
HAL Id: hal-01216245
https://hal.inria.fr/hal-01216245

Submitted on 15 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Approximation Algorithm for Matrix
Partitioning in Presence of Strongly Heterogeneous

Processors
Olivier Beaumont, Lionel Eyraud-Dubois, Thomas Lambert

To cite this version:
Olivier Beaumont, Lionel Eyraud-Dubois, Thomas Lambert. A New Approximation Algorithm for
Matrix Partitioning in Presence of Strongly Heterogeneous Processors. 30th IEEE International Par-
allel & Distributed Processing Symposium , May 2016, Chicago, France. �hal-01216245�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49468889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01216245
https://hal.archives-ouvertes.fr

A New Approximation Algorithm for Matrix Partitioning
in Presence of Strongly Heterogeneous Processors

Olivier Beaumont∗, Lionel Eyraud-Dubois† and Thomas Lambert‡
Inria

University of Bordeaux
Talence, France

∗olivier.beaumont@inria.fr, †lionel.eyraud-dubois@inria.fr, ‡thomas.lambert@inria.fr

Abstract—In this paper, we consider the problem of parti-
tioning a square into a set of zones of prescribed areas, while
minimizing the overall size of their projections onto horizontal
and vertical axes. This problem typically arises when considering
the amount of communications induced when partitioning matri-
ces for dense linear algebra kernels onto a set of heterogeneous
processors. It has been first introduced for matrix multiplication
in the 2000’s, with a best known approximation ratio was 1.75.
Since then, two main new ingredients have been introduced. First,
Lastovetsky et al. proposed a special partitioning in the case of
2 or 3 strongly heterogeneous processors, as in the case of a
platform made of CPUs and GPUs, relaxing the constraint of a
rectangular based partitioning. Second, Nagamochi et al. have
introduced clever recursive partitioning techniques and proved,
thanks to a careful analysis, that their algorithm achieves a 1.25
approximation ratio. In this paper, we combine both ingredients
in order to obtain a non-rectangular recursive partitioning
(NRRP), whose approximation ratio is 2√

3
' 1.15. Moreover,

we observe on a large set of realistic platforms built from CPUs
and GPUs that this proposed NRRP algorithm allows to achieve
very efficient partitionings on all considered cases.

Index Terms—

I. INTRODUCTION

The problem of partitioning a matrix into a set of sub
matrices has received a lot of attention in the last few years.
This operation is indeed crucial when considering dense linear
algebra kernels on heterogeneous platforms. Let us for instance
consider dense matrix multiplication based on Canon’s-like
algorithm, restricted for the sake of simplicity to the multipli-
cation C = AB of two square n × n matrices A and B. Let
us further assume that the matrices are partitioned into blocks,
whose size is chosen so as to be well adapted to all types of
resources (typically CPUs and GPUs). Then, at step k of the
algorithm, the outer product of the k-th column of blocks of A
and the k-th row of blocks of B is computed. Let us assume
that processor P holds a set of s blocks whose projections
along the different axis have respective size h and w. Then, the
volume of computations P needs to perform is proportional to
s and the volume of communications is proportional to h+w.
In order to balance the computing load, each processor should
receive a number of blocks proportional to its relative speed. In
turn, the overall volume of communications is proportional to
the sum of the projections of the areas owned by the different
processors along the axes. Therefore, in order to minimize
the processing time while minimizing the overall volume

of communication, the optimization problem is amenable to
the problem of partitioning a square into a set of zones of
prescribed area (in order to balance the load) such that the
sum of the projections along the two axes is minimized (in
order to minimize the communications).

Related Works

This optimization problem has been first introduced by
Lastovetsky and Kalinov in [1]. In [2], it has been proven
that the problem is NP-Complete, and a first approximation
algorithm with bounded ratio (1.75) has been proposed. This
algorithm has been improved along two directions. On the
one hand, Lastovetsky et al. have proposed to relax the
assumption stating that the zones allocated to the processors
should consist in a single rectangle and have proposed optimal
algorithms, but limited to 2 processors [3] and more recently
to 3 processors [4]. On the other hand, recursive partitioning
algorithms have recently been proposed, in which at each step,
the set of processors is split into two parts. Sophisticated proof
techniques enabled Nagamochi and Abe [5] to improve the ap-
proximation ratio down to 1.25. Recently, Fügenschuh et al. [6]
improved this result to 1.15, but under the assumption that if
we consider processors in decreasing order of their processing
speeds, there is no abrupt change in the performance between
2 successive processors. Unfortunately, such an abrupt de-
crease typically happens when considering nodes consisting
of CPUs and GPUs, such that Fügenschuh’s algorithm is
limited to the case of relatively homogeneous platforms. In
this paper, our goal is to keep the best of both worlds. More
specifically, we adapt the idea of non rectangular partitioning
proposed by Lastovetsky and we extend it to any number
of processors by adapting the recursive partitioning algorithm
proposed by Nagamochi, which facilitates approximation ratio
proofs. These two ingredients lead to an improvement of the
approximation ratio down to 2√

3
' 1.15 that does not require

any specific assumption on the relative speed of resources and
is therefore applicable to nodes consisting of both regular cores
and accelerators.

This partitioning problem can be used as a building block
for many dense linear algebra kernels. For instance, it has
been extended to LU factorization and other dense linear
algebra kernels in [7], [8]. In this case, block cyclic principle
is combined to the initial partitioning in order to obtain 2D-

cyclic ScaLAPACK solutions [9], where the load is balanced
throughout the whole computation. These partitionings have
also been adapted to distributed hierarchical and highly hetero-
geneous platforms in [10], where the partitioning is applied at
two levels (intra-node and inter-node), based on sophisticated
performance models. The same partitioning has also been
extended to finite-difference time-domain (FDTD) method to
obtain numerical solutions of Maxwell’s equations in [11]. The
extension to more dynamic settings has also been considered
in [12]. In this case, the partitioning problem can be used
in order to provide an initial static partitioning algorithm
that can be modified in order to dynamically maintaining
load balancing. Recently, in order to cope with resource
heterogeneity and the difficulty to build optimal schedules, the
use of dynamic runtime schedulers have been proposed, such
as StarPU [13], StarSs [14], QUARK [15] or PaRSEC [16].
At runtime, the scheduler takes the scheduling and allocation
decisions based on the set of ready tasks (tasks whose all data
and control dependences have been solved), on the availability
of the resources (estimated using expecting processing and
communication times), and on the actual location of input data.
The comparison between static scheduling strategies (such
as the one proposed in this paper) and runtime scheduling
strategies has been recently considered in [17], where the anal-
ysis of the behavior of static, dynamic, and hybrid strategies
highlights the benefits of introducing more static knowledge
and allocation decisions in runtime libraries.

All these papers are based on the partitioning problem
considered in this paper and can therefore directly benefit from
an improvement in the performance and approximation ratio.

Paper Outline

The paper is organized as follows. In Section II, we formally
present the partitioning problem PERI-SUM and the notations
that will be used throughout the paper. The algorithm we
propose for solving PERI-SUM is presented in Section III and
its 2√

3
' 1.15 approximation ratio is proved in Section IV (and

in Appendix VII due to lack of space). At last, we finish with a
set of simulations in order to assess the efficiency of proposed
algorithm on realistic instances in Section V and we provide
conclusions and perspectives in Section VI.

II. PROBLEM STATEMENT AND NOTATIONS

In this section, we define the notations that will be used
in the rest of this paper and we present the formal version
of the optimization problem that corresponds to enforcing
a perfect load balancing while minimizing the amount of
communications.

Let us consider the unitary square S = [0, 1]× [0, 1]. Let Z
denote a zone (a set of points) included in the unit square. We
denote by s(Z) its area and by R(Z) its covering rectangle,
i.e. the Cartesian product of the projections of Z along both
dimensions. If R(Z) = [x1, x2] × [y1, y2], then let us define
the height of Z by h(Z) = x2 − x1 and the width of Z by
w(Z) = y2 − y1. Finally, let us define p(Z) = h(Z) +w(Z),

the half-perimeter of R(Z) and ρ(Z) = max(h(Z),w(Z))
min((h(Z),w(Z)) , its

aspect ratio.
We consider the following problem :

Problem 1 (PERI-SUM). Given a set of p rational numbers
{s1, . . . , sp} such that

∑
sk = 1, and the square S = [0, 1]×

[0, 1], find for each sk an area Zk ∈ S such that the area of
Zk is sk,

⋃
Zk = S, and such that

∑
p(Zk) is minimized.

The decision problem associated to this optimization has
been proved to be in NP-Complete in [2]. In the following,
we denote

∑
p(Zk) as c(Z1, . . . , Zp) and its optimal value

as copt. A lower bound has been proposed by Ballard et al.
in[18], that comes from an application of the Loomis-Whitney
inequality. This lower bound simply states that the perimeter
of an zone Zk of given area s(Zk) is minimal when the zone
is shaped as a square.

c(Zk) ≥ 2
√
s(Zk) (1)

Of course, in general, it is not possible to partition the unit
square into a set of squares (consider for instance the case
of two identical zones of area 1

2), so that this lower bound
is in general too optimistic. On the other hand, it is always
possible to partition it into a set of rectangles (consider a 1D
partition with vertical lines), and the 1.25 approximation ratio
of Nagamochi et al. [5] is indeed based on rectangle-based
partition. In this paper, we do not enforce the zones allocated
to the different processors to be rectangle-based, what enables
to obtain better results for small heterogeneous settings, as
advocated by Lastovetsky in [3], [4] (consider for instance the
case of a (1−ε) area and an ε area, where the optimal solution
consist in having a small square for the ε area that punches a
hole into the unit square.

