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A Novel Approach to Fuzzy Logic
Controller Design for
Systems With Deadzones

Jong-Hwan Kim*  Jong-Hwan Park* Seon-Woo Lee
Edwin K. P. Chong!

Abstract

Existing fuzzy control methods do not perform well when applied to systems con-
taining nonlinearities arising from unknown deadzones. In particular, we show that a
conventional fuzzy logic controller applied to a system with a deadzone suffers from
poor transient performance and a large steady-state error. In this report, we propose
anovel two-layered fuzzy logic controller for controlling systems with deadzones. The
two-layered control structure consists o a fuzzy logic-based precompensator followed
by a conventional fuzzy logic controller. Our proposed controller exhibits superior
transient and steady-state performance compared to conventional fuzzy controllers.
In addition, the controller is robust to variations in deadzone nonlinearities. We

illustrate the effectivenessd our scheme using computer simulation examples.

*Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST),
373-1 Kusung-dong, Yusung-gu, Taejon-shi 305-701, Republic of Korea. Thefirst author iscurrently

on sabbatical at Purdue University.
tSchool of Electrical Engineering, Purdue University, 1285 Electrical Engineering Bldg., West

L afayette, IN 47907-1285.




I Introduction

We propose a two-layered fuzzy logic-based controller for controlling systems with
deadzones. Our two-layered structure consists of a fuzzy precompensator and a fuzzy
controller. The two-layeredstructureis based on analyzing the source o large steady-
state errors which arise when a conventional fuzzy controller is applied to a system
with a deadzone. Our proposed scheme has good transient as wel as steady-state
performance, and is robust to variations in deadzone nonlinearities.

Many physical components in control systems contain nonsmooth nonlinearities,
such as saturation, relays, hysteresis, and deadzones. Such nonlinearitiesare especial-
ly common in actuators used in practice, such as hydraulic servovalves. Furthermore,
the nonlinearitiesin such systems are often unknown and vary with time. For example,
a common source d nonlinearities arise from friction, which vary with temperature
and wear, and may differ significantly between components which are mass produced.
Therefore the study d methods to deal with nonsmooth nonlinearities has been
interest to control practitionersfor some time. In this report, we consider only dead-
zone nonlinearities. Deadzones are d interest in their own right, and provide good
models for many nonsmooth nonlinearities found in practice.

Several classical methods exist for controlling systems with nonsmooth nonlinear-
ities, including sliding mode control [1], and dithering {2]. Motivated by limitations
in these methods, such as chattering in sliding mode control, Recker et al. [3] pro-
posed an adaptive control schemefor controlling systems with deadzones. In (3], full
state measurements were assume to be available. More recently, Tao and Kokotovic
[4] considered the more redlistic situation where only a single output measurement
is available. In practice, however, the transient performance o the adaptive control
schemes above is limited.

Fuzzy logic-based controllers have received considerable interest in recent years
(see for example [5], (6], (7], (8], (9]). Fuzzy-based methods are useful when precise

mathematical formulations are infeasible. Moreover, fuzzy logic controllers often yield




superior results to conventional control approaches [7]. However, direct application o
conventional fuzzy controllers to a system with deadzones resultsin poor transient and
steady-state behavior, as we shall seein the next section. In particular, a steady-state
error occurs when using a conventional fuzzy controller to asystem with deadzones—
the size of the steady-state error increases with the deadzone width. The steady-state
error arises because conventional fuzzy controllers use only the output error and the
change in output error asinputs to the controller. To eliminatethe steady-state error,
we may attempt to use a fuzzy controller that also incorporates the "integral" o the
output error as an input to the controller. Such a controller was considered in [8].
However, even though the steady-state error is eliminated when applied to a system
with cleadzones, the transient performance is not satisfactory, as we shall seelater.

In this report we propose a fuzzy logic-based scheme which does not suffer from
the deficiencies mentioned above d conventional fuzzy controllers applied to systems
with cleadzones. The idea underlying our approach is based on analyzing the source of
the steady-state error resulting in using a conventional fuzzy controller. Our control
scheme consists o two "layers™ a fuzzy precompensator, and a conventional fuzzy
controller. We demonstrate that our controller has good transient as well as steady-
state performance, and is robust to variations in deadzone nonlinearities.

