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Caractérisation du temps polynomial par la mémoïzation
de programmes logiques unaires

Résumé : Une caractérisation abstraite du temps polynomial est donnée par une structure
algébrique nommée le semi-anneau de résolution, dont les éléments peuvent être vus comme des
programmes logiques ou des ensembles de règles de ré-écriture sur des termes du premier ordre.

Plus précisément, nous étudions la restriction de cette structure à des termes (et aux
programmes logiques ou règles de ré-écriture correspondantes) employant uniquement des symboles
unaires. Nous démontrons la complétude de ce système pour le temps polynomial grâce à un codage
des automates à pile. Nous introduisons ensuite la contre-partie algébrique de la mémoïzation
pour démontrer la correction pour le temps polynomial.

Cette approche et ces résultats en termes de complexité sont ensuite appliqués aux programmes
logiques. Une conséquence de notre approche est la complétude par rapport au temps polynomial
d’une classe de requêtes en programmation logique n’employant que des symboles unaires.

Mots-clés : Complexité implicite, Résolution, Programmation logique, Temps polynomial,
Théorie de la démonstration, Automates à piles, Géométrie de l’intéraction
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1 Introduction

Complexity theory focuses on questions related to resource usage of computer programs, such as
the amount of time or memory a given program will need to solve a problem.

Complexity classes are defined as sets of problems that can be solved by algorithms whose
executions need comparable amounts of resources. For instance, the class Ptime is the set of
predicates over binary words that can be decided by a Turing machine implementing an algorithm
whose execution time is bounded by a polynomial in the size of its input.

However, these definitions depend on the notion of machine and cost-model considered, for
the efficiency of an algorithm is sensible to these. The “invariance thesis” [22] is a way to bypass
this limitation by defining what “a reasonable model” is: all the “reasonable” models (endowed
with cost models) can simulate each other with a “reasonable” overhead. The bootstrap for this
notion to apply largely was to remark that polynomial bounds on execution time are robust, as
the class of problems captured by different models where this bound coincide. The definition is
still machine-dependent, but not dependent of a particular model of computation.

One of the main motivations for an implicit computational complexity (ICC) theory is to
find completely machine-independent characterizations of complexity classes. The aim is to
characterize classes not “by constraining the amount of resources a machine is allowed to use,
but rather by imposing linguistic constraints on the way algorithms are formulated.” [15, p. 90]
This has been already achieved via different approaches, one of which is based on considering
restricted programming languages or computational principles [12, 36, 38].

A number of results also arose from proof theory through the study of subsystems of linear
logic [28]. More precisely, the Curry-Howard —or proofs as programs — correspondence expresses
a deep relation between formal proofs and typed programs. For instance, one can define a
formula Nat which corresponds to the type of binary integers, in the sense that a given (cut-free,
i.e. normal, already evaluated) proof of this type represents a given natural number. A proof of
the formula Nat⇒ Nat then corresponds to an algorithm computing a function from integers
to integers, where the computation itself amounts to a rewriting on proofs: the cut-elimination
procedure.

By restricting the rules of the logical system, one obtains a subsystem where less proofs
of type Nat ⇒ Nat can be written, hence less algorithms can be represented. In a number
of such restricted systems the class of accepted proofs, i.e. of programs, corresponds1 to some
complexity class: elementary complexity [27, 18], polynomial time [35, 11], logarithmic [16] and
polynomial [23] space.

More recently, new methods for obtaining implicit characterizations of complexity classes
based on the geometry of interaction (GoI) research program [30] have been developed. The GoI
approach offers a more abstract and algebraic point of view on the cut-elimination procedure of
linear logic. One works with a set of untyped programs represented as some geometric objects,
e.g. graphs [17, 42] or generalizations of graphs [41], bounded linear maps between Hilbert spaces
(operators) [25, 24, 40], clauses (or “flows”) [26, 9]. This set of objects is then considered together
with an abstract notion of execution, seen as an interactive process: a function does not process
a static input, but rather communicate with it, asking for values, reading its answers, asking for
another value, etc.

Types can then be defined as sets of program representations sharing comparable behaviors.
For instance the type Nat⇒ Nat is the set of untyped programs which, given an integer as input,
produce an integer as output.

1We mean extensional correspondence: they compute the same functions.
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4 Clément Aubert, Marc Bagnol, Thomas Seiller

This approach based on the GoI differs from previous ICC works using linear logic in that
they do not rely on a restriction of some type system, but rather on a restriction on the set of
program representations considered. Still, they benefit from previous works in type theory: for
instance the representation of integers used here comes from their representation in linear logic,
translated in the GoI setting, whose interactive point of view on computation has proven crucial
in characterizing logarithmic space computation [16].

The first results that used those innovative considerations were based on operator algebras [29,
6, 7]. Here we consider a more syntactic flavor of the GoI where untyped programs are represented
in the so-called resolution semiring [9], a semiring based on the resolution rule [39] and a specific
class of logic programs. This setting presents some advantages: it avoids the involvement of
operator algebras theory, it eases the discussions in terms of complexity (we manipulate first-order
terms, which have natural notions of size, height, etc.) and it offers a straightforward connection
with complexity of logic programming [20].

Previous works in this direction led to characterizations of logarithmic space predicates
Logspace and co-NLogspace [4, 5], by considering for instance restrictions on the height of
variables.

Our main contribution here is a characterization of the class Ptime by studying a natural
restriction, namely that one is allowed to use exclusively unary function symbols. Pushdown
automata2 are easily related to this simple restriction, for they can be represented as logical
programs satisfying this “unarity” restriction. This will imply the completeness of the model
under consideration for polynomial time predicates.

We then complete the characterization by showing that any such unary logic program can
be decided in polynomial time. This part of the proof consists in an adaptation of S. Cook’s
memoization technique [14] to the context of logic programs.

The last part of the paper presents consequences of these results in terms of complexity of
logic programming, namely that the corresponding class of queries are Ptime-complete, when
considering combined complexity [20, p. 380].

Compared to other ICC characterizations of Ptime, and in particular those coming from
proof theory, our results have a simple formulation and provide an original point of view on
complexity classes.

A byproduct of this work is to provide a method to test membership in Ptime: if one can
rephrase a problem with clauses H a B using only unary function symbols, then our result
ensures that the problem lies in Ptime. Conversely if a problem cannot be rephrased that way, it
lies outside of Ptime.

1.1 Outline of the paper

We begin by giving in Sect. 2.1 the formal definition of the resolution semiring; then briefly
explain how words can be represented in this structure (Sect. 2.2) and recall the characterization
of logarithmic space obtained in earlier work (Sect. 2.3). In Sect. 2.4 we introduce the restricted
semiring that will be under study in this paper: the Stack semiring.

The next two sections are respectively devoted to the completeness and soundness results for
Ptime. For completeness, we first review the fact that multi-head finite automata with pushdown
stack characterize Ptime and review the memoization technique in this case (Sect. 3.1), and then
show how to represent them as elements built from the Stack semiring (Sect. 3.2). The soundness
result is then obtained by adapting memoization to the Stack semiring. This adaptation, which

2More precisely, 2 -way k -head non-deterministic finite automata with pushdown stack. See Sect. 3.1.1.

