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Abstract

In this paper we introduce a new method for the simulation of the exit time and exit
position of a δ-dimensional Brownian motion from a domain. The main interest of our
method is that it avoids splitting time schemes as well as inversion of complicated series.
The method, called walk on moving spheres algorithm, was first introduced for hitting times
of Bessel processes. In this study this method is adapted and developed for the first time
for the Brownian motion hitting times. The idea is to use the connexion between the δ-
dimensional Bessel process and the δ-dimensional Brownian motion thanks to an explicit
Bessel hitting time distribution associated with a particular curved boundary. This allows
to build a fast and accurate numerical scheme for approximating the hitting time. We
introduce also an overview of existing methods for the simulation of the Brownian hitting
time and perform numerical comparisons with existing methods.

1 Introduction

Computing the first hitting time of a boundary by a stochastic process with a high accuracy
is of great interest for many areas of applications. Examples range from neuronal sciences,
financial derivatives with barriers, optimal stopping problems and so on. For general stochastic
diffusion processes, the simulation of the exit time from a domain is in general obtained by the
Euler scheme. While naive versions of this scheme reach an order one half for the computations
of weak approximations, it is possible to obtain order one approximations thanks to a barrier
correction [7]. The number of steps before hitting the boundary is nevertheless proportional to
the inverse of the time discretisation step. However, when the diffusion process reduces to a
standard multidimensional Brownian motion, alternative more efficient simulation methods can
be used. The random walk on spheres (WOS) introduced by Muller [14] relies on the isotropy
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of the Brownian motion and enables to make large jumps instead of small ones for the Euler
scheme. Its mean number of steps before hitting the boundary is proportional to |ln(ε)| where
ε is the parameter of the absorption boundary layer. The random walk on rectangles proposed
by Deaconu and Lejay [3] uses the same ideas and may be even more efficient for a polygonal
domain. Using these two methods, the elapsed time is nevertheless a lot harder to simulate
than with the Euler scheme. Indeed its simulation needs the inversion method on a cumulative
distribution function which is a complicated series. A fast and accurate simulation for the
hitting time law is mandatory for the computation of, for instance, the principal eigenvalue
of the Laplace operator [9]. We describe and study here a method called the walk on moving
spheres (WOMS), introduced by Deaconu and Herrmann [2] which conciliates a small number
of steps before absorption and an easy way to simulate the exit time.

The paper is organised as follows. In section two, we recall the properties of the WOS
method and discuss the exit time of a sphere. The study of the hitting time and exit position
methods for a Brownian motion is performed in section 3 and the Bessel hitting time is also
introduced. The section 4 is devoted to the new method based on the simulation of the Brownian
position by an uniform random variable and the hitting time by using the explicit expression of
the Bessel hitting time distribution. The last section illustrates numerical results and compares
the mean number of steps before absorption and the efficiency of the WOS and WOMS methods
for exit time simulation on a simple numerical example.

2 Random walk on spheres

The study of the hitting time of a given boundary for the Brownian motion is of great interest
in many applications. This research has a long history as it is connected with the solution u of
the Dirichlet problem :

{ 1

2
∆u(x) = 0 on D,

u(x) = f(x) on ∂D,
(2.1)

where D denotes a bounded finitely connected domain in R
δ and ∂D its boundary, assumed

throughout this paper to be of sufficient regularity, in order to ensure that the Dirichlet problem
has a unique solution. The function f is continuous on the boundary ∂D. The probabilistic
approach of this problem is a powerful tool that allows to express the solution of (2.1) in the

form u(x) = Ex[f(B
δ,x
τ∂D)] where B

δ,x
t stands for the δ-dimensional Brownian motion starting

from x, and τ∂D its first hitting time of the boundary ∂D, that is τ∂D = inf{t > 0 : Bδ,x
t ∈ ∂D}.

Introducing an efficient numerical approximation of the quantities τ∂D and Bδ,x
τ∂D also pro-

vides an accurate procedure in order to approximate the solution to the Dirichlet problem (2.1).
For these purposes, the methods that can be considered are mainly based on splitting time

methods like the Euler scheme but they are not computationally efficient and may overestimate
the hitting time. An alternative approach can use the explicit form of the distribution of the
hitting time and uses the inversion method. However, this procedure involves complicated series
and special functions like the Bessel ones.