The remainder of this report is organized as follows. In Section II we describe a
systern with a deadzone, and study the characteristics o a conventional fuzzy logic
controller applied to the system. We show that the conventional fuzzy controller
results in poor performance, and givean analysis d the source d steady-state errors.
We also study the behavior of PID and fuzzy PID controllers. In Section III we
propose our two-layered fuzzy logic controller. We describe the idea underlying our
approach, and give a precise description of the controller. We also provide simulation

plots to illustrate the behavior of our scheme. Finally we conclude in Section V.




IT Characteristicsof Conventional FLC

In this section we describe a conventional fuzzy logic controller (FLC), and study the

behavior o the FLC applied to a system with a deadzone.

II.1 Basic Control Structure

We consider the (discrete-time) system shown in Figure 1, which is a conventional
FLC control system [8]. The transfer function P(z) represents the plant, D repre-
sents an actuator with deadzone, Fle(k), Ae(k)] represents a FLC control law, K is
the feedforward gain, v(k) is the output o the controller, u(k) is the output of the
actuator, ym(k) is the reference input (command signa to be followed), and y,(k)
is the output of the plant. The characteristics o the actuator with deadzone D is

described by the function

m(u-=d), ifu>d
D[v] =14 o, if —d<v<d
1 m(vtd), ifv<-—-d
whered, m > 0. Figure?2 illustrates the characteristicsdof the actuator with deadzone.
The parameter 2d specifies the width o the deadzone, while m represents the slope
o the response outside the deadzone.

11.2 Fuzzy Logi c Controller

We describe the FLC control law Fle(k), Ae(k)] as follows. The approach is based on
standard fuzzy logic rules—for details on fuzzy logic controllers we refer the reader
to (7). Wethink o e(k) and Ae(k) asinputs to the controller, and F[e(k), Ae(k)] as
the output. As we shall see later, e(k) is the output error ym (k) — yp(k), and Ae(k)
is the change in output error e(k) — e(k — 1). Associated with the fuzzy control law

isa collectiond linguistic values

L ={NB,NM, NS, Z0, PS,PM, PB}
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and a collection of membership functions
M = {Mygp, My, Mys, Mzo, Mps, Mpas, Mpp}

Each membership function is a map from the real line to the interval [0,1]; Figure 3
shows a plot of the membership functions. The "meaning” of each linguistic value
shoulcl be clear from its mnemonic; for example, N B stands for " negative-big", N M
stands for " negative-medium”, N S standsfor " negative-small", ZO standsfor "zero",
and likewise for the "positive” (P)linguistic-value.

Thefuzzy control law consists of three stages: fuzzification, decision making fuzzy
logic, and defuzzification. The process of fuzzification transforms the inputs e(k) and
Ae(k) into thesetting of linguistic values. Specifically,for each linguisticvaluel € L,
we assign a pair of numbers n.(!) and na.(l) to the inputs e(k) and Ae(k) via the

associated membership function M;, by
nc(l) = M,(C,e(k))
na.(l) = M(CacAe(k))

where C, and Ca. are scale factors. The numbers n.(I) and na.({), [ € L, are used
in the fuzzy logic decision process, which we describe next.

Associated with the fuzzy logic decision process is a set of fuzzy rules R =
{Ry,Ry,...,R.}. Each R;,i = 1,...,r,isatriplet (I.,lac, lw), Where l.,lae, 1y € L.
An example of a ruleis the triplet (NS, PS,Z0). Rules are often written in the
form: "if e(k) isl. and Ae(k) is la., then wis l,” (herewe think of w as the output
of the fuzzy logic rule). For this conventional FLC, the rules are given in Table 1.
This set of rulesisfairly standard and well known; see for example [9]. In this case,
r = 21, but in general we may have more or fewer number o rules. Asis usua in
fuzzy logic approaches, the rules were constructed based on expert experience. Each
rule Ry = (l., lae, ) takes a given pair e(k) and Ae(k) and assigns to it a function

pi(e(k), Ae(k),w), w € [-1,1], as follows:
Npin = min(n.(l.),nac(la))

pi(e(k), Ae(k),w) = min(Nmin, M, (w))




NB NM NS Z0O PS PM PB

-1 0 1

Figure 3 Membership Functions
We combine the functions pi, « = 1,...,r to get an overall function q by
q(e(k), Ae(k), w) = max(py(e(k), Ae(k), W), ..., p.(e(k), Ae(k), W))

Finally, the defuzzification process maps the result o thefuzzy logic rule stage to
a real number output F(e(k), Ae(k)) by

[t wq(e(k), Ae(k), w) dw
21 ale(k), Ae(k), w) dw

Fle(k), Ae(k)] = Cr

where Cg isa scalefactor. This method of defuzzificationiscalled the Center & Area
(COA) method, since theratio in theright hand sided the above equation is simply

the center of aread the function g(e(k), Ae(k), w) (as afunction of w).

