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Systems With - Deadzones 

Jong-Hwan Kim* Jong-Hwan Park* Seon-Woo Lee* 
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Abstract 

Existing fuzzy control methods do not perform well when applied to systems con- 

taining nonlinearities arising from unknown deadzones. In particular, we show that a 

conventional fuzzy logic controller applied to a system with a deadzone suffers from 

poor transient performance and a large steady-state error. In this report, we propose 

a novc:l two-layered fuzzy logic controller for controlling systems with deadzones. The 

two-layered control structure consists of a fuzzy logic-based precompensator followed 

by a conventional fuzzy logic controller. Our proposed controller ex hi bi t s superior 

transient and steady-state performance compared to conventional fuz;zy controllers. 

In addition, the controller is robust to variations in deadzone nonlj.nearities. We 

illustl-ate the effectiveness of our scheme using computer simulation e~camples. 
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373-1 IKusung-dong, Yusung-gu, Taejon-shi 305701, Republic of Korea. The first author is currently 
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Lafayette, IN 47907-1285. 



We propose a two-layered fuzzy logic-based controller for controlling systems with 

deadzones. Our two-layered structure consists of a fuzzy precompensator and a fuzzy 

controller. The two-layered structure is based on analyzing the source of large steady- 

state errors which arise when a conventional fuzzy controller is applied to a system 

with at deadzone. Our proposed scheme has good transient as well as steady-state 

performance, and is robust to variations in deadzone nonlinearities. 

Mamy physical components in control systems contain nonsmooth nonlinearities, 

such a s  saturation, relays, hysteresis, and deadzones. Such nonlinearities are especial- 

ly corrlmon in actuators used in practice, such as hydraulic servovalves. Furthermore, 

the nonlinearities in such systems are often unknown and vary with time. For example, 

a common source of nonlinearities arise from friction, which vary with temperature 

and wear, and may differ significantly between components which are mass produced. 

Therefore the study of methods to deal with nonsmooth nonlinear it it:^ has been of 

interest to control practitioners for some time. In this report, we consider only dead- 

zone nonlinearities. Deadzones are of interest in their own right, and provide good 

models for many nonsmooth nonlinearities found in practice. 

Several classical methods exist for controlling systems with nonsmooth nonlinear- 

ities, including sliding mode control [I], and dithering [2]. Motivated by limitations 

in these methods, such as chattering in sliding mode control, Recker et al. [3] pro- 

posed an adaptive control scheme for controlling systems with deadzorles. In [3], full 

state ~neasurements were assume to be available. More recently, Tao imd Kokotovic 

[4] coilsidered the more realistic situation where only a single output measurement 

is available. In practice, however, the transient performance of the adaptive control 

schemes above is limited. 

Fuzzy logic-based controllers have received considerable interest in recent years 

(see for example [5], [6], [7], [8], [9]). Fuzzy-based methods are useful when precise 

mathematical formulations are infeasible. Moreover, fuzzy logic controllers often yield 



superior results to conventional control approaches [7]. However, direct application of 

convelltional fuzzy controllers to a system with deadzones results in poor transient and 

steady-state behavior, as we shall see in the next section. In particular, a steady-state 

error occurs when using a conventional fuzzy controller to a system with deadzones- 

the size of the steady-state error increases with the deadzone width. The steady-state 

error iuises because conventional fuzzy controllers use only the output error and the 

change in output error as inputs to the controller. To eliminate the steady-state error, 

we may attempt to use a fuzzy controller that also incorporates the "integraln of the 

output error as an input to the controller. Such a controller was considered in 181. 

However, even though the steady-state error is eliminated when applied to a system 

with cleadzones, the transient performance is not satisfactory, as we shall see later. 

In this report we propose a fuzzy logic-based scheme which does not suffer from 

the deficiencies mentioned above of conventional fuzzy controllers applied to systems 

with cleadzones. The idea underlying our approach is based on analyzing the source of 

the stieady-state error resulting in using a conventional fuzzy controller. Our control 

scheme consists of two "layersn: a fuzzy precompensator, and a conventional fuzzy 

controller. We demonstrate that our controller has good transient as  well as steady- 

state performance, and is robust to variations in deadzone nonlinearit ies. 