Inria
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we call the saturation technique, is introduced in Sect. 4.1.
In the last section, we formulate our results in terms of complexity of logic programming. In

particular, we explain how elements of the Stack semiring can be seen as a particular kind of
unary logic programs to which the saturation technique can be applied. This allows us to show
that the combined complexity problem for unary logic program is Ptime-complete.

As an illustration, we show in Sect. 5.2 that the circuit value problem can be solved with this
method.

2 The Resolution Semiring

2.1 Flows and Wirings

Let us begin with some reminders and notations on first-order terms and unification theory.

Notation 2.1 (terms). We consider first-order terms, written t, u, v, . . . , built from variables
and function symbols with assigned finite arity. Symbols of arity 0 will be called constants.

Sets of variables and of function symbols of any arity are supposed infinite. Variables will be
noted in italics font (e.g. x, y ) and function symbols in typewriter font (e.g. c, f(·), g(·, ·)).

We distinguish a binary function symbol • (in infix notation) and a constant symbol ? . We
will omit the parentheses for • and write t•u•v for t•(u•v) .

We write var(t) the set of variables occurring in the term t and say that t is closed if
var(t) = ∅ . The height h(t) of a term t is the maximal distance between its root and leaves; a
variable occurrence’s height in t is its distance to the root.

We will write θt the result of applying the substitution θ to the term t and will call renaming
a substitution α that bijectively maps variables to variables.

We will be concerned with formal solving of equations of the form t = u where t and u are terms.
Let us introduce a precise formulation of this problem and some associated vocabulary.

Definition 2.2 (unification, matching and disjointness). Two terms t, u are:
◦ unifiable if there exists a substitution θ —a unifier of t and u — such that θt = θu . If any
other unifier of t and u is an instance of θ , we say θ is the most general unifier (MGU) of t
and u ;

◦ matchable if t′, u′ are unifiable, where t′, u′ are renamings of t, u such that var(t′)∩var(u′) =
∅ ;

◦ disjoint if they are not matchable.

A fundamental result of unification theory is that when two terms are unifiable, a MGU exists
and is computable. More specifically, the problem of deciding whether two terms are unifiable is
Ptime -complete [21, Theorem 1].

The notion of MGU allows to formulate the resolution rule, a key concept of logic programming
that defines the composition of Horn clauses (expressions of the form H a B1, . . . , Bn ):

V a T1, . . . , Tn
H a B1, . . . , Bm, U

var(U) ∩ var(V ) = ∅
θ is a MGU of U and V

Res
θH a θB1, . . . , θBm, θT1, . . . , θTn

Note that the condition on variables implies that we are matching U and V rather than
unifying them. In other words, the resolution rule deals with variables as if they were bounded.

RR n° 8796



6 Clément Aubert, Marc Bagnol, Thomas Seiller

From this perspective, “flows” —defined below— are a specific type of Horn clauses H a B ,
with exactly one formula B on the right of a and all the variables of H already appearing in
B . The product of flows will be defined as the resolution rule restricted to this specific type of
clauses.

Definition 2.3 (flow). A flow is an ordered pair f of terms f := t↼ u , with var(t) ⊆ var(u) .
Flows are considered up to renaming: for any renaming α , t↼ u = αt↼ αu .

A flow t ↼ u can also be understood as a rewriting rule over the set of first-order terms. For
instance, the flow g(x) ↼ f(x) corresponds to the following rewriting rule: terms of the form
f(v) where v is a term are rewritten as g(v) and all other terms are left unchanged.

We will soon define the product of flows which provides a way of composing them; from the
term-rewriting perspective, this operation corresponds to composing two rules —when possible,
i.e. when the result of the first rewriting rule allows the application of the second— into a single
one.

For instance, one can compose the flows f1 := h(x) ↼ g(x) and f2 := g(x) ↼ f(x) to produce
the flow f1f2 = h(x) ↼ f(x) . Notice by the way that this (partial) product is not commutative
as composing these rules the other way around is impossible, i.e. f2f1 is not defined.

Definition 2.4 (product of flows). Let t ↼ u and v ↼ w be two flows. Suppose we picked
representatives of the renaming classes such that var(u) ∩ var(v) = ∅ .

The product of t↼ u and v↼ w is defined when u and v are unifiable, with MGU θ , as
(t↼ u)(v↼ w) := θt↼ θw .

We now define wirings, which are simply finite sets of flows and therefore correspond to logic
programs. From the term-rewriting perspective they are just sets of rewriting rules. The definition
of product of flows is naturally lifted to wirings.

Definition 2.5 (wiring). A wiring is a finite set of flows. Their product is defined as FG :=
{ fg | f ∈ F, g ∈ G, fg defined } . The resolution semiring R is the set of all wirings.

The set of wirings R indeed enjoys a structure of semiring.3 We will use an additive notation for
sets of flows to highlight this situation:

◦ The symbol + will be used in place of ∪ , and we write sets as sums of their elements:
{ f1, . . . , fn } := f1 + · · ·+ fn .

◦ We denote by 0 the empty set, i.e. the unit of + .

◦ We have a unit for the product, the wiring I := x ↼ x .

As we will always be working within R , the term “semiring” will be used instead of “subsemiring
of R”.

Finally, let us recall the notion of nilpotency in a semiring and extend the notion of height (of
terms) to flows and wirings.

Definition 2.6 (height). The height h(f) of a flow f = t↼ u is defined as max{h(t), h(u)} .
A wiring’s height is defined as h(F ) = max{ h(f) | f ∈ F } . By convention h(0) = 0 .

3A semiring is a set R equipped with two operations + (the sum) and × (the product, whose symbol is
usually omitted), and an element 0 ∈ R such that: (R,+, 0) is a commutative monoid; (R,×) is a semigroup,
i.e. a monoid which may not have a neutral element; the product distributes over the sum; the element 0 is
absorbent: 0r = r0 = 0 for all r ∈ R .

Inria
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Definition 2.7 (nilpotency). A wiring F is nilpotent —written Nil(F ) — if and only if
Fn = 0 for some n .

The above classical notion from abstract algebra has a specific reading in our case of study. In
terms of logic programming, it means that all chains obtained by applying the resolution rule to
the set of clauses we consider cannot be longer than a certain bound. From the point of view
of rewriting, it means that the set of rewriting rules we consider is terminating with a uniform
bound on the length of rewriting chains —note however that we consider rewriting that occur
only at the root of terms, while the usual notion from term rewriting systems [8] allows in-context
rewriting.

2.2 Representation of Words and Programs

This section explains and motivates the representation of words as flows. By studying their
interactions with wirings from a specific semiring, notions of program and language are defined.

First, let us see how the binary function symbol • used to construct terms can be extended to
build flows and then semirings.

Definition 2.8. Let u↼ v and t↼ w be two flows. Suppose we have chosen representatives
of their renaming classes that have disjoint sets of variables.

We define (u ↼ v) • (t ↼ w) := u • t ↼ v • w . The operation is extended to wirings by
(
∑
i fi)•(

∑
j gj) :=

∑
i,j fi •gj .