11.3 Analysis of Steady-State System Behavior

We now study the steady-state behavior o the system controlled by the convention-
al FLC described in the previous section. We will show that in the presense of a
deadzone, a steady-state error occurs.

The dynamics o overall system is described by the following equations:
e(k) = ym(k) —yp(k)

Ae(k) = e(k)—e(k—1)
v(k) = Kiym(k) + Fle(k), Ae(k)]




Ae(k)

NB|NM| NS |Z20 | PS|PM| PB
NB NB | NS
NM NM | NS
NS NS | ZO PM
ZO [ NB|NM| NS |ZO |PS|PM| PB
PS |[NM | NS | ZO-| PS
PM -PM
PB PM | PB

Table 1: Fuzzy logic rulesfor conventional FLC

Notethat theequation y,(k) = P(z)[u(k)] involvesasdlight abuse d notation; however,
its meaning should be obvious. It turns out that F[0,0] = 0, and therefore if wefix
the reference input ym(k) = ym, the steady-state actuator input is Kiym.

Consider the case wherethere is no deadzone, i.e., d= 0, and m = 1. In this case

the plant output can be written as

Since e(k) = ym(k) — y,(k), then the plant output can also be written as

We now fix ym(k) = ym, and study the behavior o the system in steady-state. In

u(k)
yp(k)

Yp(k) = ym(k) — e(k)

Dlv(k)]
P(2)[u(k)]

this case, we can set Ae(k) =0 to get

Yp(k) = P(z)[K1ym(k) + Fle(k), Ae(k)]]

Yp(k) = K,[Krym + Fle(k), 0]] = ym — e(k)




where K, isthe steady-state gain of P(z) (assumed stable), given by K, = lim,_;(1 -
z~1)P(z). The steady-state error e, is then the solution to equation (1), that is,

K_,[Klym + F[e,,, 0]] = Ym — C€ss (2)

We assume that the controller is "well-tuned”, so that K; = K;!. Equation (2) then

becomes
K, Fless,0] = —e,s (3)

We do not have a closed form expression for the function F[-,0]. Nevertheless, it
is easy to see from the description o the FLC in the previous section that F[-,0]
is an :increasingodd function, as illustrated in Figure 4. The graph of K,F[-,0] in
Figure 4 was obtained by direct calculation via computer. We can solve equation
(3) graphically —we simply plot the left and right hand sides o equation (1) on the
same graph, and find the point where they intersect. Ascan be seenin Figure 4, the
solution ise, = 0. Therefore, the steady-state error for a system without a deadzone
is exactly zero.

We now consider the case where a deadzone is present, i.e., d # 0, and m > 0 is

arbitrary. In this case, the steady-state output o the plant can be written as
yp(k) = K, D[K1ym + Fle(k),0]] = ym — (k)
Therefore, the steady-state error is the solution to the equation
K,D[K1ym + Fle(k),0]] — ym = —e€ss (4)

Thefirst term in theleft hand sidedf (4) isillustrated in Figure 5(a). Once again we
use a graphical approach to solve (4); see Figure 5(b). As we can see, thesolution g,

is no longer zero, but some nonzero number (with the samesign as y.; in Figure 5(b)
we have assumed a positive yn,). It is clear that the nonzero steady-state error is a
direct result of the presenced the deadzone in the actuator. In the next section we

illustrate this behavior viaan example.

—
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114 An Example

Consider a (continuous time) plant with transfer function

10
s2+3+1

We apply the conventional FLC described before to the above plant, using the stan-
dard sample-and-hold approach, with a sampling time of 0.025 seconds. The scae
factors used for the FLC are C. = 1/ym, Cae = 9/ym, and Cr = 5y,,. These values
for the scale factors were chosen by experience. In this example, we set y» = 1, and
Ki =01

Figure 6 shows output responses of the plant for three values of d: 0.0, 0.5, 1.0.
In all casesweused m = 1. It is clear from Figure 6 that there is a relatively large
steady-state error and overshoot when a deadzone is present. The steady-state error

and overshoot increases with the the deadzone width.