III. ALGORITHM

In this section, we describe NRRP, the approximation algo-
rithm we propose to solve PERI-SUM. This algorithm is based
on a divide and conquer paradigm. At each step, it tries to split
the actual rectangle into two parts (three in a few cases), and is
applied recursively on each part. In the following, we use the
terms simple and composed zones. Simple zones are terminal
and are allocated to a single processor. In what follows, they
will be denoted using letter Z. Composed zones are the union
of simple zones that are encountered during the algorithm. In
what follows, they will be denoted using letter R.

The description of NRRP is presented in Algorithm 5. It
relies on basic subroutines that are described in Section III-A,
III-B, III-B, III-D and III-E.

The proof that NRRP is indeed a 2√
3

-approximation algo-
rithm is decomposed into two parts. We have observed with
Equation (1) that zones allocated to processors should be as
close to squares as possible but we have noticed in Section II
that it is unfortunately not possible to partition the unit square
into a set of squares of prescribed area. Nevertheless, enforcing
that all rectangles should have an aspect ratio smaller than 5/2
would be enough to prove the claimed approximation ratio
(actually a slightly better one, as given by Lemma 9).

In order to keep the proofs relatively simple, we enforce that
NRRP can only be applied to a (simple or composed) zone R
that fulfills the following properties: R must be (i) a rectangle
(ii) whose aspect ratio is less than 5/2. Proving that these two
properties hold true in Algorithm 5 is done in Section III-F.

Unfortunately, it is not always possible to partition the unit
square into rectangles whose aspect ratios are all smaller than
5/2, and NRRP may create such zones under the following
two conditions: (i) these zones have to be terminal (ii) each
time NRRP creates such a set of zones, the 2√

3
-approximation

ratio must be fulfilled for the whole set of zones (maybe not
for each individual zone, but globally). Proving that these two
properties hold true in Algorithm 5 is done in Section IV.

In both cases (Section III-F and Section IV), proofs are
rather technical and involve many subcases, but all these
subcases are required to enforce claimed approximation ratio.

A. Guillotine

The first routine of NRRP is the Guillotine routine, de-
picted in Figure 1. It is the main ingredient of Nagamochi’s
algorithm [5]. Given a composed zone R and a rational
number α ∈ [0, 1], Guillotine(R,α) splits R along the
largest dimension into two rectangles of respective areas
α(R) and (1 − α)s(R). In some cases, we may need to
perform two Guillotine calls in sequence, and we denote it
with an additional input parameter. In order to reduce the
space required by Guillotine , we allow it to have one input
parameter.More specifically, if R1, R2 = Guillotine(R,α),
then Guillotine(R,α, β) = Guillotine(R1, β), R2.

R1 R2

R

Figure 1. An illustration of the Guillotine routine.

Algorithm 1: Guillotine(R,α)
Input: A rectangle R = [x1, x2]× [y1, y2], α ∈ [0, 1]
Output: Two zones of areas αS(R), (1− α)S(R)
h = h(R) ; w = w(R) ;
if h ≥ w then

R1 = [x1, x1 + αh]× [y1, y2]
else

R1 = [x1, x2]× [y1, y1 + αw]

R2 = R \R1 ;
return R1, R2

B. Square

The second routine is the Square routine, depicted in
Figure 2. Given a rectangle R and a rational number α ∈ [0, 1],
Square(R,α) returns a square R1 of area αs(R) and a zone

Z2 which corresponds to the initial rectangle R punched by
square R1. The covering rectangle of Z2 is R and Z2 will
always be used to host a simple zone.

R1

Z2

R

Figure 2. An illustration of the Square routine.

Algorithm 2: Square(R,α)
Input: A rectangle R = [x1, x2]× [y1, y2], α ∈ [0, 1]
Output: Two zones of area αS(R), (1− α)S(R)
s = s(R) ;
R1 = [x1, x1 +

√
αs]× [y1, y1 +

√
αs] ;

Z2 = R \R1 ;
return R1, Z2

C. Tripartition

The third routine is the Tripartition routine, depicted in Fig-
ure 3. In some (rare) cases, neither Guillotine nor Square rou-
tines are able to provide either simple zones or composed
zones consisting of a rectangle whose aspect ratio is smaller
than 5/2. In this case, we use Tripartition(R,α, β), that
returns three rectangles R1, Z2 and Z3 of respective areas
αs(R), βs(R) and (1− α− β)s(R). The difference with the
result given by Guillotine(R,α+β, α/(α+β) is that we do
not perform the second split along the largest dimension of R′.
In practice, the covering rectangle Z2 and Z3 will always be
used to host simple zones. Hence, only the aspect ratio ρ(R1)
needs to be smaller than 5/2.

R1

Z2

Z3

R

Figure 3. An illustration of the Tripartition routine.

D. Superposition

The fourth and last routine is the Superposition routine.
Superposition(R,α, ε) returns three zones, R1, Z2 and Z3

of respective areas εs(R), (α− ε)s(R) and (1− α)s(R). R1

is a square that can be placed in the upper left corner, Z2 a
rectangle which is placed under R1 in the bottom left corner
and Z3 is the remaining zone, i.e. R punched by both R1 and
Z2. In practice, Z2 and Z3 will always be used to host simple
zones. Hence, only the aspect ratio ρ(R1) needs to be smaller
than 5/2, what is always the case since R1 is a square.

Algorithm 3: Tripartition(R,α, β)
Input: A rectangle R = [x1, x2]× [y1, y2], α, β ∈ [0, 1]
Output: Three zones of respective areas αS(R), βS(R),

(1− α− β)S(R)
h = h(R) ; w = w(R) ;
if h ≥ w then

h1 = (α+ β)h ; w1 = α
α+βw ;

R1 = [x1, x1 + h1]× [y1, y1 + w1] ;
Z2 = [x1, x1 + h1]× [y1 + w1, y2]

else
h1 = α

α+βh ; w1 = (α+ β)w ;
R1 = [x1, x1 + h1]× [y1, y1 + w1] ;
Z2 = [x1 + h1, x2]× [y1, y1 + w1]

Z3 = R \ (R1 ∪R2) ;
return R1, Z2, Z3

R1

Z2
Z3

R

Figure 4. An illustration of the Superposition routine.

E. Packing

Given a list {s1, . . . sk} sorted in increasing order,
two rational values s and s′ and a rectangle R such that
s(R) =

∑
si, Packing({s1, . . . , sk}, s, s′, R) returns a list

of couples (Rj , Sj) where Rj is a rectangle and Sj is a subset
of {s1, . . . , sk} such that

⋃
Rj = R, s(Rj) =

∑
i∈Sj

si and
s ≤ s(Rj) ≤ s′. For conciness, we allow sk to be larger
than s′ and in this case Packing({s1, . . . , sk}, s, s′, R) =
Packing({s1, . . . , sk−1}, s, s′, R1) + (R2, sk), where
R1, R2 = Guillotine (R, (s(R) − sk)/s(R)). We will
explicitly discuss the existence of such a function each time
we use it. We will denote by Map the function that allocates
a specific zone to the Rjs.

Algorithm 4: Superposition(R,α, ε)
Input: A rectangle R = [x1, x2]× [y1, y2], α, ε ∈ [0, 1]
Output: Three zones of respective areas εS(R),

(α− ε)S(R), (1− α)S(R)
h = h(R) ; w = w(R) ; s = s(R) ;
l =
√
εs ; R1 = [x1, x1 + l]× [y1, y1 + l];

if h ≥ w then
h1 = (α−ε)hw

w−l ; Z2 = [x1, x1 + h1]× [y1 + l, y2]

else
w1 = (α−ε)hw

h−l ; Z2 = [x1 + l, x2]× [y1, y1 + w1]

Z3 = R \ (R1 ∪ Z2) ;
return R1, Z2, Z3

F. Correction Proof

Algorithm NRRP(R, {s1, . . . , sn}) is depicted in Algo-
rithm 5. In order to prove its correctness, we need to prove the
following theorem, that states that all the composed rectangles
(on which the algorithm is recursively applied) have an aspect
ratio lower than 5/2, since this property is crucial in order to
establish the approximation ratio proved in Section IV. In all
the following, we consider that the list of si values is sorted
in increasing order, s1 ≤ s2 ≤ . . . ≤ sn. Furthermore, we
assume that rectangles R are composed zones, i.e. n > 1.

Theorem 1 (Correctness). When executing
NRRP(R, {s1, . . . , sn}) with ρ(R) < 5/2, all the recursive
calls to NRRP(R′, {s′1, . . . , s′k}) are performed on a rectangle
area R′ such that ρ(R′) < 5/2.

Proof: The first step of the algorithm finds k, the smallest
index such that s′ =

∑k
i=1 si ≥

2s
5ρ , where s = s(R) and

ρ = ρ(R) (Line 5). Depending on the value of k, there are
two cases (Line 7).

Case (A) (lines 8-13) corresponds to the case k < n, that
is split into two subcases.

Case (A1) (lines 9-10) corresponds to the case where s−s′
is also larger than 2s

5ρ(R) . Then, with α = s′/s, Lemma 2
applies.

Lemma 2. Let R be a rectangle with ρ(R) ≤ 5/2, α ∈ [0, 1]
and R1, R2 = Guillotine(R,α).

• If α ≥ 2
5ρ(R) then ρ(R1) ≤ 5/2.

• If (1− α) ≥ 2
5ρ(R) then ρ(R2) ≤ 5/2.

