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Abstract: We present a supervised machine learning approach for classification of objects from sampled
point data. The main idea consists in first abstracting the input object into planar parts at several scales,
then discriminate between the different classes of objects solely through features derived from these planar
shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity
and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and
relationships between planar shapes offers invariance to scale and orientation. A random forest is then used
for solving the multiclass classification problem. We demonstrate the potential of our approach on a set
of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and
compare the performance of our method with other point-based shape descriptors.
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Classification d’objets par abstraction planaire
Résumé : Nous introduisons une approche par apprentissage supervisée pour classifier des objets
à partir de points échantillonnés dans l’espace. L’idée principale consiste à approximer l’objet initial
en parties planaires à différentes échelles, pour ensuite distinguer les différentes classes d’objets sans
tenir compte des points échantillonnées. L’abstraction en formes planaires est un moyen à la fois de
réduire la complexité algorithmique de l’analyse, et d’améliorer la robustesse aux défauts de mesures
dans le processus d’acquisition des données. Mesurer des propriétés statistiques et des relations entre
formes planaires offre une invariance à l’échelle et à l’orientation. L’algorithme Random Forest est
utilisé pour résoudre le problème de classification multi-classe. Nous démontrons le potentiel de notre
approche sur un ensemble d’objet de scène d’intérieur en utilisant plusieurs benchmarks et en comparant
les performances avec des méthodes basées sur des descripteurs locaux de points.

Mots-clés : classification d’objets, abstraction planaire, apprentissage supervisée
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1 Introduction
Beyond geometric modeling, understanding 3D scenes is indispensable for a wide range of applications
such as robotics, reverse architecture or augmented reality. While a geometric model of a 3D scene
provides a means to navigate and locate surfaces for a robot, a semantic interpretation of this model is
required to identify objects and better interact with the environment. The classification of 3D objects is
an important facet of the scene understanding problem. While object classification from images has been
a long standing research topic, the 3D instance of this problem has been less explored.

Our main motivation for object classification is the modeling and semantization of indoor scenes.
Recent advances in acquisition technologies provide high accuracy and sampling rates that allow for an
efficient recording of the entire inside of buildings within hours. The rapid evolution of low-cost hand-
held 3D scanners also provide real-time acquisition of 3D objects or small-scale scenes, in the form of
unstructured point clouds. As a consequence, 3D point clouds moved into focus for object classification.

The scientific challenge is to extract high-level information from raw 3D point data. The high diversity
of these data due to the wide range of objects and scales, adds further hurdles. Surface reconstructing
methods for indoor scenes commonly perform a planar abstraction to reduce complexity and facilitate
further processing [3, 20]. Object classification methods instead commonly process the points directly
and extract local features from key points. We depart from previous work by computing more global
features through exploring the relationships between planar parts detected from the raw point data.

1.1 Related Work
We now review the two areas closely related to our approach: object classification and planar shape
detection and abstraction.

Object classification. Image processing and machine learning have long been concerned by object
classification. Supervised machine learning classifiers are often trained to build a model from labeled
training data, then to predict labels for new unknown instances. A popular method for detecting and
describing key feature points (keypoints) in images is the scale-invariant feature transform (SIFT) [17,
16]. Keypoints for feature extraction are first located by searching for the scale-space of the image
with high contrast. Features are then extracted from the neighborhood of each keypoint. Performing
the feature extraction at the scale with highest signal range and extracting histograms aligned with the
strongest signal peak provides invariance to rotation and scaling.

Several point-based features are used for object classification from point clouds. Rusu et al.propose
the notion of fast point feature histograms (FPFH) [24, 23] to capture local geometric properties based
on normal information. Johnson et al. [12] introduced the spin images as a local point descriptor. Knopp
et al. [15] extend the SURF image descriptor to 3D representation. Based on a point-normal pair the
neighboring points are mapped onto a pose-invariant 2D histogram. Common approaches, eg [27], com-
bine several local point descriptors at many keypoints. Based on the resulting labels the classification
hypotheses are verified by registering meshes or point clouds of known objects with the scene [22, 2].
While these approaches achieve good recognition rates, they are in general compute-intensive and have
limited capability to classify unknown object instances of a class. More global descriptors are also used,
e.g. [21, 28].