10
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Figure 6: Output responses d plant with conventional FLC

1.5 Pl Dand Fuzzy Pl D Controllers

We may argue that a steady-state error exists in the previous system because the
controller uses only the output error and change of output error. It is well known
that if we also include the "integra” o theerror as an input to the controller, then
steady-state errors can be eliminated. In this section we study the behavior of a PID
controller and a fuzzy PID controller applied to the system with a deadzone. These
controllers include not only the error and change of error, but also “integral” of error,
as input.

Consider the control structure shown in Figure 7, which consists of a conven-
tional PID ("proportional-integral-derivative”) controller applied to the system with
deadzone. The control law used is given by:

u(k) = u(k — 1) + KpAe(k) + Kre(k) + Kp(Ae(k) — Ae(k — 1))

The above is the standard PID controller law, used widely in practice.
To observe the behavior o the system in Figure 7, we used the plant givenin the

12
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Figure 7. PID controller for-system with deadzone

previcus example, with the following parameter vaues. Kp = 1.284, K; = 0.0325,
and Ap = 46.8. As before, we used a sampling time d 0.025 seconds. The output
responses are shown in Figure 8. As we can see, the steady-state error is eliminated.
However, the transient responseissensitive to the deadzone width, and isincreasingly
poor as the deadzone width isincreased.

We now consider a fuzzy-based scheme which is similar to the one considered in
the last section, but which incorporates the "integral” o error as an input to the
controller. We refer to the controller as a "fuzzy PID" controller. The scheme is
discussed in detail in [8], and isillustrated in Figure 9. The only difference between
thefuzzy PID schemeand the conventional FL C considered previoudly isthat K; = 0,
and there is a "Fuzzy 1" block in parallel with the "Fuzzy PD" block. The Fuzzy
PD block is essentially identical to the conventional FL C described before (the only
differenceisin the set of rules ussd—49 rules were used here, these being taken from
[8, Table 10]). The Fuzzy | block uses e(k) as the input. We refer the reader to
[8, Table 7] for the fuzzy rules used in the Fuzzy | block. The fuzzification and
defuzzification procedures used in the Fuzzy | block are the same as before, except
with different scale factors—we denote the input scale factor by C.; and the output
scale factor by Cj.

We applied the Fuzzy PID controller to the same system as the previous example.

We used the following internal variables: Ce = 1/ym, Cae = 11/ym, Cr = 8ym,

13
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Figure 8 Output responsesd plant with PID controller

Cei = 8/ym, Cr = 0.02y,,. As before, y»» = 1. Figure 10 shows output responses
for the system with the Fuzzy PID controller. We see that the steady-state error
is eliminated, but the transient performance with large deadzone width is still not

satisfactory.

IIT Two-Layered Fuzzy Logic Controller

In this section we describe a novd two-layered fuzzy logic controller. Our aim is to
eliminatethe steady-state error and improve the performance o the output response
for FLC systems with deadzones. As we shall see, our proposed sclheme is indeed

insensitive to deadzones, and exhibits good transient and steady-state behavior.

111 Basic Control Structure

We use agraphical approach to describe the idea underlying our proposed controller.
Consider Figure 5(b), which illustrates the source o the steady-state error for the

14
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conventional FLC system. Suppose we shift the graph of K,D[K,ym + Fle,0]] — ym
to the left by an amount equal to n (theintersection point of the graph with the e
axis). Then, it isclear that the steady-state error (the point o intersection o thetwo
graphs in Figure 5(b)) becomes zero. Shifting the graph o K,D[K1ym T Fle,0]] — ym
to theleft by an amount n isequivalent to adding » to e In other words, thegraph of
K,D[K1ym T F[eT7,0]] — ym intersects the graph of —e at the origin. The key idea
underlying our proposed controller is to shift the curvedt K,D[Kyym T Fle+7,0]] —¥m
as described above so that the steady-state error is zero. Note that instead of adding
n to e to shift the curve, we can achieveasimilar effect by adding some other constant
u to the referenceinput y,  Inour controller we use fuzzy logic rules to calculate the
appropriate value o u to be added to the reference input. Notice that unlikein the
conventional FLC case, the above argument does not depend on assuming that the
controller is well-tuned to the steady-state gain K, i.e., K; need not beequal to K,
0 long as the graph o K,D[K,ym T Flet 7,0]] = y.. is shifted by the appropriate
amount. We can treat K; asan additional design parameter.