Proof: Let us assume without loss of generality that
h = h(R) ≥ w(R) = w, and denote ρ = ρ(R) = h

w . Then
ρ(R1) = min(αhw ,

w
αh). We have αh

w ≤
h
w = ρ ≤ 5/2 and

w
αh = 1

αρ ≤
5ρ
2ρ ≤ 5/2 (under the assumption α ≥ 2

5ρ).
Therefore, α ≥ 2

5ρ implies ρ(R1) ≤ 5/2 and for the same
reason, (1− α) ≥ 2

5ρ implies ρ(R2) ≤ 5/2.
Therefore, in case (A1), Guillotine(R,α) returns two rect-

angles R1, R2 whose aspect ratios are smaller than 5/2 and
we can apply NRRP on each of them.

Case (A2) (lines 12-13) corresponds to the case where s′ =∑k
i=1 si ≥

2s
5ρ , s−s′ ≤ 2s

5ρ and k < n. In this case, we rely on
the Tripartition routine and the following lemma states that if
R1, Z2, Z3 = Tripartition(R, (s′ − sn−1)/s, sn−1/s), then
ρ(R1) ≤ 5/2 and Z2 and Z3 are simple.

Lemma 3. If s′ =
∑k
i=1 si ≥

2s
5ρ(R) , k < n and s − s′ <

2s
5ρ(R) , then k = n − 1 and ρ(R) < 6/5. In addition, if
R1, R2, R3 = Tripartition(R, (s′ − sn−1)/s, sn−1/s), then
ρ(R1) ≤ 5/2.

Proof: Let us assume without loss of generality that h =
h(R) ≥ w(R) = w and define ρ = ρ(R). By definition of k,
we know that s′′ =

∑k−1
i=1 si <

2s
5ρ . Therefore

sk = s′ − s′′

sk = s− (s− s′)− s′′

R1

Z2

Z3

h

w

w1

h1

Figure 5. Case (A2)

sk > s− 2s

5ρ
− 2s

5ρ

sk > s(1− 4

5ρ
) = s

4ρ− 4

5ρ

Since the si values are sorted, s − s′ =
∑n
i=k+1 si ≥ (n −

k)sk+1 ≥ (n− k)sk. Hence 2s
5ρ > (n− k)sk > (n− k)s 5ρ−45ρ .

This implies that n − k < 2
5ρ−4 ≤ 2 since ρ ≥ 1, and then

k ≥ n − 1. Thus, the only possible value for k is n − 1
(remember that k < n). Therefore, s = s′′+sn−1+sn < 3 2s

5ρ

and ρ < 6/5.
Let us denote α = s′′/s, β = sn−1/s and γ = sn/s,

h1 = h(R1) and w1 = w(R1) (see Figure 5). We want to
prove that both h1/w1 and w1/h1 are smaller than 5/2, which
is equivalent to proving 2/5 ≤ h1/w1 ≤ 5/2. First, recall that
h1 = (α+ β)h and w1 = α

α+βw.
Let us now establish lower bounds on α, β and γ (the

following upper bounds holds true α < 2
5ρ and β ≤ γ < 2

5ρ).
Let us notice that 1− α = β + γ < 4

5ρ . Therefore α > 5ρ−4
5ρ ,

and similarly β > 5ρ−4
5ρ . For γ, noticing that 2γ ≥ β + γ =

1− α > 5ρ−2
5ρ , we obtain γ > 5ρ−2

10ρ .
Since α+ β = 1− γ, then

5ρ− 2

5ρ
< α+ β <

5ρ+ 2

10ρ
.

Moreover, since h1/w1 = ρ (α+β)2

α , then

ρ
(5ρ− 2)2

25ρ2
× 5ρ

2
<
h1
w1

< ρ
(5ρ+ 2)2

100ρ2
× 5ρ

5ρ− 4

and
(5ρ− 2)2

10
<
h1
w1

<
(5ρ+ 2)2

20(5ρ− 4)
.

Trivially, (5ρ−2)2
10 ≥ 9/10 > 2/5. Moreover, (5ρ+2)2

20(5ρ−4) ≤
49/20 < 5/2 since x 7→ (5x+2)2

20(5x−4) is a decreasing function on
[1, 6/5]. Hence, we prove 2/5 ≤ h1/w1 ≤ 5/2 and therefore,
ρ(R1) ≤ 5/2.

Above Lemmas prove the correctness of the calls to
NRRP in cases (A1) and (A2) (lines (10) and (13) of Al-
gorithm 5). Case (B) (lines 15-48) corresponds to the case
where k = n, which happens when sn is significantly larger
than the other values. Let us denote s′ = s − sn (Line 15).
Depending on the value of s′, several subcases can occur.

Case (B1) (lines 17 and 18) corresponds to a small s′,
i.e. s′ ≤ s(1 − 3(ρ+1)2

16ρ). In this case, Square is called and

generates R1 that is a square (with aspect ratio is 1 < 5/2)
and the simple zone Z2.

Before continuing, let us note that in all remaining cases,
ρ − 3(ρ+1)2

16 < ρs′

s < 2/5 (where ρ = ρ(R)). In addition,
13/64 ≤ ρ− 3(ρ+1)2

16 for ρ ∈ [0, 5/2]. Thus,

13/64 ≤ ρ− 3(ρ+ 1)2

16
< ρ

s′

s
< 2/5 (2)

R1 Z2

R

Figure 6. Case (B2)

The situation is depicted in Figure 6, where Z2 is simple
(and such that ρ(Z2) ≤ 5/2). Unfortunately, ρ(R1) > 5/2
so that NRRP cannot directly be called on R1, and needs to
be further split into several rectangles with acceptable aspect
ratio. Lemma 4 details (if we set α = ρ s

′

s) the conditions such
that this holds true.

Lemma 4. Let R be a rectangle such that ρ(R) = 1/α and
R′, R′′ = Guillotine(R, x). If 13/64 ≤ α ≤ 2/5 and 2α

5 ≤
x ≤ 5α

2 , then ρ(R′) ≤ 5/2.

Proof: Let us suppose without loss of generality that w =
w(R) ≤ h(R) = h. In this case, w(R′) = w and h(R′) = xh
with x ∈ [0, 1]. s(R′) = xh × w = xS(R). Therefore 2α

5 ≤
x ≤ 5α

2 . Since ρ(R′) ≤ 5/2⇔ 2/5 ≤ h(R′)/w(R′) ≤ 5/2 is
equivalent to 2/5 ≤ x/α ≤ 5/2 and 2α

5 ≤ x ≤ 5α
2 , which is

true by construction.
Let us denote s′′ = s′ − sn−1.
Case (B2-a) (Lines 21-40) corresponds to the case 2ρs′2

5s ≤
s′′.

Case (B2-a1) (Lines 23-24) correspond to the case
2ρs′2

5s ≤ s′′ ≤ ρ 5s′2

2s . Lemma 4 proves that if R1, Z2, Z3 =
Guillotine(R1, s

′/s, s′′/s′) (see Figure 7), then ρ(R1) ≤ 5/2
and that Z2 and Z3 are simple so that the call NRRP on R1

at line 24 is valid.

R1

Z2
Z3

R

Figure 7. Case (B2-a1)

Case (B2-a2) (lines 26-40) corresponds to the case where
s′′ > ρ 5s′2

2s . It is again split into several subcases depending
on the value of s′′′ = s′′−sn−2. Let us first note that s′′′ > 0.
Indeed, thanks to equation (2), we know that s′′/s′ > ρ 5s′

2s >

65/128 > 1/2. Therefore sn−2 ≤ sn−1 < s′(1 − 1/2) <
s′/2 < s′′.

Case (B2-a2’) (Lines 28-30) corresponds to the
case s′′′ ≥ ρ 5s′2

2s . Then, the conditions of Lemma 5
hold true (with α = ρ s

′

2) and we can build
Packing({s1, . . . , sn−1}, 2ρs

′2

5s , 5ρs
′2

2s , R1) and call NRRP on
each element of the list, since all the rectangles of the list,
except possibly one simple rectangle, have an aspect ratio
smaller than 5/2 (see Figure 8).

Z2

R

Figure 8. Case (B2-a2’)

Lemma 5. Let R be a rectangle such that ρ(R) = 1/α and
{s1, . . . , sn} an ordered list such that

∑
si = s(R). Then, if

n ≥ 3,
∑n−2
i=1 si ≥

2α
5 ,

∑n−1
i=1 si >

5α
2 and 13/64 < α <

2/5, then we can build Packing(R, {s1, . . . , sn}, 2α5 ,
5α
2) (in

linear time).

Proof: Let us denote s = s(R), s′ = s − sn and s′′ =
s′ − sn−1 (we know that s′′ ≥ 2α

5). Note that 5α
2 > 1/2.

• Let us first assume that sn + sn−1 >
5α
2 . In this case,

2sn ≥ sn + sn−1 >
5α
2 and therefore sn > 5α

4 > 2α
5 .

In addition, s′′ ≤ 5α
2 (otherwise s = s′′ + sn−1 + sn >

s/2+s/2). Therefore, let us consider R1, where R1, R2 =
Guillotine (R, s′/s). Let j be such that

∑j
i=1 si ≤ s′−

2α
5 and

∑j+1
i=1 si > s′ − 2α

5 . We have two cases:
(i) If sn−1 ≥ 2α

5 , then j = n − 2. Therefore,
2α
5 ≤ s′′ ≤ 5α

2 and 2α
5 ≤ sn−1 ≤ 5α

2
(sn−1 > 5α

2 implies sn > 5α
2 and for the

same reason, since s′′ ≤ 5α
2 , this is impossible).

Therefore, if R1, R3 = Guillotine(R1, s
′′/s′),

[(R1, {s1, . . . , sn−2}), (R3, {sn−1}), (R2, {sn})] is
a valid return of Packing(R, {s1, . . . , sn}, 2α5 ,

5α
2).