Golovinskiy et al. [9] introduced a segmentation and shape-based classification method for objects in
urban environments. On large data sets they localize and segment potential objects. A small set of basic
features such as estimated volume and spin images, combined with contextual features such as “located on
the street”, are used to discriminate the objects. After evaluating different machine learning methods they
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4 Oesau & Lafarge & Alliez

conclude that considering different segmentation methods and adding contextual information significantly
improve the detection performance.

Kim et al. [14] introduced a graph-based primitive matching approach to classify objects in an indoor
environment captured by a hand-held scanner. During a learning phase, canonical geometric primitives
(e.g., planes, boxes) are fitted to the training point data and a hierarchical primitive-joint graph is built
from the data. A joint herein denotes the type of junction between the primitives. During recognition
primitives are fitted to the query point data. Guided by the learned hierarchical graph, the query data are
iteratively segmented into objects.

Mattausch et al. [18] introduce a unsupervised machine learning method for segmenting similar ob-
jects in indoor scenes. They perform a planar patch detection as preprocessing and categorize the patches
into vertical and horizontal patches. A small set of geometric features is computed per patch and a
similarity matrix is constructed, considering pairwise similarity between patches that share similar neigh-
borhoods. Clustering under consideration of the similarity matrix yields a segmentation of patches into
similar objects across the datasets. The detection results are in general satisfactory but some limitations
remain. Only objects with the same upward orientation are clustered and it is unclear whether the method
can cluster different types of the same class.

Structural considerations have been recently exploited for object recognition [13, 30]. The notion
of structure goes beyond the use of geometric features as it allows the analysis of an object as a set of
connected parts where each part has a specific functionality. Extracting the structure from an object is
however a difficult problem that restricts the generality of these methods.

Planar shape detection and abstraction. Related works differ greatly in the way they detect the pla-
nar shapes, depending on the defects in the input point data. Region growing is very efficient in point
clouds structured as range images [3, 10], but are not suited to unstructured point clouds due to missing
neighborhood linkage. The Hough transform [11, 8], popular for detection of primitive shapes in images,
is now commonly used for plane detection in point clouds. While this approach is robust against vari-
ous defects such as occlusion and missing data, its memory requirements and computational complexity
rapidly increase with the degrees of freedom of the shapes sought after and highly depend on the choice
of parameters. Schnabel et al. [25] proposed an efficient RANSAC method for detecting several primitive
shapes in unstructured point data. This approach is robust to defect-laden inputs but does not scale well
to complex scenes with many shapes. As shapes are detected under a user-specified tolerance error, we
find it relevant to generate hierarchies of shapes detected at different tolerance errors. A recent shape
abstraction approach [19, 29] hinges on the idea that the scale space of objects must be explored for a
better understanding of the structural dimension.

For object classification the extraction of local features of the point data from many keypoints re-
quires three main steps. The locality requires the detection of keypoints followed by classification, then
clustering in order to turn the labels of keypoints into an object label. As pointed out by Alexandre [2],
the computational complexity is high. In addition, a point-based feature can only capture local shape
properties and is therefore not easy to generalize from single object instances to object classes.

Furthermore, many previous approaches rely upon the knowledge of the up vector [18, 14]. While the
latter helps simplifying the classification problem, it also restricts the detection to upward posed objects.

Positioning. We propose to classify objects based on features derived from planar shapes, themselves
detected from the input point data. First, robust and efficient shape detection methods can abstract large
point data into a set of planar shapes, at multiple scales. Second, the planar abstraction provides us with
a means to extract more global information and capture common properties within object classes. Third,
exploring the relationships between the planar shapes yields invariance to orientation and scale.

Inria



Object Classification via Planar Abstraction 5

Contributions. We contribute a novel supervised machine learning method for the classification of ob-
jects acquired in indoor scenes. The key novelty of our approach is to derive from a multi-scale planar
abstraction a so-called feature vector. These features, extracted from a pre-labeled dataset of CAD mod-
els, are used to train a random forest classifier [5] and to evaluate the performance. We then demonstrate
the performance of our classifier on point data acquired from indoor scenes.