The remainder of this report is organized as follows. In Section I1 we describe a 

systern with a deadzone, and study the characteristics of a conventional fuzzy logic 

controller applied to the system. We show that the conventional fuzzy controller 

results in poor performance, and give an analysis of the source of steady-state errors. 

We also study the behavior of PID and fuzzy PID controllers. In ;Section 111 we 

propose our two-layered fuzzy logic controller. We describe the idea underlying our 

approach, and give a precise description of the controller. We also provide simulation 

plots to illustrate the behavior of our scheme. Finally we conclude in Section IV. 



I1 Characteristics of Conventional FLC 

In this section we describe a conventional fuzzy logic controller (FLC), and study the 

behavior of the FLC applied to a system with a deadzone. 

11.1 Basic Control Structure 

We consider the (discrete-time) system shown in Figure 1, which is a conventional 

FLC c:ontrol system [8]. The transfer function P(z)  represents the plant, D repre- 

sents an actuator with deadzone, F [e(k), Ae(k)] represents a FLC con:trol law, Kl is 

the feedforward gain, v(k) is the output of the controller, u(k) is the output of the 

actuator, y,(k) is the reference input (command signal to be followed), and yp(k) 

is the output of the plant. The characteristics of the actuator with deadzone D is 

described by the function 

m(u - d), if u > d 

i f - d I v < d  

m(v + d), if v < -d 

where dl m > 0. Figure 2 illustrates the characteristics of the actuator with deadzone. 

The parameter 2d specifies the width of the deadzone, while m represents the slope 

of the response outside the deadzone. 

11.2 F'uzzy Logic Controller 

We describe the FLC control law F[e(k), Ae(k)] as follows. The approa~h is based on 

standard fuzzy logic rules-for details on fuzzy logic controllers we refer the reader 

to [7]. We think of e(k) and Ae(k) as inputs to the controller, and F[e(k), Ae(k)] as 

the output. As we shall see later, e(k) is the output error y,(k) - yp(k), and Ae(k) 

is the change in output error e(k) - e(k - 1). Associated with the fuzzy control law 

is a collection of linguistic values 

L = {NB, NM, NS, 20, PS, P M ,  PB} 
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Figure 1: Conventional FLC system with deadzone 

Figure 2: Characteristics of Actuator with deadzone 



and a collection of membership functions 

Each ~nembership function is a map from the real line to the interval [O,l]; Figure 3 

shows a plot of the membership functions. The "meaningn of each linguistic value 

shoulcl be clear from its mnemonic; for example, N B  stands for "negative-bign, N M  

stands for "negative-mediumn , N S  stands for "negative-smalln , ZO stands for "zeron, 

and 1i:kewise for the "positiven (P) linguistic-value. 

The fuzzy control law consists of three stages: fuzzification, decision making fuzzy 

logic, and defuzzification. The process of fuzzification transforms the iinputs e(k) and 

Ae(k) into the setting of linguistic values. Specifically, for each linguistic value 1 E L, 

we assign a pair of numbers n,(l) and nA,(l) to the inputs e(k) and Ae(k) via the 

associ'ated membership function MI, by 

where C, and CA, are scale factors. The numbers n,(l) and nA,(l), 1 E L, are used 

in the fuzzy logic decision process, which we describe next. 

Associated with the fuzzy logic decision process is a set of fuzzy rules R = 

{R1, R2,. . . , 8). Each 8, i = 1,. . . , r, is a triplet (I,, la,, I,), where I,, la,, I, E L. 

An example of a rule is the triplet (NS,PS,  2 0 ) .  Rules are often written in the 

form: "if e(k) is 1, and Ae(k) is la,, then w is 1," (here we think of w as the output 

of the fuzzy logic rule). For this conventional FLC, the rules are given in Table 1. 