One of the revolutionary ideas on this topic is due to Muller [14] who introduced a method
called the random walk on spheres (WOS). His method approaches the hitting time and the exit
position for the Brownian motion starting from x and living in the domain D. This procedure
is based on Monte Carlo methods for solving Dirichlet problem. The idea of the algorithm is
to start by constructing the largest sphere centred at x and included in D. For the Brownian
motion starting at x, we consider the hitting position of this sphere by choosing uniformly a
point on its boundary. This gives the new starting point and the new center of the largest
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sphere included in D, used for the second step of the algorithm. The algorithm generates then
iteratively the first exit time and position for the Brownian motion, starting in the current
point, from the largest sphere included in D and centred at the current point. The algorithm
stops when the exit position is as close as suited to the boundary ∂D. This method relies
on analytical expressions of the distribution functions for the first exit time and the first exit
position from a sphere which is the uniform law on this sphere.

Since then, the WOS method has been extended for many applications as for example in
Sabelfeld and Talay [15], and Golyandina [8]. Further generalisations of the method for non-
homogeneous media are introduced by Milstein and coauthors [12, 13]. For polygonal domains
a similar method, based on random walk on rectangles, was proposed by Deaconu and Lejay
[3].

In order to evaluate the exit position this procedure is really efficient. However, when
considering the exit time, at each step of the algorithm one needs to evaluate the quantity

τL = inf{t > 0 : ‖Bδ,x
t ‖ = L} (2.2)

where L is the radius of the corresponding sphere in the algorithm. This is the first time that
the Euclidean norm of a δ-dimensional Brownian motion hits the level L, and represents also
the hitting time of the level L for the δ-dimensional Bessel process. Up to now, there is no
general analytical formula allowing the numerical simulation of the distribution of τL.

For the case of the Bessel process starting from x an explicit form of the Laplace transform
of τL exists [2] for x > 0:

Ex

[

e−λτL
]

=
x−ν

L−ν
Iν(x

√
2λ)

Iν(L
√
2λ)

and E0

[

e−λτL
]

=
(L

√
2λ)ν

2νΓ(ν + 1)

1

Iν(L
√
2λ)

(2.3)

here Iν(x) denotes the modified Bessel function and ν the index of the Bessel process, defined
by ν = δ/2− 1. Ciesielsky and Taylor [1] proved that, for δ ∈ N and x = 0, the tail distribution
is given by

P0(τL > t) =
1

2ν−1Γ(ν + 1)

∞
∑

k=1

jν−1
ν,k

Jν+1(jν,k)
e−

j2
ν,k

2L2 t,

where J· is the Bessel function of the first kind, and j·,k the associated sequence of its positive
zeros. A similar formula is available for x > 0.

Despite this explicit form, these formulas are obviously miss-adapted and not well suited for
numerical purposes. We present in the next two sections the main results used for Brownian
and Bessel cases.

3 Hitting time of one-sided moving boundaries

3.1 The one-dimensional Brownian case

We shall first study the Brownian hitting time and afterwards focus on the Bessel case. The
standard one-dimensional Brownian motion (Bt, t ≥ 0) satisfies nice hitting time properties and
an explicit expression of the hitting time distribution for straight line boundaries is available.
Let ψ : R+ → R be a continuous function. We denote by τψ = inf{t > 0 : Bt = ψ(t)}, the first
hitting time of the curved boundary ψ for the Brownian motion.
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3.1.1 Hitting a given level L

Let ψ be the constant function equal to L > 0. Introduce the exponential martingale associated
to the Brownian motion and use the optional stopping theorem to obtain, for any λ ∈ R,

E[e−λ
2τψ/2] = e−λLE[eλBτψ−λ

2τψ/2] = e−λL.

In other words, E[e−λτψ/2] = e−L
√
2λ, λ > 0. In the exit time framework, we can often compute

the Laplace transform of hitting times but inverting such expressions is not usually a simple
task. For the present situation, the reflexion principle of the Brownian path and the scaling
property permit to overcome this difficulty. We have

P(τψ ≤ t) = P

(

sup
0≤s≤t

Bs ≥ L
)

= P(|Bt| ≥ L) = P

(

|G| ≥ L√
t

)

= P

(L2

G2
≤ t
)

,

where G stands for a standard normally distributed random variable. We deduce the identity

