View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-1-2003

An Algorithm for Register-Synchronized
Precomputation In Intelligent Memory Systems

Wessam Hassanein

José Fortes
University of Florida

Rudolf Eigenmann

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Hassanein, Wessam ; Fortes, José ; and Eigenmann, Rudolf, "An Algorithm for Register-Synchronized Precomputation In Intelligent
Memory Systems" (2003). ECE Technical Reports. Paper 158.
http://docs.lib.purdue.edu/ecetr/158

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://core.ac.uk/display/4946833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages

An Algorithm for
Register-Synchronized Precomputation

In Intelligent Memory Systems’

Wessam Hassanein®
José Fortes*

Rudolf Eigenmann®

TR-ECE 03-17

SSchool of Electrical & Computer Engineering
465 Northwestern Ave.
Purdue University
West Lafayette, IN 47907-2035
{ hassanin,elgenman} @ecn.purdue.edu

*Department of Electrical & Computer Engineering
University of Florida
Gainesville, FL 32611-6200
fortes@uf|.edu

0 This material is based upon work supported by the National Science Foundation under Grant No. 0296005. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

TABLE OF CONTENTS
IS IO i I N = S PSS %
LIST OF FIGURES ... oottt sttt st e et e e nna e e e s e e eae e e snne e e snbeeeenneas vii
N 015 = o RS IX
I [Lo L1 1 o o RSP PP RO 1
2. Register-Synchronized PreCOMPULALION...........ceieeiiereereee e e sie e sse e aeenae e e 3
2.1. RSP EXECULION IMOGEottt ettt nne s 3
2.2. RSP COMPIELION TOOeiiiieiieiiisiieieeie sttt sse et st esaeseesneennens 4
G S AN Lo o 1 11 o o S 7
3.1 Critical LOAO SEIECHIONcueieiieiieeeiee ettt 7
3.2. RSP Program SHICINGcceoeeeieeeesieesie et see sttt as st e sseessesseesbesneesseessesnsesseessens 8
3.3. RSP Trigger Insertion and Slice INitialiZation............cceveieeieniinieseee e 11
3.4, HHUSLratiVe EXBMPIE.......eeceieie ettt et sreesse e e e e nneeneenns 12
3.5. RSP COOE GENEIBLION ..ottt sttt sttt ss et bbb b enes 12
4. Dynamic Slice Scheduling and Adaptationccceeeiiererieneesee e e 15
4.1. RSP Dynamic Slice SChedUIING........ccccoiirieiieieeee e e 15
4.2. RSP DYNamMiC AdaDaiONcceeeieeieieeceeieeee st see st e e ee e sae s e sseeaeeseesseeaesneesseeneeens 16
5. Experimental MethOdOIOgYc.cocveiieiiiieiicie e ete ettt nee e enn 17
RESUITS. ...ttt st e st et e st e s be et e e et e e be et e e Rt e nbeenteereenreenneeneenaeas 19
6.1, PerformanCe ANAYSIS.ouiiieeiieiesiee ettt s r et a e e 19
6.2. Synchronization and SIICE ANAIYSIS......c.ceeeiieireeeere e ens 21
7. REGIEA WOTK ...t bbbttt bbb ne e 23
SO0 Tox 11T o USRI 25

O, REFEIEINCES. ...c.eeeeeeeeeeee ettt e et e e e et et e e e e e e e eeeeeeeeeeeeeeeeeeeeeaeeeaeaeeearaeeereeea—a——————————— 27

LIST OF TABLES

Table 1: Simulated microarchiteCture ParameLErsS.ccveeveereeieeseere e 18

Table 2: Number of unique sync instructions and SlICE SIZES........cccveveeevieviieecie e 22

Vi

Vii

LIST OF FIGURES

Figure 1: RSP EXECULION MOUEL..oiuieiecieeiese ettt e e e e ens 4
Figure 2: Structure of the RSP COMPITEN.........coiiiiiieeee et 5
Figure 3: Static percentage of the different load typesin each benchmark. ..o 7
Figure 4: Percentage of L1 cache misses due to different load types.ccceovvveveevvecieseesinseee 8
Figure 5: RSP algOrthm.c.oiieece ettt et n e e e ne e e e eneenns 9
Figure 6: RSP program slicing using backward data dependence analysis.ccccveeveeieneenens 10
Figure 7: Combining slices S; and S;into asingle slice S 11
Figure 8: Generatet COUE.ccueieeiieeieieeseeee st es e e e s e et e s e te e s e s seesaesseesseeneesseesseeneesneensens 13
Figure 9: Normalized eXECULION tIMEccueiiiiieee e re e e e 19
Figure 10: Normalized average |0ad aCCeSS |ateNnCyccveieieerierie i 20
Figure 11: 500MHz vs. 1GHz (In-order and Out-of-order) memory-processor performance. 20

Figure 12: Dynamic percentages of synchronizations with different sync to load distances. 21

viii

Abstract

This paper presents a novel compiler algorithm for selecting program slices that prefetch
load values concurrently with program execution. The algorithmis evaluated in the context of an
intelligent memory system. The architecture consists of a main processor and a simple memory
processor. The intelligent memory system pre-executes program slices and forwards values of
critical loads to the main processor ahead of their use. The compiler algorithm selects program
slices for memory processor execution, and inserts synchronization instructions that synchronize
main and memory processors. Experimental results of the generated code on a cycle-accurate
simulator show a speedup of up to 1.33 (1.13 on average) over an aggressively latency-optimized

system running fully optimized code.

