rth 3D    thermal resistance from 3D analysis 
Re Reynolds number 
Ti inlet temperature 
t tube wall thickness 
v inlet velocity 
W width of microchannel 
We Weber number 
x distance from stagnation point 

 density  

 dynamic viscosity  

 kinematic viscosity 



 

 

Table 2.  Microchannel configurations and coefficients from Peng et al. [13, 14]. 

 

Case W, mm H, mm L, mm Dh, mm H/W Recr Cf, l Cf, t Ch, l Ch, t 

A 0.4 0.3 50 0.343 0.75 700 44800 34200 0.058 0.0134 

B 0.3 0.3 50 0.3 0.1 700 109000 38600 0.0384 0.00726 

C 0.4 0.2 50 0.267 0.5 700 28600 40400 0.0426 0.0166 

D 0.3 0.2 50 0.24 0.667 400 42600 18200 0.0472  

E 0.2 0.2 50 0.2 1 200 32400 20100 0.0468 0.00696 

F 0.3 0.1 50 0.15 0.333 200 24200 6920 0.0104 0.00483 

G 0.2 0.1 50 0.133 0.5 200 5200 1820 0.0285 0.00939 
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