Our approach improves over previous work on two main aspects:

• Robustness: Performing the planar abstraction at different scales makes it possible to detect domi-
nant properties at low scales while being robust to defects and variations in the acquisition process,
as well as to capture the discriminative role of details at finer scales.

• Invariance: We require no assumptions on orientation or scale. Our approach classifies objects
independently from their orientation by using both unoriented features and features that are auto-
matically registered on a reference direction.

2 Overview
Our method takes as input a set of point clouds with unoriented normals, sampled from objects. When
normal attributes are not available we estimate them using a principal component analysis in a local
neighborhood. For training and evaluation of the classifier a set of ground-truth object labels of the input
point clouds is required. We assume that the scene has already been segmented into objects and focus on
the classification of objects. Some previous works perform segmentation of objects in a 3D scene [26] or
perform clustering in feature space in order to segment similar objects in an indoor scan [18].

Our method generates as output a classifier, ready to predict a trained object class from a feature
vector. Our method comprises three main steps: (i) Preprocessing, i.e. multiscale planar abstraction and
adjacency detection, (ii) Feature computation, and (iii) Training.

Figure 1: Multiscale Planar Abstraction. Left: Input point cloud of a goblet with outliers and noise.
Mid to Right: Planar abstraction with varying fitting tolerance from coarse to fine: 1%, 0.5% and 0.25%
of bounding box diagonal.

3 Multiscale Planar Abstraction
The input point data are abstracted by planar shapes using an efficient RANSAC approach [25], with a
range of three fitting tolerances to capture the variation of the extracted shapes at different scales. The
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6 Oesau & Lafarge & Alliez

feature vector, computed in following step, aggregates all scales. More specifically, the largest fitting
tolerance ε is chosen as 2% of the longest bounding box diagonal, then each following scale ε is halved.
The main reasons for proceeding in a multi-scale fashion are the following. A detailed abstraction by a
large number of small planar shapes obfuscates the dominant surfaces of the object. Conversely, choosing
a large fitting tolerance captures well the dominant shapes but obfuscates the details. In addition, curved
objects behaves differently, as the abstractions differ for each value fitting tolerance, see Fig. 1.

4 Features
Classification through machine learning requires a meaningful description of an object represented by a
feature vector:

x = (x1, x2, .., xn) ∈ Rn, (1)

where n denotes the dimension, similar for all feature vectors. In our approach we compute one feature
vector per object, and the features are derived solely from the planar shapes. The main rational behind our
choice of feature vectors is that the function of an object – class in our context –constrains the shape. As
the number of planar shapes detected from a single object depends on the object and detection parameters,
we represent distributions of features computed for the whole set of planar shapes detected for each
object. Each bin of the distribution represents one element of the feature vector, and the distributions
are normalized to ensure comparability. Most features describe distributions: areas, orientations, and
relationships between pairs of shapes: pairwise orientation, pairwise orientation restricted to adjacent
shapes, transversality. We also add feature elements measuring the global aspect ratio of the object.
Prior to computing the feature vectors we compute for each shape a planar polygon derived from the
2D alpha-shape of the associated point cloud, projected in the detected plane. A planar polygon makes
it easy to compute geometric properties such as areas and pairwise orientation. Note that the random
forest approach is oblivious to the relations between the elements of the feature vector, so that a series
of elements that belong to the same distribution is unknown to the classifier. In general each element of
the feature vector is compared to the same element of other feature vectors. The number of bins of the
distributions is thus kept low to avoid increasing the sensitivity of the classifier and to separate objects of
the same type. We detail next the features used for training and classification.

4.1 Area Fragmentation
We compute the distribution of shape areas, normalized to sum up to 1. More specifically, we accumulate
the shape area within each bin of the distribution, instead of counting the shapes within a specific area
range. The fragmentation of shape areas reflects whether the surface of an object is composed of few
large shapes or many smaller planar shapes, or anything in-between such as for a curved surface with a
wide range of curvatures. We observed that using a linear scale for the bins of the distribution leads to a
poor discriminative capability for the shapes with small areas: We can have either very few large shapes,
or many small shapes. We thus use a logarithmic scale of base 2 to provide a higher resolution for the
small area bins.