1. Introduction

Memory access latency is becoming a critical performance limiting factor, caused by the
sower rate of memory improvements compared to processor speed and technology
improvements. As memory access latency dominates instruction execution latency, processor
pipelines stall, waiting for load instructions to fetch data from memory. Prefetching is one of the
important technigues to hide memory access latency. Data prefetching can be prediction-based or
precomputation-based. Prediction-based prefetching [16-18] is effective for applications with
regular memory accesses. However, irregular applications are especialy vulnerable to memory
latency, as their load addresses cannot be predicted. Recent research has proposed severa
precomputation-based prefetching techniques [1,3,8,10,14,15,19], where the load address is
precomputed through the pre-execution of a set of address-generating instructions. Examples
include Collins et a.'s Speculative Precomputation [3], Luk's Software Controlled Pre-
Execution [10], Roth and Sohi’s Speculative Data Driven Multithreading [14], Zilles and Sohi’s
Speculative Slices [19], and Liao et a.'s Software-based Speculative Precomputation [8].
Through pre-execution, these techniques are able to adapt to the irregularity of load addresses.
Precomputation uses a separate processing element or an unused thread in a multi-threaded
processor. The above mentioned prefetching techniques are either performed by hardware
support, by-hand, or by the compiler, using profile information.

Another venue of research has concentrated on developing intelligent memory systems [4-
7,9,11-13,17] to solve the memory latency problem. These systems take advantage of the
memory processor’s low data access latency to execute memory-intensive calculations. Using
intelligent memory systems, the work in [17] proposes memory-side prediction-based
forwarding, where the memory forwards data to the processor, ahead of its use. Forwarding
mechanisms push data from memory to the processor, which contrasts with the pull mechanism
of prefetching techniques.

The main contribution of this paper is that it proposes a fully automated compiler algorithm
for precomputation-based forwarding. In contrast to other compiler solutions, it does not need
any profile information. We present the proposed agorithm in the context of in-memory pre-
execution [6], however it is aso directly applicable to processor-side pre-execution. The
proposed algorithm selects program dlices that execute in memory, inserts trigger instructions
that initiate pre-execution, and synchronizes register values between the memory and main

2
processors. The a gorithm selects program slices for memory execution, targeting a set of critical
loads. When executed, these program slices will generate the load value ahead of its use by the
main processor. The algorithm inserts register synchronization instructions that initiate
precomputation. We refer to the proposed algorithm as Register-Synchronized Precomputation
(RSP).

We implement the RSP algorithm and evaluate its performance using SPEC CPU2000 and
Olden benchmarks. We use a cycle-accurate aggressive out-of-order processor simulator with
accurate bus and memory contention. The experimental results show a speedup of up to 1.33
(1.13 on average) over an aggressively latency-optimized system running fully optimized code.
The rest of the paper is organized as follows. Section 2 describes the RSP execution model and
compilation tool. Section 3 presents the RSP compiler algorithm. Section 4 describes dynamic
dlice scheduling and adaptation. Sections 5 and 6 discuss the experimental methodology and the
results, respectively, and Section 7 discusses related work. Finally, we present in Section 8 the

concluding remarks.

2. Register-Synchronized Precomputation

2.1. RSP Execution Modd

In this section, we describe the RSP execution model and its components, shown in
Figure 1. The RSP execution model consists of a main thread and a precomputation thread. The
main thread runs the full program code. The precomputation thread runs only the marked
program slices. The objective of the precomputation thread is to speedup the main thread by
supplying values of critical load instructions ahead of their use. Figure 1 shows a single program
dlice that consists of three sections A, B and C. The slice is a sequence of instructions that, when
executed, generate the addresses and values of the critical loads. The trigger from the main
thread initiates pre-execution in the precomputation thread. While executing the program slice,
the precomputation thread could forward severa load values (data values 1,...,n in Figurel) to
the main thread, where they wait until they are consumed by the corresponding critical loads.
The precomputation thread accesses the same program as the main thread. However, it skips
unmarked instructions.

Although RSP was devel oped to target an intelligent memory system the execution model is

genera and applicable to any architecture where an extra thread (in memory for forwarding or in
the main processor for prefetching) is used for precomputation. The architecture’s interpretation
of the instructions added by the compiler will differ depending on the specific implementation,
but the compiler view is the same. The compiler generates a single program that is loaded in
memory. We describe the details of both threads in the following subsections.
Main Processor (Main Thread) Execution: The main thread executes all program instructions.
Upon encountering a critical load, the main thread will check if a valid value has been received
for this load and, if so, it will use it. Otherwise, the thread will issue a load instruction memory
read as in conventional execution. The execution model does not require the precomputation to
satisfy correctness constraints. Instead, correctness is guaranteed by the architecture, as in most
speculative precomputation techniques (e.g. [3,8]).

Upon encountering a trigger (sync) instruction the main thread issues a start of execution to
the precomputation thread. It sends to memory the program slice address and the initial value of
registers at the beginning of the slice. The main thread dynamically decides whether to issue
(execute) atrigger instruction or not, based on the history of execution. History-based prediction

4
is used to dynamically decide the likelihood of the need of the precomputation and thus the data
forward/prefetch.

Main Precomputation
Thread Thread
T Tigge ——>e
CA
4_////® °
; Datavaluel _ ® ; B
A | é Datavalue 2 E C
I /@MD
& Datavaluen
B:S
® Critical load
v [End of slice marker
C. v < Trigger instruction
® @ - - - @ Address Generating
. Slice
Instruction Other Program
Stream Instructions

Figure 1: RSP Execution Model. Both main and precomputation threads access the same program. However, the
main thread executes all instructions, while the precomputation thread executes only marked instructions. A single
program slice execution is shown.