τψ
∆
=
L2

G2
(3.1)

which immediately yields the probability density function (pdf) of τψ:

pψ(t) :=
L√

2πt3/2
e−

L2

2t . (3.2)

Let us introduce the function ξ corresponding to the value of the Brownian pdf at the boundary,
defined by:

ξ(t) =
1√
2πt

exp

(

−ψ
2(t)

2t

)

, t > 0. (3.3)

An important feature is the relation between the pdf of the hitting time pψ and the function ξ,
as ψ(t) = L for all t:

pψ(t) = b(t)ξ(t) with b(t) =
L

t
. (3.4)

To sum up, for the Brownian hitting time in the constant boundary case, the pdf has a simple
expression and (3.1) is of prime interest for numerical purposes.

3.1.2 Hitting a straight line

An explicit expression can also be obtained in the general straight line case. Let us assume now
that ψ(t) = L + βt, β > 0. (3.4) is still valid for a one sided boundary. The Bachelier-Lévy
formula holds

pψ(t) =
L√

2πt3/2
exp

(

−(L+ βt)2

2t

)

, t > 0. (3.5)

The proof relies on the Girsanov change of measure formula. For B̃t = Bt − βt, we have

τψ(B)
∆
= τL(B̃) where τL is the first hitting time of the level L for B̃. Under the change of

measure, B̃t becomes a Brownian motion. More precisely, defining Dt = exp{−βBt − β2t/2},
we have that

P(τψ(B) ≤ t) = P(τL(B̃) ≤ t)

= E

[

1{τL(B)≤t}DτL

]

= E

[

1{τL(B)≤t}e
−β2τL(B)

2

]

e−Lβ.
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We obtain thus (3.5) by using the time derivative and the explicit expression (3.2) of the first
passage time to the level L. The distribution arising here belongs to the inverse Gaussian family.
More precisely τψ has the inverse Gaussian distribution I(−L

β , L
2) (see for instance [4] p.148).

Consequently τψ can be simulated with the simple generator introduced by Michael, Schucany
and Haas [11].
Let us point out that in both preliminary cases (the constant boundary case and the straight
line one), the particular relation between the hitting time pdf and the Brownian pdf at the
boundary, given by (3.4), is fulfilled with b(t) = L/t and moreover the hitting times can be
numerically easily generated.

3.1.3 Hitting a general curved boundary: a numerical approach

Obviously the general situation will not lead to simple pdf expressions like (3.2) or (3.5). Nev-
ertheless Durbin [5, 6] proved that (3.4) is a general formula with

b(t) = lim
s↑t

1

t− s
E

[

(ψ(s)−Bs)1Γ

∣

∣

∣
Bt = ψ(t)

]

and Γ :=
{

sup
s≤u≤t

(Bu − ψ(u)) ≤ 0
}

, (3.6)

as soon as the boundary is continuously differentiable. Even if the function b is defined by
a convergence result, it is often difficult to compute its value and its use usually requires an
approximation procedure.
In [5], the author computed the expression of b(t) in the straight line case, using the formula
(3.6), and obtained as expected b(t) = L/t. Durbin noticed that the set Γ does not play an
important role in this particular situation. Indeed if the characteristic function is omitted in
(3.6) the result is still valid:

b1(t) := lim
s↑t

1

t− s
E

[

(ψ(s)−Bs)
∣

∣

∣
Bt = ψ(t)

]

= b(t) for ψ(t) = L+ βt. (3.7)

This essential remark introduces a first rough approximation of the hitting time’s pdf: q1(t)
given by q1(t) := b1(t)ξ(t), where b1 and ξ are defined by (3.7) and (3.3), respectively (this
approximation is exact in the straight line case). It consists in fact in a tangent approximation
of the boundary in a neighbourhood of t suggested by Strassen [16]. By elementary Gaussian

computations, we obtain b1(t) =
ψ(t)
t − ψ′(t). Hence

q1(t) =

(

ψ(t)

t
− ψ′(t)

)

ξ(t) (3.8)

is the first approximation of pψ(t). In order to get a sharper approximation, Durbin [6] proved
that pψ(t) solves a Volterra equation of the second type. In the Appendix of [6], Williams
gave a more intuitive proof of this result. If q(t, x, y) denotes the transition probabilities of the
Brownian motion, then

pψ(t) =

{

ψ(t)

t
− ψ′(t)

}

q(t, 0, ψ(t)) − Ptpψ, (3.9)

where the operator Pt is defined by

Ptf =

∫ t

0
f(s)

{

ψ(t)− ψ(s)

t− s
− ψ′(t)

}

q(t− s, ψ(s), ψ(t))ds.