This yet of rules is fairly standard and well known; see for example [9]. In this case, 

r = 21, but in general we may have more or fewer number of rules. As is usual in 

fuzzy logic approaches, the rules were constructed based on expert experience. Each 

rule Ili = (I,, la,, I,) takes a given pair e(k) and Ae(k) and assigns to it a function 

p;(e(kt), Ae(k), w), w E [- 1,1], as follows: 



- 

Figure 3: ~ e r n b e r s h i ~  Functions 

We combine the functions p;,  i = 1,. . . , r to get an overall function q by 

q(e(k), Ae(k), w) = max(pl(e(k), Ae(k), w), . . . ,p,(e(k), Ae(k,), w)) 

Fiinally, the defuzzification process maps the result of the fuzzy logic rule stage to 

a real number output F (e(k), Ae(k)) by 

where CF is a scale factor. This method of defuzzification is called the Center of Area 

(COA) method, since the ratio in the right hand side of the above equation is simply 

the center of area of the function q(e(k), Ae(k), w) (as a function of u7). 

11.3 Analysis of Steady-State System Behavior 

We now study the steady-state behavior of the system controlled by the convention- 

al FIX described in the previous section. We will show that in the presense of a 

deadzone, a steady-state error occurs. 

The dynamics of overall system is described by the following equations: 



Table 1: Fuzzy logic rules for conventional FLC 

Note that the equation y p ( k )  = P ( z ) [ u ( k ) ]  involves a slight abuse of notation; however, 

its m'eaning should be obvious. It turns out that F[O, 0] = 0, and therefore if we fix 

the reference input y , ( k )  = y,, the steady-state actuator input is K1jym. 

Consider the case where there is no deadzone, i.e., d = 0, and m = 1. In this case 

the plant output can be written as 

Since e ( k )  = y , ( k )  - y p ( k ) ,  then the plant output can also be written as 

We now fix y , ( k )  = y,, and study the behavior of the system in steady-state. In 

this case, we can set A e ( k )  = 0 to get 



where K, is the steady-state gain of P(z) (assumed stable), given by K, = lim,,l (1 - 

z-') P(z). The steady-state error e,, is then the solution to equation (I) ,  that is, 

We aslsume that the controller is "well-tuned", so that Kl = K;'. Equ.ation (2) then 

becomes 

K,F[eSs, O] = -em (3) 
- 
-.  

We do not have a closed form expression for the function F[., 01. Nevertheless, it 

is eas:y to see from the description of the FLC in the previous section that F[-,O] 

is an :increasing odd function, as illustrated in Figure 4. The graph lof K,F[-,131 in 

Figun: 4 was obtained by direct calculation via computer. We can solve equation 

(3) graphically-we simply plot the left and right hand sides of equation (1) on the 

same graph, and find the point where they intersect. As can be seen in Figure 4, the 

solution is e,, = 0. Therefore, the steady-state error for a system without a deadzone 

is exactly zero. 

We now consider the case where a deadzone is present, i-e., d # 0, and m > 0 is 

arbitrary. In this case, the steady-state output of the plant can be written as 

Therefore, the steady-state error is the solution to the equation 

The first term in the left hand side of (4) is illustrated in Figure 5(a). Once again we 

use a graphical approach to solve (4); see Figure 5(b). As we can see, the solution e,, 

is no longer zero, but some nonzero number (with the same sign as y,; in Figure 5(b) 

we have assumed a positive ym). It is clear that the nonzero steady-state error is a 

direct result of the presence of the deadzone in the actuator. In the next section we 

illustrate this behavior via an example. 



Figure 4: Graph of K,F[e,C)] and -e 

11.4 A n  Example 

Consider a (continuous time) plant with transfer function 

We alpply the conventional FLC described before to the above plant, i~sing the stan- 

dard smple-and-hold approach, with a sampling time of 0.025 secortds. The scale 

factors used for the FLC are C, = lly,, CA, = 9/y,, and CF = 5ym. These values 

for the scale factors were chosen by experience. In this example, we set y, = 1, and 

K1 = 0.1. 

Fi,gure 6 shows output responses of the plant for three values of dl: 0.0, 0.5, 1.0. 

In all cases we used m = 1. It is clear from Figure 6 that there is a 1:elatively large 

stead y-state error and overshoot when a deadzone is present. The steady-state error 

and clvershoot increases with the the deadzone width. 