4.2 Pairwise Orientation
Assuming the pose of an object is known, the orientation of the parts is judged very discriminant by the
random forest algorithm. When the pose is unknown however, the pose must be normalized to ensure bin-
to-bin comparability, as the machine learning method sees each element in the feature vector on its own.
In the SIFT operator [17] rotation-invariance is achieved by aligning the distribution with the reference
direction derived from the largest signal peak in the neighborhood of a keypoint. We compute instead the

Inria
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Figure 2: Area fragmentation under multiple scales. Top: Planar shapes detected from two point
clouds with a large fitting tolerance. The area fragmentation distribution exhibits a high contribution of
large shapes to the total shape area. Bottom: Using a small fitting tolerance for shape detection strongly
changes the shape composition and hence distribution of the vase, while the distribution for the table
exhibits little changes.
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8 Oesau & Lafarge & Alliez

distribution of angles between all pairs of planar parts, as this does not require any reference direction.
More specifically, we consider the range of angles

[
0, π2

]
as the normals are unoriented, and split this

range evenly among the bins of the distribution. We then accumulate in each bin the product of areas of
the corresponding pair of planar shapes. The distribution is normalized such that the all bins sum up to 1.

Figure 3: Pairwise Orientation. The distribution of pairwise orientation helps distinguishing different
curved objects. The cylindrical shape of the mug is translated into a mostly uniform distribution with a
peak owing to the bottom. The orientation distribution for the vase (middle right) reflects the bulgy body
by a broader range of angles compared to the lamp (far right).

4.3 Adjacent Pairwise Orientation
In addition to the global pairwise orientation we compute the distribution of relative orientations of planar
parts that are adjacent, as they reflect the sharpness of creases. Two planar shapes are considered adjacent
if their respective alpha-shapes are closer than a user-specified distance, normalized by the longest bound-
ing box diagonal. We first compute the bounding box of each shape and insert them in a hierarchical data
structure (AABB tree) to accelerate the distance computations.

4.4 Orientation
The absolute orientation of planar parts plays an important discriminant role to determine the class of
an object. Absolute orientation herein refers to a reference upward direction, which is unknown. We
thus estimate a reference direction for each object by fitting an object-oriented bounding box. To infer a
reference direction we proceed as follows. If the axis of the box with largest extent is unique we chose
it as reference direction, if not (the two major axes have comparable extend) we switch to the direction
of minor axis. We then compare for each planar shape its projected area with respect to the reference
direction, and accumulate these areas in a distribution, with a range of angles

[
0, π2

]
. In addition to

the orientation distribution, we add to the feature vector the aspect ratio of the oriented bounding box
computed as the length of the major axis divided by the length of the longest diagonal.

4.5 Transversality
Transversality is a notion that describes how shapes intersect. In our context transversality also reflects
the structure of an object. A compact object, like a drawer or a bottle, exhibits a low transversality while
a bookshelf exhibits a high transversality. We compute the transversality of planar shapes by quantifying
the relative positioning of all pairs of shapes that are adjacent. Two adjacent shapes that do not meet at
their boundary are considered transverse. Given two adjacent planar shapes A and B, we compute the

Inria
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transversality T (A,B) as the (smallest) ratio of areas ofA on both sides of the supporting plane ofB. For
each pair of shapes (A,B) we compute the maximum transversality between T (A,B) and T (B,A). We
then compute a transversality distribution with range

[
0, 12

]
, and accumulate in the bins the normalized

products of areas for all pairs of adjacent shape. We opt for a small number of bins to avoid confusing
low transversality and detection inaccuracies.

5 Random Forest
Classification via supervised machine learning is performed in two phases. In the training phase a set
of feature vectors with associated class labels is used to train a classifier. We choose random forests
as machine learning approach, as it is general and effective on many classification problems. It is fast
in training as well as in classification and can be parallelized. We use the implementation provided by
OpenCV[4]. Random forests operate by constructing a multitude of decision trees. Decision trees are
built by choosing the most discriminative feature, i.e., the element in the feature vector, as a node to
separate the training data according to their known class labels. Decision trees are known to overfit,
i.e., to adapt to small variations and noise in the training data. Random forests overcome this issue by
creating a large number of decision trees. For each decision tree a random subset of the training data
is chosen and on each node only a random subset of the features are used. Additionally, the maximum
depth of the trees can be limited. The classification is performed as a voting. The feature vector of an
unknown object is evaluated on each tree and the predicted label corresponds to the most voted label.
Random forests aim at providing the highest prediction performance for the training data set. Choosing
an imbalanced training set, where the number of training samples for each object class varies, can lead to
a poor prediction performance for the underrepresented classes. The classifier can afford or sometimes
even exhibit a higher prediction performance by neglecting the minority classes. There are different ways
to improve the performance. A common and effective way is to downsample overrepresented classes
instead of upsampling the minority classes as this may increase noise [7].