Memory Processor (Precomputation Thread) Execution: The memory processor executes
annotated program instructions sequentialy, while skipping unmarked instructions. The main
thread initiates the precomputation thread execution by executing a sync instruction. Execution
continues until a special instruction, marking the end of the program slice. No store instructions
are executed by the precomputation thread. The precomputation thread does not alter the
architecture state of the main thread.

2.2. RSP Compilation Tool

The compiler is responsible for identifying precomputation program slices, trigger points
and initial dice values. No run time or hardware cost is incurred achieving these tasks. A
compilation tool (Figure 2) is used to generate the binary code for RSP. The RSP pass is a
separate pass, following optimization and assembly code generation.

The RSP pass starts by selecting critical load instructions. The algorithm then identifies the
program slices that generate the addresses of these loads. It identifies the trigger points for each

corresponding program dlice and the initia register values of the address precomputation.

5
Finally, it generates a new assembly code, containing trigger instructions, initialization and
marked program slices. The details of the RSP algorithm are presented next.

Compilation and Optimization
(for standard sequential architecture)

Assembly

RSP Pass

Assembly containing
triggers and marked
precomputation slices

Linking and Binary Generation

Binary containing
triggers and
precomputation slices

Figure 2: Structure of the RSP Compiler.

3. RSP Algorithm

3.1. Critical Load Selection

The first step of RSP is to select and mark the set of load instructions whose execution is
likely to cause the main processor to stall. RSP targets these loads, which we call “critical loads’.
Loads that missin the cache incur large memory access latencies and therefore are most likely to
stall the processor.

RSP classifies all load instructions in the program into three categories; 1- loads whose
address is a register (register); 2- loads whose address is based on the global pointer register
(global pointer); 3- loads whose address is based on the stack pointer and frame pointer registers
(stack and frame pointers). Figure 3 shows the percentage of each load type in a set of fully
optimized SPEC CPU2000 and Olden benchmarks. On average ~47% of the loads are register
loads, 29% are global pointer and 24% are stack and frame pointers. Figure 4 shows that, on
average, the mgjority of cache misses (~99%) are due to register loads. This is because register
loads are dependent on other instructions and therefore, could be part of irregular address
generating chains (eg. in pointer chasing). RSP therefore considers these loads only. In doing so,
it deals with merely 47% of the total loads and still achieves most of the potential performance
gain. In contrast with recently proposed prefetching techniques [8,14], RSP selects the critical

loads without needing a profile run.

W dgobal pointer @ stack and framepointers [regster

100%

80% +

Satic % of loads

Figure 3: Static percentage of the different load typesin each benchmark.

8

B gobal pointer @ stack and frame pointers O register
100%

1SS

g% HI 4 HHHHHHHHMHHHF

IS
%60%
8
a0 H 4 HHHHHHHHHH
B
S 20% |
G
S 0% i HENEEEE EEE-E RS
(o] = v Q T 0O £ O
o o —
EE N R
= 8 £ g &
o

Figure 4: Percentage of L1 cache misses due to different load types.
3.2. RSP Program Slicing

The second step of RSP is to select and mark program slices for execution in the memory
processor. These program dlices generate the address of the load value that will then be
forwarded (or prefetched). The timing of the forward operation is critical. The forwarded value
needs to arrive at the main thread before the target load instruction reaches the pipeline issue
stage to take full benefit of the forwarding process. To achieve this, equation (1) below should be
satisfied. Partial benefit is achieved if the forwarded value arrives after the targeted load was
issued but before the load’ s value arrives from memory. To achieve this, equation (2) needs to be
satisfied.

Load_issue time- Trigger_time > Sice precomp _interval + PreData forward_time + Trigger_init_time (1)

Data_arrival_time - Trigger_time > Sice_precomp_interval + PreData_forward_time + Trigger_init_time (2)
where;

Load_issue time: Instant at which the targeted load is issued.

Trigger_time: Instant at which the precomputation is triggered to start pre-execution.

Sice precomp_interval: Amount of time needed for dlice precomputation (generation of targeted load’ s address).
PreData forward_time: Amount of time needed to forward (prefetch) the data value from memory. In prefetch case,
this variable includes the prefetch transfer time to memory.

Trigger_init_time: In forwarding, the amount of time needed for trigger to reach precomputation thread in memory.
In prefetching, the amount of time to initialize (copy live-in values) the precomputation thread.

Data_arrival_time: Instant at which the load instruction’s data arrives from memory.

9

The performance objective of the RSP algorithm is to minimize the Sice_precomp _interval
(and therefore the precomputation slice size) and the Trigger_time.

To select the precomputation slice, data dependence anaysis (register dependence analysis;
no memory disambiguation is needed by RSP) is done, starting from the critical load. The
analysis follows all dependence chains backward and selects all instructions that contribute to the
address generation of the load instruction. This is shown in the RSP algorithm Figure 5, lines 3-
6. Figure 6(a) shows an example. Starting from the critical load at line 6, the source of the data
dependence indicates the instruction generating the address of the load. Since the address of the
load is based upon register $3, which is produced by instruction 6, number 6 is next in the
dependence tree in Figure 6(b). This backward analysis is repeated, selecting instructions 5, 4, 3
and 2. To minimize the size of the dlice, the algorithm stops the backward analysis at the
beginning of the load's basic block. To minimize the number of slices, the algorithm combines

several loads into one slice. The following two sub-steps optimize the program slice further.