Observe that the first term in (3.9) is exactly the approximation term q1(t). Consequently
by developing a priori pψ(t) =

∑

k≥1(−1)k−1qk(t) we get qk+1(t) = Ptqk where q1 is given
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by (3.8). This discussion was made precise by Durbin who proposed an error bound for the
approximation of the hitting time pdf by truncated series. This procedure permits to compute
the pdf for any curved boundary using numerical integration. To sum up, the Brownian hitting
time of a general curved boundary cannot be exactly described by an explicit expression of its
pdf but can be generated via Durbin’s approximation.

3.1.4 Explicit expressions for particular curved boundaries

This last paragraph concerning the Brownian hitting times, emphasises the use of the method
of images developed by Lerche [10]. Since it is not possible to obtain nice expressions for a
general boundary, we investigate families of boundaries which lead to explicit expressions of pψ.
The method of images is based on a positive, σ-finite measure F (satisfying an integrability
assumption) and a parameter a > 0. The following function is then defined:

h(t, x) = q(t, 0, x) − 1

a

∫ ∞

0
q(t, y, x)F (dy),

where q(t, y, x) are the Brownian transition probabilities. Since q is solution of the heat equation,
so does h:

∂

∂t
h(t, x) =

1

2

∂2

∂x2
h(t, x), ∀(t, x) ∈ R+ × R. (3.10)

If x = ψ(t) denotes the unique solution (see [10]) of the implicit equation h(t, x) = 0, then,
defining C = {(t, x) : x ≤ ψ(t)} and u(t, x)dx := P(τψ > t, Bt ∈ dx), both u and h satisfy
(3.10) with the particular boundary condition h(t, ψ(t)) = 0. Using an uniqueness argument,
Lerche [10] proved that

P(τψ > t, Bt ∈ dx) = h(t, x)dx for (t, x) ∈ C.

Lerche presented also another proof of this result by using martingales. The distribution of the
hitting time can therefore be deduced:

pψ(t) = − d

dt

(

∫ ψ(t)

−∞
h(t, x)dx

)

. (3.11)

Furthermore, we can exhibit a general formula which allows to link the function b(t) introduced
in (3.4) and (3.6) with the measure F . The main challenge is then to find appropriate measures
F such that h(t, x), ψ(t) and finally pψ(t) (or equivalently b(t)) are explicit ! Lerche listed few
examples (mainly two-sided curved boundaries) containing obviously the straight line case (the
corresponding measure F is a Dirac mass). For instance, F (dy) = αδc(dy) + (1 − α)δ2c(dy),
with 0 < α < 1 and c a real positive number.
In order to conclude the Brownian hitting time study, let us mention that only few situations
permit to compute explicitly the pdf and to simulate easily the corresponding stopping time.

3.2 The Bessel case

This section aims at introducing properties concerning the Bessel process hitting times. The
link with the Brownian motion study is the following: the Euclidean norm of a δ-dimensional
Brownian motion is a δ-dimensional Bessel process denoted by (Xδ,x

t , t ≥ 0), where x is the
starting point. The time needed by the Brownian motion to exit from a sphere of radius L and
the passage time through the level L for the Bessel process are therefore identical in distribution.
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Thus, it would be of prime interest to obtain explicit expressions of the Bessel hitting time pdf.
Let us consider first a constant function ψ(t) = L > 0. The hitting time is defined by

τψ = inf{t ≥ 0 : Xδ,x
t = ψ(t)}.

An explicit form of the Laplace transform is available (see (2.3)) and can be inverted: the
expression of the tail distribution involves Bessel functions of the first kind and their positive
zeros. Even if the formula is explicit, it is difficult to handle for numerical procedures. To
summarise, a simple expression of the pdf in the constant boundary case is not available. In
addition, there is no hope to obtain interesting results for the straight line case and therefore
to use tangent approximation for the simulation of general boundaries hitting times !
The only tool which can be helpful in the Bessel case is the method of images. The idea of
this procedure has already been presented in the previous section. Let us denote qδ(t, y, x) the
transition probabilities associated to the Bessel process of dimension δ ∈ N with δ > 1 and let
F be a positive σ-finite measure on R+. Then

hδ(t, x) := qδ(t, 0, x) −
1

a

∫ ∞

0
qδ(t, y, x)F (dy)

is solution of the following partial differential equation:

∂

∂t
hδ(t, x) =

1

2

∂2

∂x2
hδ(t, x)−

δ − 1

2

∂

∂x

(

1

x
hδ(t, x)

)

, ∀(t, x) ∈ R+ × R. (3.12)

In particular, if x = ψ(t) is defined as the unique solution of hδ(t, x) = 0 (see [2]), then the

density of the measure P0(τψ > t, Xδ,0
t ∈ dx) and hδ(t, x) satisfy the same PDE with the same

boundary conditions. By uniqueness, we deduce that the Bessel hitting time pdf is given by

pδ,ψ(t) = − d

dt

(

∫ ψ(t)

0
hδ(t, x)dx

)

, t > 0.

It suffices now to find suitable measures F such that pδ,ψ and ψ are explicit. This is namely the
case for F (dy) = y2ν+11{y>0}dy. In this case

ψ(t) =

√

2t ln
a

Γ(ν + 1)tν+12ν
and pδ,ψ(t) =

1

2at
ψ2ν+2(t), (3.13)

where ν is the index of the Bessel process. The main feature of this discussion is that, τψ can
be numerically sampled in a very easy way ! We have

τψ
∆
=

(

a

Γ(ν + 1)2ν

)
1
ν+1

e−Z ,

where Z is Gamma distributed with parameters ν + 2 and 1
ν+1 (see Proposition A.1 in [2]).

In particular for δ = 2, e−Z is given by the product of two independent standard uniformly
distributed random variables U1U2.

Other curved boundaries are available but in the sequel we use only this particular example.
To sum up, whereas the method of images brought few nice examples of curved boundaries with
explicit Brownian hitting time pdf, this method plays in the Bessel case a central role with the
example (3.13).
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4 Construction of the algorithm

The aim of this section is to combine the random walk on spheres introduced in Section 2
with the method of images for Bessel processes developed in Section 3 in order to construct an
efficient algorithm for the simulation of both the exit time and exit position of the Brownian
motion.

The domain that the Brownian motion of dimension δ has to exit from is a sphere centred
in 0 and of radius L denoted by D. The starting position of the Brownian motion is Bδ

0 = x0.
The structure of the algorithm is the following: we construct a Markov chain (X(n))n≥0

which represents the Brownian motion position at random times (T (n))n≥0.

1. The initialisation parameters are X(0) = Bδ
0 = x0 and T (0) = 0.

2. The first step evaluates the exit time and the exit position of the Brownian motion for a
moving sphere centred in x0. The radius of the moving sphere varies continuously on time: it
is equal to ψ(t) given by (3.13). The first exit time of the sphere is the first hitting time of
the curved boundary ψ for the Bessel process of dimension δ, since the norm of the Brownian
motion has the same distribution as a Bessel process of dimension δ. The first hitting time T (1)
has the same distribution as τψ in (3.13) and can easily be generated. The position Bδ

T1
of the

Brownian motion is uniformly distributed on the sphere of radius ψ(τψ) centred in x0.
Let us note that the curved boundary ψ depends on a parameter a > 0 which can be

arbitrarily chosen. We choose a suitable value of a such that the moving sphere always stays in
D.

3. The next step of the algorithm starts with X(1) = Bδ
τψ

= Bδ
T (1). We consider then the

Brownian exit problem of a new moving sphere centred at X(1) and of radius ψ with the
corresponding parameter a chosen in such a way that the moving sphere remains in D. The
exit time denoted by R(2) is given by τψ and the exit position is uniformly distributed on the
sphere of radius ψ(τψ) and centred at X(1). The global time becomes T (2) = T (1) +R(2) and
the Markov chain satisfies X(2) = Bδ

T (2). And so on...

4. The algorithm stops as soon as ‖X(n)‖ ≥ L− ε where ε is a fixed small parameter.

The outcome of the algorithm is (X(n), T (n)) that is an approximation of the couple exit

position and exit time.

Algorithm (Aδ).

Fix 0 < γ < 1 and a small parameter ε > 0.

Initialisation: Set X(0) = x0, T (0) = 0, R(0) = 0.

The n-th step: Let

an−1 =
(

γ2(L− ‖X(n − 1)‖)2e/(ν + 1)
)ν+1Γ(ν + 1)

2
.