Then, given two semirings A and B , we define the semiring A •B := {
∑
i Fi •Gi | Fi ∈

A , Gi ∈ B } .

The operation indeed defines a semiring because for any wirings F, F ′, G,G′ we have (F •G)(F •
G) = FF ′ •GG′ . Moreover, we carry on the convention of writing A•B •C for A•(B •C) .

Notation 2.9. We write t� u the sum t↼ u + u↼ t .

Definition 2.10 (word representations). From now on, we suppose fixed an infinite set of
constant symbols P (the position constants) and a finite alphabet Σ disjoint from P with ? 6∈ Σ
(we write Σ∗ the set of words over Σ).

Let W = c1 · · · cn ∈ Σ∗ and p = p0, p1, . . . , pn be pairwise distinct elements of P .
Writing pn+1 = p0 and cn+1 = c0 = ? , we define the representation of W associated with

p0, p1, . . . , pn as the following wiring:

W̄p =

n∑
i=0

ci •r•x •y •head(pi)� ci+1 •l•x •y •head(pi+1)

In this definition, the position constants represent memory cells storing the symbols ? , c1 , c2 ,
. . . .

The representation of words is dynamic, i.e. we may think intuitively of movement instructions
from a symbol to the next or the previous (hence the choice of symbols l and r for “left/previous”
and “right/next”) for some kind of automaton reading the input. More details on this will be
given in the proof of Theorem 3.3.

Hence, for a given position constant pi , we use terms ci •r and ci •l which will be linked (by
flows of the representation) to elements ci+1 •l at position pi+1 and ci−1 •r at position pi−1
respectively.

Note moreover that the representation of the input is circular (this is a consequence of using

RR n° 8796



8 Clément Aubert, Marc Bagnol, Thomas Seiller

the Church encoding of words), as we take cn+1 = c0 = ? . Flows representing the word c1 · · · cn
can be pictured as follows:

p0
?•r
?•l

p1
c1 •r
c1 •l

p2
c2 •r
c2 •l

. . .

pn
cn •r
cn •l

On the other hand, the notion of observation will be the counterpart of a program in our
construction. We first give a general definition, that will be instantiated later to classes of
observations that characterize specific complexity classes. The important point here is that we
forbid an observation to use any position constant, in order to have it interact the same way with
all the representations W̄p of a word W .

Definition 2.11 (observation semiring). We define the semirings P⊥ of flows that do not
use the symbols in P ; and Σlr the semiring generated by flows of the form c •d ↼ c′ •d′ with
c, c′ ∈ Σ ∪ {?} and d, d′ ∈ {l, r} .

We define the semiring of observations as:

O := (Σlr •R) ∩ P⊥

and the semiring of observations over the semiring A as

O[A ] := (Σlr •A) ∩ P⊥

The following theorem is a consequence [9, Theorem IV.5] of the fact that observations cannot
use position constants.

Theorem 2.12 (normativity). Let W̄p and W̄q be two representations of a word W and O
an observation.

Then Nil(OW̄p) if and only if Nil(OW̄q) .

With this theorem, we can safely define how a word can be accepted by an observation: the
notion is independent of the specific choice of a representation of position constants.

Definition 2.13 (accepted language). Let O be an observation. We define the language
accepted by O as

L(O) := {W ∈ Σ∗ | ∀p, Nil(OW̄p) }

2.3 Balanced Flows and Logarithmic Space

In previous work [5], we investigated the semiring of balanced wirings, that are defined as sets of
balanced —or “height-preserving” — flows.

Definition 2.14 (balance). A flow f = t ↼ u is balanced if for any variable x ∈ var(t) ∪
var(u) , all occurrences of x in both t and u have the same height (recall notations p. 5). A
balanced wiring F is a sum of balanced flows.

We write Rb for the set of balanced wirings.

Definition 2.15 (balanced observation). A balanced observation is an element of O[Rb •

Rb ] .

This natural restriction was shown to characterize logarithmic space computation [5, Theorems
34-35].

Inria
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Theorem 2.16 (balance and logarithmic space). If O is a balanced observation, then
L(O) ∈ co-NLogspace . If L ∈ co-NLogspace then there exists a balanced observation such
that L(O) = L .

It also appears that a natural subclass of balanced wirings characterizes DLogspace, the class of
deterministic logarithmic space computable predicates.

2.4 The Stack Semiring

This paper deals with another restriction on flows, namely the restriction to unary flows, i.e. flows
defined from unary function symbols only. The semiring of wirings composed only of unary flows
is called the Stack semiring, and will be shown to characterize polynomial time computation.
Here we briefly give the definitions and results about this semiring that will be needed in this
paper. A more complete picture can be found in the second author’s Ph.D. thesis [9].

Definition 2.17 (unary flows). A unary flow is a flow built using only unary function symbols
and a variable.

The semiring Stack is the set of wirings of the form
∑
i ti ↼ ui where the ti ↼ ui are unary

flows.

Example 2.18. The flows f(f(x )) ↼ g(x ) and x ↼ g(x ) are unary, while x • f(x) ↼ g(x) and
f(c) ↼ x are not.

Notation 2.19 (stack operations). If τ = g1, . . . , gn is a finite sequence of unary function
symbols and t is a term, we write τ(t) := g1

(
g2(· · · gn(t) · · ·

)
. We will write τσ the concatenation

of the sequences τ and σ . Given two sequences τ and σ we define the flow opτ, σ := τ(x) ↼ σ(x)
which we call a stack operation.

Note that, by definition, an element of the Stack semiring must be a sum of stack operations.
The notion of cyclic flow is crucial in the proof of the characterization of polynomial time

computation. As we will see, it is complementary to the nilpotency property for elements of
Stack , i.e. a wiring in Stack will be shown to be either cyclic or nilpotent.

Definition 2.20 (cyclicity). A flow t↼ u is a cycle if t and u are matchable (Definition 2.2).
A wiring F is cyclic if there is a k such that F k contains a cycle.

For ~s = f1, . . . , fn a sequence of stack operations, define:

◦ its height as h(~s) := maxi
{
h(fi)

}
◦ its cardinality4 Card(~s) := Card{ fi | 1 ≤ i ≤ n } .

◦ its product p(~s) as f1 · · · fn .

We say the sequence ~s is cyclic if there is a sub-sequence ~si,j = fi, . . . , fj (1 ≤ i ≤ j ≤ n) such
that p(~si,j) is a cycle.

Remark 2.21. A flow f is a cycle iff f2 6= 0 .

To carry on the proof evoked above that cyclicity and nilpotency are complementary notions
in Stack , we borrow a result from an earlier work about GoI and complexity in the context of
an algebra of Horn clauses.

4Note that the cardinality of ~s is not necessarily equal to the length of ~s . For instance, if ~s = f1, f1, f2 with
f1 6= f2 then Card(~s) = 2 .

RR n° 8796



10 Clément Aubert, Marc Bagnol, Thomas Seiller

Lemma 2.22 (acyclic sequence [10, lemma 5.3]). If ~s is an acyclic sequence of stack
operations, then we have

h
(
p(~s)

)
≤ h(~s)(Card(~s) + 1)

The following property says that cycles in Stack can be iterated indefinitely, i.e. a stack operation
opτ, σ such that (opτ, σ)2 6= 0 is never nilpotent.