1 Main

2 Build CFG of full program, each node representing a basic block

3 For each node N do this:

4 For each critical load L do this:

5 Build data dependence Tree T for L

6 Mark all instructionsin T for memory execution

7 For eachregister Rin T generated outside N do this:

8 Mark sync instruction addition point of register Rand node N
9 Generate new code containing sync instructions

10 End

11 Mark sync instruction addition point of register R and node N
12 For each parent node P of N do this:

13 If node P is not marked as visited do this:

14 Mark P asvisited

15 If Risdefined in P do this:

16 Mark the position right after the definition of R for sync insertion
17 Else

18 Mark sync instruction addition point of register R and node P

19 End

Figure 5: RSP algorithm for (1) identifying program dslices for precomputation (2) inserting triggering and value
initialization (register synchronization) instructions for the precomputation thread.

10

1 bne $2,$0,$L.1696
2 lbu/a $2,16($sp)

3 lbua $m)

v\md—\|4—

4 la/a unzftab
5 dl/a $5,2
5 4

6 addu/a $3,$3,$2 l

il $2,0(33) 3

Ibu $4,smallMode v

addu $17,$17,1 2
10 addu $2,$17,$2
11 sw $2,0($3)
12 beq $4,$0,$L1719
(a) Code (b) Data Dependence Tree

Figure 6: RSP program slicing using backward data dependence analysis, starting from the critical load. Instruction
marked “/I” is the critical load, instructions marked “/a’ are the address generation instructions selected for
precomputation. The program dlice consists of the “/a’ and “/I” instructions. This example is generated from the
SPEC CPU2000 bzip2 benchmark.

First, to increase the size of the basic block, the first pass of the compilation tool uses loop

unrolling and subroutine inlining. In addition, loop unrolling alows the algorithm to consider
loads from several loop iterations in the slice. As aresult, slices can forward load values several
iterations in advance.
Second, selected program slices are combined to create larger dlices, using a full program
Control Flow Graph (CFG). After dlices are selected within the basic block, all register
dependencies to instructions outside the basic block are marked. Let the register dependence
marked for slice S; be register R. The marked dependence R is tracked outside of the basic block
through the control flow paths leading to that slice S;. If R is aso the register dependence
belonging to another dlice selected for precomputation, S,, and dlice S; is sequentialy located
before S; in the code, the two slices are combined. Figure 7(a) shows slice combining. If R is not
aregister dependencein S, then the two slices are not combined.

Two dlices S; and S; are also combined if S; follows S, sequentialy in the code and S; has
no marked register dependencies (no register dependences outside of dlice). Figure 7(b)

11
illustrates this case. Both cases in Figure 7 require that the two slices being combined are in
sequence in the program code. Therefore, the sequential precomputation can directly execute the
slice without the need to add a special jump instruction to direct precomputation from one slice

to the other.

(b) S; has no marked
—> Control Flow register dependences

Figure 7: Combining diices S; and S;into asingle slice S. S; and S, are sequentially located in the code. (a) Marked
register dependence R from S; is also in S,. If not, slices are not combined. (b) S; has no marked register

dependences.

Any marked register dependencies not satisfied by the slice combination process are marked
as initial values of their slice. Section 3.3 describes how RSP initializes these slices. All
instructions in the slices are marked for precomputation. The instruction at the end of each dlice

ismarked as the final instruction.
3.3. RSP Trigger Insertion and Slice I nitialization

The third step of RSP isto select the insertion point of the trigger instruction. The objective
of this step is to maximize the dynamic distance between the trigger instruction and the targeted
critical load instruction as explained in the previous section.

RSP combines trigger insertion and dlice initialization analysis. This is because the trigger
instruction (register synchronization instruction or sync) also supplies the slice’s initial value to
the memory processor. This instruction, executed by the main thread to start a precomputation,
will synchronize theinitia register by sending its value to the precomputation thread.

To select the sync insertion point, a full program Control Flow Graph (CFG) is used. RSP
builds a CFG across procedure calls and files, through interprocedural analysis, taking advantage
of the compiler knowledge of the full program. Figure 5, lines 1-10 illustrates the steps of the

12

RSP agorithm including sync insertion. Each node in the CFG represents a basic block. Nodes
that contain critical loads are marked with the registers that are needed in the critical load address
generation and whose values are generated outside of the node. These registers are obtained by
the analysis described in Section 3.2. For each marked register, a backward analysis is
performed, starting from its node through all control flow paths that lead to the node (Figure 5,
lines 11-19). The algorithm checks for the last definition that generated the value of the marked
register and marks the corresponding instruction. Visited nodes are marked to avoid repeated
anaysis. The analysis in a path stops either when reaching a last definition for the register or a
node that has already been visited. The analysisis repeated for al marked nodes.

At the sync insertion point, the algorithm adds a sync instruction that contains the marked
register number whose value will be used for initialization and an offset to the corresponding
program dlice. The precomputation thread combines sync instructions targeting the same
program slice with different register numbers dynamically by initializing both registers.

3.4. lllustrative Example

Figure 8 illustrates an example of the interprocedural analysis used in the RSP algorithm.
First the algorithm builds a CFG as illustrated in Figure 8(b). From the load selection criteriain
Section 3.1, the load marked “/I” in Figure 8(a) is aregister load and therefore a critical load for
our algorithm. Applying the data dependence analysis described in Section 3.2 on the “/I” load
instruction, five instructions marked “/a’ are recognized to be the address generating instructions
of this load within its basic block (labeled “$L46"). The program dlice for this load consists of
the load itself and the instructions marked “/a’ in Figure 8(a).