While ‖X(n−1)‖ < L− ε, choose Un an uniformly distributed random vector on [0, 1]⌊ν⌋+2,

Gn a standard Gaussian random variable and Vn an uniformly distributed random vector

on the unit sphere of dimension δ centred at x0. Un, Gn and Vn are independent. Define

the current time










R(n) =
(

an−1

Γ(ν+1)2ν Un(1) . . . Un(⌊ν⌋+ 2)
)

1
ν+1

exp
{

−ν−⌊ν⌋
ν+1 G2

n

}

,

T (n) = T (n− 1) +R(n),
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and, the current position X(n) = X(n − 1) + ψ(R(n))Vn.

Outcome: The first time ‖X(n − 1)‖ ≥ L − ε, the algorithm stops and the outcomes

are: X(n) and T (n).

The choice of the parameters an ensures at each step the moving sphere to belong to the initial
domain D.
This algorithm is very simple to use. We describe the 2 dimensional case (ν = 0) as the next
section, dealing with numerical results, will focus on this particular situation. The algorithm
writes

Algorithm (A2)

The n-th step: Let an−1 = γ2e
2 (L − ‖X(n − 1)‖)2 and let (Un, Vn,Wn) be a vector of

three independent random variables uniformly distributed on [0, 1]. Set R(n) = an−1UnVn,
T (n) = T (n− 1) +R(n) and

X(n) = X(n− 1) + ψ(R(n))

(

cos(2πWn)
sin(2πWn)

)

with ψ(t) =
√

2t ln(an−1/t).

Outcome: The first time ‖X(n − 1)‖ ≥ L − ε, the algorithm stops and the outcomes are:

X(n) and T (n).

In dimension two each step only requires to sample three uniform random variables

!

Let us denote by Nε the number of steps of the algorithm (Aδ). We obtain (see [2]) the
following convergence results:

Theorem 4.1. 1. There exist Cδ > 0 and ε0(δ) > 0 such that

E[Nε] ≤ Cδ| ln(ε)|, for any ε ≤ ε0(δ). (4.1)

2. As ε goes to zero, the couple (X(Nε), T (Nε)) converges in probability towards the couple

(Bδ,x0
τ , τ) where τ is the Brownian exit time of the sphere centred in 0 of radius L.

Sketch of proof of 2. The proof of the convergence rate is based on the potential theory
for Markov chains. We present here only the main ideas for the second result of this theorem.
For η > 0, let us prove that

lim
ε→0

P({‖Bδ,x0
τ −X(Nε)‖ > η} ∪ {|τ − T (Nε)| > εη}) = 0. (4.2)

It is easy to obtain that T (Nε) converges to τ : the algorithm stops with a Brownian position
X(Nε) in a ε neighbourhood of the sphere of radius L. Moreover the Brownian path does not
hit the sphere before (we deduce that τ ≥ T (Nε)). Thus, due to the strong Markov property
and the rotational invariance of the Brownian motion, we can consider that the paths after time
T (Nε) have the same behaviour as a Brownian motion starting from 0, at a distance less than
ε with respect to some convex surface. So the projection Bt of the Brownian motion in the
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direction corresponding to the minimal distance between the origin and the surface, is then a
one-dimensional Brownian motion and we get

Aε1 := P(|τ − T (Nε)| > εη) ≤ P0

(

sup
0≤t≤εη

Bt < ε
)

≤
√

2ε

ηπ
.

Moreover,

Aε2 := P

(

{‖Bδ,x0
τ −X(Nε)‖ > η} ∩ {|τ − T (Nε)| ≤ εη}

)

≤ P

(

{ sup
T (Nε)≤t≤T (Nε)+εη

‖Bδ,x0
t −X(Nε)‖ > η} ∩ {|τ − T (Nε)| ≤ εη}

)

≤ P

(

sup
T (Nε)≤t≤T (Nε)+εη

‖ Bδ,x0
t −X(Nε)‖ > η

)

≤ P

(

sup
0≤t≤εη

‖Bδ,0
t ‖ > η

)

≤ 2δ P
(

sup
0≤t≤εη

Bt ≥
η√
δ

)

= 2δ P
(

|G| ≥
√
η√
εδ

)

→ 0, as ε→ 0.