(ii) If sn−1 < 2α
5 , then ∀i ≤ n−1, si < 2α

5 and j < n−1.
Let us denote sbis =

∑j
i=1 si and ster =

∑n−1
i=j+1 si.

sbis < s′′′ ≤ 5α
2 and

sbis + sj+1 > s′ − 2α

5
>

5α

2
− 2α

5

Hence

sbis >
5α

2
− 2α

5
− 2α

5
= (5/2− 4/5)α ≥ 2α

5
.

Moreover, s′ − sbis = ster implies that
ster ≥ s′ − (s′ − 2α

5) and therefore ster ≥ 2α
5 ,

and ster ≤ s′ − (s′ − 4α
5) < 5α

2 . Therefore, R1, R3 =
Guillotine (R1, (sbis + ster)/s

′, ster/(sbis + ster)),
[(R1, {s1, . . . , sJ}), (R3, {sj+1, . . . , sn−1}), (R2, {sn})]
is a valid return of Packing(R, {s1, . . . , sn}, 2α5 ,

5α
2).

• Otherwise, sn + sn−1 ≤ 5α
2 . Since sn−1 ≤ sn, we know

that sn−1 ≤ 5α
4 and therefore ∀i ≤ n − 1, si ≤ 5α

4 . Let
us apply the following procedure:
– If si ≥ 2α

5 , then, since si ≤ sn ≤ 5α
2 , we can leave si

alone since it fulfills the condition.
– Else, let ji be such that

∑i
j=ji

sj ≥ 2α
5 and∑i

j=ji+1 sj <
2α
5 . Note that

i∑
j=ji

sj = sji +

i∑
j=ji+1

sj < si+

i∑
j=ji+1

sj <
4α

5
<

5α

2

Then, the set {sji , . . . , si} fulfills the condition.
After the execution of the above algorithm, there may
exist a k such that

∑k
j=1 sj <

2α
5 . If sk+1 ≥ 2α

5 , then

k+1∑
j=1

sj ≤
2α

5
+ sn−1 ≤

2α

5
+

5α

4
=

33α

20
<

5α

2

and trivially
∑k+1
j=1 sj ≥ 2α

5 . Therefore the set
{s1, . . . , sk+1} fulfills the condition. Otherwise, there
exists i such that k = ji. Then

i∑
j=1

sj ≤
2α

5
+

4α

5
=

6α

5
<

5α

2

and trivially
∑i
j=1 sj ≥ 2α

5 . Therefore the set
{s1, . . . , si} fulfills the condition.

Then, in any possible case, we have built a valid result for
Packing(R, {s1, . . . , sn}, 2α5 ,

5α
2) (in linear time).

Case (B2-a2”) (Lines 33-40) corresponds to the case s′′′ <
2ρs′2

5s . Note that s′′′ < 2ρs′2

5s and s′′ > 5ρs′2

2s is a possible
situation, for example with sn−1 = sn−2 = 21ρs′2

10s +ε). In this
case, either we successively apply Square and Guillotine on
R1 or we use Superposition on R (the choice will be discussed
in Section IV). Both cases are depicted in Figure 9 and in all
case, at most one rectangle (R1) is not simple, and since it is
shaped as a square, then its aspect ratio is less than 5/2, and
the calls to NRRP at lines 36 and 40 are both valid.

R1

Z2

Z3

Z4

R

R1

Z2

Z3

Z4

R

Figure 9. Case (B2-a2”)

Case (B2-b) (lines 42 to 48) corresponds to the case s′ <
2ρs′2

5s . In this case, we rely on the technique described for Case
(B2-a2”). We successively apply Square and Guillotine on R1

or we use Superposition on R (the choice will be discussed
in Section IV) and are depicted in Figure 10.

This ends the proof of Theorem 1

Algorithm 5: NRRP(R, {s1, . . . , sn})
Input: A rectangle R, a set of values {s1, . . . , sn} such that

∑
si = s(R) and s1 ≤ s2 ≤ . . . ≤ sn

Output: For each 1 ≤ i ≤ n, a zone Ai such that s(Ai) = si and
⋃
Ai = R

1 if n = 1 then
2 return R
3 else
4 ρ = ρ(R) ;
5 k = the smallest k such that

∑k
i=1 si ≥

2s
5ρ ;

6 s′ =
∑k
i=1 si ;

7 if k < n then
8 if s− s′ ≥ 2s

5ρ then
9 R1, R2 = Guillotine(R, s′/s) ;

10 return NRRP(R1, {s1, . . . , sk}) + NRRP(R2, {sk+1, . . . , sn})
11 else
12 R1, R2, R3 = Tripartition(R, (s′ − sn−1)/s, (sn−1)/s)) ;
13 return NRRP(R1, {s1, . . . , sk}) +R2 +R3

14 else
1515 s′ =

∑k−1
i=1 si ;

16 if s′/s ≤ 1− 3(ρ+1)2

16ρ then
17 R1, A2 = Square(R, s′/s) ;
18 return NRRP(R1, {s1, . . . , sk}) +A2

19 else
20 s′′ = s′ − sn−1 ;
21 if s′′ ≥ 2ρs′2

5s then
22 if s′′ ≤ 5ρs′2

2s then
23 R1, R2, R3 = Guillotine(R, s′/s, s′′/s′) ;
24 return NRRP(R1, {s1, . . . , sn−2}) +R2 +R3

25 else
26 s′′′ = s′′ − sn−2 ;
27 if s′′′ ≥ 2ρs′2

5s then
28 R1, R2 = Guillotine(R, s′/s) ;
29 L = Packing({s1, . . . , sn−1}, 2ρs

′2

5s , 5ρs
′2

2s , R1) ;
30 return Map(MonAlgo,) +R2

31 else

32 if s′′′/s ≤ (1−
√

1−ρ∗s′/s)2

ρ then
33 R1, R2, R4 = Guillotine(R, s′/s, (s′′′ + sn−1)/s) ;
34 R1, A3 = Square(R1, s

′′′/(s′′′ + sn−1)) ;
35 return NRRP(R1, {s1, . . . , sn−3}) +R2 +A3 +R4

36 else
37 R1, R4 = Guillotine(R, s′/s) ;
38 R1, R2, A4 = Superposition(R, s′/s, s′′′/s) ;
39 R2, R3 = Guillotine(R2, sn−2/(s

′ − s′′′)) ;
40 return NRRP(R1, {s1, . . . , sn−3}) +R2 +R3 +A4

41 else

42 if s′′/s ≤ (1−
√

1−ρ∗s′/s)2

ρ then
43 R1, R3 = Guillotine(R, s′/s) ;
44 R1, A2 = Square(R1, s

′′/s′) ;
45 return NRRP(R1, {s1, . . . , sn−2}) +A2 +R3

46 else
47 R1, R2, A3 = Superposition(R, s′/s, s′′/s) ;
48 return NRRP(R1, {s1, . . . , sn−2}) +R2 +A3

R1

Z2 Z3

R

R1

Z2
Z3

R

Figure 10. Case (B2-b)

IV. APPROXIMATION PROOF

In this section we prove our claim that NRRP is a 2√
3

-
approximation for PERI-SUM(Theorem 6).

Theorem 6. NRRP is a 2√
3

-approximation for PERI-SUM.

Proof:
We will extensively rely on the following lemmas in order

to prove Theorem 6.

Lemma 7. Given a set of p rational numbers {s1, . . . , sp}
such that

∑
sk = 1, and the square S = [0, 1] × [0, 1], find

for each sk an area Ak ∈ S such that the area of Ak is k,⋃
Ak = S, then

∑
p(Ak) ≥ 2

∑√
sk

Proof: This result is a direct consequence of Equation (1),
which states that the property is valid term by term. This lower
bound is used in what follows, both to prove the approximation
ratio in Theorem 6 or to present the performance of the
different algorithms in Section V

Lemma 8. Let A,B,C and D denote 4 rational numbers,
then if A

B ≤ α and C
D ≤ α, then A+C

B+D ≤ α.

We omit the proof of this textbook lemma. It plays a crucial
role in the following proof. Indeed let us partition the sks into
I subsets S1, . . . , SI . Then, by Lemma 8, if

∀i,
∑
k∈Si

p(Ak)

2
∑
k∈Si

√
sk
≤ 2√

3
, then

∑
p(Ak)

2
∑√

sk
≤ 2√

3
.

Based on this result, the rationale of the proof is as follows.
For all the cases of Algorithm NRRP that are depicted in
Figures 5, 6, 7, 8 ,9, 10, we can distinguish between composed
rectangles (denoted by R letter) and the simple (terminal)
zones (denoted by Z letter).

We have proved in Section V that all composed rectangles
have an aspect ratio less than 5/2. This is enough to prove
our result since a such a rectangle satisfies, by Lemma 9

p(Ak)

2
√
sk
≤ 7
√
2

4
√
5
<

2√
3
.

To establish the approximation ratio, using Lemma 8, we can
therefore consider those rectangles independently.

Unfortunately, there are composed Z zones for which the
5/2 aspect ratio does not hold true, and it is not true in all
cases that p(Zk)

2
√
s(Zk)

≤ 2√
3

. Nevertheless, for each case depicted

in in Figures 5, 6, 7, 8 ,9, 10, if we group all the terminal
simple zones Z1, Z2 (and possibly Z3), then we can prove
that

∑
p(Zk)

2
∑√

s(Zk)
≤ 2√

3
, so that the bound holds globally if it is

not the case for individual zones. Then, we can conclude with
Lemma 8 that the 2√

3
bound holds true since it is enough to

exhibit one partitioning of the sks such that the bounds holds
for each individual group of the partition.

The rest of the proof is rather technical and simply proves
that the above bound holds true for all possible subcases of
Algorithm 5.

The following lemma will be used at several places in the
proof.