The registers whose values are generated outside of the basic block for the selected load are
registers $4 and $8. A backward traversal of al the paths leading to the node containing the
candidate load, as described in Section 3.3, yields two instructions generating values for register
$8, and one for register $4. The sync instructions are added directly after the selected
instructions, as illustrated in Figure 8(b). Both the register number and the offset between the
synchronization instruction and the start of the program slice (represented as “MYLB3” in
Figure 8) are added to the sync instruction.

3.5. RSP Code Generation

In the RSP code generation stage, the algorithm marks all precomputation slices by
annotating their instructions (setting one bit in the instruction that is unused by the ISA). Since

13
slices do not overlap, there is no need to differentiate between dlices. Therefore, only one hit is
needed to mark instructions for precomputation. Similarly, the end of each precomputation slice
is annotated using another bit. The sync instruction is similar in format to a jump instruction and

contains an address offset and a register number.

Insert_new_arc: . . :
o a/dd‘tl\g,sss,l
P, MYLB3
.-sync $8toMYLB3 syne S8V
S w $10,24($sp) W
D w $11,28(3p) ’
e $5509L41 R prac |
a] Py] N
Coi $12,0x0001 S2upkngwn - _
$L46: : : : o~
MYLB3: <. Iw/l $2,-8($5)
7 srl/a $ 31\\\ : : :
[addu/a $%$2 \\\ : : l :
| gala $9,$2,l | move $8,$9
| » ' L sync $8toMYLB3
1 — . .
| dila $2$95 ‘ -7
! > : - - -
1 |
| addu/a $5,$2,@ I
h v | : : :
Cowl $2-8(%5)) move $4,$17
,dt $2$2%$11 syne7 $4toMYLB3
1 . . . ’ ;—'
! . . . 7
| ;nc:)ve $8 %9 K —— Control Flow Graph
| ' ; (CFG)
o ync SBOMYLB3 | pokward inter-
' oaw $11 -8($5) procedural data flow
! . analysis
1 Enf §8’$12’$L46 ------ Backward data
T $2,$14,$13 dependence analysis
' bne $2,$0,$.88
', move $4,$17
“sync $4toMYLB3
Iw $5.36($s0)
@ (b)

Figure 8: (@) Code including generated trigger instructions (sync). (b) CFG and backward interprocedural analysis
to locate where the sync instruction should be added. Backward data dependence analysis (represented as small
upward dotted arrows) within the critical load's basic block generates the program slice. Starting from the basic
block of the critical load, backward global inter-procedural data flow analysis (represented as large dashed arrows)
is done using last definition analysis of each basic block visited to locate where the sync should be added. (This
example is generated from the SPEC CPU2000 mcf benchmark).

14

15

4. Dynamic Slice Scheduling and Adaptation

This section presents important aspects of the execution model in our architecture.
4.1. RSP Dynamic Slice Scheduling

Slice scheduling determines when a slice will be assigned to the precomputation thread.
Scheduling is needed because multiple triggers could occur in the program code, during main
thread execution, while the precomputation thread is busy pre-executing a program dlice. As
each trigger is executed by the main thread, it generates a request for the pre-execution of the
corresponding program slice. This request is queued if the precomputation thread is busy. If not,
the request is serviced by the precomputation thread by executing the requested program dlice.
After the precomputation-thread pre-executes the program dlice, the queued precomputation
requests are checked and one of the requests is chosen to be the next request assigned to the
precomputation thread. We refer to the process of choosing a request from the queued requests
for precomputation as “ slice scheduling”.

Slice scheduling is important because the order in which slices are pre-executed could
determine the effectiveness of each slice’s pre-execution. Effective slices should be pre-executed
early with respect to the main thread’s execution of the same slice. Therefore, the critical load
values generated by the precomputation thread should arrive at the main thread (after being
fetched from memory) before the main thread reaches the load instruction. A straight-forward
scheduling mechanism is FIFO (First In First Out). This mechanism schedules requests for
precomputation in their arrival order. However, the order in which requests are received is not
always the best order in which they should be scheduled (e.g. a later request could have a closer
deadline than an earlier request). Therefore, RSP uses an Earliest Deadline First (EDF) dlice
scheduling mechanism. EDF prioritizes requests based on the deadline by which they should be
executed. If a schedulable solution for all requests exists, EDF will find it, while FIFO is not
guaranteed to do so. The deadline of each request is generated by the main thread from the

history of the previous execution of the request’s program slice as shown by equation (3).
Trigger_deadline current = Sice_timestamp_previous - Trigger_timestamp_previous €©)]

A new request replaces an older queued request if both target the same dlice and specify the
same initialization register. The requests are combined if they specify the same dlice with

16
different initialization registers. Requests are dropped (not queued if new, or deleted if old) if
their deadline is below a threshold value as there might not be enough time to pre-execute that

request.
4.2. RSP Dynamic Adaptation

Dynamic adaptation uses run time information to decide which slices should be
precomputed. This is important to filter out slices on paths that are not executed or are rarely
executed. The decision whether to pre-execute a slice or not occurs at the trigger (sync) point.
The RSP uses a“sync history table” to adaptively select the trigger instructions to execute based
on the sync’s previous history. To reduce the complexity and size of the history table, RSP only
considers the most recent history of the sync instructions. If the last instance this sync was
executed the corresponding slice was executed by the main thread then the sync will be executed.