(b) 

Fiyre 5: Graphs of: (a) KsDII<lym + F [ e ,  011; (b) Ii,D[& y ,  + F [ e ,  011 - y ,  and -e 



Time (Seconds) 

Figure 6: Output responses of plant with conventional FLlC 

11.5 PID and Fuzzy PID Controllers 

We may argue that a steady-state error exists in the previous systein because the 

controller uses only the output error and change of output error. It is well known 

that if we also include the "integraln of the error as an input to the controller, then 

stead:y-state errors can be eliminated. In this section we study the behavior of a PID 

controller and a fuzzy PID controller applied to the system with a deadzone. These 

contrlollers include not only the error and change of error, but also "intlegraln of error, 

as input. 

Consider the control structure shown in Figure 7, which consist:s of a conven- 

tional PID ("proportional-integral-derivativen ) controller applied to the system with 

deadzone. The control law used is given by: 

The isbove is the standard PID controller law, used widely in practice. 

To observe the behavior of the system in Figure 7, we used the plant given in the 



Actuator 
with 

Controller deadzone Plant 

Figure 7: PID controller for-system with deadzone 

ym 
PID 

previclus example, with the following parameter values: I 6  = 1.284, Kr = 0.0325, 

and hrD = 46.8. As before, we used a sampling time of 0.025 seconds. The output 

responses are shown in Figure 8. As we can see, the steady-state error is eliminated. 

However, the transient response is sensitive to the deadzone width, and is increasingly 

poor as the deadzone width is increased. 

We now consider a fuzzy-based scheme which is similar to the one considered in 

the last section, but which incorporates the "integraln of error as an input to the 

controller. We refer to the controller as a "fuzzy PIDn controller. The scheme is 

discus'sed in detail in [S], and is illustrated in Figure 9. The only difference between 

the fuzzy PID scheme and the conventional FLC considered previously is that Kl = 0, 

and there is a "Fuzzy In block in parallel with the "Fuzzy PDn block. The Fuzzy 

PD block is essentially identical to the conventional FLC described before (the only 

difference is in the set of rules used-49 rules were used here, these being taken from 

[8, Taible 101). The Fuzzy I block uses e ( k )  as the input. We refer the reader to 

[8, Table 71 for the fuzzy rules used in the Fuzzy I block. The fu:zzification and 

defuz:zification procedures used in the Fuzzy I block are the same as before, except 

with different scale factors-we denote the input scale factor by C,; i~nd the output 

scale factor by Cr. 

We applied the Fuzzy PID controller to the same system as the previous example. 

We used the following internal variables: C, = l /ym, Ca, = Illy,,, CF = 8ym, 

v - U 
+ D 

. 
P(z) - YP __t 



Time (Secollds) 

Figure 8: Output responses of plant with PID controller 

C,; =: 8/ym, CI = 0 . 0 2 ~ ~ .  As before, y, = 1. Figure 10 shows output responses 

for the system with the Fuzzy PID controller. We see that the steady-state error 

is eliminated, but the transient performance with large deadzone width is still not 

satisf,actory. 

I11 Two-Layered Fuzzy Logic Controller 

In this section we describe a novel twelayered fuzzy logic controller. Our aim is to 

eliminate the steady-state error and improve the performance of the output response 

for FLC systems with deadzones. As we shall see, our proposed sclheme is indeed 

insensitive to deadzones, and exhibits good transient and steady-state: behavior. 

1 1 1  Basic Control Structure 

We use a graphical approach to describe the idea underlying our proposed controller. 

Consider Figure 5(b), which illustrates the source of the steady-state error for the 
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Figure 9: Fuzzy PID controller for system with deadzonle 

Figure 10: Output responses of plant with Fuzzy PID conti:oller 



convelltional FLC system. Suppose we shift the graph of K,DIKlym -t F[e,O]] - y, 

to the left by an amount equal to q (the intersection point of the gra:ph with the e- 

axis). Then, it is clear that the steady-state error (the point of intersection of the two 

graphs in Figure 5(b)) becomes zero. Shifting the graph of K,DIKl ym + F[e, 011 - y, 

to the left by an amount q is equivalent to adding q to e. In other words, the graph of 