Lemma 9. Let R be a rectangle. Then

c(R)

2
√
s(R)

=
ρ(R) + 1

2
√
ρ(R)

Proof: Let us assume without loss of generality that h =
h(R) ≥ w(R) = w. Therefore ρ = ρ(R) = h/w. c(R) =

h+ w = (ρ+ 1)w and s(R) = hw = ρw2. Hence c(R)

2
√
s(R)

=

ρ(R)+1

2
√
ρ(R)

.

Let us now check the different possible results of NRRP.
First if n = 1, then a single rectangle R is returned, and

by construction (see Section III) (Line 2) ρ(R) ≤ 5/2, what
ends the proof.

Case (A1) (lines 9-10): NRRP returns no simple areas.
Case (A2) (lines 12-13) corresponds to the case described

in Figure 11 with 2 simple zones Z2 and Z3. Lemma 11 proves
that c(Z2, Z3) ≤ 2√

3
(2(
√
sn−1 +

√
sn)), what ends the proof

of this case.

R1

Z2

Z3

h

w

w1

h1

Figure 11. Case (A2)

Lemma 10. Let x ∈ [1, 6/5], z ∈ [5x−210x ,
2
5x] and y ∈

[5x−45x , z] and f(x, y, z) =
x+1+ y

1−z

2
√
x(
√
y+
√
z)

. If α = 1 − z − y ≥
1/5 and xz ≤ 2/5, then f(x, y, z) ≤ f(1, 1/5, 3/10) =

16
√
5

7(2+
√
6)
< 2√

3

Proof: Due to lack of space, the proof is presented in
Section VII

Lemma 11. Let us suppose that s′ =
∑k
i=1 si ≥

2s
5ρ(R) , k = n − 1 and s − s′ < 2s

5ρ(R) . Then,
if R1, Z2, Z3 = Tripartition(R, (s′ − sn−1)/s, sn−1/s),

c(Z2,Z3)

2(
√
s(Z2)+

√
s(Z3))

≤ 2√
3

Proof: We use the same notations as for Lemma 3:
without loss of generality, h = h(R) ≥ w(R) = w and
denote ρ = ρ(R), α = s′′/s, β = sn−1/s and γ = sn/s.
Let us also denote h1 = h(R1) and w1 = w(R1) (see Figure

11). Remember that we have proved in the proof of Lemma
3 that

5ρ− 4

5ρ
≤ α ≤ 2

5ρ
5ρ− 4

5ρ
≤ β ≤ γ

5ρ− 2

10ρ
≤ γ ≤ 2

5ρ

1 ≤ ρ ≤ 6/5

and that h1 = (α + β)h and w1 = α
α+βw. With these

notations, p(Z2) = h1 + w − w1 and p(Z3) = h − h1 + w.
Then c(Z2, Z3) = p(Z2) + p(Z3) = h + 2w − w1 =
ρw + 2w − α

α+βw = w(ρ+ 2− α
α+β). Since α+ β = 1− γ,

α
α+β = 1−γ−β

1−γ = 1− β
1−γ . Then, c(Z2, Z3) = w(ρ+1+ β

1−γ).
Moreover, s(Z2) = hwβ = βρw2 and s(Z3) = hwγ = γρw2.
Thus, with f defined as in Lemma 10:

c(Z2, Z3)

2(
√
s(Z2) +

√
s(Z3))

=
ρ+ 1 + β

1−γ

2
√
ρ(
√
β +
√
γ)

= f(ρ, β, γ)

Since 1 − β − γ = α > 1/5 and γρ = ρ s−s
′

s ≤ 2/5, we can
apply Lemma 10 and obtain our result.

Let us now move to Case (B), i.e. k = n.
Case (B1) (lines 17 and 18): NRRP returns a single simple

zone Z2 defined by R1, Z2 = Square(R, s′/s). In this case,
Lemma 12 proves that c(Z2) ≤ 2√

3
× 2

√
s(Z2).

Lemma 12. Let R be a rectangle. If α ≤ 1− 3(ρ(R)+1)2

16ρ(R) and

R1, Z2 = Square(R,α), then c(Z2)

2
√
Z2
≤ 2√

3
.

Proof: We suppose, without loss of generality that h =
h(R) ≥ w(R) = w and then ρ = ρ(R) = h/w. If R1, Z2 =
Square(R,α), then R(Z2) = R and c(Z2) = h + w = (ρ +
1)w. In the same time s(Z2) = (1 − α)s(R) = ρ(1 − α)w2.
Then

c(Z2)

2
√
Z2

=
ρ+ 1

2
√
ρ(1− α)

As x 7→ 1√
1−x is a increasing function on [0, 1[and α ≤

1− 3(ρ(R)+1)2

16ρ(R) , we have:

c(Z2)

2
√
Z2

=
ρ+ 1

2
√
ρ(1− α)

≤ ρ+ 1

2
√
ρ(1− 1 + 3(ρ+1)2

16ρ)

Therefore:
c(Z2)

2
√
Z2

≤ ρ+ 1

2
√

3(ρ+1)2

16

=
2√
3

In the rest of the cases, equation (2) applies and

13/64 ≤ ρ− 3(ρ+ 1)2

16
< ρ

s′

s
< 2/5

Let us first start with Case (B2-b) (lines 42 to 48), and we
will show later that other cases are dominated by these ones.

Lemma 13 justifies the choice between performing succes-
sively Guillotine and Square (Lines 43 to 45) or Superposi-
tion (Lines 47 and 48). In both cases, there are exactly two
simple zones: Z2 and Z3 in the first case, Z ′2 and Z ′3 in the
second one (see Figure 12).

Lemma 13. Let R be a rectangle, ρ = ρ(R), α such that
1− 3(ρ+1)2

16ρ < α < 2
5ρ and ε be such that 0 ≤ ε ≤ 2ρα2

5 . Let
R′, Z3 = Guillotine(R,α), R1, Z2 = Square(R′, ε/α) and
R′1, Z2, Z

′
3 = Superposition(R,α, ε). Then,

• If ε ≤ (1−
√
1−ρα)2
ρ then c(Z2, Z3) ≤ c(Z ′2, Z ′3).

• Otherwise c(Z2, Z3) ≥ c(Z ′2, Z ′3).

R1

Z2 Z3

h

h1

w

R′1

Z ′2
Z ′3

h

h′1

w

w′1

w − w′1

Figure 12. Case (B2-b)

Proof: Let us suppose, without loss of generality, that
h = h(R) ≥ w(R) = w. We denote h1 = h(Z2), h′1 = h(Z ′2)
and w′1 = w(R′1) = h(R′1) and, by construction, w(Z2) =
w(Z3) = w(Z ′3) = w, w(Z ′2) = w−w′1, h(Z3) = h− h1 and
h(Z ′3) = h− w′1 (see Figure 12). Trivially,

c(Z2, Z3) = p(Z2)+p(Z3) = h1+w+h−h1+w = (ρ+2)w

and

c(Z ′2, Z
′
3) = p(Z ′2) + p(Z ′3) = h′1 + w − w′1 + h− w′1 + w

= (ρ+ 2)w + h′1 − 2w′1

= c(Z2, Z3) + h′1 − 2w′1

Thus, c(Z2, Z3) ≤ c(Z ′2, Z
′
3) ⇐⇒ h′1 − 2w′1 ≥ 0. Yet, by

definition, w′21 = s(R′1) = εhw, then w′1 =
√
ρεw. Moreover,

h′1(w − w′1) = s(Z ′2) = (α − ε)s(R). Thus, h′1 = ρ(α−ε)
1−√ρεw

and finally

h′1 − 2w′1 = (
ρ(α− ε)
1−√ρε

− 2
√
ρε)w.

Hence,

c(Z2, Z3) ≤ c(Z ′2, Z ′3)⇐⇒
ρ(α− ε)
1−√ρε

− 2
√
ρεgleq0

⇐⇒ 2
√
ρε ≤ ρ(α− ε)

1−√ρε
⇐⇒ 2

√
ρε− 2ρε ≤ (α− ε)ρ

⇐⇒ 2
√
ρε ≤ (α+ ε)ρ

⇐⇒ 2
√
ε ≤ (α+ ε)

√
ρ

⇐⇒ −ε√ρ+ 2
√
ε− α√ρ ≤ 0

Moreover, x 7→ −√ρx2 + 2x − α
√
ρ is positive over

[1−
√
1−αρ√
ρ , 1+

√
1−αρ√
ρ]. Since 1+

√
1−αρ√
ρ ≥ 1√

ρ ≥
√

2
5 and

√
ε ≤ α ≤ 2/5 then, in any case

√
ε ≤ 1+

√
1−αρ√
ρ . So:

c(Z2, Z3) ≤ c(Z ′2, Z ′3)⇐⇒
√
ε ≤ 1−

√
1− αρ
√
ρ

⇐⇒ ε ≤
(1−

√
1− ρ(R)α)2

ρ

what achieves the proof.
In the first case (lines 43 to 45),

0 ≤ ρs
′′

s
≤ (1−

√
1− ρ(R)α)2

Thus, Lemma 15 applies (with α = s′/s and ε = s′′/s, where
the bounds on α comes from equation (2)) and proves claimed
result.

Lemma 14. Let f(x, y, z) = x+2
2(
√
y−z+

√
x−y) . Then, for x ∈

[1, 5/2], y ∈ [x− 3(x+1)2

16 , 2/5] and z ∈ [0, (1−
√
1− y)2]:

f(x, y, z) ≤ 2√
3

Proof: Due to lack of space, the proof is presented in
Section VII.