Otherwise, the sync will not be executed.

17

5. Experimental M ethodology

We have implemented the described RSP compiler algorithm in C++. The SPEC CPU2000
and Olden benchmarks shown in Table 2 are used. Benchmarks are initialy run through the
SimpleScalar simulator [2] gcc 2.6.3 with —O3 —funroll-loops compiler optimizations and
assembly output is produced. The output is then used as input to the proposed RSP algorithm as
shown in Figure 2. The algorithm performs the described assembly-level analysis in Section 3
and produces new assembly code containing the new generated synchronization instructions.
This code is then compiled through SimpleScalar gcc to produce the final binary output. We
compare against a base code which is a fully-optimized including latency hiding techniques such
as loop-unrolling and scheduling (-O3 —funroll-loops compiler optimizations).

To study the dynamic performance of RSP, we developed a cycle-accurate simulator based
on the SimpleScalar 3.0a simulator [2]. We added major enhancements to the simulator to
implement accurate bus and memory contention and memory-side precomputation and
forwarding. The system consists of an aggressive out-of-order superscalar main processor
executing the main thread and a memory-processor executing the precomputation thread.
Forwarded values are saved in a buffer that takes 1 cycle to access. The parameters chosen in the
simulations are shown in Table 1.

To evaluate the performance of the RSP algorithm we used four Olden benchmarks and five
integer, two floating point SPEC CPU2000. We concentrate on pointer-intensive C benchmarks
that can run on our compiler and simulator. All SPEC benchmarks are fast-forwarded for 2
Billion instructions and then run for 1 Billion committed instructions. The art benchmark is not
fast-forwarded since its total execution is less than 2 Billion instructions. The train data set is
used in al SPEC benchmarks except bzip2 where the reference data set is used because it gives a
larger number of L2 misses, and art where we use the test input due to its large simulation time.
Olden benchmarks, mst (1024 nodes), treeadd (20 levels) and perimeter (12 levels) are small and
therefore run to completion, while bh (8192 bodies) is run for 1 Billion committed instructions.
The additional instructions generated by our compiler algorithm are not included in the count.

18

Table 1: Simulated microarchitecture parameters.

Numbers do not include bus or memory contention affects that are simulated.

Module Parameter Value

Main Processor Frequency 1GHz

(Main Issue width Out-of-order, 4 issue

Thread) Functiona Units AInt+4FP+4Ld/St.
Branch Prediction 2level
Round-Trip memory | 73 cycles (row miss),
latency 61 cycles (row hit)
I/DTLB miss latency 60 cycles

L1 Instruction/Data caches Size Split 16KB/16KB
Latency 1cycle
Associativity 2-way set associative
Linesize 32 Byte
Write Strategy Writeback
MSHRs 16

L2 cache Size Unified 512KB
Latency 16 cycles
Associativity 4-way set associative
Linesize 32 Byte
Write Strategy Writeback

Memory Processor Frequency 1GHz & 500MHz

(Precomputation Thread) Issue Width Out-of-order & Inorder,

Functional Units
Branch Prediction
Round-Trip memory

4 issue

4Int+no FP+4Ld/St.
no branch prediction
23 cycles (row miss),

latency 11 cycles (row hit)
Memory Data cache Size 32KB
Latency 1cycle
Associativity 2-way set associative
Linesize 64 Byte
System Bus Speed 500MHz
Width 64bits
Memory Controller Latency 30ns

19

6. Results

In this section we present the experimental results of the proposed RSP compiler algorithm
on the architecture simulation described in Section 5 and Table 1. The base system (“original”)
uses the same main-processor as RSP but with a regular memory system that does not
incorporate any memory processing. This original system runs fully optimized, unchanged code.
All performance results in this paper are normalized with respect to the original system.

6.1. Performance Analysis

Execution Time: Figure 9 illustrates the performance results of the proposed RSP algorithm.
The results show that RSP gives a speedup of up to 1.33 (1.13 on average) over the original.
Figure 9 aso shows the performance overhead due to the addition of instructions to the code
(instruction overhead). This overhead is measured by running the new code, including inserted
sync instructions, on the base system. The overhead is very small (much less than 1% in most
cases, maximum 2% in bzip2) and therefore has little effect on the system. The reduction in the
normalized execution time of the instruction overhead in equake is due to a change in the
instruction L1 (IL1) cache access pattern. In this case, by adding instructions to the code, fewer
IL1 misses and replacements were observed. This caused a dip in execution time as shown in
Figure 9, aswell asachangeinthe L2 and data L1 cache access patterns.

O original I instruction overhead B RSP
1.2
£ 11
=
2 0.8 -
3
8]
]
& 0.6 H
°
N
"_—50.47
£
So02
0
K9 A& & @ - O & @
& SN L © ¥ @ N
G L TP EFE TS
3 Q®5 S & Qe‘\& o

Figure 9: Normalized execution time

20
Load Access Latency: Figure 10 compares the normalized average load access latencies. This
latency is measured from the load issue time to the load writeback time. RSP gives a reduction of
average load access latency of up to 38% (18% on average). The increase in average load access
latency in equake is a result of the change in cache behavior of the new code (1.06 normalized

average load latency), which is then reduced to the shown value by RSP.