K3D[dy1 y, + F[e + q, 011 - y, intersects the graph of -e at the origin. The key idea 

underlying our proposed controller is to shift the curve of K, DIKl ym + jP[e +?, 011 - y, 

as described above so that the steady-state elvor is zero. Note that instead of adding 

q to e to shift the curve, we can achieve a similar effect by adding some other constant 

p to t:he reference input y,. In our controller we use fuzzy logic rules t,o calculate the 

appropriate value of p to be added to the reference input. Notice that unlike in the 

conve~ntional FLC case, the above argument does not depend on assuming that the 

controller is well-tuned to the steady-state gain K,, i.e., K1 need not be equal to Kc1, 

so long as the graph of K,DIKl y, + F[e + q, 011 - y, is shifted by tlhe appropriate 

amount. We can treat K1 as an additional design parameter. 

We now proceed to describe our proposed controller. First, we define the variables 

y k  (k) and eJ(k) as follows: 

where: p(k) is a compensating term which is generated using a fuzzy logic scheme, 

which we will describe below. The proposed control scheme is shown in Figure 11. 

As we can see, the controller consists of two "layers": a fuzzy precompensator, and a 

conventional FLC. Hence we refer to our scheme as a two-layered fuzzy logic controller. 

The error e(k), change of error Ae(k), and p(k - 1) (previous compsensating term) 

are inputs to the precompensator. The output of the precompensato~r is p(k). The 

dynamics of overall system is then described by the following equations: 



~ ( k )  = G[e(k), Ae(k), ~ ( k  - 111 

~ 3 )  = ym(k) + ~ ( k )  

e'(k) = ~ 3 )  -yp(k) 

Ae1(k) = et(k) - e1(k - 1) 

( k )  = Kly;(k) + F[et(k), Aet(k)] 

( 1  = D[v(k)l 

Y P ( ~ )  = P(z)[u(k)k- 

In the next two sections we describe in detail the two layers of our proposed controller 

structure. 

111.21 First Layer: Fuzzy Precompensator 

We now describe the first layer in our two-layered controller structure, which con- 

sists of the fuzzy logic-based precompensator. As before, our fuzzy precompensator 

makes; use of a set of linguistic values. However, in addition to the previous set of 

linguistic values L and membership functions M, the precompensator also uses a new 

set of linguistic values L' = {NE, ZE, PO)  and associated membership functions 

M' = {MNE, MZE, MPO}. The mnemonic NE stands for "negativen, .ZE stands for 

u zero", and P O  stands for "positiven. Figure 12 shows a plot of the membership 

functions in MI. The linguistic values in L' are used for the "inputn variables of the 

precompensator, while the linguistic values in L are used for the "out~~ut".  

As; before, the fuzzy precompensator consists of three steps: fuzzification, decision 

making fuzzy logic, and defuzzification. For each 1' f L', the fuzzification process for 

the precompensator assigns to  each of the inputs e(k), Ae(k), and p(k - I) ,  the 

numbers m,(l'), ma,(?) and m,(l1), respectively, via 



where CL, CA,, and CL are scale factors. Associated with the decision making fuzzy 

logic stage of the precompensator are twenty-seven rules {Rl,.  . . , &,), as shown in 

Table 2. In this case, each rule 4 is a quadruplet (It, l i e ,  l:, I,), where I:, l ie ,  1; E L', 

and I,, E L (where L is the set of linguistic values used in the conventional FLC as 

described previously). As mentioned before, we usually express the rule as "if e(k) 

is 1: and Ae(k) is lk, and p(k - 1) is l:, then p is 1,". In this case, we think of p 

as the output of the rule. We emphasize that the goutput linguistic value" 1, is in 

L (not L'). For each rule R: = (l:, lhe, l:, l,),Ii = 1,. . . ,27, we compute the function 

p'(e(k), Ae(k), p(k - I ) ,  p), p E [-I, I], as follows: 

where! MI, is the membership function of 1, E L, as shown in Figure 3. We combine 

the functions pi, i = 1,. . . ,27, to get 

Final.lly, the defuzzification process for the precompensator gives us the real output 

G[e(k,), Ae(k), p(k - I)] (using the COA met hod as before): 

where CG is a scale factor. Note that we add p(k - 1) to the computed and scaled 

center-of-error term. 