Proposition 2.23. If a stack operation f is a cycle, then fn 6= 0 for all n .

Remark 2.24. This does not hold for general flows. For instance, f = x •c↼ d•x is a cycle
because f2 = c•c↼ d•d 6= 0 (by Remark 2.21), but f3 = (x •c↼ d•x )(c•c↼ d•d) = 0 .

Theorem 2.25 (nilpotency in Stack ). A wiring F ∈ Stack is nilpotent iff it is acyclic.

Proof I Suppose F is not nilpotent, so that there is at least one stack operation in Fn for
any n , and let S be the number of different function symbols appearing in F . Set k :=
(Sh (F )(Card(F )+1) +Sh (F )(Card(F )+1)−1 + · · ·+ 1)2 , i.e. the total number of different flows of height
at most h (F )(Card(F ) + 1) using the symbols appearing in F .

Let f 6= 0 be an element of F k+1 . It is the product p (~s) of a sequence ~s = f1, . . . , fk+1 of
stack operations that belong to F . We show by contradiction that this sequence must be cyclic,
so let us suppose it is not. By Lemma 2.22, we know that for any i > 0 , setting ~si := f1, . . . , fi
we have

h
(
p (~si)

)
≤ h (~si)(Card(~si) + 1) ≤ h (F )(Card(F ) + 1)

Therefore, for any i > 0 the flow p (~si) is of height at most h (F )(Card(F ) + 1) and uses only
symbols appearing in F , i.e. it wanders in a set of cardinal k , so there must be 1 ≤ i < j ≤ k+ 1
such that p (~si) = p (~sj) .

Now, setting ~si+1,j := fi+1, . . . , fj , we have that p (~si)p (~si+1,j) = p (~sj) = p (~si) hence
p (~si)p (~si+1,j)

2 = p (~si) 6= 0 and thus p (~si+1,j)
2 6= 0 i.e. p (~si+1,j) is a cycle. As p (~si+1,j) ∈ F j−i

we can conclude that F is cyclic.
The converse is an immediate consequence of Proposition 2.23. J

Example 2.26. Consider the wiring

F := f1(x) ↼ f0(x)
+ f0(f1(x)) ↼ f1(f0(x))
+ f0(f0(f1(x))) ↼ f1(f1(f0(x)))
+ f0(f0(f0(x))) ↼ f1(f1(f1(x)))

which implements a sort of counter from 0 to 7 in binary notation that resets to 0 when it reaches
8 (we see the sequence fxfyfz as the integer x+2y+4z ). It is clear with this intuition in mind that
this wiring is cyclic. Indeed, an easy computation shows that f0(f0(f0(x))) ↼ f0(f0(f0(x))) ∈ F 8 .

If we lift this example to the case of a counter from 0 to 2n − 1 that resets to 0 when it
reaches 2n , we obtain an example of a wiring F of cardinal n and height n− 1 such that F 2n

contains a cycle, but F 2n−1 does not. This shows that the number of iterations needed to find a
cycle may be exponential in the height and the cardinal of F , which rules out a polynomial time
decision procedure for the nilpotency problem that would simply compute the iterations of F
until it finds a cycle in it.

Finally, let us define a new class of observations, based on the Stack semiring.

Definition 2.27. A balanced observation with stack is an element of Ob+s := O[Stack •Rb ] .

Inria



Memoization for Unary Logic Programming: Characterizing Ptime 11

3 Pushdown Automata and Ptime Completeness

3.1 Characterization of Ptime by Pushdown Automata

The class of deterministic polynomial time computable predicates Ptime is the most studied
complexity class, mainly because it supposedly contains all “tractable” problems.

Extending our approach to this class was a long-standing goal, whose completeness part is
attained thanks to the connection with pushdown automata. In this subsection, we recall their
definition, the Ptime characterization theorem we will rely on and the memoization technique.

3.1.1 Definition and classical results

Automata form a very basic model of computation that can be extended in different ways. For
instance, allowing multiple heads that can move in two directions on the input tape, one gets a
model of computation equivalent to read-only Turing machines.

Among possible extensions, our interest will focus on the addition of a “pushdown stack”
(together with multiple heads), which we referred to as “pushdown automata” until now. We will
see that this leads to a characterization of Ptime.

Let us give below the most general definition, for the non-deterministic case.

Definition 3.1 (2MFA+S). For k > 1 , a 2-way k -head finite automaton with pushdown
stack (2MFA+S(k)) is a tuple M = {S, i, A,B,B,C,�, σ} where:

◦ S is the finite set of states, with i ∈ S the initial state;

◦ A is the input alphabet, B the stack alphabet;

◦ B and C are the left and right endmarkers, B,C/∈ A ;

◦ � is the bottom symbol of the stack, � /∈ B ;

◦ σ is the transition relation, i.e. a subset of the product (S×(A./})k×B�)×(S×{−1, 0,+1}k×
{pop, push(b)}) where A./ (resp. B� ) denotes A∪ {B,C} (resp. B ∪ {�}). The instruction
−1 corresponds to moving the head one cell to the left, 0 corresponds to keeping the head on
the current cell and +1 corresponds to moving it one cell to the right. Regarding the pushdown
stack, the instruction pop means “erase the top symbol”, while, for all b ∈ B , push(b) means
“write b on top of the stack”.

The automaton rejects the input if it loops, otherwise it accepts. This condition is equivalent to
the standard way of defining acceptance and rejection by “reaching a special state” [33, Theorem 2,
p. 125]. Modulo another standard transformation, we restrict the transition relation so that at
most one head moves at each transition.

Without pushdown stacks, 2-way k -head finite automata characterize Logspace and
NLogspace , depending on the automata being deterministic or not.

This result, used in our previous work [5, 7], was first stated informally by Juris Hartmanis [32,
pp. 338–339] and is often [13, p. 13], [32, pp. 338–339], attributed to Alan Cobham. However, a
detailed proof can be found in a classical handbook [43, pp. 223–225]. The addition of a pushdown
stack improves the expressivity of the machine model, as stated in the following theorem.

Theorem 3.2. 2MFA+S characterize Ptime.

RR n° 8796



12 Clément Aubert, Marc Bagnol, Thomas Seiller

Without reproving this classical result of complexity theory, we review the main ideas that support
it.

Simulating a polynomial-time Turing machine with a 2MFA+S amounts to designing
an equivalent Turing machine whose movements of heads follow a regular pattern. That permits
to seamlessly simulate their contents with a pushdown stack. A complete proof [13, pp. 9–11] as
well as a precise algorithm [43, pp. 238–240] can be found in the literature.

Simulating a 2MFA+S with a polynomial-time Turing machine cannot amount to
simply simulate step-by-step the automaton with the Turing machine. The reason is that for any
automaton, one can design an automaton that recognizes the same language but runs exponentially
slower [1, p. 197]. That the automaton can accept its input after an exponential computation
time is similar with the situation of the counter in Example 2.26.