O original B RSP

=
N

[

o
[oe]
|

o
(o)}
I

I
~
Il

o
N
I

Normalized Average Load Access Latency
o
|

O)O
%

?}e

(L?}QQ‘\’Z&,Z;&-Q’
RN

Figure 10: Normalized average load access latency

Effect of Memory-Processor Speed/Complexity on Performance: Experiments presented so
far have been using a 1GHz out-of-order memory processor. This section investigates the effect
of halving the memory-processor speed to 500MHz and using a simpler inorder memory
processor. As shown in Figure 11, using an inorder and lower-speed memory-processor has only
a small effect on RSP performance. This is because the precomputation occurs early enough to
allow the system to mask the extra latency.

DOoriginal O 500MHz Inorder
E500MHz Out-of-order B 1GHz Inorder
1.2 M 1GHz Out-of-order
g .
F o1
c
20.8 1
3
o 0.6
[
2 0.4
N
©0.2 1
£
g o
S\
9
N

Figure 11: 500MHz vs. 1GHz (In-order and Out-of-order) memory-processor RSP performance.

21
6.2. Synchronization and Slice Analysis

Sync to Load Distance: The dynamic distance (number of 1GHz cycles) between the register
synchronization instructions (trigger) and the corresponding load instructions is characterized as
shown in Figure 12. The categories are as follows:. less than 10 cycles (<10), 10 to less than 20
cycles (10-20), and so on, and finally 150 cycles and above. The importance of this measure is
that it illustrates the distribution of the time between the register-synchronization value
availability and the load-value use. The register synchronization value is available when the
instruction producing this register value is executed in the main processor and the register value
is written. At this time, the main processor can send the sync request to the memory processor
(trigger slice precomputation). The load-value is used at the issue time of the load instruction in
the main processor. As shown in Figure 12, on average over 40% of al sync instructions have a
latency of 30 cycles or more.

O<10 0O10-20 E20-30 E30-50 W50-100 MW100-150 M>150
100% -

80% -
60% -

40% -

% of Syncs

20% A

0%

T ¥ 5 &8 8 £ 283 2 5 5 8
E§h> §%E§E g
o g s = %

g

Figure 12: Dynamic percentages of synchronizations with different distances (number of cycles) from sync to load
instruction.

Slice Characteristics: Table 2 shows the dynamic number of unique sync instructions executed.
On average, RSP executes 334 unique sync instructions. The numbers also represent the
maximum size of the sync history table. The average static number of dlicesis 282. The average
selected program-slice size is 4.18 instructions per slice. The majority of the instructions in the
dlice are loads and on average 2.84 critical loads are in each dlice. Therefore, on average, slices
generate multiple load values. “Intermediate critical loads’ are critical loads that are part of an
address generation slice of another critical load. On average 49% of intermediate loads are
critical loads.

22

Table 2: Number of unique sync instructions and slice sizes

(x indicates no intermediate loads)

Benchmark Number of Number of | Averagedice [Number of Number of total Per centage of
Dynamic Static dices size critical loads | loadsper dice | intermediate loadsthat
Syncs per dice arecritical

mcf 119 147 452 419 422 96%
bzip2 400 1072 513 3.25 3.32 82%
parser 2542 314 46 2.38 293 9%

vpr 103 810 6.36 3.17 3.89 23%

art 40 95 3.13 2.20 2.56 3%
equake 35 91 711 3.99 4.66 57%
gzip 260 495 2.86 1.82 191 21%

mst 46 11 4 3.09 3.09 100%
treeadd 3 3 1.67 167 167 X
perimeter 54 27 3.74 3.00 3.00 X

bh 74 35 2.86 254 254 X
IAverage 334 282 418 2.84 3.07 49%

23
7. Related Work

Main-processor Precomputation-based Prefetching: For simultaneous multithreading (SMT)
processors, Luk [10] proposes software-controlled precomputation-based prefetching in idle
threads of an SMT processor. Based on a C-source level analysis of the programs, prexecution
instructions are manually inserted in the code to identify where to start and end execution for
several threads. The analysis targets the pre-execution of a pointer chain or a procedure call, etc.,
and the scheme is dependent on the application under study. Collins et a. [3] uses hardware to
analyze, extract and optimize instructions for precomputation in an SMT processor. When a
trigger load instruction reaches some point in the pipeline, the corresponding slice is spawned
into an available thread. Later Liao et a. [8] propose a software-based speculative
precomputation technique. Zilles and Sohi [19] target loads and branches by manually selecting
and optimizing the precomputed instruction slices in an SMT processor. Roth and Sohi [14]
propose Speculative Data Driven Multithreading and later [15] propose a framework for
automated pre-execution thread selection. In contrast to SMT approaches, the proposed RSP
algorithm executes on a single thread processor in memory. Program analysis is performed
automatically at the assembly level by the compiler. No profiling is used and no extra
instructions are added to start and end pre-execution; instead, the precomputation dlice is
annotated (marked).

Annavaram et al. [1] proposed a data prefetching by dependence-graph precomputation in a
separate engine located in the main processor. At run-time, a hardware generator is used to
generate the dependence graph from the instruction fetch queue (IFQ), based on profiling
information that selected the targeted loads. By contrast, RSP proposes a compiler algorithm for
program slicing and dlice triggering. Therefore, no run-time overhead is incurred for selecting
the instructions. RSP is not limited to the execution of instructions that are in the IFQ but is
decoupled from main-processor execution. Therefore, RSP can execute any instructions in
memory, including those that do not exist in the caches and can execute far ahead of where the
processor is executing.