111.3 Second Layer: Conventional FLC 

The second layer of our controller structure consists of a conventional FLC, which is 

essentially identical to  that described in Section 11.2. The only difference in this case 

is thai instead of using e(k) and Ae(k) as inputs to the FLC, we use et(k) and Ae1(k), 

where e1(k) = e(k)+p(k),  Ae1(k) = et(k) -e1(k- I), and p(k) = G[e(k:), Ae(k), p(k- 
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Figure 12: Membership Functions 



Table 2: Rules for the Fuzzy Precompensator 
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I)] is the output of the precompensator. In particular, as indicated by the dynamics 

equati.ons previously, the output of the FLC is given by 

111.41 Example 
- 

We consider again the plant of Section 11.4. We now apply the proposed two-layered 

fuzzy logic controller to the plant; as before we use a sampling time of 0.025 seconds. 

The scale factors used in the second layer (conventional FLC) are as before, except 

with ;ym replaced by yk, i.e., C, = l lyk ,  Cae = 9/yk, and CF = 5yk. The scale 

factors used in the first layer (precompensator) are as follows: Ci = 4.5/ym, Ck, = 

49.5/1/~, CL = 3/ym, CG = 0 . 2 ~ ~ .  In this example, we once again se:t y, = 1, and 

K, = 0.1. 

Figure 13(a) shows output responses of the plant for m = 1 and three values of 

d (as before): 0.0, 0.5, 1.0. The output responses in Figure 13(a) shww considerable 

imprc~vement over those of Figure 6. Not only is the steady-state error reduced to 

virtually zero, but the transient response is also improved. In Figure 13(a), the 

"internal variables" (e.g., scale factors, membership functions) used were "tuned" for 

a deadzone width of d = 0 and a slope of m = 1. Nevertheless, as we can see, the 

controller also performs well for deadzone widths of d = 0.5 and 1.0. Therefore, we 

conclilde that our controller is robust to variations in the deadzone widt,h. In practice, 

we can use the same values of interval variables for a whole range of deadzone widths, 

without having to retune the values. However, as we can see in Figpre 13(a), the 

transient response does deteriorate slightly as d increases. This deterioration can be 

elimiiiated if we readjust the internal variables for the particular d. 

Figure 13(b) shows output responses of the plant for d = 0.5 and three values of 

m: 2.0, 3.0,6.0. In all three plots, the same values for the internal variables were used 

as before, except CG = 3.5 in this case. As we can see, the controller performs well in 



all three cases. Hence we conclude that the controller is also robust to variations in 

slope. Naturally, the performance deteriorates as rn increases, and the performance 

at a particular slope m will be better if the internal variables are specially tuned for 

that specific m. 

In the above examples we used K1 = 0.1 = K;', which means that Kl is "well- 

tuned." to the steady-state gain of the plant. Figure 14 show output responses of the 

plant with values of K1 which are not well-tuned; in Figure 14(a) we used K1 = 0.5 

(5 times Kc'), and in Figure 14(b) we used Ki = 0.02 (1/5 times KcL).  We can see 

that the performance is relatively robust to the choice of K1. Natura~lly, with fixed 

values of K1 and the internal variables, we expect the performance to deteriorate with 

increasing deadzone widths, as illustrated in Figure 14. The perforrrrance for large 

deadzone widths may be improved if we retune the internal variables. 

IV Conclusions 

In this report, we proposed a two-layered fuzzy logic controller for systems with 

deadzones. Our controller consists of a fuzzy precompensator and a conventional 

FLC. The proposed controller has superior steady-state and transient performance, 

compared to a conventional FLC. An advantage of our present aplproach is that 

an existing conventional FLC can be easily modified into our control structure by 

adding a fuzzy precompensator, without having to retune the internal variables of the 

existing FLC. In addition, the two-layered control structure is robust to variations 

in the deadzone nonlinearities (width and slope), as well as the steady-state gain of 

the plant. We demonstrated the performance of our controller via several computer 

simul.ation examples. 
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