6 Experiments
We implemented our approach in C++ using the CGAL Library[6], OpenCV [4] and the efficient RANSAC
approach implemented by Schnabel [25]. The size of the feature vectors are as follows: 8 bins for the area
fragmentation distribution, 10 bins for the pairwise orientation and pairwise adjacent orientation distribu-
tions and 5 bins for the orientation and transversality distributions. We achieved the best results for three
different scales. This sums up to a feature vector size of dimension 115, including the oriented bounding
box ratio.

Object Databases. We perform the evaluation of our classifier on a subset of the Princeton Shape
Benchmark [1], see Fig. 4. A subset of the full dataset is used as many objects do not belong to the
indoor environment. We select 100 objects from 8 different object classes that are common to indoor
scenes: Bottle, Chair, Couch, Lamp, Mug, Shelf, Table and Vase. Each model in the object database is
sampled into a point cloud by ray shooting, and oriented into a random direction to evaluate invariance to
orientation. The calculated set of features is split into two sets: 60% for training and 40% for evaluation.
To avoid a bias towards overrepresented classes, we remove samples until every class is represented
evenly. On the benchmark we achieve a precision of 82, 5%. The confusion matrix records which are
predicted for the objects of one class. Misclassifications occur more often among the objects with curved
surfaces. However, the classification of furniture is precise.

Our method is also evaluated from scanned indoor objects, see Fig. 5. Contrary to the previous
experiment, the input point clouds are incomplete and suffer from anisotropy, noise and outliers due to
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10 Oesau & Lafarge & Alliez

Figure 4: Benchmark. We compared the performance of our method with the performance of the D2 by
Osada et al.[21] and ESF by Wohlkinger et al.[28] shape descriptors on a subset of the Princeton Shape
Benchmark [1] (top left) with different added amounts of noise and outliers (top right). The results of
each method are shown as confusion matrices in the columns: ours (left), D2 (mid), ESF (right) under
added defects in the rows: no added defects (top), 0.5% noise and 10% outliers (mid), 1% noise and 20%
outliers (bottom). The precision of our method is (a) 82, 5% without added defects, (d) 77, 5% with some
defects and (g) 70% with more defects. The D2 shape descriptor by Osada et al.[21] performs with (b)
75%, (e) 67, 5% and (h) 62, 5% respectively. The ESF shape descriptor reveals more sensitive to noise
and outliers as the precision drops quickly with increasing amounts of defects: (c) 72, 5%, (f) 55% and
(i) 45%.

Inria



Object Classification via Planar Abstraction 11

acquisition constraints. 20 objects from two different classes, i.e., chair and non-chair, are considered.
The training was performed on the scanned indoor objects from randomly chosen 60%, i.e., 12 samples.
The classification of the remaining 8 objects predicted correct labels for all chairs and misclassified one
non-chair object. The overall precision is 87, 5%.

Feature importance. Random forest can record the importance of each feature after training. The im-
portance describes the relevance of the feature for separating the class labels during the training process.
Table 1 shows the feature importance for evaluation with the Princeton Shape Benchmark. The most rel-
evant feature is the pairwise orientation histogram. The least meaningful feature for the Princeton Shape
Benchmark is the transversality, yet it improves the precision. The importance for each scale shows,
that the multiscale approach provides a significant advantage for classification. The shape detection on
the fine scale, i.e. with a small fitting tolerance, typically results in the highest number of shapes, but
contributes the most information for classification. However, every scale contributes to the classification
performance, increasingly from coarse to fine. The transversality at coarse scale provides no significant
contribution. Using a high fitting tolerance for non-simple objects leads to overlapping and intersection
of detected shapes and induces meaningless transversality.