Memory-Side Forwarding: Memory-side prediction-based forwarding has been recently
presented by Solihin et al. [17], where a user-level helper thread executes software that
implements correlation prediction in memory. No program slice precomputation is done and
therefore, no dlicing technique is used. Instead, the proposed technique is prediction based. Y ang

24

and Lebeck [18] propose a push model that adds a prefetch controller to each level of the
memory hierarchy (L1 and L2 caches, and memory) to target linked data structures. The prefetch
engines execute linked list traversal kernels that are downloaded into these engines initially. In
contrast, RSP is genera and targets al applications including those that include linked data
structures. RSP has no processing in the caches.

Processing In Memory: Several processing-in-memory (PIM) architectures have been
proposed, Active Pages [12], FlexRAM [7], IRAM [13], DIVA [4,5], Smart Memories [11] as
well as others [9,17]. Other than [17], described in the previous section, these architectures use
distributed processing by partitioning the code between al the processors. This is a different

objective from that of RSP forwarding.

25

8. Conclusion

This paper presents a new automated compiler algorithm for Register-Synchronized
Precomputation. The algorithm selects program slices for precomputation in a memory processor
or dedicated thread, and inserts instructions that synchronize main and memory processor values,
and trigger precomputation. At run time, the slice precomputation thread generates values of
critical load instructions, which are then forwarded to the main thread. By forwarding the load
values ahead of their use by the main thread, the algorithm hides the memory access latency of
these loads. The main thread dynamically selects which trigger instructions to execute. This
method allows the system to adaptively direct the execution of the precomputation thread and
update it with only the necessary values for its calculations. We have implemented and evaluated
the proposed RSP agorithm on a simulated intelligent memory system using seven SPEC
CPU2000 and four Olden benchmarks. The results show performance improvements of up to
1.33 (1.13 on average) over afully optimized code running on an aggressively latency-optimized
out-of-order processor with lockup-free caches.

26

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

27

9. References

M.Annavaram, JM.Patel and E.S.Davidson, “Data Prefetching by Dependence Graph
Precomputation”, In Proc. International Symposium on Computer Architecture, May
2001.

D.Burger and T.Austin, “The SimpleScalar Tool Set, version 2.0”, Tech.Rep.CS 1342,
University of Wisconsin-Madison, June 1997.

J.D.Callins, D.M.Tullsen, H.Wang, J.P.Shen, “Dynamic Speculative Precomputation”, In
Proc. International Symposium on Microarchitecture, December 2001.

J.Draper, “The Architecture of the DIVA Processing-In-Memory Chip”, In Proc.
International Conference on Supercomputing, 2002.

M.Hall, et. a., “Mapping Irregular Applications to DIVA, a PIM-based Data-Intensive
Architecture”, In Proc. International Conference on Supercomputing, November 1999.

W. Hassanein, J. Fortes and R. Eigenmann, “Towards Guided Data Forwarding using
Intelligent Memory”, Proceedings of the Workshop on Memory Performance Issues
(WMPI), held in conjunction with the 29" Annual International Symposium on Computer
Architecture (ISCA), Anchorage, Alaska, May 2002.

Y.Kang, M.Huang, S.Yoo, D.Keen, Z.Ge, V.Lam, P. Pattnak, and J.Torrellas,
“HexRAM: Toward an Advanced Intelligent Memory System”, In Proc. International
Conference on Computer Design, October 1999.

S.S. Liao, P.H. Wang, H. Wang, G. Hoflehner, D. Lavery and J. Shen. “Post-Pass Binary
Adaptation for Software-Based Speculative Precomputation”. In Proc. PLDI, June 2002.
J.Lee, Y.Solihin, and J.Torrellas. “ Automatically Mapping Code on an Intelligent Memory
Architecture”. In Proc. International Symposium on High-Performance Computer
Architecture, January 2001.

C.Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors’, In Proc. International Symposium on Computer
Architecture, May 2001.

K.Mai, T.Paaske, N.Jayasena, R.Ho, W.J.Dadlly, and M. Horowitz, “Smart Memories. A
Modular Reconfigurable Architecture’, In Proc. International Symposium on Computer

Architecture, June 2000.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

28
M.Oskin, F.Chong, and T.Sherwood, “Active Pages. A Computation Model for Intelligent
Memory”, In Proc. International Symposium on Computer Architecture, June 1998.
D.Patterson, T.Anderson, N.Cardwell, R.Fromm, K.Keeton, C.Kozyrakis, T.Tomas, and
K.Yelick, “A Casefor Intelligent DRAM”, IEEE Micro, March/April 1997.
A. Roth and G.S. Sohi. “Speculative Data-Driven Multithreading”. In Proc. International
Symposium on High-Performance Computer Architecture, January 2001.
A. Roth and G.S. Sohi. “A Quantitative Framework for Automated Pre-Execution Thread
Selection”. In Proc. MICRO-35, Nov. 2002.
C.Selvidge, “Compilation-Based Prefetching for Memory Latency Tolerance”,
PhD.Thesis, MIT, May 1992.
Y.Solihin, JLee, and J.Torrellas “Using a User-Level Memory Thread for Correlation
Prefetching”, In Proc. International Symposium on Computer Architecture, May 2002.
C.Yang and A.Lebeck, “Push vs. Pull: Data Movement for Linked Data Structures’, In
Proc. International Conference on Supercomputing, 2000.
C.Zilles and G.Sohi, “Execution-based Prediction Using Speculative Slices’, In Proc.
International Symposium on Computer Architecture, May 2001.

	Purdue University
	Purdue e-Pubs
	1-1-2003

	An Algorithm for Register-Synchronized Precomputation In Intelligent Memory Systems
	Wessam Hassanein
	José Fortes
	Rudolf Eigenmann