We now proceed to describe our proposed controller. First, we define the variables

yh (k) and €'(k) as follows:

Ym(E) = ym(k)+ pu(k)
e'(k) = e(k)+ u(k)

where: u(k) is a compensating term which is generated using a fuzzy logic scheme,
which we will describe below. The proposed control scheme is shown in Figure 11
As we can see, the controller consists o two "layers": afuzzy precompensator, and a
conventional FLC. Hencewe refer to our schemeas a two-layeredfuzzy logic controller.
The error e(k), change of error Ae(k), and u(k — 1) (previous compensating term)
are inputs to the precompensator. The output of the precompensator is u(k). The

dynamics of overal system is then described by the following equations:

e(k) = ym(k)—yp(k)
Ae(k) = e(k)—e(k—1)

16




u(k) = Gle(k), Ae(k), u(k - 1)]
Ym(E) = ym(k)+ pu(k)

e'(k) = yn(k)—yy(k)

Ad'(k) = €k)-¢€(k-1)

k) = Kuyn(k)t Fle'(k), Ae'(k)]
k) = Dlv(k)]

vp(k) = P(2)u(k)}.

In the next two sections we describe in detail the two layers of our proposed controller

structure.

I11.2 First Layer: Fuzzy Precompensator

We now describe the first layer in our two-layered controller structure, which con-
sists of the fuzzy logic-based precompensator. As before, our fuzzy precompensator
makes; use of a set of linguistic values. However, in addition to the previous set of
linguistic values L and membership functions M, the precompensator also uses a new
set of linguistic values L' = {NE, ZF,PO) and associated membership functions
M' = {MnEg, Mzg, Mpo}. The mnemonic NE stands for "negative", ZE stands for
«zero", and PO stands for "positive". Figure 12 shows a plot of the membership
functions in M’. The linguistic values in L' are used for the "input" variables of the
precompensator, while the linguistic valuesin L are used for the “output”.

As before, the fuzzy precompensator consists of three steps. fuzzification, decision
making fuzzy logic, and defuzzification. For each I < L', thefuzzification process for
the precompensator assigns to each o the inputs e(k), Ae(k), and u(k — 1), the

numbers m. (), ma.() and m,(!"), respectively, via
me(l) = Mu(Cle(k))
mac(l) = Mp(Cy. Ae(k))
mu(l) = Mu(Clu(k - 1))

17




where C¢, Cj., and C], are scale factors. Associated with the decision making fuzzy
logic stage of the precompensator are twenty-seven rules {Ry,..., R,,}, as shown in
Table2. In thiscase, each rule R} isa quadruplet (I, la., I, 1.), where I, I, ), € L,
and l, € L (where L istheset of linguistic values used in the conventional FLC as
described previously). As mentioned before, we usually express the rule as "if e(k)
isl, and Ae(k) isly, and u(k = 1) isl,, then u is1". In this case, we think of u
as the output o the rule. We emphasize that the “output linguistic value" {, isin
L (not L'). For each rule R; = (I, 14,0, 1.),y% = 1,...,27, we compute the function

P'(e(k), Ae(k), u(k —1),p), p € [~1,1], as follows:

:nin = min(mc(l::)’mAe(l.{lc)amu(ll))

pi(e(k), Ae(k), p(k — 1), u) = min(Np;,, M1, (p))

where! M, is the membership function of 3, € L, as shown in Figure 3. We combine

thefunctions pi, : = 1,...,27, to get

¢'(e(k), Ae(k), u(k — 1), p)
= max(p(e(k), Ae(k), u(k — 1), ), .. ., Por(e(k), Ae(k), p(k — 1), 4)
Finally, the defuzzification process for the precompensator gives us the real output
Gle(k), Ae(k), u(k — 1)] (using the COA method as before):

J11 nd'(e(k), Ae(k), u(k — 1), p) du
Il q(e(k), Ae(k), p(k — 1), ) dus

where C is a scale factor. Note that we add u(k — 1) to the computed and scaled

Gle(k), Ae(k), u(k - 1)] = Co +p(k—1)

center-of-error term.