The technique invented by Alfred V. Aho et al. [1] and made popular by Stephen A. Cook
consists in building a “memoization table” that allows the Turing machine to create shortcuts in
the simulation of the automaton, decreasing drastically its computation time. In some cases, an
automaton with an exponentially long run can even be simulated in linear time [14].

We give more details on this technique in the next subsection, as its adaptation to our context
will be a key ingredient in the soundness proof in Sect. 4.

3.1.2 The memoization technique

Although the name comes from machine-learning [37], this technique is usually attributed to
S. A. Cook and has provided fundamental as well as practical results. In the specific case of
automata with stack, it can be condensed in the following remark: if at a given time you are in
state q with b on top of a stack of height h > 1 , and if you end up later on in the state q′ with
some symbol b′ on top of a stack of height h , without having popped a symbol at height inferior
to h , and if you are about to pop this symbol, then you can save this progression (q, b)→ (q′, b′) .
If later on you find yourself in the same state q, with b on top of your stack and with the heads
in the same positions, you can directly skip to the saved progression, as there is no need to
perform this part of the computation again. This “partial information”, the description of your
automaton without the contents of the stack, apart from its top symbol, is sometimes called
“surface configuration” or “partial identifier”.

The memoization technique consists in building and using the transitive closure of the
relation between surface configuration. Differently expressed, memoization is a “clever evaluation
strategy, applicable whenever the results of certain computations are needed more than once” [2,
p. 348]. One looking for subtle refinements could look for a technique of memoization computed
independently from the input, allowing to “compile” a stack program into equivalent online
memoizing program [3] that runs exponentially faster. A nice explanation in the case of single
head automata can be found in a recent and short article by R. Glück [31].

We will be adapting this idea to our context in Sect. 4.1, which will amount to a form of
exponentiation by squaring.

3.2 Encoding 2MFA+S as Observations: Ptime Completeness

The encoding proposed below is similar to the previously developed [5, Sect. 4.1] encoding of
2-way k -head finite automata (without pushdown stack) by flows. The only difference is the
addition of a “plug-in” that allows for a representation of stacks in observations.

Remember that acceptance by observations is phrased in terms of nilpotency of the product
OW̄p of the observation and the representation of the input (Definition 2.13). Hence the
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Memoization for Unary Logic Programming: Characterizing Ptime 13

computation in this model is defined as an iteration: one computes by considering the sequence
OW̄p, (OW̄p)

2, (OW̄p)
3, . . . and the computation either ends at some point (i.e. accepts) — that

is (OW̄p)
n = 0 for some integer n— or loops (i.e. rejects). One can think of this iteration as

representing a dialogue, or a game, between the observation and its input.
We turn now to the proof of Ptime-completeness for the set of balanced observations with

stacks.

Theorem 3.3. If L ∈ Ptime , then there exists a balanced observation with stack O ∈ Ob+s

such that L = L(O) .

Proof I The proof relies on encoding a 2MFA+S(k) M that recognizes L —whose existence is
ensured by Theorem 3.2— as an observation of Ob+s . Taking A = Σ the input alphabet, k + 1
the number of heads of the automaton, we will encode the transition relation of M as a balanced
observation with stack. More precisely, the automaton will be represented as an element OM of
Ob+s = O[Stack •Rb ] which can be written as a sum of flows of the form

c′ •d′ •σ(x)•q′ •auxk(y′1, . . . , y
′
k)•head(z′) ↼

c•d•s(x)•q•auxk(y1, . . . , yk)•head(z)

with

◦ c, c′ ∈ Σ ∪ {?} ,

◦ d, d′ ∈ {l, r} ,

◦ σ a finite sequence of unary function symbols,

◦ s a unary function symbol,

◦ q, q′ two constant symbols,

◦ auxk, head functions symbols of respective arity k and 1 .

The intuition behind the encoding is that a configuration of a 2MFA+S(k + 1) processing an
input can be seen as a closed term

c•d•τ(�)•q•auxk(pi1 , . . . , pik)•head(pj)

where the pi are position constants representing the positions of the main pointer (head(pj)) and
of the auxiliary pointers (auxk(pi1 , . . . , pik)); the symbol q represents the state the automaton is
in; τ(�) represents the current stack; the symbol d represents the direction of the next move of
the main pointer; the symbol c represents the symbol currently read by the main pointer.

When a configuration matches the right side of the flow, the transition is followed, leading to
an updated configuration.

More precisely, we will be encoding M as an observation OM , and observe the iterations of
OMW̄p , its product with a word representation. Let us explain how the basic operations of M
are encoded:
Moving the pointers. Looking back at the definition of the encoding of words (Definition 2.10),
we see that we can have a new reading of what the representation of a word does: it moves the
main pointer in the required direction. From that perspective, the position holding the symbol ?
in Definition 2.10 allows to simulate the behavior of the endmarkers B and C .

On the other hand, the observation is not able to manipulate the position of pointers directly
(remember observations are forbidden to use the position constants) but can change the direction
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14 Clément Aubert, Marc Bagnol, Thomas Seiller

symbol d , rearrange pointers (hence changing which one is the main pointer) and modify its state
and the symbol c accordingly. For instance, a flow of the form

· · ·•auxk(x, . . . , yk)•head(y1) ↼
· · ·•auxk(y1, . . . , yk)•head(x)

encodes the instruction “swap the main pointer and the first auxiliary pointer”.
Note however that our model has no built-in way to remember the values of the auxiliary

pointers — it remembers only their positions as arguments of auxk(· · · ) —, but this can be
implemented easily using additional states.

One can see that it is the interaction between the observation OM and the word representation
W̄p that simulates the behavior of the automaton, and not the observation on its own manipulating
some passive data.
Handling the stack. Suppose we have a unary function symbol b(·) for each symbol b of the
stack alphabet B� .

A transition that reads b and pops it is simply written as

· · ·•x• · · ·↼ · · ·•b(x)• · · ·

A transition that reads b and pushes a symbol c is written

· · ·•c(b(x))• · · ·↼ · · ·•b(x)• · · ·

Changing the state. We suppose that we have a constant q for each state q of M . Then,
updating the state amounts to picking the right q and q′ in the flow representing the transition.
Acceptance and rejection. The encoding of acceptance and rejection is slightly more delicate,
as detailed in a previous article [6, p. 6.2.3.].

The basic idea is that acceptance in our model is defined as nilpotency, that is to say: the
absence of loops. If no transition in the automaton can be fired, then no flow in our encoding can
be unified, and the computation ends.

Conversely, a loop in the automaton will refrain the wiring from being nilpotent. The point we
need to be careful about is the encoding of loops: those should be represented as a re-initialization
of the computation, as discussed in details in earlier work [6]. The reason for this is that another
encoding may interfere with the representation of acceptation as termination: the existence of
a loop in the observation OM representing the automaton M , even one that is not used in the
computation with the input W , prevents the wiring OMW̄p from being nilpotent.

Indeed, the “loop” in Definition 3.1 of 2MFA+S is to be read as “perform forever the same
computation”. J

Notice that the encoding of pushdown automata as observations with stacks produces only
specific observations, namely those that are sums of flows of a particular form (shown at the
beginning of the preceding proof). This is due to the fact that one encodes the transitions directly,
so that each flow corresponds to a transition step.