Here G stands for a standard Gaussian distributed random variable. Combining the convergence
of Aε1 and Aε2, as ε goes to 0, leads to (4.2) and finally to the second statement of Theorem
(4.1). �

5 Numerical results

If we are only interested in boundary valued problem like the Laplace equation, the WOS method
is preferable to the WOMS method because its number of steps before absorption is obviously
smaller. However, in many situations like the approximation of the leading Laplace operator
eigenvalue the simulation of the law of the Brownian exit time from a domain is also required.
The WOMS provides this exit time very naturally in any dimension whereas its simulation is
more difficult using the WOS. Nevertheless the simulation of the exit time τr of a sphere of
radius r is obtained by r2τ1 (with another starting point) thanks to scaling arguments.

As a consequence, we just have to sample from τ1 which can be done by at least two methods.
The first one relies on the inversion method applied to F (t) = P (τ1 < t) written as its spectral
expansion as described in section two. To perform the inversion method, we compute F−1(U)
using Newton’s method. Depending on the value of U, the initialisation of Newton’s method and
the number of terms kept in the truncation of the series, need to be adapted for the method to
be efficient. The second one uses a precomputation of sample values of τ1 stored in a large file.
The idea is to pick uniformly at random one value for the time simulation in the precomputed
file whenever needed.

The file is built using the inversion method or a simulation based on the corrected Euler
scheme with a very small step. Nevertheless, the precomputation and the inversion method
depend on the dimension of the sphere and are quite consuming tasks. We focus on a two
dimensional example in order to compare the different approaches. Our test case is the problem
of computing the mean exit time of the unit circle starting at a given point (x, y). Its exact
value is

E(τ(x,y)) =
1− (x2 + y2)

2
.
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5.1 Mean time to absorption

We first study the mean number of steps E(NWOS
ε ) and E(NWOMS

ε ) before absorption of the
WOS and WOMS methods respectively as a function of the absorption parameter ε (with
γ = 0.99).

We know from our previous results and from known results on the WOS that both methods
behave like a+ b |ln(ε)| for ε small enough. For the starting point (0.5, 0), we plot in the next
figure both quantities as a function of |ln(ε)| for ε = 10−n, 2 ≤ n ≤ 8 as well as their least-square
fitting (l.l.sq.) which are respectively equal to

E(NWOS
ε ) ≃ 0.3 + 1.44 |ln(ε)| , E(NWOMS

ε ) ≃ −3.84 + 3.41 |ln(ε)| .

Fig.1. Average number of steps versus | ln(ε)|

These values have been computed using 106 trajectories. Both methods fit the model very well
and we observe that the number of steps is around twice bigger for the WOMS method.

5.2 Efficiency of the different approaches

Now we want to study the efficiency in terms of computational times of the three different
approaches for the exit time of the sphere. The size of the precomputed file is 106 and it
should be stored in a binary format to make its opening time negligible. We have tested all
three methods on different starting points with ε = 10−5 and 106 trajectories. They all gave
approximations of the exact mean value correct up to three or four digits with similar variances.
We just need to compare the computational times in seconds on a standard computer TF , T I

and TWOMS of the WOS with the precomputed file, the WOS using the inversion method and
of the WOMS respectively. For the starting point (0.5, 0), we plot in the next figure these
quantities as a function of |ln(ε)| for ε = 10−n, 2 ≤ n ≤ 8 as well as their least-square fitting
which are respectively equal to

TF ≃ 0.04 + 0.4 |ln(ε)| , T I ≃ 0.98 + 3.63 |ln(ε)| , TWOMS ≃ −0.94 + 1.1 |ln(ε)| .
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Fig.2. Cpu versus | ln(ε)|
Once again, the three methods fit the model very well. We conclude that the WOMS method
is far and away better than the WOS method using the inversion of the distribution function.
It is not surprisingly less efficient than the WOS coupled with the precomputation. However
this last technique introduces a supplementary bias linked to the size of the precomputed file
which is not easy to quantify and is inextricably linked to a hard precomputed procedure.

6 Conclusion

As a conclusion, the walk on moving sphere is a very simple tool to compute simultaneously
the exit position and the exit time of the Brownian motion from a domain in any dimension. It
avoids heavy computations or additional bias that happened with standard techniques. Conse-
quently, we hope the WOMS to replace these techniques for applications like principal eigenvalue
computations [9] where both an accurate and fast simulation of exit times are crucial.
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