Lemma 15. Let R be a rectangle, ρ = ρ(R) and α such that
1 − 3(ρ+1)2

16ρ < α < 2
5ρ and let ε be such that 0 ≤ ρε ≤

(1 −
√
1− ρα)2. Let us denote R′, Z3 = Guillotine(R,α)

and R1, Z2 = Square(R′, ε/α). Then,

c(Z2, Z3)

2(
√
s(Z2) +

√
s(Z3))

≤ 2√
3

Proof: With the same notations as in the proof of
Lemma 13, c(Z2, Z3) = (ρ + 2)w. Moreover, s(Z2) = (α −
ε)s(R) = ρ(α−ε)w2 and s(Z3) = (1−α)s(R) = ρ(1−α)w2.
Then,

c(Z2, Z3)

2(
√
s(Z2) +

√
s(Z3))

=
ρ+ 2

2(
√
ρ(α− ε) +

√
ρ(1− α))

.

We can thus use Lemma 14 with x = ρ, y = αρ and z = ερ,
and we obtain the desired result.

In the other case (lines 47 and 48), since

(1−
√
1− ρ(R)α)2 ≤ ρs

′′

s
<

2ρs′2

5s2
,

Lemma 17 applies and achieves the proof.

Lemma 16. For any fixed x, y such that 1 ≤ x ≤ 5
2 and 1

5 ≤
y ≤ 2

5 , consider f(z) = x+2−B(y,z)√
x−y+

√
y−z , where B(y, z) = 2

√
z−

y−z
1−
√
z

, and denote z0 = (1−
√
1− y)2 such that B(y, z0) = 0.

Then for all z such that z0 ≤ z ≤ 2y2

5 , f(z) ≤ f(z0).

Proof: Due to lack of space, the proof is presented in
Section VII.

Lemma 17. Let R be a rectangle with ρ = ρ(R), and

• α such that 1− 3(ρ+1)2

16ρ < α < 2
5ρ

R1

Z2
Z ′

R

(a)

Z ′

R

(b)

Figure 13. Case (B2-a1) and Case (B2-a2’)

• ε such that (1−
√
1− ρα)2 ≤ ρε ≤ 2ρα2

5
• R1, Z2, Z3 = Superposition(R,α, ε).

Then,
c(Z2, Z3)

2(
√
s(Z2) +

√
s(Z3))

≤ 2√
3

Proof: With the same notations as in the proof of
Lemma 13 (see on the right of Figure 12),

c(Z2, Z3) = (ρ+ 2)w + h′1 − 2w′1

= (ρ+ 2)w + (
ρ(α− ε)
1−√ρε

− 2
√
ρε)w

= (ρ+ 2 +
ρ(α− ε)
1−√ρε

− 2
√
ρε)w.

Moreover, s(Z2) = (α − ε)s(R) = ρ(α − ε)w2 and s(Z3) =
(1− α)s(R) = ρ(1− α)w2, so that

c(Z2, Z3)

2(
√
s(Z2) +

√
s(Z3))

=
ρ+ 2 + ρ(α−ε)

1−√ρε − 2
√
ρε

2(
√
ρ(α− ε) +

√
ρ(1− α))

.

If we set x = ρ, y = αρ and z = ερ and B(y, z) = 2
√
z −

y−z
1−
√
z

, then we can use Lemma 16 to show that for all x, y the
worst case happens when ερ = (1−

√
1− αρ)2, which implies

ρ(α−ε)
1−√ρε = 2

√
ρε. We can thus use Lemma 14 to conclude the

proof.
Case (B2-a1) (Lines 23-24) and Case (B2-a2’) (Lines 28-

30) are presented in Figure 13 and Case (B2-a2”) (Lines
33-36 and 38-40) are presented in Figure 14.

First, let us note that all four cases contain a large zone,
denoted Z ′, and a set of smaller zones on the side. Among
these smaller zones, there is at most one simple zone included
in a rectangle whose aspect ratio is larger than 5/2. Therefore,
the other zones are either composed (and thus not considered
here) or their aspect ratio is smaller than 5/2 (which thanks
to Lemma 9 yields the desired bound on the cost). The idea
of the rest of the proof is to group this small zone with the
large zone Z ′ and to show that their combined cost satisfy the
bound.

A general proof can be obtained thanks to the remark
that since we do not need to take into account the small
zones which are correct, all four cases can be reduced to
one case, which is described in Figure 15, where Z1 is the
rectangle whose aspect ratio is too large. Then, a general result
expressed in Lemma 18 shows that all of these cases have a
better cost ratio than the case (B2b) shown on Figure 12, and
this concludes the proof that c(Z1,Z

′)

2(
√
s(Z1)+

√
s(Z′))

≤ 2√
3

.

R1

Z2

Z3

Z ′

R

(a)

R1

Z2

Z3

Z ′

R

(b)

Figure 14. Case (B2-a2”)

Z1
Z ′

h

h1

w
w1

Figure 15. Subproblem studied in Lemma 18.

It only remains to show that all cases satisfy the assumptions
of Lemma 18. To show ρ(Z1) ≥ 4

3 , we can actually show
ρ(Z1) > 21/10. In cases (B2-a1) and (B2-a2’), the question
is not raised anyway unless ρ(Z1) > 5/2. In case (B2-a2”),
ρ(Z1) ≤ 21/10 would imply that sn−2 ≤ sn−1 ≤ 21s′

s and
then s′′′ ≥ 2s′

5s , what is a contradiction with the assumption
s′′′ < 2s′

5s . In addition s(Z ′) = s− s′ ≥ s− s(1− 3(ρ(R)+1)2

16ρ(R))

and s = ρw2. Hence we can indeed use Lemma 18 to solve
these cases (we can notice than the case in Figure 14(a) does
not exactly reduce like the others, but Lemma 18 and its proof
can be adapted to solve it).

Lemma 18. Let Z1 and Z2 be as depicted in Figure 15.
If ρ(Z1) = w1

h1
≥ 4/3 and s(Z2)

w2 ≥ 3(ρ(R)+1)2

16 , then
c(Z1,Z2)

2(
√
s(Z1)+

√
s(Z2)

is maximum when w1 = w.

Proof: Let us denote x = ρ(Z1). Trivially, c(Z1, Z2) =

h1(
h+w
h1

+ 1 + x) and
√
s(Z1) +

√
s(Z ′) = h1(

√
s(Z′)

h1
+

√
x). Therefore, c(Z1,Z

′)

2(
√
s(Z1)+

√
s(Z′)

=
h+w
h1

+1+x

2(

√
s(Z′)
h1

+
√
x)

= f(x).

f ′(x) =
2

√
s(Z′)
h1

√
x+x−h+w

h1
+1

4
√
x(

√
s(Z′)
h1

+
√
x)2

and therefore f ′(x) ≥ 0 is

equivalent to 2

√
s(Z′)

h1

√
x+ x− (h+wh1

+1) ≥ 0. Since x ≥ 1,
we have to prove that 2

√
s(Z ′)

√
x − (h + w) ≥ 0. Let us

denote ρ = ρ(R), so that h+w = (ρ+1)w. Let us prove that
2
√
s(Z ′)

√
x− (ρ+ 1)w ≥ 0.

2
√
s(Z ′)

√
x− (ρ+ 1)w ≥ 0⇐⇒ 2

√
s(Z ′)

√
x ≥ (ρ+ 1)w

⇐⇒ 4s(Z ′)x ≥ (ρ+ 1)w2

⇐⇒ x
s(Z ′)

w2
≥ (ρ+ 1)2

4

Since we assumed that x ≥ 4/3 and s(Z′)
w2 ≥ 3(ρ)+1)2

16 , we
have x s(Z

′)
w2 ≥ (ρ+1)2

4 and we obtain claimed result.

Therefore, f is increasing with x, and, when h1 is fixed,
the cost ratio is maximum when w1 = w.

This achieves the proof of all possible cases of NRRP and
therefore the proof of Theorem 6.

Note that our bound is tight since there are cases where the
ratio between the sum of perimeters and the lower bound based
on Equation 1 is indeed 2√

3
. Let us define for 1 < k ≤ n,

sk = 3/4n−k+1 and s1 = 1/4n−1. One can notice that sk =
3
4

∑k
i=1 si. Hence each step of NRRP ([0, 1]2, {s1, . . . , sn})

corresponds to Case (B1) and therefore the Square routine
is called. In addition, this corresponds the extremal position
of Case (B1) and we can notice in the proof of Lemma 12
that in this case the bound is tight. Hence, if Z1, . . . , Zn =
NRRP ([0, 1]2, {s1, . . . , sn}), c(Z1) = 2

√
s(Z1) and for k >

1, c(Zk) = 4√
3

√
s(Zk). Thus,

lim
n→∞

c(Z1, . . . , Zn)

2
∑
s(Zi)

=
2√
3

An illustration of this case is depicted in Figure 16.

Figure 16. An illustration of the worst possible case.

V. EXPERIMENTAL EVALUATION

We present in this section some experimental results in
order to assess the practical performance of our algorithm. In
contrast to previous work, we consider strongly heterogeneous
platforms made of different kinds of processing units (CPU
cores, GPUs and Xeon Phi), which is a common situation
in today’s computers. According to recent benchmarks from
the literature, as far as matrix multiplication is concerned,
GPUs such as the Nvidia Tesla are roughly 30 times faster
than a standard core, and Xeon Phi accelerators are about 20
times faster than a core. In our experiments, we thus generate
instances with n cores, m accelerators and p GPUs, where
the speed of accelerators is randomly chosen between 15 and
25, and the speed of GPUs is chosen between 25 and 35,
so as to cover a wide range of values. We use values of n
in {1, 2, 4, 8, 12, 16, 24, 32, 64}, and m and p vary from 0 to
8, and we generate 10 random instances for all values of n,
m and p. On these instances, we analyze the results of our
NRRP algorithm together with two previous solutions from the
literature, namely Nagamochi’s algorithm [5] and the Column-
based approach from [8], and we compute the ratio of the
partition returned by each algorithm to the lower bound from
equation (1).