In particular, as the transition relation of automata depends only on the top of the stack, the
body (i.e. the right-hand part) of the flows must be of the form · · ·•b(x)• · · · . However, a general
observation with stack is not constrained in this way, and allows a more compact representation
of programs where one can read, pop and push several symbols of the stack simultaneously.

Nevertheless, this does not increase the expressive power: the next section is devoted to prove
that the language recognized by any observation with stack lies in Ptime.
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4 Nilpotency in Stack and Ptime soundness

4.1 The Saturation Technique

We now introduce the saturation technique, which allows to decide nilpotency of Stack elements
in polynomial time. This technique relies on the fact that under certain conditions, the height of
flows does not grow when computing their product. It adapts memoization to our setting: we
repeatedly extend the wiring by adding pairwise products of flows, allowing for more and more
“transitions” at each step.

Notation 4.1. Let τ and σ be sequences of unary function symbols.
If h

(
τ(x)

)
≥ h
(
σ(x)

)
we say that opτ, σ is increasing.

If h
(
τ(x)

)
≤ h
(
σ(x)

)
we say that opτ, σ is decreasing.

A wiring in Stack is increasing (resp. decreasing) if it contains only increasing (resp. de-
creasing) stack operations.

Lemma 4.2 (stability of height). Let f = opτ, σ and g = opρ, χ be stack operations. If f is
decreasing and g is increasing, we have h(fg) ≤ max{h(f), h(g)} .

Proof I If fg = 0 , the property holds because h (0) = 0 . Otherwise, we have either σ = ρµ or
σµ = ρ .

Suppose we are in the first case (the second being symmetric). Then we have fg = opτ, χµ
and h (σ) = h (ρµ) .

As g is increasing, h (χ) ≤ h (ρ) and therefore we have h (χµ) ≤ h (ρµ) = h (σ) ≤ h (f) ≤
max{h (f), h (g)} . J

With this lemma in mind, we can define a shortcut operation that augments an element of
Stack by adding new flows while keeping the maximal height unchanged. Iterating this operation,
we obtain a saturated version of the initial wiring, containing shortcuts, shortcuts of shortcuts,
etc.

We are designing in fact an exponentiation by squaring procedure for elements of Stack , the
algebraic reading of memoization.

Definition 4.3 (saturation). If F ∈ Stack we define its increasing F ↑ := {f ∈ F | f is increasing}
and decreasing F ↓ := { f ∈ F | f is decreasing } subsets.

We set the shortcut operation short(F ) := F +F ↓F ↑ and its least fixpoint, which we call the
saturation of F :

satur(F ) :=
∑
n∈N

shortn(F )

where shortn denotes the n th iteration of short .

Now, as we are only manipulating flows with a limited height, the iteration of the shortcut
operation is bound to stabilize at some point.

Proposition 4.4 (stability of saturation). Let F ∈ Stack be a wiring and S the number of
distinct function symbols appearing in F .

For any n , we have h
(
shortn(F )

)
= h(F ) .

Moreover if n ≥ (Sh(F ) + Sh(F )−1 + · · ·+ 1)2 then shortn(F ) = satur(F ) .
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16 Clément Aubert, Marc Bagnol, Thomas Seiller

Proof I By Lemma 4.2 we have

h (F ↓F ↑) ≤ max{h (F ↓), h (F ↑)} = h (F )

Therefore h
(
short (F )

)
= h (F ) , and we get the first property by induction.

For any n , the elements of short n(F ) are stack operations of height at most h (F ) built
from the function symbols appearing in F , therefore short n(F ) is a subset of a set of cardinality
k := (Sh (F ) + Sh (F )−1 + · · ·+ 1)2 . As G ⊆ short (G) for all G , the iteration of short (·) on F
must be stable after at most k steps. J

In the following, we let FPtime be the class of functions computable by Turing machine in
polynomial time. Here we need to specify how the size of a wiring is measured.

Definition 4.5 (size). The size |F | of a wiring F is defined as the total number of function
symbol occurrences in it.

By computing the fixpoint of short (·) we have first a FPtime procedure computing the
saturation.

Corollary 4.6 (computing the saturation). Given any integer h , there is procedure Saturh(·) ∈
FPtime that, given an element F ∈ Stack such that h(F ) ≤ h as an input, outputs satur(F ) .

Moreover, we can obtain a further reduction of the nilpotency problem in Stack related to
saturation.

Lemma 4.7 (rotation). Let f and g be stack operations. Then fg is a cycle iff gf is a cycle.

Proof I If fg is a cycle, then (fg)n 6= 0 for any n by Proposition 2.23. In particular (fg)3 6= 0
and as we have (fg)3 = f(gf)(gf)g we get (gf)2 6= 0 , i.e. gf is a cycle. J

Theorem 4.8 (cyclicity and saturation). An element F of Stack is cyclic (Definition 2.20)
iff either satur(F )↑ or satur(F )↓ is.

Proof I The cyclicity of satur (F )↑ or satur (F )↓ obviously implies that of F because
short (F ) ⊆ F + F 2 , hence satur (F ) ⊆

∑
n∈N F

n .
Conversely, suppose F is cyclic and let ~s = f1, . . . , fn ∈ F be such that the product

p (~s) ∈ Fn is a cycle.
We are going to produce from ~s a sequence of elements of satur (F )↑ or satur (F )↓ whose

product is a cycle. For this we apply to the sequence the following rewriting procedure:

1. If there are fi and fi+1 such that fi is decreasing and fi+1 is increasing, then rewrite ~s as
f1, . . . , fifi+1 , . . . , fn .

2. If step 1 does not apply and ~s = ~s1~s2 (~s1 and ~s2 both non-empty) with all elements of ~s1
increasing and all elements of ~s2 decreasing, then rewrite ~s as ~s2~s1 .

This rewriting procedure preserves the following invariants:

◦ All elements of the sequence are in satur (F ) : step 2 does not affect the elements of the
sequence (only their order) and step 1 replaces the flows fi ∈ satur (F )↓ and fi+1 ∈
satur (F )↑ by fifi+1 ∈ satur (F ) .

◦ The product p (~s) of the sequence is a cycle: step 1 does not alter p (~s) and step 2 does not
alter the fact that p (~s) is a cycle by Lemma 4.7.
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The rewriting terminates as step 1 strictly reduces the length of the sequence and step 2 can never
be applied twice in a row (it can be applied only when step 1 is impossible and its application
makes step 1 possible). Let g1, . . . , gn be the resulting sequence, as it cannot be reduced, the gi
must be either all increasing or all decreasing.

Therefore, by the invariants above g1, . . . , gn is either a sequence of elements of satur (F )↓

or satur (F )↑ such that the product g1 · · · gn is a cycle. J

Finally, we need a way to decide cyclicity of elements of Stack that are either increasing or
decreasing.

Lemma 4.9. Given any integer h , there is a procedure Incrh(·) ∈ Ptime that, given an element
F ∈ Stack which is either increasing or decreasing and satisfying h(F ) ≤ h as an input, accepts
iff F is nilpotent.