Figure 5: Indoor objects. We acquired 20 indoor objects with a Leica Scanstation P20 laser scanner.
The sampling of the objects is heterogeneous and partly suffers from anisotropy. The lower 10 objects
are labeled as chairs whereas the upper ten objects are labeled as non chairs.
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12 Oesau & Lafarge & Alliez

Table 1: Feature importance in the classifier by using the Princeton Shape Benchmark. In addition to
the histogram features per scale there is the oriented bounding box ratio as a single scalar feature with
importance 11.6%.

Area Pairwise Adjacent pairwise Orientation Transversality Total
fragmentation orientation orientation

Coarse scale 3.3% 9.6% 5% 1.9% 0.3% 20.1%
Medium scale 5.8% 14.3% 6.6% 2.4% 2.1% 31.2%
Fine scale 6.4% 15.1% 6.8% 4.7% 4.1% 37%
All scales 15.5% 39% 18.4% 9% 6.5% 88.4%

Robustness. To evaluate the robustness of our method, we use the Princeton Shape Benchmark as
before, but add noise and outliers before performing the multiscale shape detection. The performance
under addition of strong noise is shown as confusion matrices in Fig 4. We performed two experiments
and added 10% (20%) outliers and 0.5% (1%) noise w.r.t. bounding box diagonal, see upper right images
in Fig. 4. The precision of our classifier is 77, 5% and 70% respectively.

Comparison with existing work. We tested our algorithm against two other global point-based shape
descriptors [21, 28]. We implemented the D2 shape descriptor introduced by Osada et al.[21] using a
64-bin histogram and 20k samples. Instead of performing pairwise comparison of shape descriptors for
classification as proposed by Osada et al., we use a random forest as for our approach. We also compare
with the ESF shape descriptor using the implementation provided by the Point Cloud Library [22]. We
performed the same experiments with varying noise and outliers, see Fig. 4. The classifier using D2
shape descriptor yields a precision of 75% on a noise and outlier free sampling, compared to 72, 5% by
the ESF shape descriptor and 82, 5% by our method. Under addition of 0.5% noise and 10% outliers
the performance of our methods slightly drops to 77, 5% whereas the point-based descriptors exhibits
a stronger loss of precision: 67, 5% by D2 and 55% by EFS. A further addition of noise challenges
especially the ESF shape descriptor whose performance falls to 45%, while D2 reaches 62, 5% and our
method still provides the strongest performance with 70% precision. Our method shows an advantage of
our feature set over the other shape descriptors by not just showing a higher precision but also through
higher robustness against defect-laden data. The abstraction of point data by planar shapes provides
robustness towards noise and outliers. Point-based shape descriptors provide some robustness against
noise as shown by Osada et al., however, they are prone to outliers as our experiments records.

Performance. As recorded by Tab. 2, feature computation is the most compute-intensive operation of
our approach. The timing is however reasonable as only a few minutes are necessary to compute all the
features of the hundred objects of the Princeton dataset, which represent a total of 25M input points. The
timings for learning and testing phases are negligible.

Table 2: Running times (in seconds).
Feature computation Learning Testing

Princeton 232.4 0.11 < 10−3

(8 classes)
Indoor 1.82 0.02 < 10−3

(2 classes)

Inria



Object Classification via Planar Abstraction 13

Limitations. Our method assumes that the input objects have been preliminarily extracted from its
environment. Although this problem has been explored in depth in the literature, there is still no general
solution that separates objects from scanned scenes with a 100% correctness. In terms of robustness, our
method is less resilient to missing data than to noise, outliers and heterogeneous sampling.

7 Conclusions
We introduced a novel method for classifying objects from sampled point data. Departing from previous
approaches, our method exploits a planar abstraction to discriminate the different classes of interest.
Planar shapes are easy to detect and and manipulate, and allow for a compact object representation,
typically a few dozen planar shapes instead of hundred thousands of points. This approach offers several
added values in terms of (i) robustness, (ii) orientation and scale invariance, and (iii) low computational
complexity.

As future work we plan to explore additional geometric features with improved robustness to missing
data. We also wish to extend our abstraction to richer geometric primitives such as quadrics in order
to better classify free-form objects. This new direction may however require designing an altogether
different set of geometric features to discriminate the classes of interest.
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