The results we obtain show that the Column-Based al-
gorithm returns very efficient partitionings for large enough
platforms (namely, when the number of CPUs is larger than
16), with ratios consistently below 1.05, and with a median

value below 1.02. However, the performance is much lower
for smaller platforms, and ratios as high as 1.5 are observed
on platforms with few CPUs. The Nagamochi and NRRP al-
gorithms achieve better results than Column Based on small
platforms, but are unable to compete for larger platform sizes.
The most difficult cases correspond to very small platforms,
with a few processing units. In this case, NRRP always
achieves an approximation ratio below 1.1, whereas the ratios
obtained by Nagamochi can be as large as 1.3. Note that this
is higher than the approximation ratio proved in [5], but it
is not a contradiction because in the setting of the proof of
Nagamochi et al., a refined lower bound is used for smaller
instances. Except for these very small cases, the behaviors of
Nagamochi and NRRP algorithms are fairly comparable, but
can be quite different depending on the instance. In summary,
worst case values are 1.106 for NRRP, 1.3 for Nagamochi,
and 1.526 for Column Based.

This complementary behavior of all three algorithms is an
incentive to compute all three partitionings on a given instance,
and then return the one with the lowest communication cost.
As expected this simple heuristic provides very efficient solu-
tions in all cases. Indeed, on average, the solutions are within
2% of the lower bound over all ranges of values, and at most
within 8% of the (optimistic) lower bound. For comparison,
the same heuristic without NRRP has a maximum ratio of
30%.

VI. CONCLUSION

In this paper, we propose a new algorithm NRRP for
partitioning a square into a set of zones of prescribed area
while minimizing the perimeter of the zones. This optimization
problem is of crucial importance when a 2D computational
domain has to be split into parts that will be allocated to het-
erogeneous processing resources, while minimizing the over-
all amount of communications. This work therefore applies
naturally to Matrix Multiplication and other linear algebra
kernels on heterogeneous (CPU, GPU and other accelerators)
platforms. Such static partitionings are more flexible than
block-cyclic schemes, and can be used as a basis for more
dynamic strategies to obtain very good performance even in
noisy environments where execution times cannot be perfectly
estimated. Due to its practical importance, it has been the
subject of a vast literature. Combining ideas proposed by
Lastovetsky et al. on the one hand and Nagamochi et al. on the
other hand, we have been able to improve the approximation
ratio from 1.25 to 1.15. Even if the algorithm and the proof
are non trivial, it is worth noticing that the overall complexity
of the algorithm is low, i.e. p log p. Experimental analysis on
realistic instances show that NRRP is very efficient on difficult
instances and that combining several heuristics together yields
to very good practical solutions, i.e. on average 2% larger and
at worst 8% larger than the optimal solution, on a large set of
realistic platforms consisting of both CPUs and accelerators.
This work opens several perspectives. First, we conjecture
that a lower approximation ratio could be proved using a
different partitioning technique, but this would require to

rely on different proof techniques, given the complexity of
the actual proof. Second, the extension to 3D computational
domain is relevant and open, and would encompass the 2.5D
algorithms that have recently been proposed.

REFERENCES

[1] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-
tations solving linear algebra problems on networks of heterogeneous
computers,” Journal of Parallel and Distributed Computing, vol. 61,
no. 4, pp. 520–535, 2001.

[2] O. Beaumont, V. Boudet, F. Rastello, Y. Robert et al., “Partitioning a
square into rectangles: Np-completeness and approximation algorithms,”
Algorithmica, vol. 34, no. 3, pp. 217–239, 2002.

[3] B. Becker, A. Lastovetsky et al., “Towards data partitioning for parallel
computing on three interconnected clusters,” in Parallel and Distributed
Computing, 2007. ISPDC’07. Sixth International Symposium on. IEEE,
2007, pp. 39–39.

[4] A. DeFlumere and A. Lastovetsky, “Optimal data partitioning shape for
matrix multiplication on three fully connected heterogeneous proces-
sors,” in Euro-Par 2014: Parallel Processing Workshops. Springer,
2014, pp. 201–214.

[5] H. Nagamochi and Y. Abe, “An approximation algorithm for dissecting
a rectangle into rectangles with specified areas,” Discrete Applied
Mathematics, vol. 155, no. 4, pp. 523 – 537, 2007.

[6] A. Fügenschuh, K. Junosza-Szaniawski, and Z. Lonc, “Exact and
approximation algorithms for a soft rectangle packing problem,” Op-
timization, vol. 63, no. 11, pp. 1637–1663, 2014.

[7] O. Beaumont, A. Legrand, F. Rastello, and Y. Robert, “Static lu
decomposition on heterogeneous platforms,” International Journal of
High Performance Computing Applications, vol. 15, no. 3, pp. 310–323,
2001.

[8] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A
proposal for a heterogeneous cluster scalapack (dense linear solvers),”
Computers, IEEE Transactions on, vol. 50, no. 10, pp. 1052–1070, 2001.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet et al.,
ScaLAPACK users’ guide. siam, 1997, vol. 4.

[10] D. Clarke, A. Ilic, A. Lastovetsky, and L. Sousa, “Hierarchical partition-
ing algorithm for scientific computing on highly heterogeneous cpu+ gpu
clusters,” in Euro-Par 2012 Parallel Processing. Springer, 2012, pp.
489–501.

[11] R. Shams and P. Sadeghi, “On optimization of finite-difference time-
domain (fdtd) computation on heterogeneous and gpu clusters,” Journal
of Parallel and Distributed Computing, vol. 71, no. 4, pp. 584–593,
2011.

[12] N. Mohamed, J. Al-Jaroodi, and H. Jiang, “Ddops: dual-direction op-
erations for load balancing on non-dedicated heterogeneous distributed
systems,” Cluster Computing, vol. 17, no. 2, pp. 503–528, 2014.

[13] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures,” Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb.
2011. [Online]. Available: http://hal.inria.fr/inria-00550877

[14] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical
task-based programming with StarSs,” International Journal of High
Performance Computing Applications, vol. 23, no. 3, pp. 284–299, 2009.

[15] A. YarKhan, J. Kurzak, and J. Dongarra, QUARK Users’ Guide: QUeue-
ing And Runtime for Kernels, UTK ICL, 2011.

[16] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. Don-
garra, “PaRSEC: A programming paradigm exploiting heterogeneity for
enhancing scalability,” Computing in Science and Engineering, vol. 15,
no. 6, pp. 36–45, Nov. 2013.

[17] O. Beaumont, L. Eyraud-Dubois, A. Guermouche, and T. Lambert,
“Hierarchical partitioning algorithm for scientific computing on highly
heterogeneous cpu+ gpu clusters,” in Proceedings of the 26th IEEE In-
ternational Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 2015, pp. 1–10.

[18] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing
communication in linear algebra,” SIAM Journal on Matrix Analysis
and Applications, vol. 32, no. 3, pp. 866–901, Jul. 2011, arXiv:
0905.2485. [Online]. Available: http://arxiv.org/abs/0905.2485

VII. ANNEXE

A. Proof of Lemma 10

First let us prove that f is decreasing in y and z.

∂f

∂y
(x, y, z) =

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y

4
√
xy(1− z)(

√
(y) +

√
z)2

Therefore, ∂f∂y (x, y, z) ≤ 0 is equivalent to 2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y ≤ 0.

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y = 2y + 2

√
yz − x− y − 1 + xz + z

= y + z + 2
√
yz + zx− x− 1

= 2
√
yz − (1− γ)x− α

As x ≥ 1 and y ≤ z, we have:

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y ≤ 2z −+z − α

≤ 3z − 1− α

Yet z ≤ 2
5ρ ≤ 6/5 and α ≥ 1/5, hence:

2
√
y(
√
y +
√
z)− (1− z)(x+ 1)− y ≤ 6/5− 1− 1/5 = 0

and thus ∂f
∂y (x, y, z) ≤ 0.

∂f

∂z
(x, y, z) =

2z3/2(
√
y +
√
z)− (1− z)2(x+ 1)− (1− z)y

2
√
xz(1− z)2(

√
(y) +

√
z)2

So ∂f
∂z (x, y, z) ≤ 0 is equivalent to 2z3/2(

√
y +
√
z)− (1− z)2(x+ 1)− (1− z)y ≤ 0.

2z3/2(
√
y +
√
z)− (1− z)2(x+ 1)− (1− z)y = 2z2 + 2z

√
yz − x− 1 + 2zx+ 2z − xz2 − z2 − y + xy

≤ 4z2 − x− 1 + 2xz + 2z − xz2 − z2 − y − z2

≤ 4z2 − x− 1 + 2xz + 2z − xz2 − y
≤ 3z2 − 2 + 2xz + 2z − y

As we have xz ≤ 2/5:

2z3/2(
√
y +
√
z)− (1− z)2(x+ 1)− (1− z)y ≤ 3z2 − 2 + 4/5 + 2z − y

≤ 12/25 + 4/5− 1/5− 6/5

≤ −3/25

Thus ∂f
∂z (x, y, z) ≤ 0.