111.3 Second Layer: Conventional FLC

The second layer of our controller structure consists o a conventional FLC, which is
essentially identical to that described in Section I1.2. The only differencein this case
is that instead of using e(k) and Ae(k) asinputs tothe FLC, we use ¢’(k) and Ae'(k),
where €/(k) = e(k)+u(k), Ae'(k) = e'(k)—€'(k—1), and p(k) = Gle(k), Ae(k), p(k—

18
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IF THEN

e(k) | Ae(k) | p(k=1) | (k)
NE NS

NE ZE Z0

PO Z0

NE PS

NE ZE ZE Z0
PO NS

NE PV

PO ZE PS

PO Z0

NE Z0

NE ZE NS

PO NS

NE Z0

ZE ZE ZE Z0
PO ZE

NE PS

PO ZE PS

PO Z0

NE PV

NE ZE PS

PO Z0

NE PV

PO ZE ZE PS
PO Z0

NE PB

PO ZE PS

PO Z0

Table 22 Rules for the Fuzzy Precompensator
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1)] is the output o the precompensator. In particular, as indicated by the dynamics

equations previously, the output o the FLC is given by
v(k) = Ky, (k) + Fle'(k), Ae'(k))

where y;. (k) = ym(k) + p(k).

III.4 Example

We consider again the plant of Section 114. We now apply the proposed two-layered
fuzzy logic controller to the plant; as before we use a sampling time o 0.025 seconds.
The scale factors used in the second layer (conventional FLC) are as before, except
with ym replaced by v,,, i.e., C. = 1/y.., Ca. = 9/y.,, and Cr = 5y... The scale
factors used in the first layer (precompensator) are as follows. C. = 4.5/ym, Ch. =
49.5/ym, C, = 3/ym, Ca = 0.2ym. In this example, we once again set y» = 1, and
K, =01

Figure 13(a) shows output responses o the plant for m = 1 and three values o
d(as before): 0.0, 0.5, 1.0. The output responsesin Figure 13(a) show considerable
improvement over those d Figure 6. Not only is the steady-state error reduced to
virtually zero, but the transient response is aso improved. In Figure 13(a), the
"internal variables' (e.g., scale factors, membership functions) used were "tuned" for
a deadzone width o d =0 and adlope o m = 1. Nevertheless, as we can see, the
controller also performs well for deadzone widths of d = 05 and 1.0. Therefore, we
conclude that our controller isrobust to variations in the deadzone width. In practice,
we can use thesamevauesd interval variablesfor a whole range o deadzone widths,
without having to retune the values. However, as we can see in Figure 13(a), the
transient response does deteriorate slightly as d increases. This deterioration can be
eliminated if we readjust the internal variablesfor the particular d.

Figure 13(b) shows output responsesd the plant for d = 0.5 and three values of
m: 2.0, 3.0, 6.0. Inall threeplots, thesame valuesfor theinternal variables were used

as before, except C¢ = 3.51in this case. Aswe can see, the controller performs well in
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all three cases. Hence we conclude that the controller is also robust to variations in
slope. Naturally, the performance deteriorates as m increases, and the performance
at a particular slope m will be better if the internal variablesare specialy tuned for
that specific m.

In the above examples we used K; = 0.1 = K;!, which means that K; is “well-
tuned."” to the steady-state gain o the plant. Figure 14 show output responsesadf the
plant with valuesd K; which are not well-tuned; in Figure 14(a) we used K; = 05
(5 times K1), and in Figure 14(b) we used K; = 0.02 (1/5 times K;'). We can see
that the performance is relatively robust to the choiced K,. Naturally, with fixed
vauesd K, and theinternal variables, weexpect the performanceto deteriorate with
increasing deadzone widths, as illustrated in Figure 14. The performance for large

deadzone widths may be improved if we retune the internal variables,

|V Conclusons

In this report, we proposed a two-layered fuzzy logic controller for systems with
deadzones. Our controller consists of a fuzzy precompensator and a conventional
FLC. The proposed controller has superior steady-state and transient performance,
compared to a conventional FLC. An advantage o our present approach is that
an existing conventional FLC can be easily modified into our control structure by
adding a fuzzy precompensator, without having to retune theinternal variablesd the
existing FLC. In addition, the two-layered control structure is robust to variations
In the deadzone nonlinearities (width and slope), as well as the steady-state gain
the plant. We demonstrated the performance o our controller via several computer

simulation examples.
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