Proof I Let S be a set of function symbols and h an integer. We define the truncation wiring
associated to S and h

Th,S :=
∑

τ=f1, ... ,fh∈S

τ(?) ↼ τ(x)

and set for the rest of the proof T := Th (F ),E where E is the set of function symbols occurring
in F .

As it contains only flows of the form τ(?) ↼ σ(x) , i.e. with only one variable, TF is balanced
and can be computed in polynomial time since T is of polynomial size in |F | .

If F is increasing, an easy computation shows that we have (TF )n = TFn . From this, we
deduce that F is nilpotent iff TF is. If F =

∑
i σi(x) ↼ τi(x) is decreasing, we can consider

F † :=
∑
i τi(x) ↼ σi(x) which is increasing and nilpotent iff F is.

Then, as we know [5, p. 54], [9, Theorem IV.12] the nilpotency problem for balanced wirings
to be in co-NLogspace ⊆Ptime, we are done. J

Theorem 4.10 (nilpotency is in Ptime). Given any integer h , there is a procedure Nilph(·) ∈
Ptime that, given a F ∈ Stack such that h(F ) ≤ h as an input, accepts iff F is nilpotent.

Proof I Simply take Nilph(·) = Incrh(Saturh(·)) . By compositionality of Ptime and FPtime
algorithms, this procedure is in Ptime . J

Remark 4.11. All the results we gave in this section are parametrized by a height limit h , but this
is only to ease the presentation. Indeed, it is possible to transform any element of Stack with an
unspecified height into another element of comparable size but of height at most 2 , preserving its
nilpotency.

More precisely: consider a flow l = σ(x) ↼ τ(x) , with σ = f1, . . . , fm and τ = g1, . . . , gn .
Let us introduce new function symbols l

pop
i (·) and l

push
j (·) for 1 ≤ i ≤ m and 1 ≤ j ≤ n . We

can rewrite l as the sum

g1(x) ↼ l
push
1 (x) + l

push
1 (g2(x)) ↼ l

push
2 (x) + · · ·

· · ·+ lpushn (x) ↼ l
pop
1 (x) + · · ·

· · · + l
pop
m−1(x) ↼ lpopm (fm−1(x)) + lpopm (x) ↼ fm(x)

with the idea that instead of popping and pushing several symbols at the same time, we do this
step by step: we push/pop only one symbol and then leave a marker (either l

pop
i (·) or l

push
j (·))

for the next operation to be performed. Moreover, we see that this flow of size (Definition 4.5)
|l| = m + n is transformed in a wiring containing three flows of size 2 (the central and two
extremal ones) and (m− 1) + (n− 1) flows of size 3 ; hence the sum has size 3|l| .
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When dealing with a wiring W , we can do the same by considering one family of lpopi (·) and
l
push
j (·) symbols for each flow l of W . It is not hard to see that the resulting wiring Wflat has

the same behavior as the original one in terms of nilpotency. It is also clear that the height of
Wflat is indeed 2 . Finally, if we started with a wiring W of size N , which is the sum of the sizes
of the flows in it, we get in the end that |Wflat| = 3|W | using the one-flow case above.

This suggests by the way that the bound in Proposition 4.4 is probably too rough, but a way
to sharpen it still needs to be found.

4.2 Ptime Soundness

We will now use the saturation technique to prove that the language recognized by an observation
with stack belongs to the class Ptime. The important point in the proof is that, given an
observation O and a representation W̄p of a word W , one can produce in polynomial time an
element of Stack whose nilpotency is equivalent to the nilpotency of OW̄p . One can then decide
the nilpotency of this element thanks to the procedure described in the previous section.

Proposition 4.12. Let O ∈ Ob+s be an observation with stack. There is a procedure RedO(·) ∈
FPtime that, given a word W as an input, outputs a wiring F ∈ Stack with h(F ) ≤ h(O) such
that F is nilpotent iff OW̄p is for any choice of ~p .

Proof (sketch [9, proposition IV.21]) I The idea is that the product OW̄p can be seen as an
element of Rb •Stack . Then, its balanced part can be replaced in polynomial time by closed
terms without altering the nilpotency in a way similar to what is done to treat the nilpotency of
elements of Rb [5].

We are left with a flow
∑
i ti • σi(x) ↼ ui • τi(x) such that ti ↼ ui is balanced and

σi(x) ↼ τi(x) is a stack operation, and we can associate to each closed ti, ui , unary function
symbols ti(·) , ui(·) , and rewrite our flow as

∑
i ti(σi(x)) ↼ ui(τi(x)) ∈ Stack . J

Theorem 4.13 (soundness). If O ∈ Ob+s is an observation with stack, then L(O) ∈ Ptime .

Proof I We have, using the compositionality of Ptime and FPtime again, that Nilph (O)(RedO(·))
is a decision procedure in Ptime for L(O) . J

5 Unary Logic Programming

In previous sections, we showed how the Stack semiring captures polynomial time computation.
As we already mentioned, the elements of this semiring correspond to a specific class of logic
programs.

We cover in here the consequences in terms of logic programming of the results and techniques
introduced so far. The basic definitions and a list of previously known results — that highlight
the novelty of our result— regarding logic programming can be found in an extensive survey [20].

As an illustration, we show in Sect. 5.2 how the classical boolean circuit value problem
(CVP) [34] can be encoded as a unary logic program, thus providing an alternative proof of its
inclusion in Ptime .

5.1 Unary Queries

Definition 5.1 (data, goal, query). A unary query is a triple Q = (D,P,G) , where:
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◦ D is a set of closed unary terms (a unary data),

◦ P is a an element of Stack (a unary program),

◦ G is a closed unary term (a unary goal).

We say that the query Q succeeds if G a can be derived combining d a for d ∈ D and the
elements of P by the resolution rule exposed in Sect. 2.1, otherwise we say the query fails.

The size |Q| of the query is defined as the total number of occurrences of symbols in it.

To apply the saturation technique directly, we need to represent all the elements of the unary
query (data, program, goal) as elements of Stack . This requires an encoding.

Definition 5.2 (encoding unary queries). We suppose that for any constant symbol c , we
have a unary function symbol c(·) . We also need two unary functions, START(·) and ACCEPT(·) .

To any unary data D we associate an element of Stack :

[D] := { τ(c(x)) ↼ START(x) | τ(c) ∈ D }

and to any unary goal G = τ(c) we associate

〈G〉 := ACCEPT(x) ↼ τ(c(x))

Remark 5.3. The program part P of the query needs not to be encoded as it is already an element
of Stack .

Once a query is encoded, we can tell if it is successful or not using the language of the
resolution semiring.

Lemma 5.4 (success). A unary query Q = (D,P,G) succeeds if and only if

ACCEPT(x) ↼ START(x) ∈ 〈G〉Pn[D] for some n

Then, we can show that the saturation technique applies to the problem of deciding whether a
unary query accepts. The proof uses the saturation technique (Sect. 4.1) to rewrite a sequence of
flows, adding to them “pre-computed” rewriting rules.

Lemma 5.5 (saturation of unary queries). A unary query Q = (D,P,G) succeeds if and
only if

ACCEPT(x) ↼ START(x) ∈ satur
(
[D] + P + 〈G〉

)
Theorem 5.6 (Ptime-completeness). The UQuery problem (given a unary query, is it
successful?) is Ptime-complete.

Proof I The lemma above, combined with Corollary 4.6, ensures that the problem lies indeed in
the class Ptime, modulo the considerations on the height of Remark 4.11.

The hardness part follows from a variation on the encoding presented in Sect. 3.2 and the
reduction derived from Proposition 4.12. J

Remark 5.7. We presented the result in a restricted form, to stay in line with the previous sections.
However, it should be clear to the reader that this construction would not be impacted if we
allowed

◦ non-closed goals and data;
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◦ that in t↼ u the variables of t does not appear in u;

◦ constants in the program part of the query.

A harder question is whether everything scales up to logic programs of the form H a B1, . . . , Bn ,
with more than one formula on the right of a . Indeed we would no longer have obvious notions
of increasing or decreasing (Notation 4.1) clause anymore, and these are crucial to the saturation
technique. It is already known [20, pp. 386–387] that in the case of propositional (i.e. with
no variables) logic programming, allowing more than one Bi makes the combined complexity
(see Remark 5.8 below) switch from Logspace to Ptime: one can expect by analogy a higher
complexity than Ptime in our unary case, but nothing has been proven yet.

Remark 5.8. In terms of complexity of logic programs, we are considering the combined
complexity [20, p. 380]: every part of the query Q = (D,P,G) is variable. If for instance
we fixed P and G (thus considering data complexity), we would have a problem that is still in
Ptime, but it is unclear to us if it would be complete. Indeed, the encoding of Sect. 3.2 relies on
a representation of inputs as plain programs, and on the fact that the evaluation process is a
matter of interaction between programs rather than mere data processing.

5.2 Circuit Value Problem

To illustrate our point in the introduction about rephrasing a problem with unary symbols to tell
whether it lies in Ptime, we present an encoding of the classical Ptime-complete circuit value
problem (CVP) [20] as a unary query.

An instance of CVP is a boolean circuit composed of and, or, not, 0 and 1 gates and is
accepted if the circuit computes the value 1 at its output gate.

More formally, we can see an instance of CVP as (G, o) with G an acyclic directed hypergraph5
with a distinguished output vertex o built with edges among

a, bBand c a, bBor c aBnot b B0 a B1 a

such that any vertex is the target of exactly one edge.
First, we associate to each vertex v of the graph a pair v(·), v(·) , of unary function symbols.

Then to each edge e we associate a flow [e] as follows:

[a, bBand c] := a(b(x)) ↼ c(x)

+ a(x) ↼ c(x) + b(x) ↼ c(x)

[a, bBor c] := a(x) ↼ c(x) + b(x) ↼ c(x)

+ a(b(x)) ↼ c(x)

[aBnot b] := a(x) ↼ b(x) + a(x) ↼ b(x)

[B0a] := x ↼ a(x)

[B1a] := x ↼ a(x)

5A directed hypergraph is given as a set of vertices V and a set of edges E ⊆ P(V ) × P(V ) . We say that
(S, T ) ∈ E is an edge from S to T .

We consider labeled edges and write x1, . . . , xn Bk y1, . . . , ym an edge labeled by k from {x1, . . . , xn } to
{ y1, . . . , ym } .
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The intuition behind this encoding is that we are handling a stack of needed values, v(·)
(resp. v(·)) meaning “we need the value 1 (resp. 0) at v ”. The flows associated to gates are then
meant to handle this stack, popping and pushing needed values.

Then, to a circuit (G, o) we associate the unary query(
o(?) ,

∑
e vertex of G

[e] , ?
)

This query succeeds iff the circuit computes the value 1 at the gate o : the data o(?) initiates a
stack with the intuitive meaning “we need the value 1 at o ”, the encodings of edges propagate the
needed values to the point where they can be “popped” if the correct B0x or B1x is available. The
query succeeds if we can derive the goal ? —i.e. the empty stack— with the intuitive meaning
“all the needed values have been provided”.

Note the parallel nature of this way of solving the problem: when we compute the saturation
of (the encoding of) the query, we unify the terms that match at any point of the circuit without
having to worry in which order we perform the operations.

For instance, the two elements a(x) ↼ o(?) and b(x) ↼ o(?) of [a, bBor o(?)] would be unified
with o(?) ↼ ? , providing two flows a(x) ↼ ? and b(x) ↼ ? . Those flows would be, at the next
execution step, tested for unification against all (provided we respect the increasing/decreasing
discipline at work in Definition 4.3) the other flows and so on, without having to wait to know
whether a or b will hold the value 1 . A partial evaluation happens at any point of the graph,
independently of the input: [a, b Band c] and [c Bnot d] will give after one step of evaluation
the flows a(b(x)) ↼ d(x) , a(x) ↼ d(x) and b(x) ↼ d(x) . The execution does not have to
sequentially wait for the propagation of the needed values.

Finally, let us say a word about the stabilization time of satur (·) (Definition 4.3) in this
case. Given a circuit with S gates, we are dealing with flows of height at most 2 , written with at
most S different symbols. In view of Proposition 4.4 we have that the iterations of short (·) will
stabilize in at most (S2 + S + 1)2 steps. A bound that is rough, due the absence of optimization
and fine-grained analysis of the procedure.

6 Perspectives

This article extends modularly on our previous approaches [6, 7, 4, 5] to obtain a characterization
of Ptime, by adding a sort of “stack plugin” to observations. This enhancement was guided by
the intuition of a stack added to an automaton, allowing to move from Logspace to Ptime and
providing a decisive proof technique: memoization.

We saw that to a qualitative constraint on the way memory is handled by automata corresponds
a syntactical restriction on flows. These flows are evaluated in a setting inspired by the
representation of inputs in the interactive approach to the Curry-Howard correspondence —
geometry of interaction —, which makes the complexity parametric in the program and the
input. However, despite the evaluation being highly parallel and different from the step-by-step
evaluation performed by automata, a precise simulation of pushdown automata by unary logic
program is given, leading to complexity results.

We were able to adapt the mechanism of pre-computation of transitions, known as memoization,
in a setting where logic programs are represented as algebraic objects. This technique —that we
called the saturation technique— computes shortcuts in a logic program in order to decide its
nilpotency faster.
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This approach to complexity was earlier based on von Neumann algebras [29, 6, 7] and now
explore unification theory [9, 4, 5]: it is emerging as a meeting point for computer science, logic
and mathematics. This raises multiple questions and perspectives.

A number of interrogations come from the relations of this work to proof theory. First,
we could consider the Church encoding of other data types —trees for instance— and define
“orthogonally” set of programs interacting with them, wondering what is their computational
nature. In the distance, one may hope for a connection between our approach and ongoing work
on higher order trees and model checking; all alike, one could study the interaction between
observations and one-way integers —briefly discussed in earlier work [5]— or non-deterministic
data. Second, a still unanswered question of interest is to give an account of observations in
terms of a proof-system.

One could also investigate possible relations with other models of computation, such as the
interaction abstract machine [19] that already developed and used —although with a different,
much more logical, meaning— the notion of shortcut in the evaluation.

Finally, we also aim at representing functional computation, by considering a more general
notion of observation that would allow for expressing the notion of output.
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