Then f(x, y, z) ≤ f(x, 5x−45x , 5ρ−210ρ). We denote g(x) = f(x, 5x−45x , 5ρ−210ρ) and one can prove that

g(x) =

√
5(x(5x+ 17)− 6)

(5x+ 2)(2
√
5x− 4 +

√
10x− 4)

We are interested in proving that g(x) is decreasing when x varies in [1, 6/5].
First,

g′(x) =

√
(5)(10x+ 17)

(5x+ 2)(2
√
(5x− 4) +

√
(10x− 4))

−
5
√
(5)(x(5x+ 17)− 6)

(5x+ 2)2(2
√

(5x− 4) +
√
(10x− 4))

−

√
(5)(x(5x+ 17)− 6)(5√

(10x−4)
+ 5√

(5x−4)
)

(5x+ 2)(2
√

(5x− 4) +
√
(10x− 4))2

so that g′(x) ≤ 0⇐⇒

(25x2 + 20x+ 64)−
5(x(5x+ 17)− 6)(5x+ 2)(1√

(10x−4)
+ 1√

(5x−4)
))

(2
√
(5x− 4) +

√
(10x− 4))

≤ 0

Moreover 5x + 2 is increasing with x in the interval [1, 6/5], so that 5x + 2 ≥ 7. To finish the proof, let us denote

A(x) =
(1√

(10x−4)
+ 1√

(5x−4)
)

(2
√

(5x−4)+
√

(10x−4))
Clearly, A(x) is i decreasing with x in the interval [1, 6/5], so that in particular in the interval

[1, 11/10], A(x) ≥ A(11/10) and in the interval [11/10, 6/5], A(x) ≥ A(6/5).
Therefore, in the interval [1, 11/10],

B(x) = (25x2 + 20x+ 64)−
(5(x(5x+ 17)− 6)(5 + 2)(1√

(10∗11/10−4)
+ 1√

(5∗11/10−4)
))

(2
√
(5 ∗ 11/10− 4) +

√
(10 ∗ 11/10− 4)))

≤ 0 =⇒ g′(x) ≤ 0

. Moreover, B is a polynomial of degree 2 that tends to −∞ when x tends to ∞, that is equal to 40
√
(42) − 146 > 0 in 0

and to 669− 320
√
(14/3) < 0 in 1 so that B(x) is negative in the interval [1, 11/10]

Similarly, in the interval [11/10, 6/5],

C(x) = (25x2 + 20x+ 64)−
(5(x(5x+ 17)− 6)(5 + 2)(1√

(10∗6/5−4)
+ 1√

(5∗6/5−4)
))

(2
√
(5 ∗ 6/5− 4) +

√
(10 ∗ 6/5− 4))

≤ 0 =⇒ g′(x) ≤ 0

. As previously, C is a polynomial of degree 2 that tends to −∞ when x tends to ∞, that is equal to 827/8 > 0in 0 and to
−435/64 < 0 in 11/10 so that B(x) is negative in the interval [11/10, 6/5]

Therefore f(x, y, z) ≤ g(x) ≤ g(1) = 16
√
5

7(2+
√
6)
< 2√

3
and we have our result.

�

B. Proof of Lemma 14

First it is easy to see that f is increasing in z. Therefore, for all x, y:

f(x, y, z) ≤ f(x, y, (1−
√
1− y)2)

≤ x+ 2

2(
√
y − (1−

√
1− y)2 +

√
x− y)

≤ x+ 2

2(
√
y − 1 + 2

√
1− y − (1− y) +

√
x− y)

≤ x+ 2

2(
√
2(
√
1− y − (1− y)) +

√
x− y)

In the following we denote zmax = (1−
√
1− y)2.

Let us consider gx(y) =
√
2(
√
1− y − (1− y)) +

√
x− y. Successive derivations give us

g′′x(y) = −
1

4(x− y)3/2
−

(1− 1
2
√
1−y)

2

2
√
2(
√
1− y − (1− y))3/2

− 1

4
√
2(1− y)3/2

√√
1− y − (1− y)

Therefore, on y ∈ [x− 3(x+1)2

16 , 2/5], gx(y) ≤ 0 and gx is concave.
Then for all y ∈ [x− 3(x+1)2

16 , 2/5], gx(y) ≥ min(gx(x− 3(x+1)2

16), gx(2/5)).
Let us first supposemin(gx(x− 3(x+1)2

16), gx(2/5)) = gx(2/5). Then:

f(x, y, z) ≤ x+ 2

2(
√

2(
√
1− y − (1− y)) +

√
x− y)

≤ x+ 2

2gx(y)

≤ x+ 2

2gx(2/5)

≤ x+ 2

2(
√
x− 2/5 +

√
2
√√

3/5− 3/5
)

Let us denote A =
√
2
√√

3/5− 3/5. Let us prove that G1(x) =
x+2

2(
√
x−2/5+A)

is inferior or equal to 2√
3

for x ∈ [1, 5/2].

One can prove that

G′1(x) =
x− 14/5 + 2A

√
x− 2/5

4
√
x− 2/5(

√
x− 2/5 +A)2

Then G′1(x) ≥ 0 is equivalent to x− 14/5 + 2A
√
x− 2/5 ≥ 0. As ρ ≤ 14/5 it is equivalent to 2A

√
x− 2/5 ≥ 14/5− x

which is equivalent to 4A2(x− 2/5) ≥ 196/25− 28/5x+ x2. By replacing A2 by 2(
√

3/5− 3/5) we obtain:

G′1(x) ≥ 0⇐⇒ −x2 + (8

√
3

5
+

4

5
)x− (

16
√
3

5
√
5

+
148

25
) ≥ 0

One can prove that in our case this is equivalent to x ≥ 2(1+2
√
15)

5 − 4
√
6

5 > 1 and therefore G1 is decreasing on [1, 2(1+2
√
15)

5 −
4
√
6

5] and increasing on [2(1+2
√
15)

5 − 4
√
6

5 , 5/2]. Therefore G1(x) ≤ max(G1(1), G1(5/2). As we have

G1(1) =
3
√
5

2(
√
3 +

√
2(
√
15− 3))

<
2√
3

G1(5/2) =
9
√
5

2
√
2(
√
21 + 2

√
(
√
15− 3))

<
2√
3

We can deduce that G1(x) ≤ 2√
3

and, if min(gx(x− 3(x+1)2

16), gx(2/5)) = gx(2/5), then f(x, y, z) ≤ 2√
3

.

Else, we now suppose min(gx(x− 3(x+1)2

16), gx(2/5)) = gx(x− 3(x+1)2

16). Then:

f(x, y, z) ≤ x+ 2

2(
√
2(
√
1− y − (1− y)) +

√
x− y)

≤ x+ 2

2gx(y)

≤ x+ 2

2gx(x− 3(x+1)2

16)

≤ x+ 2

2(
√

3(x+1)2

16 +
√
2(
√
1− y − (1− y)))

≤ 2√
3
× x+ 2

x+ 1 + 4
√
2√
3

√√
1− y − (1− y)

= G2(x)

Hence :

G2(x) ≤
2√
3
⇐⇒ x+ 2 ≤ x+ 1 +

4
√
2√
3

√√
1− y − (1− y)

⇐⇒ 1 ≤ 4
√
2√
3

√√
1− y − (1− y)

⇐⇒ 1 ≤ 32

3
(
√
1− y − (1− y))

If we denote X =
√
1− y, then:

G2(x) ≤
2√
3
⇐⇒ 1 ≤ 32

3
(X −X2)

⇐⇒ −32

3
X2 +

32

3
X − 1 ≥ 0

One can show that this is equivalent to
1

2
−
√
10

8
≤ X ≤ 1

2
+

√
10

8

and furthermore, this is equivalent to:

1− (
1

2
+

√
10

8
)2 ≤ y ≤ 1− (

1

2
−
√
10

8
)2

As 1− (12 +
√
10
8)2 ≤ 13/64 ≤ y and 1− (12 −

√
10
8)2 ≥ 2/5 ≥ y, then for all x, G2(x) ≤ 2√

3
and we have our result.

So, in any case, we prove that f(x, y, z) ≤ 2√
3

.

�

C. Proof of Lemma 16

Computing f(z0)− f(z) yields

f(z0)− f(z) =
(x+ 2)(

√
x− y +

√
y − z)− (x+ 2−B(z))(

√
x− y +

√
y − z0)

(
√
x− y +

√
y − z)(

√
x− y +

√
y − z0)

Hence f(z0)− f(z) has same sign as g(z) = B(z)(
√
x− y+

√
y − z0)− (x+2)(

√
y − z0−

√
y − z). We note C(x, y) =√

x− y +
√
y − z0, so that we can write the derivative g′(z) = B′(z)C(x, y)− x+2

2
√
y−z .

We first note that, given the bounds on x and y, C(x, y) ≥
√
x− y ≥

√
3
5 , and x+2 ≤ 7

2 . Since we have z ≤ 2y2

5 , we get

y − z ≥ y(1− 2y
5) ≥ 1

5 (1−
4
25) ≥

1
6 , which yields 1

2
√
y−z ≤

√
6
2 .

Similarly, the bounds on y provide the following bounds on
√
z:

•
√
z ≥ √z0 = 1−

√
1− y ≥ 1−

√
4
5 because y ≥ 1

5

•
√
z ≤ y

√
2
5 ≤ ζ = 2

5

√
2
5 because y ≤ 2

5 .

Computing B′(z) gives B′(z) = 2−y−
√
z(2−

√
z)√

z(1−
√
z)2

= 2−y√
z(1−

√
z)2
− 2−

√
z

(1−
√
z)2

. Simple analysis shows that both u 7→ 1
u(1−u)2

and u 7→ − 2−u
(1−u)2 are decreasing on I = [1 −

√
4
5 , ζ]. This implies that B′(z) ≥ B′(ζ2), which together with y ≤ 2

5 yields

B′(z) ≥ 2− 2
5+ζ(2−ζ)
ζ(1−ζ)2 ≥ 8.

Putting all together provides g′(z) ≥ 8.
√

3
5 −

9
2 .
√
6
2 ≥ 0. Hence g is an increasing function of z, and since g(z0) = 0 by

construction, we get f(z0)− f(z) ≥ 0 for all z ≥ z0.

�

